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This paper concerns an outdoor mobile robot that learns to avoid collisions by observing
a human driver operate a vehicle equipped with sensors that continuously produce a map
of the local environment. We have implemented steering control that models human be-
havior in trying to avoid obstacles while trying to follow a desired path. Here we present
the formulation for this control system and its independent parameters and then show
how these parameters can be automatically estimated by observing a human driver. We
also present results from operation on an autonomous robot as well as in simulation, and
compare the results from our method to another commonly used learning method. We
find that the proposed method generalizes well and is capable of learning from a small
number of samples. © 2007 Wiley Periodicals, Inc.

1. INTRODUCTION

We are interested in high speed operation of an out-
door mobile robot whose task is to follow a path
nominally clear of obstacles, but not guaranteed to be
so. Such a case is necessary for outdoor patrolling ap-
plications where a mobile robot must travel over po-
tentially great distances without relying on structure
such as beacons and lane markings. In addition to
avoiding obstacles, it is important that the vehicle
stays on the designated route as much as possible.
While the problem of detecting obstacles is itself chal-
lenging, here we consider issues related to collision
avoidance while following a designated path given

that the robot can detect obstacles in front of the ve-

hicle in sufficient time to react to them.

Steering between obstacles is a difficult task, be-

cause good paths defy description by simple geomet-

ric constructs. Carlike vehicles, with a non-holonomic

constraint, are limited in their capability to change di-

rection, especially at high speeds where vehicle dy-

namics are a factor. Many methods of vehicle control

have been reported in the literature, most of which

rely on proper tuning of a set of parameters to a con-

trol function. These parameters dictate the robot’s be-

havior, such as when to start avoiding obstacles, how

much clearance to give obstacles, and the relative
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level of desire to progress toward a goal while avoid-
ing obstacles. The values of these parameters and
their relation to each other are critical to the effective-
ness of the algorithm. Insufficient repulsion from ob-
stacles can lead to collisions. Too much obstacle re-
pulsion can cause erratic behavior as the vehicle veers
away from obstacles. These gains have typically been
tuned by hand over a large number of trials. The pro-
grammer decides when the vehicle’s behavior is good
enough.

We have implemented a model of collision avoid-
ance based on studies with human subjects avoiding
obstacles �Fajen, Warren, Termizer & Kaebling, 2003;
Fajen & Warren, 2003�. The model proposed by Fajen
and Warren is attractive because it embeds steering
dynamics into the generation of commands and
hence guarantees that the control produced can be ex-
ecuted by the robot. The use of an explicit steering
model also provides a means to accurately predict the
closed loop path of the system over a time horizon
many multiples of the control step. Such prediction
facilitates the use of an aggressive speed control be-
cause the vehicle can be close to obstacles and not
have to slow down unless it approaches a configura-
tion of obstacles, such as a cul de sac, that will con-
found the collision avoidance scheme. The downside
of this control model has been that it requires a large
number of parameters to be adjusted to obtain a bal-
ance between safe and aggressive maneuvering.

Here we present a method for automatically
learning the parameters of the control model by
closely approximating observed paths of a human
driver. We show how we collected a training data set
and applied our method to learn a set of parameters.
We present results of our obstacle avoidance system
using these parameters to drive a vehicle, and com-
pare the performance of the system using the learned
parameters to its performance with a set of hand-
tuned parameters. In cases where the immediate en-
vironment is densely packed with obstacles, we find
that our scheme is insufficient on its own. This is be-
cause the horizon required for cluttered environ-
ments is further than can be incorporated by the
model. We show here that augmentation with a path
planner, which suggests goals �not paths�, can help in
negotiating in cluttered environments. Finally, to em-
phasize how our learning method is effective with a
small training data set, we compare it against a black
box road-following method that is trained on similar
data as the proposed method.

2. RELATED WORK

Collision avoidance for mobile robots is a fundamen-
tal technology, and a large number of methods have
been developed for various applications. Most of the
work has been indoors with vehicles that move at
speeds where dynamics are not an important consid-
eration. For example, Borenstein and Koren’s vector
field histogram �VFH� method transforms a local
map into a one-dimensional discretized “polar ob-
stacle density” function �Ulrich & Borenstein, 2000�.
The angle closest to the heading to the goal that has
low obstacle density is chosen. Minguez and Mon-
tano present the nearness diagram method, in which
the robot classifies situations based on safety and
nearness of obstacles, choosing an action appropri-
ately �Minguez & Montano, 2004�.

Other notable, similar methods are the dynamic
window approach �Fox, Burgard & Thrun, 1997� and
the curvature-lane approach �Simmons, 1996�, which
perform a parameter search in space of steering and
velocity commands. These ideas have been extended
in outdoor systems in which the robot projects can-
didate paths ahead of itself and then chooses among
the corresponding steering actions the one that makes
the most progress toward the goal and is obstacle free
�Feiten, Bauer & Lawitzky, 1994�. If no collision-free
steering angle can move the robot toward a goal lo-
cation, a higher level planner is consulted. Further
work in the same vein uses a global planner in con-
junction with the local planner and has been imple-
mented on robots for space exploration �Singh et al.,
2000; Urmson & Dias, 2002�. Both of these systems
operate at low speeds �less than 1 m/s� where vehicle
dynamics are not a factor. Brock and Khatib proposed
the elastic strips framework, in which an existing
path is deformed around obstacles to produce
smooth paths �Brock & Khatib, 2002�. Philippsen and
Siegwart use a modification of the traditional wave-
front algorithm by parametrizing a curve that sweeps
outward from a goal point but deforms around ob-
stacles �Philippsen & Siegwart, 2005�. The paths pro-
duced by this algorithm are smooth, but not guaran-
teed to respect the dynamic constraints of a vehicle.

Tilove proposed a local obstacle avoidance
method that does respect dynamic constraints by us-
ing artificial potential fields �Tilove, 1990�. In this
method, obstacles influence a vehicle’s motion based
on its velocity as well as its position. Lamiraux,
Bonnafous, and Lefebvre presented a method in
which a nominal path is deformed around obstacles
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in accordance with vehicle dynamics to minimize an
optimization function �Lamiraux, Bonnafous & Lefe-
bvre, 2004�. This method was shown to be successful
in planning paths for an indoor robot.

Several systems have demonstrated off-road
navigation. The Demo III XUV drives off-road and
reaches speeds up to 10 m/s. The speeds are high,
but the testing environments are rolling meadows
with few obstacles. Obstacles are given a clearance
that is wider than the clearance afforded by extreme
routes. When clearance is not available, the algorithm
plans at slower speeds �Bellutta, Manduchi, Matthies,
Owens & Rankin, 2000�. Sandstorm, a robot devel-
oped for desert racing, has driven extreme routes at
speeds up to 22 m/s, but makes an assumption that
it is traveling on slowly varying roads. If an obstacle
is encountered in the center of a road, the path cannot
change rapidly enough to prevent collision �Urmson
et al., 2004�.

Fajen and Warren have proposed a model for ob-
stacle avoidance by humans �Fajen et al., 2003; Fajen
& Warren, 2003�. While similar to the standard poten-
tial field approach, there are important differences.
Rather than create a potential field over the state of
the world, their model stipulates a potential over the
rate of heading change of the vehicle. Hence obstacles
repel as a function of their bearing to the vehicle’s
heading. Second, the control is stated in a way that
allows for the incorporation of vehicle dynamics.

Recently Huang et al. have used a modified ver-
sion of the model proposed by Fajen and Warren that
is geared toward obstacle avoidance using a monocu-
lar camera �Huang, Fajen, Fink & Warren, 2006�. Since
range to obstacles cannot be measured directly, the
width of obstacles �segmented in the image� is used
instead of the distance. The authors report results
with an indoor robot moving at 0.7 m/s. In contrast
we would like our robot to drive outdoors at high
speeds where it might encounter various configura-
tions of obstacles, and, since we would like the robot
to track a specific path, the goal will move
continuously.

There has been quite a lot of attention to learning
as applied to mobile robots. Typically “learning” ap-
plies to perception as in learning a map of the envi-
ronment �Thrun, 1998� or learning a classification of
the terrain given image or range data �Wellington &
Stentz, 2003; Talukder, Manduchi, Castano, Owens &
Matthies, 2002�. In a few cases learning has been ap-
plied to the control of a vehicle. For example, several
systems at Carnegie Mellon University were trained

to follow roads based on simultaneous observation of
human driving and imagery of the road ahead from
onboard cameras �Pomerleau, 1995; Hancock &
Thorpe, 1994�.

Likewise, Ng et al. developed a system to teach a
helicopter to hover and perform stunt maneuvers via
reinforcement learning �Ng, Kim, Jordan & Sastry,
2004�. D’Este, O’Sullivan, and Hannah present a se-
ries of experiments in which a human operator is ob-
served driving a mobile robot with a joystick �D’Este,
O’Sullivan & Hannah, 2003�. Their system then built
a decision tree to model the behavior. An autono-
mous controller used the decision tree to choose ac-
tions in new scenarios. All of these methods seek
black box relationships between a description of the
environment and a control output. Such methods re-
quire a large amount of training data, and future test
cases must lie within previous examples shown. That
is, such methods are suited to interpolation between
examples, but not to extrapolation.

Our work is most related to the model proposed
by Fajen and Warren. We have extended their formu-
lation to deal with path tracking and arbitrarily
shaped obstacles. While Fajen and Warren chose co-
efficients for their model by inspection, we propose
here a method to learn these coefficients automati-
cally from observation of a human driver operating a
vehicle among obstacles. The method does this by in-
verting the model using data taken over short seg-
ments of driving in the vicinity of obstacles.

3. APPROACH

Here we present the basic model of collision avoid-
ance based on the formulation of Fajen and Warren
�Fajen & Warren, 2003�. We also show our extensions
to the model and the parameters to be learned by the
system.

3.1. Control Model

Fajen and Warren’s model uses a single goal point
that attracts the vehicle’s heading. This attraction in-
creases as the distance to the goal decreases and as
the angle to the goal increases, yielding the goal at-
traction function

attractFW�g� = kg�� − �g��e−c1dg + c2� .

��−�g� is the angle to the goal. dg is the distance to
the goal. kg, c1, and c2 are parameters that must be
tuned.
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Similarly, each obstacle repulses the agent’s
heading. The repulsion increases with decreasing
angle and decreasing distance. Then, for each ob-
stacle, there is a repulsion function:

repulseFW�o� = ko�� − �o��e
c3do��e−c4��−�o��

��−�o� is the angle to the obstacle. do is the distance
to the obstacle. ko, c3, and c4 are parameters that
must be tuned.

The goal attractions and obstacles repulsions are
summed together, applying superposition, and
damped with the current angular velocity to get an
angular acceleration command. The result is a single
control law:

�̈FW
* = − b�̇ − attractFW�g� + �

o�O

repulseFW�o� .

Note that superposition will not always yield good
results. There are many situations in which attrac-
tions and repulsions can oppose each other in such a
way as to cause the vehicle to not properly avoid
obstacles. This is a limitation of the system. It is up
to the user to find good parameter values to prevent
these situations from occurring as much as possible.

In our situation, a desired path is given. We set
the goal point to be a large distance along the path
from the vehicle’s current location. Since the goal is
always nearly the same distance from the vehicle,
we do not need a distance term in our control law
�called MFW for modified Fajen/Warren�:

attractMFW�g� = kg�� − �g� .

Also, we found that FW works well for individual
point obstacles, but in dense obstacle configurations
more information is needed. In preliminary tests, we
frequently observed the vehicle oversteering on
curves due to repulsion from obstacles that were di-
rectly in front of the vehicle but far from its intended
path. In these situations, the attraction of the goal is
enough to assure the vehicle will avoid the obstacles.
Using FW, though, the extra repulsion could even
cause the vehicle to steer toward a small obstacle on
its intended path. The obstacle on the path should
have more weight than those off the path. Rather
than decrease the weight of any obstacles, we add a
term to the repulsion equation to put additional

weight on obstacles between the vehicle and the
goal:

repulseMFW�o� = ko�� − �o��e
−c3do��e−c4��−�o��

��1 + c5�dmax − min�dmax,dgv�2�� .

For the last term, we draw a vector from the vehicle
to the goal point. An obstacle’s repulsion is in-
creased in proportion to its distance, dgv, to that vec-
tor. If the distance is greater than dmax, then no extra
weight is applied. This maximum distance is based
on the maximum distance the vehicle is allowed to
be off the path. We use the goal vector term as an
approximation of the obstacle’s distance to the de-
sired path, as it is simpler and quicker to calculate
than the distance to the path. The approximation
loses effectiveness when the path curves very
sharply. However, in practical situations, we have
found these cases to be rare.

Finally, Fajen and Warren’s experiments were on
humans, so they added the damping term and used
a second-order command model to prevent sudden
steering changes. Our vehicle has its own second-
order system built in to the steering. Furthermore,
the low level control of the vehicle is abstracted from
our system; we can only send angular velocity com-
mands to the vehicle. This being the case, we remove
the damping term and define the control law to com-
mand angular velocity instead. This improves the

Figure 1. Distance and angle terms used in the MFW con-
trol law. We consider the vehicle’s position to be the center
of the rear axle, so all distances are measured from that
point.
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reaction time of the vehicle, but does allow oscilla-
tion to occur more readily:

�̇MFW
* = − kg�� − �g� + �

o�O

�ko�� − �o��e
−c3do��e−c4��−�o��

��1 + c5�dmax − min�dmax,dgv�2�� .

We are left with five constant terms in the con-
trol law, which can be expressed in a 5-tuple
ū= �kg ,ko ,c3 ,c4 ,c5�. See Figure 1 for an illustration of
the terms used in the MFW control law.

Fajen and Warren found that most subjects

walked at a constant pace, so they did not explore
speed control. We constructed a speed control func-
tion based on the obstacle’s distance and angle:

v = min
o�O

� do

2 cos ��� − �o��
� .

This slows down the vehicle as obstacles get closer,
which allows sharper turning and more time for the

Figure 2. Our test platform is a modified all-terrain ve-
hicle. The panning laser is mounted between the head-
lights. The fixed laser is mounted on top of the frame in
the rear. The vehicle also carries two GPS antennas plus a
differential antenna and an inertial measurement unit.

Figure 3. A capture of the screen displayed to the driver
during training. The small, black diamond on the right
represents a moving goal point that slides along the de-
sired path. The vehicle is drawn large to make its heading
clear to the driver, but each obstacle is conservatively ex-
panded in each direction by the length of the vehicle to
ensure collision-free operation. A collision only occurs
when the representative point of the vehicle intersects the
“grown” obstacles.

Figure 4. A few examples of the data segments collected from the experiments with the operator. The dashed line
portrays the desired path if there were no obstacles. The operator deviates from the path to avoid obstacles and returns
when the path is clear. The parameters presented in Section 5 were learned using only these three segments as training
data.
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system to detect additional nearby obstacles. In ad-
dition, the system predicts the vehicle’s course using
the MFW control law for the next few seconds. If the
vehicle is forced to stop for an obstacle in the next
few seconds, the system slows it down immediately.
For quick computation, this is only a kinematic
simulation. It assumes all steering commands are in-
stantly achieved with the vehicle traveling in perfect
arcs for half-second intervals. For more detail of our
control system, please see Roth, Hamner, Singh &
Hwangbo �2005�.

3.2. Vehicle Characteristics

All data collection and testing were performed on a
modified all-terrain vehicle �ATV�, as shown in Fig-
ure 2. Obstacles were detected using data fused from
two laser range finders, one fixed horizontally and
the other arranged vertically panning back and forth
to cover the road. Ground truth was provided by a
pose estimation system, which uses the global posi-
tion system �GPS� combined with motion data from
an onboard inertial measurement unit �IMU� to pro-
duce positioning accurate to better than 5 cm.

To provide a better model of vehicle motion and
increase the accuracy of vehicle simulations for the
training and testing of parameters, we derived the

vehicle’s steering dynamics. The vehicle’s steering
actuator in contact with the ground behaves like a
second-order system with delay. The identified pa-
rameters of the unit-mass spring-damper system are

�̈ = − b�̇ − k�� − �d� ,

b = 6.5789,

k = 258.7,

tdelay = �.2 s.

These values were used to generate vehicle paths as
described in the following section.

4. SEARCH FOR PARAMETERS

Tuning the set of parameters ū by hand using intu-
ition is tedious and difficult. In this section we outline

Table I. The parameter sets.

kg ko c3 c4 c5

Hand-tuned 0.767 0.060 0.340 2.000 0.250

Learned random 0.8976 7.5537 0.9082 9.0856 0.5688

Learned genetic 0.6445 8.2175 1.6119 13.018 6.0817

Learned SA 6.4328 8.7506 1.4971 5.0594 5.5838

Figure 5. The difference between two path segments is
used to optimize the parameter set u. Ps is a recorded path
segment while Pt was generated from simulating the sys-
tem’s driving using a parameter set u.

Figure 6. Path 2 stays closer to the human path than path
1, but is less desirable, due to its high frequency
oscillations.

Figure 7. The maximum distance error of the hand-tuned
and learned parameters for each test segment.
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a method to automatically determine the parameters
based on a driver’s behavior steering the robot.

4.1. Data Collection

A human subject drives the robot and tries to follow
a path while avoiding obstacles. The path is replaced
by a virtual goal point at a distance ahead of the
current position as mentioned in Section 3.1. Data

about the goal point, the obstacles, and the driven
path are recorded and used to determine the un-
knowns of the described control model. First we seg-
ment the path, and then optimize the parameters to
match the subject’s path.

The input to the control model and human sub-
ject at any point in time is a goal point pg and a set of
obstacles O defined as points in the x-y plane of the
vehicle. A subject sat on the robot and drove while

Figure 8. The system’s performance on test paths 4 and 5 with the two sets of parameters. The hand-tuned parameters
�dotted line� cannot deal with the large obstacles on both sides of the vehicle. The learned parameters �solid line� drive
closer to the human’s path �heavy line�. The desired path is indicated by the dashed black line.

Figure 9. At left, the path driven by the system using the parameters learned from the genetic algorithm. At right, the
path driven by the system using the parameters learned by random guessing. They both avoid obstacles, but the genetic
algorithm parameters make harder turns.
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only looking at a monitor that displays the virtual
goal point and the relevant obstacles, not looking up
to see the true location of obstacles ahead. This setup
ensures that the operator only knows of the ob-
stacles the system has detected. It does hinder the
operator’s driving ability, as he could drive more
easily using his own vision to detect obstacles. How-
ever, since we would be training the autonomous
system to follow the same paths as the operator, it
was imperative for our learning experiments that the
operator and the autonomous system have the same
information about the goal and obstacle points. It
was also imperative that the operator be skilled in
driving the vehicle, though. Before the experiments
began, the driver was allowed to practice driving the
vehicle while staring at the monitor until he felt

comfortable operating the vehicle with this impedi-
ment. Figure 3 shows the only information available
to the operator.

Using the goal and obstacle information, the op-
erator drove the vehicle through a variety of paths
and obstacle configurations. During operation, the
pose estimation system collected information about
the driven path at a rate of 100 Hz. A pose data point
contains a timestamp, an X-Y position, heading, ve-
locity, and angular velocity. We also recorded the
goal points given to the driver, as well as the loca-
tions of obstacles and when they were detected.

Often the paths were obstacle-free, where the
driver simply followed the goal point. Of course,
these situations provide no information with which
to learn the obstacle parameters. We therefore ex-

Figure 10. We also tested the system in new situations at 4 m/s in simulation with recorded obstacles. On the top, the
hand-tuned parameter set can avoid individual obstacles, but performs poorly in more complex situations. The system
must stop the vehicle before a collision occurs. On the bottom, the system avoids all obstacles when using the randomly
learned parameters.
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tracted only the relevant cases, breaking the data
into short path segments consisting of cases where
the driver steered the vehicle around the obstacles
and returned to the path. A few of these segments
are shown in Figure 4.

4.2. Problem Setup

We use the path segments with obstacle avoidance
behavior to train the parameters of our control
model. Given a set ū of parameters, we generate a
path Pt= �qi= �ki , li� � i=1, . . . ,n� with the same n num-
ber of points as the training path segment Ps, which
contains regularly sampled points in the plane. Ps

= �pi= �xi ,yi� � i=1, . . . ,n�.
One measure of error is the Euclidean distance

between each point pair as shown in Figure 5: d�ū�i

=	�ki−xi�
2− �li−yi�

2. However, we are also concerned
with driving smoothly. Minimizing distance error
alone could allow high frequency oscillations, illus-
trated in Figure 6. Consequently, we add a term to
penalize accelerations in the steering angle used by
the autonomous system. The total error minimized
between two path segments is D�ū�=�i=1

n 
d�ū�i

+abs��̈i��, where � is the commanded steering angle.
We minimize the error of the parameter set for a
number of path segments. Over m segments, the op-
timization procedure minimizes the combined error
term minū��ū�=�j=1

m D�ū�j.
The path Pt is generated from a forward simula-

tion of the steering behavior of the robot. This simu-
lation is intended to be very accurate, using the
steering model and its derived parameters presented
in the previous section. Since the length of the path

Figure 11. Example obstacle scenarios from each of the five categories: �a� single small obstacles less than 1 m wide, �b�
single obstacles wider than 1 m, �c� two to three small obstacles, �d� two to three wide obstacles, and �e� clutter �more than
four obstacles�. The dashed line is the desired path. The cells in the underlay grid are 3�3 m2.
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and the velocities are not controlled in this model,
we use the recorded speeds to ensure Pt has the
same length as the training path Ps. The simulated
path is generated as follows:

For a control iteration, the commanded angular
velocity is

�̇MFW
* = − attractMFW�g� + �

o�O

repulseMFW�o� .

The commanded steering angle given the transla-
tional velocity v and the vehicle length l is

�d = a tan �l
�̇MFW

*

v
 .

The system retains a notion of the vehicle’s current
steering angle. The commanded steering angle is

integrated with the current steering angle using the
second-order model presented in Section 3.2:

�̈ = − b�̇ − k�� − �d� .

The differential equations are integrated using the
first-order Newton-Euler method to produce a new
steering angle. The system then calculates the curva-
ture of the arc the vehicle would travel on until the
next control iteration:

� =
tan ���

l
.

Finally, the vehicle’s position is updated to be at the
end of that arc:

�xnext,ynext,�next� = updateArc�xprev,yprev,�prev,�,v� .

Table II. Results of on-vehicle tests.

No. of
scenarios Collisions

Stuck
states

Success
rate �%� Recoveries

Recovery
rate �%�

Single small
�Hand-tuned�

26 2 1 88.4 1 100.0

Single small
�Learned random�

26 1 0 96.1 ¯ ¯

Single large
�Hand-tuned�

17 0 6 64.7 6 100.0

Single large
�Learned random�

17 0 2 88.2 2 100.0

Multiple small
�Hand-tuned�

27 1 12 51.8 7 58.3

Multiple small
�Learned random�

27 0 1 96.3 1 100.0

Multiple large
�Hand-tuned�

18 1 13 22.2 2 14.3

Multiple large
�Learned random�

18 0 1 94.4 1 100.0

Clutter
�Hand-tuned�

15 0 6 60.0 2 33.0

Clutter
�Learned random�

15 0 3 80.0 0 0.0

Overall
�Hand-tuned�

103 4 32 65.0 18 56.2

Overall
�Learned random�

103 1 7 92.2 4 57.1
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4.3. Learning Process

The relationship between the set of parameters ū
and the resulting paths is nonlinear with many local
minima. Normal gradient descent techniques are in-
sufficient to find the global optimum, since they get
trapped in the local minima. We address this prob-
lem using a two-step optimization process; first a
nondeterministic algorithm to identify good candi-
dates, followed by an optimization step.

We tried three different approaches for the non-
deterministic step. The first was simply to randomly

choose sets of parameters. We set the range of each

parameter to be uniformly distributed between 0

and 10. With these ranges the system randomly

picked 2500 sets of parameters. We kept the ten sets

with the lowest residuals.
Another approach was a genetic learning algo-

rithm modeled on the theory of survival of the fit-
test. The system starts with a population of 25 ran-
domly chosen sets of parameters, each parameter
having a value between 0 and 10. Every iteration, 25
new sets are formed through combination and mu-

Figure 12. Sample scenarios from category A, single small obstacles, in the on-vehicle tests. In each figure, the dashed
line is the desired path, the solid line is the path of the vehicle using the learned parameter set, and the dotted line is the
path of the vehicle using the hand-tuned parameter set. The cells in the grid underlay are 3�3 m2.
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tation. In combination, the system selects two pa-
rameter sets to form a new one, where each of the
five new parameters is taken independently from
one of the two parent sets. In mutation, the system
selects one set and randomly mutates a number of
its parameters to other values. The sets to be com-
bined and mutated are drawn randomly with a dis-
tribution favoring those with the lowest residual, �.
The residuals of the population decrease over time
as better sets are found. After 100 iterations of the
genetic algorithm �totaling 2500 error computations
for a population of 25� we kept the ten sets with the
lowest residuals.

The last approach was simulated annealing. The
system starts with one randomly chosen set of pa-
rameters. Each iteration, the system either performs
gradient descent on the current parameters or ran-
domly selects new parameters. The probability of
performing gradient descent increases over time, ap-
proaching one. We ran 2500 iterations of simulated
annealing. From the 2500 sets whose residuals were
calculated, we kept the ten with the lowest residuals.

Following the nondeterministic step, we applied
a nonlinear least squares procedure with the previ-
ous best parameter sets as the initial guesses, pro-
ducing ten optimized parameter sets for each ap-
proach. Then for each approach the optimized
parameter set with the lowest residual, �, was cho-
sen as the best parameter set.

5. RESULTS

The method described above learned optimal param-
eter sets with only three training path segments, cov-
ering 30 m of driving. We left the rest of our segments
for test data. We now compare the performance of our
control system using the learned parameters against
hand-tuned parameters, and against a system learned
using principal component analysis.

5.1. Comparison with Hand-Tuned Parameters

Previous to this work, the system had used a param-
eter set that we had hand-tuned over the course of a
year. The set was tuned in a manner similar to gra-
dient descent, starting with an initial guess and ad-
justing individual parameters slightly until we
thought we had achieved the best vehicle behavior.
The four sets are shown in Table I. Notice they are
very dissimilar. We compare them on our remaining
nine path segments, excluding the three training
segments, in Figure 7. This figure displays the maxi-
mum distance away from the human-driven path on
each data segment. The hand-tuned parameters per-
form nearly as well as the learned ones in most seg-
ments, but are drastically far away in a few situa-
tions. A few of the test paths are shown in Figure 8.
The parameters learned with simulated annealing
perform better than the hand-tuned parameters, but

Figure 13. Sample scenarios from category B, single wide obstacles, in the on-vehicle tests. In each figure, the dashed line
is the desired path, the solid line is the path of the vehicle using the learned parameter set, and the dotted line is the path
of the vehicle using the hand-tuned parameter set. The cells in the grid underlay are 3�3 m2.
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not as well as the other learned parameter sets. The
parameters learned with the genetic algorithm per-
form only slightly better than the randomly learned
parameters on the distance metric, averaging 6 cm
closer to the human path, despite the difference in
the learned parameters. The two have closer overall
residuals due to more oscillation in the parameters
from the genetic algorithm. The mean test residuals
are 0.3 for the hand-tuned set, 0.28 for the simulated
annealing set, 0.18 for the randomly learned set, and
0.14 for the genetically learned set. We chose the ran-
domly learned parameter set to use for additional

testing, since it drives the vehicle smoother than the
genetically learned set, as shown in Figure 9. Neither
method gives high frequency oscillations, but the set
learned by the genetic algorithm makes harder
turns. This suggests that the terms we included in
the error metric to ensure smooth steering need to be
improved. Either smooth steering needs to be
weighted higher, or we need to design a new metric
to prevent those hard turns. All further results were
obtained with the system using the set learned
through random guesses.

Of course, our recorded data segments are only

Figure 14. Sample scenarios from category C, multiple small obstacles, in the on-vehicle tests. In each figure, the dashed
line is the desired path, the solid line is the path of the vehicle using the learned parameter set, and the dotted line is the
path of the vehicle using the hand-tuned parameter set. The cells in the grid underlay are 3�3 m2.
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a small sample of what the vehicle may encounter.
To ensure that the learned parameter set is better
than the hand-tuned set, we first ran the system with
the two sets in a vehicle simulator at 4 m/s, using
new recorded obstacles from data files. Obstacle de-
tection is simulated by an obstacle replay program
that reads the vehicle’s location from shared
memory and serves to the simulator all obstacles
within a fixed distance from the vehicle. The system
using the hand-tuned set frequently got the vehicle
“stuck,” where the vehicle has not avoided an ob-
stacle and must instead stop before colliding with it.

The system using the learned parameters got stuck
much less often. A few of these cases are shown in
Figure 10. In simulation, we did not encounter a case
where the learned parameters get the vehicle stuck
and the hand-tuned parameters do not.

With our method showing promise in simula-
tion, we then performed experiments on a test ve-
hicle. For these tests, we used a different test vehicle.
This vehicle is of approximately the same scale,
2.5 m long and 1.5 m wide, and had the same sensor
setup but different steering dynamics. We ran the
vehicle using the new learned parameters and the

Figure 15. Sample scenarios from category D, multiple wide obstacles, in the on-vehicle tests. In each figure, the dashed
line is the desired path, the solid line is the path of the vehicle using the learned parameter set, and the dotted line is the
path of the vehicle using the hand-tuned parameter set. The cells in the grid underlay are 3�3 m2.
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hand-tuned parameters on the same test paths
through over 100 obstacle avoidance scenarios. An
obstacle avoidance scenario is defined as an instance
in which an obstacle or a cluster of obstacles lies

closer than 1 m to the desired path �that is, slightly
larger than half the vehicle width�, forcing the ve-
hicle to divert from the path. A scenario is completed
when the vehicle returns to the path clear of ob-

Figure 16. Sample scenarios from category E, clutter, in the on-vehicle tests. In each figure, the dashed line is the desired
path, the solid line is the path of the vehicle using the learned parameter set, and the dotted line is the path of the vehicle
using the hand-tuned parameter set. The cells in the grid underlay are 3�3 m2.

Figure 17. In �a�, the predicted path using the learned parameters �solid line extending forward from the vehicle point�
anticipates the vehicle coming to a stop in a cul de sac. The system builds a planning map �dotted rectangle� that
surrounds the area. It creates a plan around the obstacles �dotted line extending forward from the vehicle� and selects a
new goal point �dot on the plan�. The system then runs the reactive obstacle avoidance system with the new goal. In �b�,
the prediction no longer shows a collision, so planning is no longer necessary.
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stacles. To better analyze the data, we grouped the
obstacle scenarios into five categories �A–E�, as de-
scribed in Figure 11.

In our experiments, we consider that the vehicle
has successfully navigated a scenario when it leaves
the path and returns to it without colliding with an
obstacle or getting stuck �that is, coming to a com-
plete stop before an obstacle to avoid a collision�. In
these experiments, when the vehicle did get stuck,
we gave it a chance to recover by manually backing
up the vehicle by 2 m and starting the system again
from a stop. This tells us if the system could have
successfully navigated the scenario with better
speed modulation. Even if the vehicle did recover,
though, as a data point for our experiments, this
type of situation was declared a failure.

Since our obstacle detection system requires me-
chanical scanning, two identical runs in an identical
environment can be different based on when ob-
stacles are seen. To ensure that the parameters sets
being compared �hand-tuned versus learned� have
the same input, we prerecorded obstacles in the en-
vironment and made available a map of the local
environment to the robot as it navigated. That is, any
obstacle within 10 m becomes known to the obstacle
avoidance system. This horizon is consistent with
online sensing.

We conducted 103 tests total with the categories
A–E with the vehicle being commanded a maximum
speed of 4.0 m/s. Results of these tests are shown in
Table II. The learned parameter set had a higher suc-
cess rate than the hand-tuned parameter set in every
obstacle category. Both parameter sets performed
well in single, small obstacle scenarios �category A�.
The hand-tuned parameters got the vehicle stuck
once, when the obstacle was located on a curve in
the desired path. See Figure 12 for a few examples of
the vehicle’s paths in scenarios from category A.

In single, wide obstacle scenarios �category B�,
the learned parameters outperformed the hand-
tuned. However, the learned parameters did have
problems with wide obstacles along curves in the
desired path, sometimes resulting in stuck states �see
Figure 13�. We believe we could improve the vehi-
cle’s behavior in these scenarios by including more
of them in the training data. The hand-tuned set per-
formed particularly poorly when avoiding multiple
obstacles �categories C and D�. Since the learned pa-
rameters were trained on multiple obstacles, both
small and wide, their usage allowed the system to

maintain a high success rate in those categories. See
Figures 14 and 15 for examples of these scenarios.

Finally, neither parameter set performed very
well in category E, cluttered obstacles. The learned
parameter set got the vehicle stuck three times out of
15 tests. All of these were produced by the system
attempting to drive the vehicle through narrow
spaces between two obstacles, as shown in Figure
16. In these cases it would have been easier for the
vehicle to drive around all the obstacles.

In categories A–D, the system was able to re-
cover from stuck states 100% of the time using the
learned parameters. This provides further support to
the suggestion that the vehicle should slow down

Figure 18. To overcome limited training data, we created
random situations. Here, the user is shown a top down
view of a set of obstacles �large dots� and a road �wide
gray strip�. He is also shown a set of potential steering arcs
for the vehicle �black arcs�. The user chooses which arc the
vehicle should drive on �highlighted� to best avoid the
obstacle while following the road.
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more as it approaches obstacles. However, using the
learned parameters, the slower speed did not help
the system to recover in the cluttered scenarios �cat-
egory E�. This points to a limitation of the proposed
method and reactive methods in general, in that they
do not look ahead in time far enough to make deci-
sions for the next step. Even if more cluttered sce-
narios are included in the training data, the system
would likely still get stuck in the presence of high
clutter.

Since it is important that our system be able to
effectively deal with any amount of clutter that is

visible to it, we have used an augmentation to the
proposed method in earlier work �Roth et al., 2005�.
Recall from Section 3.1 that the system predicts the
vehicle’s path 4 s ahead. Using this prediction the
system can check if the vehicle will enter a stuck
state. If this is the case, the system performs an A*

search on a local map, selects a goal point along the
planned path, and runs the reactive controller again
with the new goal point. In essence, the planner is
picking a general direction for the reactive controller.
The reactive obstacle avoidance controller still runs
to ensure feasibility of the plan, smoothing out sharp

Figure 19. This is an illustration of the creation of a training vector. In �a�, the vehicle is on the desired path �dotted line�
in front of a few obstacles. In �b�, the input image contains everything inside the rectangle from �a�. The desired path was
expanded to make a road, which are the black cells, value 1. The obstacles are the white cells, value −1. Everything else
is gray, value 0. In this situation, the driver commanded a steering angle of 15 deg. In �c�, a steering vote vector is created.
The input image �b� and steering vote vector �c� combine to form a training vector.
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turns and maintaining a good distance from ob-
stacles. The plan and new goal point are recreated
each iteration until the prediction shows no impend-
ing stuck states. Figure 17 shows how our planning
augmentation leads the vehicle around the clutter
case where it had previously got stuck using just the
reactive controller with the learned parameters.

5.2. Comparison with Principal Component

Analysis

Our proposed method uses a strong model of colli-
sion avoidance to learn parameters from observation
of human driving. Here we compare performance of
this method with a more black box approach in

which the system directly learns a mapping between
the environment and the steering function. For com-
parison we implemented eigenvector projection us-
ing principal component analysis, a method that has
been used for road following using video imagery
�Hancock & Thorpe, 1994�. This method is similar to
road following using a neural network �Pomerleau,
1995� but assumes a linear relationship between the
input and the output.

Initially we used all of our collected path seg-
ments as the training set, plus a copy of the set mir-
rored from left to right to remove the possibility of
directional steering bias. However, since a compe-
tent driver provided training data, there are no in-
stances of the vehicle getting too close to the ob-

Figure 20. In �a�, the input image shows a road veering to the vehicle’s left, with an obstacle in front of the vehicle and
slightly to its left. The black road pixels have value 1, the white obstacle pixels have value −1, and the gray pixels have
value 0. In �b�, the reconstruction of the input image after projection onto the 15 principal eigenvectors. The obstacle that
was in the road now appears as a slightly lighter spot in the center of the road. In �c�, there are three peaks in the steering
angle voting: steer to the left around the obstacle, steer straight down the road, or steer right around the obstacle. The
highest vote is for steering 19 deg to the right, so that is the command given to the vehicle.
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stacles. In the absence of such data, a black box
method is unable to generate reasonable answers
when faced with situations that it has not encoun-
tered before. Therefore, to create a more complete
training set, we developed a program to generate
such cases. Upon the generation of a path and ob-
stacle configuration, a user was asked to select an
appropriate steering angle to follow the path and
avoid the obstacles. An illustration of one such situ-
ation is shown in Figure 18. In this screen-shot, the
user is shown a path, an obstacle scenario, and it is
given a set of arcs the vehicle could possibly drive.
The user has selected the arc second from the right
as the one to drive on. Over 500 simulated cases
were collected in this manner and added to the
training set, also with a mirrored copy.

The input images to this method consist of a

map grid of the local area in front of the vehicle with
pixel values of −1, 0, and 1 indicating obstacle, free
space, and road, respectively. To make the road we
expand the desired path by 2 m to either side. Each
training data point consists of a vector containing
the input image and a list of steering angle votes,
which are Gaussian with the operator’s steering
angle as the mean �see Figure 19�. Then we deter-
mine the eigenvectors as follows:

First we calculate the average of all training vec-
tors, a. We subtract each training vector by a:

�i = vi − a .

With each vector we form the matrix A
= 
�1 ;�2 ; ¯ � and calculate the covariance matrix C

Figure 21. This figure presents the situation continued from Figure 20. In �a�, in the input image, the obstacle is closer to
the vehicle. In �b�, the obstacle now shows up in the reconstructed image as a bright spot in front of the vehicle. In �c�, the
steering choices are now to steer hard to the left to avoid the obstacle, slightly to the left to follow the road, or hard to the
right to avoid the obstacle. The highest vote is to steer 28 deg to the left.

Hamner et al.: Learning Obstacle Avoidance Parameters • 1055

Journal of Field Robotics DOI 10.1002/rob



=AAT. Finally, the matrix C is very large, but we
save computation by computing the eigenvectors of
U=ATA and multiplying those vectors by A to get
eigenvectors of C. See Hancock & Thorpe �1994� for
more details.

Driving using the system consists of the follow-
ing: an image based on the local map ahead of the
vehicle is created. It is projected onto the image por-
tion of the principal eigenvectors �in this case, the
top 15 eigenvectors�:

v = a + �
i=1

15

��x − image�a�� · image�ei��ei,

where x is the input image, image�a� is the image
part of the average vector, and ei is each of the
principal eigenvectors. The steering angle portion of
v provides a set of steering angle votes. Finally, the
maximum vote is taken as the commanded steering
angle. Examples of input images, projected images,

and steering angle votes are shown in Figures
20 and 21.

We ran the PCA driving system in simulation on
the path segments from its own training data. In
general, the system steered the vehicle in the right
direction, but consistently understeered. Three re-
sulting paths are shown in Figure 22. A major prob-
lem is that there is almost always a steering vote
spike to follow the road, regardless of obstacles, as
shown in the example figures. Sometimes the spike
is large enough to supercede the other possible steer-
ing angles, causing the vehicle to not avoid the ob-
stacle. Also, in the eigenvector projection an obstacle
can blur or shift slightly, which can allow the system
to choose bad steering angles. Lastly, since PCA is a
function approximator, it does not actually develop
a concept of what an obstacle is. It simply learns
what to do when an obstacle is found. For example,
frequently in our training data an obstacle appears
at a distance in front of the vehicle, and the operator
chooses to cross in front of the obstacle to follow the

Figure 22. Paths driven by the simulated vehicle using PCA reduction. The system usually steers the vehicle in the right
direction, but not enough to avoid the obstacles. Path �c� is the result from Figures 20 and 21.
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road. In this case the system learns to drive toward
an obstacle in the distance, which causes the convo-
luted vehicle path in Figure 22�c�.

6. CONCLUSIONS

We have reported an obstacle avoidance control law,
originally modeled on pedestrian behavior, for a ro-
bot following paths in the presence of previously un-
known obstacles. We have presented a method to au-
tomatically learn parameters for the control law
based on observation of a human driver. We used this
method to learn a new set of parameters for our ob-
stacle avoidance system, which previously used a set
hand-tuned by us. These new parameters outper-
formed the hand-tuned set both in simulation and in
tests on a vehicle. Using the learned parameters, we
were able to decrease the number of vehicle
stoppages, improving the overall success rate by
over 25%.

Since we only needed to tune the parameters of
the control law, rather than learn a complete model of
vehicle behavior, we were able to successfully teach
the system how to drive using a small amount of
data. Function approximators like principal compo-
nent analysis need to be trained with a very large set
of data to learn how to drive the vehicle. They can
also be misled by certain training examples where it
appears the driver heads toward an obstacle. It is un-
clear whether, even with additional training data, the
PCA system could learn to drive better than our
system.

While the vehicle tests are encouraging, a few
problems still remain. The vehicle did collide with
obstacles in a few instances. Our analysis shows that,
in all cases, the vehicle was in the process of slowing
down before the collision and suggests that the speed
controller needs to react sooner. In some of the cases,
where we used large obstacles, the result was a path
far from the obstacles. This suggests that we need to
normalize the effect of large obstacles and also slow
the vehicle down if the prediction indicates a future
path that is far from the nominal path. Finally, we no-
ticed oscillations in the path in cluttered environ-
ments as the effect of obstacles waned and grew
quickly. In future work we will explore the use of a
damping term in the steering dynamics, sacrificing
reaction time to get a smoother response.
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