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Abstract

Environment perception, including object detection and

distance estimation, is one of the most crucial tasks for au-

tonomous driving. Many attentions have been paid on the

object detection task, but distance estimation only arouse

few interests in the computer vision community. Observing

that the traditional inverse perspective mapping algorithm

performs poorly for objects far away from the camera or on

the curved road, in this paper, we address the challenging

distance estimation problem by developing the first end-to-

end learning-based model to directly predict distances for

given objects in the images. Besides the introduction of a

learning-based base model, we further design an enhanced

model with a keypoint regressor, where a projection loss is

defined to enforce a better distance estimation, especially

for objects close to the camera. To facilitate the research

on this task, we construct the extented KITTI and nuScenes

(mini) object detection datasets with a distance for each ob-

ject. Our experiments demonstrate that our proposed meth-

ods outperform alternative approaches (e.g., the traditional

IPM, SVR) on object-specific distance estimation, particu-

larly for the challenging cases that objects are on a curved

road. Moreover, the performance margin implies the effec-

tiveness of our enhanced method.

1. Introduction
With the advances in the field of computer vision, vi-

sual environment perception, which includes object classi-

fication, detection, segmentation and distance estimation,

has become a key component in the development of au-

tonomous driving cars. Although researchers have paid a

lot of efforts on improving the accuracy of visual percep-

tion, they mainly focus on more popular tasks, such as ob-

ject classification, detection and segmentation [29, 27, 17].

Besides recognizing the objects on the road, it is also im-

∗indicates corresponding author.

Output:		Object	category	+	Distance	(in	meters)

Input:		RGB	Image	+	Bounding	boxes	(object	image	location)

Figure 1: Given a RGB image and the bounding boxes (im-

age location) for objects as inputs, our model directly pre-

dicts a distance (in meters) and a category label for each

object in the image. Our model can be easily generalized

on any visual environment reception system by appending

to mature 2D detectors.

portant to estimate the distances between camera sensors

and the recognized objects (e.g. cars, pedestrians, cyclists),

which can provide crucial information for cars to avoid col-

lisions, adjust its speed for safety driving and more impor-

tantly, as hints for sensor fusion and path planning. How-

ever, the object-specific distance estimation task attracts

very few attentions from the computer vision community.

With the emergence of the convolutional neural networks,

researchers have achieved remarkable progress on tradi-

tional 2D computer vision tasks using deep learning tech-

niques, such as object detection, semantic segmentation, in-

stance segmentation, scene reconstruction [4, 30, 31, 16],

but we have failed to find any deep learning application on

object-specific distance estimation. One of the main rea-

sons could be the lack of datasets that provides distance for

each of the object in the images captured from the outdoor

road scene.

In this paper, we focus on addressing the interesting but

challenging object-specific distance estimation problem for

autonomous driving (as shown in Fig. 1). We have ob-
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served that most of the current existing robotic systems or

self-driving systems predict object distance by employing

the traditional inverse perspective mapping algorithm. They

first locate a point on the object in the image, then project

the located point (usually on the lower edge of the bound-

ing box) into a bird’s-eye view coordinate using camera pa-

rameters, and finally estimate the object distance from the

bird’s-eye view coordinate. Though this simple method can

predict reasonable distances for objects that stay close and

strictly in front of the camera, it performs poorly on cases

that 1) objects are located on the sides of the camera or the

curved road, and 2) objects are far away (above 40 meters)

from the camera. Therefore, we are seeking to develop a

model to address the aforementioned challenging cases with

the advantages of deep learning techniques.

Ours is the first work to develop an end-to-end learning-

based approach that directly predicts distances for given ob-

jects in the RGB images. We build a base model that ex-

tracts features from RGB images, then utilizes ROI pool-

ing to generate a fixed-size feature vector for each object,

and finally feeds the ROI features into a distance regres-

sor to predict a distance for each object. Though our base

model is able to provide promising prediction, it still does

not fulfill the precision requirement for autonomous driv-

ing. Therefore, we create an enhanced model for more pre-

cise distance estimation, particularly for objects close to the

camera. Specially, in the enhanced model, we design a key-

point regressor to predict part of the 3D keypoint coordi-

nates (X,Y ). Together with the predicted distance (Z), it

forms a complete 3D keypoint (X,Y, Z). Leveraging the

camera projection matrix, we define a projection loss be-

tween the projected 3D point and the ground truth keypoint

on image to enforce a correct prediction. Note that the

keypoint regressor and projection loss are used for training

only. After training, given an image with object (bounding

box), the object-specific distance can be directly extracted

from the outputs of our trained model. There is no camera

parameters intervention during inference.

To validate our proposed methods, we construct an ex-

tended dataset based on the public available KITTI ob-

ject detection dataset [10] and the newly released nuScenes

(mini) dataset [1] by computing the distance for each ob-

ject using its corresponding LiDAR point cloud and camera

parameters. In order to quantitatively measure the perfor-

mance of our work and alternative approaches, we employ

the evaluation metrics from depth prediction task as our

measurements. We report the quantitative results, and visu-

alize some examples for qualitative comparison. The exper-

imental results on our constructed object-specific distance

dataset demonstrate that our deep-learning-based models

can successfully predict distances for given objects with su-

perior performance over alternative approaches, such as the

traditional inverse perspective mapping algorithm and the

support vector regressor. Furthermore, our enhanced model

can predict a more precise distance than our base one for

objects close to the camera. The inference runtime of our

proposed model is twice as fast as the traditional IPM.

In summary, the main contributions of our work are con-

cluded as:

• To address the object-specific distance estimation chal-

lenges, e.g., objects far away from the camera or on

the curved road, we propose the first deep-learning-

based method with a novel end-to-end framework (as

our base model) to directly predict distance from given

objects on RGB images without any camera parame-

ters intervention.

• We further design an enhanced method with a key-

point regressor, where a projection loss is introduced

to improve the object-specific distance estimation, es-

pecially for object close to the camera.

• To facilitate the training and evaluation on this task,

we construct the extended KITTI and nuScenes (mini)

object-specific distance datasets. The experiment re-

sults demonstrate that our proposed method achieves

superior performance over alternative approaches.

2. Related work

Object-specific distance estimation plays a very im-

portant role in the visual environment reception for au-

tonomous driving. In this section, we briefly review some

classic methods on distance estimation and the advances of

deep learning models in 2D visual perception.

Distance estimation Many prior works for distance

estimation mainly focused on building a model to represent

the geometry relation between points on images and their

corresponding physical distances on the real-world coordi-

nate. One of the classic ways to estimate distance for given

object (with a point or a bounding box in the image) was

to convert the image point to the corresponding bird’s-eye

view coordinate using inverse perspective mapping (IPM)

algorithm [28, 25]. Due to the drawbacks of IPM, it would

fail in cases that objects are located over 40 meters apart

or on a curved road. Another vision-based distance estima-

tion work [13] learned a support vector machine regressor

to predict an object-specific distance given the width and

height of a bounding box. DistNet [14] was a recent try to

build a network for distance estimation, where the authors

utilized a CNN-based model (YOLO) for bounding boxes

prediction instead of the image features learning for dis-

tance estimation. Similar to IPM, their distance regressor

solely studied the geometric relation that maps a bounding

box with a certain width and height to a distance value. In

contrast, our goal is to build a model that directly predicts

distances from the learned image features.
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Figure 2: The framework of our base model, which consists of three components: a feature extractor to generate a feature map

for the whole image, a distance regressor to directly predict a distance from the object specific ROI feature, and a multiclass

classifier to predict the category from the ROI feature.

Besides the aforementioned approaches, some other

works attempted to address this challenging problem by

making use of some auxiliary information. Some marker-

based methods [2, 26] first segmented markers in the image

then estimated distance using the marker area and camera

parameters. Instead of utilizing markers, Feng et al. [8]

proposed a model to predict physical distance based on a

rectangular pattern, where four image points of a rectangu-

lar were needed to compute the camera calibration. They

then predicted the distance of any given point on an object

using the computed camera calibration. Though prior works

are impressive, they require markers or patterns to be put in

the image for distance estimation, which limits their gener-

alization for autonomous driving.

2D visual perception Although there is no recent

work employing deep learning techniques to learn the ro-

bust image features for visual monocular object-specific

distance estimation, deep learning techniques have been

successfully applied on many other 2D visual perception

tasks (e.g. object detection, classification, segmentation,

monocular depth estimation) with excellent performance

[32, 3, 6, 33]. The series of R-CNN works [12, 11, 24, 15]

are the pioneers to boost the accuracy as well as decrease

processing time consumption for object detection, classi-

fication and segmentation. SSD [20] and YOLO models

[22, 23] are also the popular end-to-end frameworks to de-

tect and classify objects in RGB images. Their models

could be used to address some of the visual perception tasks

for autonomous driving, such as detection and classifica-

tion, but their models are unable to predict the object dis-

tance. Nevertheless, those remarkable works inspired us to

build an effective end-to-end model for monocular object-

specific distance estimation.

On the other hand, monocular depth estimation could

be a problem close to our object-specific distance estima-

tion task. Recently, many researchers have created some

supervised and even unsupervised models to predict dense

depth maps for given monocular color images with more

precise details [7, 18, 19, 9]. Their works are motivating,

but they usually cost more memory and processing time no

matter if it is for training or testing. For visual perception of

autonomous driving, it is more crucial to know the object-

specific distance to avoid collisions or fuse multiple sensor

information, instead of the dense depth map for the entire

scene.

3. Our Approach

Observing the limits of the classic inverse mapping algo-

rithm on distance estimation, we propose a learning-based

model for robust object-specific distance estimation. A

model that directly predicts the physical distance from given

RGB images and object bounding boxes, is introduced as

our base model. Moreover, we design an enhanced model

with a keypoint regressor for a better object-specific dis-

tance estimation.

3.1. Base method

Our base model consists of three components, i.e., a fea-

ture extractor, a distance regressor and a multiclass classifier

(as shown in Fig. 2).

Feature extractor In our model, a RGB image is fed

into an image feature learning network to extract the feature

map for the entire RGB image. We exploit the popular net-

work structures (e.g., vgg16, res50) as our feature extractor.

The output of the last layer of CNN will be max-pooled and

then extracted as the feature map for the given RGB image.

Distance regressor and classifier We feed the ex-
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Figure 3: The framework of our enhanced model, which contains four parts, a feature extractor to generate a feature map for

the whole RGB image, a keypoint regressor to predict a keypoint position on 3D coordinate, a distance regressor to directly

predict a distance , and a multiclass classifier to predict the category label. The outputs of the keypoint regressor and distance

regressor compose a 3D keypoint, which will be projected back to the image plane using the camera projection matrix. A

projection loss is defined between the projected keypoint and the ground truth keypoint to enforce a better distance estimation.

tracted feature map from feature extractor and the object

bounding boxes (implying the object locations in the im-

age) into an ROI pooling layer to generate a fixed-size fea-

ture vector Fi to represent each object in the image. The

pooled feature then is passed through the distance regres-

sor and classifier to predict a distance and a category label

for each object. The distance regressor contains three fully

connected (FC) layers (with layers of size {2048, 512, 1}
for vgg16, {1024, 512, 1} for res50). A softplus activation

function is applied on the output of the last fully connected

layer to make sure the predicted distance (denoted as D(Fi)
is positive. For the classifier, there is a fully connected (FC)

layer (with the neuron size equals to the number of the cat-

egories in the dataset) followed by a softmax function. Let

the output of the classifier be C(Fi). Our loss for the dis-

tance regressor Ldist and classifier Lcla can be written as:

Ldist =
1

N

N
X

i=1

smoothL1(d
∗

i −D(Fi)), (1)

Lcla =
1

N

N
X

i=1

cross-entropy(y∗i , C(Fi)), (2)

where N is the number of objects, d∗i and y∗i are the ground

truth distance and category label for the i-th object .

Model learning and inference We train the feature

extractor, the distance regressor and the classifier simulta-

neously with loss

minLbase = Lcla + λ1Ldist. (3)

We use ADAM optimizer to obtain the optimal network pa-

rameters with beta value β = 0.5. The learning rate is ini-

tialized as 0.001 and exponentially decayed after 10 epochs.

λ1 is set to 1.0 when training our framework. Note that

the classifier network is used during training only. Imply-

ing a prior knowledge of the correlation between the object

class and its real size and shape, the classifier encourages

our model to learn features that can be leveraged in estimat-

ing more accurate distances. After training, our base model

can be used to directly predict the object-specific distances

given any RGB images and object bounding boxes as input.

3.2. Enhanced method

Though our base model is able to predict promising

object-specific distance from ROI feature map, it is still not

satisfying the precision requirement for autonomous driv-

ing, especially for objects close to the camera. Therefore,

we design an enhanced method with a keypoint regressor

to optimize the base model by introducing a projection con-

straint, and as a result to enforce a better distance prediction.

As shown in Fig. 3, the pipeline of our enhanced model con-

sists of four parts, a feature extractor, a keypoint regressor,

a distance regressor and a multiclass classifier.

Feature extractor We utilize the same network struc-

ture that we use in our base model to extract the RGB image
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feature. With the object bounding boxes, we can obtain the

object-specific features Fi using ROI-pooling (see Sec. 3.1

for details).

Keypoint regressor The keypoint regressor K learns

to predict an approximate keypoint position in the 3D cam-

era coordinate system. The output of the distance regres-

sor can be considered as the value on the camera Z coor-

dinate, so there are only two coordinate values (X, Y) that

need to be predicted by the keypoint regressor, denoted as

K(Fi). It contains three fully connected (FC) layers of

sizes {2048, 512, 2}, {1024, 512, 2} for vgg16 and res50,

respectively. Since we do not have the ground truth of the

3D keypoint, we choose to project the generated 3D point

([K(Fi), D(Fi)]) back to the image plane using the camera

projection matrix P . Then we compute the errors between

the ground truth 2D keypoint k∗i and the projected point

(P · [K(Fi), D(Fi)]). In order to encourage the model to

better predict distances for closer objects, we put a weight

with regard to the ground truth distance into the projection

loss L3Dpoint as

L3Dpoint =
1

N

N
X

i=1

1

d∗i
||P · [K(Fi), D(Fi)]− k∗i ||2. (4)

Distance regressor and classifier For the distance re-

gressor and classifier , we leverage the same network struc-

ture as well as training loss Ldist (Eq. 1) and Lcla (Eq. 2)

as the base model. The network parameters in the distance

regressor are optimized by the projection loss L3Dpoint as

well.

Network learning and inference We train the feature

extractor, the keypoint regressor, the distance regressor and

the classifier simultaneously with loss

minLenhance =Lcla + λ1Ldist + λ2L3Dpoint. (5)

We use the same setting for the optimizer, beta value and

learning rate as the base model. λ1, λ2 are set to 10.0, 0.05.

We only use the camera projection matrix P , keypoint re-

gressor and classifier for training. When testing, given a

RGB image and the bounding boxes, our learned enhanced

model directly predicts the object-specific distances with-

out any camera parameters intervention. We implement our

(base and enhanced) models using the popular deep learn-

ing platform PyTorch [21] and run them on a machine with

Intel Xeon E5-2603 CPU and NVIDIA Tesla K80 GPU.

4. Training data construction

One of the main challenges of training deep neural net-

works for object-specific distance estimation task is the lack

of datasets with distance annotation for each object in the

RGB images. Existing object detection datasets only pro-

vide the bounding boxes and object category annotations,

while dense depth prediction datasets provide pixel-level

depth values for each image without any object information.

Neither of them provide clear object-specific distance anno-

tations. Therefore, we construct two extended object detec-

tion datasets from KITTI and nuScenes (mini) with ground

truth object-specific distance for autonomous driving.

KITTI and nuScenes (mini) dataset As one of the

well-known benchmark datasets for autonomous driving,

KITTI [10] provides an organized dataset for object detec-

tion task with RGB image, bounding (2D and 3D) boxes,

category labels for objects in the images, and the corre-

sponding velodyne point cloud for each image, which is

ideal for us to construct a object-specific distance dataset.

Similarly, the newly released nuScenes(mini) [1] also con-

tains all the information (i.e., RGB images, bounding boxes,

velodyne point clouds) for our dataset construction.

Object distance ground truth generation As shown

in Fig. 4a, to generate the object-specific distance ground

truth for a object in a RGB image, we first segment the ob-

ject points from the corresponding velodyne point cloud

using its 3D bounding box parameters; then sort all the

segmented points based on their depth values; and finally

exact the n-th depth value from the sorted list as the

ground truth distance for given object. In our case, we set

n = 0.1×(number of segmented points) to avoid extracting

depth values from noise points. Additionally, we project the

velodyne points (used for ground truth distance extraction)

to their corresponding RGB image planes, and get their im-

age coordinates as the keypoint ground truth. We append

the ground truth of the object-specific distance and keypoint

to the KITTI / nuScenes(mini) object detection dataset la-

bels, together with the RGB images to construct our dataset.

Since both KITTI and nuScenes(mini) only provide the

ground truth labels for the training set in its object detection

dataset, we generate the distance and keypoint ground truth

for all the samples in the training set. Following the split

strategy as [5], we split the samples from KITTI training

set into two subsets (training / validation) with 1 : 1 ratio.

There is a total of 3, 712 RGB images with 23, 841 objects

in the training subset, and 3, 768 RGB images with 25, 052
objects in the validation subset. All the objects are cate-

gorized into 9 classes, i.e., Car, Cyclist, Pedestrian, Misc,

Person sitting, Tram, Truck, Van, DontCare. Our generated

ground truth object-specific distances are varied from [0, 80]
in meters. Fig. 4b shows the distribution of the generated

object-specific distances and the object categories in our

entire constructed dataset. We can find that distances are

ranged mostly from 5M to 60M, and Car is the dominant

category in the dataset. For the nuScenes(mini) dataset, we

randomly split the samples into two subsets with 1, 549 ob-

jects in 200 training images and 1, 457 objects in 199 valida-

tion images. All objects are labeled with 8 categories (Car,

Bicycle, Pedestrian, Motorcycle, Bus, Trailer, Truck, Con-

struction vehicle) and distances varied from 2M to 105M.
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(a) The pipeline of our dataset construction. For each object in the RGB image, we segment

its 3D points from the corresponding velodyne point cloud and extract the depth value of the

n-th point as the ground truth distance. We project the n-th point to the image plane to get

the 2D keypoint coordinates. Both the extracted distance and the 2D keypoint coordinate of

the n-th velodyne point are added into the KITTI / nuScenes(mini) object detection dataset

as the extension.
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Figure 4: Our dataset construction strategy and the distributions. Fig. 4a is the pipeline how we construct our dataset

with generated ground truth object-specific distances, while Fig. 4b shows the distribution of the generated KITTI-based

object-specific distances and the object categories.

5. Evaluation

In this section, we evaluate our proposed models with a

comparison to alternative approaches. We train our models

on the training subsets of our constructed datasets, while

test them on the validation subsets.

Evaluation metrics Our goal is to predict a distance

for objects as close to the ground truth distance as possible.

Therefore, we adopt the evaluation metrics provided by [7],

usually used for depth prediction. It includes absolute rela-

tive difference (Abs Rel), squared relative difference (Squa

Rel), root of mean squared errors (RMSE) and root of mean

squared errors computed from the log of the predicted dis-

tance and the log ground truth distance (RMSElog). Let d∗i
and di denote the ground truth distance and the predicted

distance, we can compute the errors as

Threshold: % of di s.t.max(di/d
∗

i , d
∗

i /di) = δ < threshold,

Abs Relative difference (Abs Rel):
1

N

X

d∈N

|d− d∗|/d∗,

Squared Relative difference (Squa Rel):
1

N

X

d∈N

||d− d∗||2/d∗,

RMSE (linear) :

s

1

N

X

d∈N

||di − d∗i ||
2,

RMSE (log) :

s

1

N

X

d∈N

|| log di − log d∗i ||
2.

Compared approaches As one of the most classic

methods to predict (vehicle) distance in an automobile en-

vironment, inverse perspective mapping algorithm (IPM)

[28] approximates a transformation matrix between a nor-

mal RGB image and its bird’s-eye view image using cam-

era parameters. We adopt the IPM in the MATLAB com-

puter vision toolkit to get the transformation matrices for

the RGB images (from validation subset). After projecting

the middle points of the lower edge of the object bounding

boxes into their bird’s-eye view coordinates using the IPM

transformation matrices, we take the values along forward

direction as the estimated distances.

Similar to the recent work [13], we compute the width

and height of each bounding box in the training subset, and

train a SVR with the ground truth distance. After that, we

get the estimated distances for objects in the validation set

by feeding the widths and heights of their bounding boxes

into the trained SVR.

For our proposed model, we utilize vgg16 and res50 as

our feature extractor for both base and enhanced model. We

trained our models for 20 epochs with the batch size of 1
on the training dataset augmented with horizontally-flipped

training images. After training, we feed the RGB image

with the bounding boxes into our trained models and take

the output of the distance regressor as the estimated distance

for each object in the validation subset.

Results on KITTI dataset We present a quantitative

comparison in the constructed KITTI dataset for all the eval-
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Table 1: The comparisons of object-specific distance estimation with alternative approaches on the val subset of our con-

structed KITTI-object-detection-based dataset.

Method
higher is better lower is better

δ < 1.25 δ < 1.25
2 δ < 1.25

3 Abs Rel Squa Rel RMSE RMSElog

Car

Support Vector Regressor (SVR) [13] 0.345 0.595 0.823 1.494 47.748 18.970 1.494

Inverse Perspective Mapping (IPM) [28] 0.701 0.898 0.954 0.497 1290.509 237.618 0.451

Our Base Model (res50) 0.782 0.927 0.964 0.178 0.843 4.501 0.415

Our Base Model (vgg16) 0.846 0.947 0.981 0.150 0.618 3.946 0.204

Our Enhanced Model (res50) 0.796 0.924 0.958 0.188 0.843 4.134 0.256

Our Enhanced Model (vgg16) 0.848 0.934 0.962 0.161 0.619 3.580 0.228

Pedestrian

Support Vector Regressor (SVR) [13] 0.129 0.182 0.285 1.499 34.561 21.677 1.260

Inverse Perspective Mapping (IPM) [28] 0.688 0.907 0.957 0.340 543.223 192.177 0.348

Our Base Model (res50) 0.649 0.896 0.966 0.247 1.315 4.166 0.335

Our Base Model (vgg16) 0.578 0.861 0.960 0.289 1.517 4.724 0.312

Our Enhanced Model (res50) 0.734 0.963 0.988 0.188 0.807 3.806 0.225

Our Enhanced Model (vgg16) 0.747 0.958 0.987 0.183 0.654 3.439 0.221

Cyclist

Support Vector Regressor (SVR) [13] 0.226 0.393 0.701 1.251 31.605 20.544 1.206

Inverse Perspective Mapping (IPM) [28] 0.655 0.796 0.915 0.322 9.543 19.149 0.370

Our Base Model (res50) 0.744 0.938 0.976 0.196 1.097 4.997 0.309

Our Base Model (vgg16) 0.740 0.942 0.979 0.193 0.912 4.515 0.240

Our Enhanced Model (res50) 0.766 0.947 0.981 0.173 0.888 4.830 0.225

Our Enhanced Model (vgg16) 0.768 0.947 0.974 0.188 0.929 4.891 0.233

Average

Support Vector Regressor (SVR) [13] 0.379 0.566 0.676 1.472 90.143 24.249 1.472

Inverse Perspective Mapping (IPM) [28] 0.603 0.837 0.935 0.390 274.785 78.870 0.403

Our Base Model (res50) 0.503 0.776 0.905 0.335 3.095 8.759 0.502

Our Base Model (vgg16) 0.587 0.812 0.918 0.311 2.358 7.280 0.351

Our Enhanced Model (res50) 0.550 0.834 0.937 0.271 2.363 8.166 0.336

Our Enhanced Model (vgg16) 0.629 0.856 0.933 0.251 1.844 6.870 0.314
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Figure 5: Average RMSE on objects with different dis-

tances in the KITTI-based dataset (lower is better).

uation metrics in Table 1. Note that we do not include the

distances predicted for DontCare objects when calculating

the errors. In addition to the average errors among the 8-

category objects, we also provide the performance on three

particular categories, i.e., Car, Pedestrian, Cyclist, for com-

prehensive analysis. As we can see from the table, our pro-

posed models are able to predict distances with much lower

relative errors and higher accuracy when compared with the

IPM and SVR. Moreover, our enhanced model performs the

best among all the compared methods, which implies the

effectiveness of the introduction of keypoint regressor and

projection constraint. Besides, our models perform pretty

well on Car, Pedestrian, Cyclist objects but with a slightly

worse average performance. We have investigated the re-

sults on each category, and found that our models perform

relatively poor on some categories with fewer training sam-

ples, such as Person sitting, Tram. Fig. 5 clearly illustrates

the improvement of the enhanced model on objects with dif-

ferent distances.

Table 2: Comparison of our models trained with and with-

out the classifier on (average) KITTI distance estimation.

Vgg16 models
higher is better lower is better

δ1 δ2 δ3 AR SR RMSE RMSElog

Base w/o classifier 0.482 0.692 0.802 0.658 7.900 9.317 0.573

Base w classifier 0.587 0.812 0.918 0.311 2.358 7.280 0.351

Enhanced w/o classifier 0.486 0.738 0.844 0.541 5.555 8.747 0.512

Enhanced w classifier 0.629 0.856 0.933 0.251 1.844 6.870 0.314

In addition to the quantitative comparison, we visualize

some estimated object-specific distance using our proposed

models, along with the ground truth distance and the pre-

dictions using alternative IPM and SVR for comparison in

Fig. 6. The SVR results show the difficulties to estimate

a distance according to the width and height of a bounding

box. IPM usually performs well for the objects close to or

strictly in front of the camera, while it generally predicts in-

correct distances for objects far away from the camera, such

as the cyclist on the urban environment example, the fur-

thest cars on both highway and curved road images. How-

ever, both of our models can predict more accurate distances

for those objects. The other challenging case is to predict

distance for objects on a curved road. IPM fails when vehi-

cles are turning, whereas our models can successfully han-

dle them. Besides, our enhanced model predicts a more pre-

cise objects-specific distance with less time. The average

inference time of our model (vgg16) is 16.2ms per image,

which is slightly slower than SVR (12.1ms) but twice as

fast as IPM (33.9ms).
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Figure 6: Examples of the estimated distance using our proposed base model (BM) and enhanced model (EM). We also

provide ground truth distance (GT), the predicted distances using IPM and SVR for comparison. Our models can successfully

predict distances on challenging cases, such as objects over 40 meters or on the curved road.

Table 3: Comparison of (average) object-specific distance

estimation on the nuScenes-based (mini) dataset.

Methods
higher is better lower is better

δ1 δ2 δ3 AR SR RMSE RMSElog

SVR [13] 0.308 0.652 0.833 0.504 13.197 18.480 0.846

IPM [28] 0.441 0.772 0.875 1.498 1979.375 249.849 0.926

Base Model(res50) 0.310 0.621 0.846 0.466 7.593 15.703 0.492

Base Model(vgg16) 0.393 0.697 0.914 0.404 5.592 12.762 0.420

Enhanced Model(res50) 0.367 0.683 0.877 0.340 5.126 14.139 0.433

Enhanced Model(vgg16) 0.535 0.863 0.959 0.270 3.046 10.511 0.313

The purpose of the classifier is to encourage our model to

learn the category-discriminative features that can be useful

in getting a better estimate of how far the object is. We

train our (vgg16) models with and without the classifier,

then compute the errors for the estimated distance on sam-

ples in the validation set. The prediction results are reported

in Table 2 under the same evaluation metrics as in Table 1.

The performance enhancement demonstrates the effective-

ness of our classifier for learning a model on object-distance

estimation.

Results on nuScenes dataset After training our pro-

posed models on the training subset of the constructed

nuScenes(mini) dataset, we calculate the distance estima-

tion errors and accuracies on objects in the testing subset

(as reported in Table 3) using the same measurements in Ta-

ble 1. Our enhanced model achieves the best performance

among all the compared methods for object-specfic distance

estimation.

6. Conclusion

In this paper, we discuss the significant but challenging

object-specific distance estimation problem in autonomous

driving. It is the first attempt to utilize deep learning tech-

niques for object-specific distance estimation. We introduce

a base model to directly predict distances (in meters) from

a given RGB image and object bounding boxes. More-

over, we design an enhanced model with keypoint projec-

tion constraint for a more precise estimation, particular for

the objects close to the camera. We trained our models on

our newly constructed dataset extended from KITTI and

nuScenes(mini) with a ground truth distance for each ob-

ject in the RGB images. The experimental results demon-

strate that our base model is able to predict distances with

superior performance over alternative approaches IPM and

SVR, while our enhanced model obtains the best perfor-

mance over all the compared methods.
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