
HAL Id: hal-00647576
https://hal.inria.fr/hal-00647576

Submitted on 2 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning of Automata Models Extended with Data
Bengt Jonsson

To cite this version:
Bengt Jonsson. Learning of Automata Models Extended with Data. SFM-11, 2011, Bertinoro, Italy.
�hal-00647576�

https://hal.inria.fr/hal-00647576
https://hal.archives-ouvertes.fr


Learning of Automata Models Extended with

Data ⋆

Bengt Jonsson

Department of Computer Systems, Uppsala University, Sweden
bengt@it.uu.se

Abstract. One of the challenges in the Connect project is to de-
velop techniques for learning models of networked components from
exploratory interaction with the component, based on analyzing mes-
sages exchanged between the component and its environment. Many ap-
proaches to this problem employ regular inference (aka. automata learn-
ing) techniques which generate modest-size finite-state models. Most
communication with real-life systems involves data values being rele-
vant to the communication context and thus influencing the observable
behavior of the communication endpoints. When applying methods from
the realm of automata learning, it is desirable to handle such data-
occurrences. It is therefore important to extend inference techniques to
handle message alphabets and state-spaces with structures containing
data parameters, often with large domains. After very briefly mention-
ing several approaches to the problem, we give a longer account of an
approach proposed by Aarts et al, which adapts ideas from of predicate
abstraction, successfully used in formal verification. We illustrate the
techniques by application to a simple running example, which models a
simple booking service.

Acknowledgment This paper builds on joint work with several present and for-
mer collaborators, including Fides Aarts, Therese Bohlin, Sofia Cassel, Olga
Grinchtein, Falk Howar, Maik Merten, Bernhard Steffen, Johan Uijen, and Frits
Vaandrager. Mistakes and inconsistencies are caused by the author.

1 Introduction

Interoperability remains a fundamental challenge when connecting heteroge-
neous systems which encounter and spontaneously communicate with one an-
other in pervasive computing environments. The Connect Integrated Project
[22] aims at overcoming the interoperability barrier by synthesizing on the fly
the Connectors via which networked systems communicate. Connectors are
implemented through a comprehensive dynamic process based on (i) extracting
knowledge from, (ii) learning about and (iii) reasoning about, the interaction

⋆ Supported in part by EC Proj. 231167 (CONNECT).



behavior of networked systems, together with (iv) synthesizing new interaction
behaviors out of the ones exhibited by the systems to be made interoperable.

One of the challenges in the Connect project is to develop techniques for
learning models of exploratory interaction with the component, based on analyz-
ing messages exchanged between the component and its environment. Generation
of models by exploratory interaction can be useful also in other contexts. A large
source of application might be found in model-based verification and validation,
including model checking and model-based testing [7]. Such techniques have wit-
nessed drastic advances in the last decades, and are being applied to verification
and valiation of communication protocols, hardware systems, embedded con-
trollers, etc., also in industrial settings (e.g., [20]). They require models that
specify the intended behavior of system components, which ideally should be
developed during specification and design. However, the construction of mod-
els typically requires significant manual effort, implying that in practice often
models are not available, or become outdated as the system evolves. Automated
support for constructing models of the behavior of implemented components
would therefore be useful also, e.g., for regression testing, for replacing manual
testing by model based testing, for producing models of standardized protocols,
for analyzing whether an existing system is vulnerable to attacks, etc.

The construction of models from observations of component behavior can be
performed using automata learning (aka. regular inference) techniques [4, 11, 13,
23, 30, 33]. This class of techniques is now receiving increasing attention in the
testing and verification community, e.g., for regression testing of telecommunica-
tion systems [18, 21], for integration testing [17, 24], security protocol testing [32],
and for combining conformance testing and model checking [29, 16]. One of the
most used algorithms for regular inference, L∗, is thoroughly explained in the
Chapter Introduction to Active Automata Learning from a Practical Perspective
by Steffen, Howar, and Merten. This algorithm poses a sequence of membership
queries, each of which observes the component’s output in response to a certain
input word, and produces a minimal deterministic finite-state machine which
conforms to the observations. If the sequence of membership queries is suffi-
ciently large, the produced machine will be a model of the observed component.

Since regular inference techniques are designed for finite-state models, most
previous applications to model generation have been limited to generating con-
trol flow skeletons, suppressing data which appear, e.g., as parameters of mes-
sages. However, data parameters have a significant impact on control flow and
behavior in typical networked components and protocol entities. they can be
sequence numbers, configuration parameters, agent and session identifiers, etc.;
a model of a networked service is considerabely less informative if information
about exchanged data is suppressed. It is therefore important to extend infer-
ence techniques to handle message alphabets and state-spaces with structures
containing data parameters with large domains.

In this chapter, we will consider the problem of extending learning to au-
tomata with data, by presenting a particular approach, introduced in the work
by Aarts, Jonsson, Uijen, and Vaandrager [1, 2]. We first define a model for



symbolic representation of protocols. Thereafter, we present a technique for us-
ing the L∗ algorithm, designed for inference of finite-state Mealy machines, to
infer also symbolically defined protocol models. The technique is inspired by
predicate abstraction [26, 9], which has been successful for extending finite-state
model checking to large and infinite state spaces. In contrast to that work, how-
ever, we are now in a black-box setting, where an abstraction cannot be defined
based on the source code or model of a component, since it is not accessible.
Instead, we must construct an externally supplied abstraction, which translates
between a large message alphabet of the component to be modeled and a small
finite alphabet of the regular inference algorithm. Via regular inference, a finite-
state model of the abstracted interface is inferred. The abstraction can then be
reversed to generate a faithful model of the component.

The presented approach was used to learn models of reduced versions of the
SIP and TCP protocols, in [1], and also to learn a model of the new generation
of biometric passports in [2]. A We will also describe how to construct a suitable
abstraction, utilizing pre-existing knowledge about which operators are sufficient
to express guards and operations on data in a faithful model of the component.

On Related Work Regular inference techniques have been used for several tasks
in verification and test generation, e.g., to create models of environment con-
straints with respect to which a component should be verified [10], for regression
testing to create a specification and test suite [18, 21], to perform model checking
without access to source code or formal models [16, 29], for program analysis [3],
and for formal specification and verification [10].

In several approaches, the challenge of including data parameters of message
have been addressed. In the work of Shu and Lee [32], parameters are essentially
suppressed in order to obtain a finite subset of input symbols when learning the
behavior of security protocol implementations. This subset can be extended in
response to new information obtained in counterexamples. Groz, Li, and Shah-
baz [24, 31, 17] extend regular inference to Mealy machines with data values, for
use in integration testing. In their work, they select a finite set of representative
data values to be supplied together with the input to ta component.

An influential approach to learning properties of data in programs is repre-
sented by the Daikon system [12]. Its basic technique is to observe executions of
a component, and extract invariants over program variables that are observed
to hold. The invariants can be chosen from a predefined collection. The Daikon
system does not immediately consider to extract control structures of compo-
nents. There are several approaches that combine regular inference for learning
control structures, and the Daikon tool (or similar) for inferring constraints on
data parameters. One of the questions to be solved in such a combination is how
to correlate the two types of models.

Lorenzoli, Mariani, and Pezzé infer models of software components that con-
sider both sequence of method invocations and their associated data parameters
[27, 28]. They use a passive learning approach where a finite control structure
that captures possible sequences of method invocations is infer by an extension
of the k-tails algorithm (a passive learning algorithm), and using Daikon [8] to



infer guards and relations on method parameters. This allows to infer constraints
on data parameters that are exchanged after specific sequences of method invo-
cations, but not to analyze the influence of data parameter on subsequent control
behavior. The same basic combination is also employed by Lo and Maoz [25],
which infer a more refined view on constraints over data parameters, in that
different constraints are generated for different scenarios, if a need for this is
detected.

In previous work, we have considered extensions of regular inference to han-
dle data parameters. In [5], we show how guards on boolean parameters can
be refined lazily. This technique for maintaining guards have inspired the more
general notion of abstractions on input symbols presented in this chapter. We
have also proposed techniques to handle infinite-state systems, in which param-
eters of messages and state variables are from an unbounded domain, e.g., for
identifiers [6], and timers [15, 14]. These extensions are specialized towards a
particular data domain, and their worst-case complexities do not immediately
suggest an efficient implementation.

Organization. In the next section, we first introduce a simple running example
that will serve to illustrate the techniques presented in this tutorial. Thereafter,
we introduce Mealy machines, and our symbolic extension of Mealy machines,
that include data. The technique of using abstraction to adapt finite-state learn-
ing algorithms to symbolically defined Mealy machines is presented in Section 5.
This techniques requires an abstraction which in general must be constructed
manually. A technique for systematic construction of such abstractions is pre-
sented in 7. We illustrate the application of this technique to the running example
in Section 6.

2 A Running Example

Let us introduce a small example to illustrate the techniques that will be in-
troduced in later sections. Imagine a service for booking seats in a concert or
similar event. A user of this service has to provide his credentials and can then
browse through a list of seats. From the list of seats, a single seat can be booked,
which will be confirmed in a corresponding receipt.

Imagine further that an a priori interface description of the service is pro-
vided, specifying a specific set of messages that are understood by the service,
containing

– openSession with two parameters, a user name and a password, supplies
credentials, and if they are accepted the service provides a session identifier
in response,

– getSeats with a session identifier as parameter, asks for a list of avaible seats
that can be booked,

– getSeat with a session identifier and a seat as parameters, asks to book a
specific seat, and if accepted, the service will confirm by a positive reply.



The exchange of interface primitives during a typical session can be informally
depicted in sequence chart in Figure 1. In the following sections, we will con-

Client Service

-
openSession(user, passwd, session)

�
session

-
getSeats(session)

�
seats

-
getSeat(session, seat)

�
seat

Fig. 1. Message Flow in the Running Example

sider how active automata learning, which is able to generate finite-state Mealy
machines from queries, can be used to generate a model of the booking service.

3 Mealy Machines

Throughout the presentation, we will use Mealy machines to model the behavior
of communication protocol entities, networked services, etc.

Definition 1. A Mealy machine is a tuple M = 〈ΣI , ΣO, Q, q0, δ, λ〉 where

– ΣI is a nonempty set of input symbols,
– ΣO is a nonempty set of output symbols,
– Q is a nonempty set of states,
– q0 ∈ Q is the initial state,
– δ : Q × ΣI → Q is the transition function, and
– λ : Q × ΣI → ΣO is the output function. ⊓⊔

The sets of states and symbols can be finite or infinite: if they are both finite
we say that the Mealy machine is finite-state. Elements of Σ∗

I are called input
words, and elements of Σ∗

O are called output words.



Intuitively, a Mealy machine behaves as follows. At any point in time, the
machine is in some state q ∈ Q. When supplied with an input symbol a ∈ ΣI ,
it responds by producing an output symbol λ(q, a) and transforms itself to a

new state δ(q, a). We use the notation q
a/b
−→ q′ to denote that δ(q, a) = q′ and

λ(q, a) = b; in this case q
a/b
−→ q′ is called a transition of M.

We can depict Mealy machines as directed edge-labeled graphs, where Q is
the set of vertices. The outgoing edges from a state q ∈ S lead to δ(q, a) for all
a ∈ ΣI , and they are labeled “a/b”, where a is the input symbol and b is the
output symbol λ(q, a). As an example, Figure 2 shows a Mealy machine that
receives a sequence of symbols of form a or b. Whenever an a-symbol is received,
it outputs the number of received a-symbols modulo 2, and whenever a b-symbol
is received, it outputs the number of received a-symbols modulo 4. The initial
state is q0.

q3q0

q2q1

b/0 b/3

b/1 b/2

a/0

a/1

a/0

a/1

Fig. 2. A Mealy machine 〈ΣI , ΣO, Q, q0, δ, λ〉 with states Q = {q1, q2, q3, q4}, input
alphabet ΣI = {a, b}, and output alphabet ΣO = {0, 1, 2, 3}. For instance, applying a
starting in q0 produces output λ(q0, a) = 1 and moves to next state δ(q0, a) = q1.

Applying a word a1a2 · · · ak ∈ Σ∗
I of input symbols starting in a state q0

results in the sequence of states q0, q1, . . . , qk with qj = δ(qj−1, aj) for j =

1, . . . , k. We extend the transition function to δ(q0, a1a2 · · ·ak)
def
= qk and the

output function to λ(q0, a1a2 · · · ak)
def
= λ(q0, a1)λ(q1, a2) · · ·λ(qk−1, ak), i.e., the

concatenation of all outputs. We define λM(u) = λ(q0, u) for u ∈ Σ∗
I . Two

Mealy machines M and M′ with the same set of input symbols are equivalent
if λM(u) = λM′(u) for all input words u.

Mealy machines are completely specified, meaning that at every state there
is a next state for every input (δ and λ are total). They are also deterministic,
because only one next state is possible.



4 Symbolic Mealy Machines

Finite-state Mealy machines, introduced in the previous section, cannot repre-
sent all aspects of the behavior of protocols and networked components, where
the interplay between control and data is significant. Typical such models have
an infinite number of states and infinite communication alphabets that span do-
mains of data values that are very large or infinite. Typical examples of such
data domains are integers to represent sequence numbers, session identifiers, etc.,
strings to represent exchanged data, etc.

In this section, we introduce Symbolic Mealy Machines. They can be seen as
a symbolic representation of large or infinite-state Mealy machines, in that input
and output symbols have parameters which are data values, e.g., to represent
messages in a typical communication protocol. Often, data parameters are from
rather large (in practice “infinite”) domains, and on which rather simple oper-
ations and tests are applied, e.g., equality tests between elements of the same
domain, or a check whether an element is a member of some set. It seems rea-
sonable to be able to extend automata learning to such models, in analogy with
the way automated verification techniques have been extended from finite-state
models to extensions that cover, e.g., clocks as in timed automata.

Data Values We first consider the data values that occur as parameters of input
and output symbols and stored in state variables that are part of the representa-
tion of the internal state of a Mealy machine. We will use d, d1, d2, etc. to range
over data values. To describe the data values that are relevant for a symbolic
Mealy machine, we assume a finite set of domains, each of which is a (finite or
infinite) set of data values. We also assume a finite set of functions and a finite
set of predicates. Each function f has an arity, denoted D1 × · · · × Dn 7→ D,
where D1, . . . ,Dn and D are domains, meaning that the arguments to f must
be an n-tuple of data values d1, . . . , dn, where di ∈ Di for i = 1, . . . , n, and then
f(d1, . . . , dn) is an element in D. We write f : D1×· · ·×Dn 7→ D to denote that
f has arity D1×· · ·×Dn 7→ D. A predicate r has an arity, denoted D1×· · ·×Dn,
meaning that it can be thought of as a function from D1 × · · · × Dn to boolean
values.

Input and Output Symbols Input and output symbols will be represented using
finite sets I and O of (input and output) ations. Each ation α has a certain
arity, which is a tuple of domains Dα,1, . . . ,Dα,n (where n depends on α). Let
ΣI be the set of input symbols of form α(d1, . . . , dn), where di ∈ Dα,i is in the
appropriate domain for each i with 1 ≤ i ≤ n. The set of output symbols ΣO is
defined analogously.

Example For the service introduce in Section 2, we use the following domains to
represent the data values that occur in input and output symbols.

– STRING contains data values for user names and passwords.
– SESSION contains identifiers of sessions: it could be, e.g., the set of natural

numbers.



– SEAT contains the possible seats (e.g., represented by seat numbers) that
are available in the event, and

– SEATS contains sets of seats in SEAT.

We use the following predicates.

– ∈: SEAT × SEATS is the test for membership, and
– has passwd : STRING × STRING tests for valid combinations of usernames

and passwords.

In addition, we include the equality predicate = on the domains SESSION and
SEAT.

The set of input ations with corresponding arities is described in the following
table.q

Input ation arity
openSession : STRING, STRING, SESSION

getSeats : SESSION

getSeat : SESSION, SEAT

To model the response from the service, we could use one output ation for each
kind of response, e.g., an ation returnSession with arity SESSION for replies to
input symbols of form openSession(u, p, s). To save space, we will simply just let
the reply be modeled by a data element from the appropriate domain. ⊓⊔

Symbolic Mealy Machines We can now define symbolic Mealy machines. We
assume a set of domains, functions, and predicates, as described in the previous
paragraphs, which will be used to form expressions denoting data values, and
boolean expressions to denote tests on data values. We assume that expressions
always follow the restrictions of the relevant arities.

We assume a set of formal parameters, ranged over by p1, p2, . . ., to be used as
placeholders for parameters of symbols in symbolic transitions. We also assume
a set of state variables, each with a domain of possible values, and a unique
initial value.

Definition 2. A Symbolic Mealy machine (SMM for short) is a tuple SM =
〈I, O, L, l0, X,−→〉, where

– I and O are disjoint finite sets of actions (input ations and output ations),
– L is a finite set of locations,
– l0 ∈ L is the initial location,
– X is a finite set of state variables; each state variable x has a domain Dx of

possible values, and a unique initial value, and
– −→ is a finite set of symbolic transitions, each of form

il il′-
α(p1, . . . , pn) when g / x1, . . . , xk := e1, . . . , ek ; β(eout

1, . . . , e
out

m)

in which
• l and l′ are locations,
• α ∈ I and β ∈ O are input and output actions,



• p1, . . . , pn are distinct formal parameters,
• x1, . . . , xk are distinct state variables in X ,
• g (the guard) is a boolean expression over the formal parameters p1, . . . , pn

and the state variables in X , and
• e1, . . . , ek and eout

1, . . . , e
out

m are tuples of expressions over p1, . . . , pn

and X . We assume that the arities of α and β and the domains of
x1, . . . , xk are respected. ⊓⊔

Intuitively, a symbolic transition of the above form denotes steps of the
Mealy machine in which some input symbol of form α(d1, . . . , dn) is received,
whereby the formal parameters p1, . . . , pn are bound to the received data
values d1, . . . , dn; in case the guard g is evaluated to true, the state variables
among x1, . . . , xk are assigned new values by the assignment x1, . . . , xk :=
e1, . . . , ek, and an output symbol, obtained by evaluating β(eout

1, . . . , e
out

m),
is generated. In case the guard g is evaluted to false, then the symbolic
transition does not denote any step.

Semantics of SMM We can give a precise meaning to an SMM by letting it
denote a Mealy machine with possibly infinite sets of input and output symbols
and states. Such a Mealy machine can be defined as follows. Assume an SMM
SM defined as the tuple 〈I, O, L, l0, X,−→〉. A valuation is an assignment σ
which maps each location variable x in X to a data value in Dx. Valuations
are extended to expressions in the natural way: for instance, if σ(x3) = 8, then
σ(2 ∗ x3 + 4) = 20. We let σ0 denote the valuation which maps each variable to
its initial value. In the following, we will use p for p1, . . . , pn and d for d1, . . . , dn.

Definition 3. We define a SMM SM = 〈I, O, L, l0, X,−→〉 as denoting a (typ-
ically infinite-state) Mealy machine MSM = 〈ΣI , ΣO, Q, q0, δ, λ〉, where

– ΣI is obtained from I as described when introducing actions, and similarly
for ΣO,

– Q is the set of pairs 〈l, σ〉 consisting of a location l ∈ L and a valuation σ,
– q0 is the pair 〈l0, σ0〉, and
– δ and λ are such that for any symbolic transition in −→ of form

il il′-
α(p) when g / x1, . . . , xk := e1, . . . , ek ; β(eout

1, . . . , e
out

m)

for any valuation σ and data values d such that σ(g[d/p]) is true (i.e., under
the valuation σ, the guard g is evaluated to true when the formal parameters
p are replaced by the received data values d), it holds that
• δ(〈l, σ〉, α(d)) = 〈l′, σ′〉, where σ′ is the valuation such that

∗ σ′(xi) = σ(ei[d/p]) for 1 ≤ i ≤ k, and
∗ σ′(x) = σ(x) if x is not among x1, . . . , xk,

• λ(〈l, σ〉, α(d)) = β(σ′(eout
1 [d/p]), . . . , σ′(eout

m [d/p])). ⊓⊔

Here the four last lines say that the state is updated to a new pair 〈l′, σ′〉, where l′

is the target location of the symbolic transition and σ′ is obtained by performing
the multiple assignment x1, . . . , xk := e1, . . . , ek simultaneously to all variables



that are among x1, . . . , xk, and that an output symbol, obtained by evaluating
the expression β(eout

1, . . . , e
out

m) in σ, is generated.
Having defined the meaning of an SMM through translation to an ordinary

Mealy machine, we can inherit some definitions. We use λSM to denote λMSM
,

and say that SM and SM′ are equivalent if λSM(u) = λSM′(u) for all input
words u. We can similarly say that an SMM is equivalent to a Mealy machine.

Symbolic Mealy machines are required to be deterministic, just like ordinary
Mealy machines. We say that SM is deterministic if MSM is deterministic: a
sufficient condition under which MSM, is deterministic is that for each input
action α ∈ I, each location l ∈ L, and each valuation σ, the set −→ contains
exactly one symbolic transition such that σ(g[d/p]) is true.

Example 1. Model a simple booking system

5 Inference Using Abstraction

Let us consider the problem of extending finite-state automata learning (as re-
alized. e.g., by th L∗ alglorithm) to the learning of infinite state automata, as
represented by Symbolic Mealy machines. More precisely, given a SUT, whose
behavior can be modeled as an SMM SM, we should describe how a component,
called the Learner, which communicates with the SUT, can infer an SMM equiv-
alent to SM by query learning. In this setup, the Learner initially knows the
static interface of SM, i.e., the sets I and O of input and output actions together
with their arities. It may then ask a sequence of membership queries; each one
supplying a chosen input word u ∈ (ΣI)

∗ and observing the response λSM(u).
After a “sufficient” number of membership membership queries the Learner can
build a “stable” hypothesis H from the obtained information. The hypothesis
H should of course agree with SM on the performed membership queries (i.e.,
λSM(u) = λH(u) whenever u was supplied in a membership query), but must
make suitable generalizations for other input words.

The L∗ algorithm is designed for finite-state Mealy machines and cannot
construct infinite-state models. In order to use it for inferring models of large
or infinite-state SMMs, we must somehow transform the behavior of an SMM
so that it becomes the behavior of some finite-state Mealy machine. In this
section, we present an approach, which has been elaborated in the work by
Aarts, Jonsson, Uijen, and Vaandrager [1, 2]. The approach adapts ideas from
predicate abstraction [26, 9], which has been successful for extending finite-state
model checking to large and infinite state spaces.

In order to introduce our ideas, consider an SMM SM = 〈I, O, L, l0, X,−→〉
for which the sets ΣI and ΣO of input and output symbols, and the set of
valuations of X may be large or even infinite. To apply regular inference to
SM, we here propose to define an abstraction from ΣI and ΣO to (small) finite
sets of abstract input and output symbols. The overall idea can be schematically
depicted as in Figure 3. The abstraction A interacts with the SUT using the
alphabets ΣI and ΣO; it interacts with the Learner using finite alphabets of



Learner A SUT

-ΣA
I -ΣI

� ΣO� ΣA
O

Fig. 3. Introducing an abstraction A between the SUT and the Learner

symbols ΣA
I and ΣA

O . Thus, A can transform sequences of symbols in ΣI or
ΣO to sequences of abstract symbols in ΣA

I or ΣA
O . If A is suitable defined,

it can also the (possibly) infinite-state behavior of SUT into a behavior which
can be represented by a finite-state Mealy machine. The Learner can then use
standard techniques to learn this Mealy machine. Having done this, we can finally
“reverse” the effect of the abstraction A to obtain an SMM which is equivalent
to the original SUT.

As a concrete example, in the SMM in our running example, symbols of form
getSeats(s) in which the parameter s belongs to the large domain of session
identifiers, can be abstracted to symbols of form getSeats(S), where S is a value
from a small domain. A natural choice for such a small domain could be the
set {CUR, BAD}, where the value CUR denotes that s is the “current” session
identifier (supplied in the relevant openSession interaction), and the value BAD

denotes that s has some other value. Thus, the abstraction of a symbol, such
as getSeats(s), in general depends on the previous history of symbols. In model
checking using abstraction [26, 9], this dependency is taken into account by let-
ting the abstraction depend on internal state variables. For instance, the SUT
may have a state variable to remember the “current” session identifier; a pred-
icate abstraction will then only represent whether this internal state variable is
equal to the session identifier that is received in the input symbol that is be-
ing processed. However, automata learning is performed in a black-box setting
where the state variables of the SMM are not accessible. Therefore, these state
variables must be recreated in the the abstraction, and be updated to record
relevant history information. In our example, the recreated state variables can
be cur session and cur seats, where cur session is assigned the session identifier
supplied to the SUT in the relevant openSession interaction, and cur seats is
returned by the SUT in response to the relevant getSeats interaction. Typically,
these additional state variables must be defined by a user who has some insight
into the functioning of the SUT. In general, this is a nontrivial task, but in
Section 7 we discuss approaches for systematically constructing abstractions for
situations where the operation on data is not overly complex.

We can define an abstraction formally as follows.

Definition 4. Let I and O be disjoint finite sets of (input and output) actions.
An 〈I, O〉-abstraction is a tuple A = 〈ΣA

I , ΣA
O , R, r0, abstrI , abstrO, δR〉, where

– ΣA
I and ΣA

O are finite sets of abstract input and output symbols,



– R is a (possibly infinite) set of local states,
– r0 ∈ R is an initial local state,
– abstrI : R × ΣI 7→ ΣA

I maps input symbols of the SUT to abstract input
symbols,

– abstrO : R×ΣO 7→ ΣA
O maps output symbols of the SUT to abstract output

symbols, and
– δR : R× (ΣI ∪ΣO) 7→ R updates the local state when a new input or output

symbol occurs. ⊓⊔

Intuitively, an abstraction A maps input and output symbols of the SUT to
abstract input and output symbols, and updates its local state immediately
after the occurrence of each symbol.

Let us, as was done for Mealy machines, extend the definitions of the ab-
straction functions to sequences of input and output symbols. We will use u to
range over sequences of input symbols, v to range over sequences of output sym-
bols, and w to range over sequences of pairs (of form a/b) of input and output
symbols. Since a Mealy machine interacts with both an input symbol and an
output symbol at each transition, we extend the definitions of δR, abstrI , and
abstrO by defining:

δR(r, a/b) = δR(δR(r, a), b)
abstr(r, a/b) = abstrI(r, a)/abstrO(δR(r, a), b)

where a/b is a pair of input and output symbol, and abstr maps pairs of input
and output symbols to corresponding abstract ones. In the last formula, the
abstraction of the input symbol a is performed in the local state r, and the
abstraction of the output symbol b is performed wrp. to the local state δR(r, a)
reached after having processed the input symbol a.

We thereafter extend δR to sequences of pairs of input and output symbols,
by

δR(r, ε) = r δR(r, w a/b) = δR(δR(r, w), a/b)

We can similarly extend the mapping abstr from pairs of input and output
symbols to sequences of such pairs.

abstr(r, ε) = ε
abstr(r, w a/b) = abstr(r, w) abstr(δR(r, w), a/b) ,

In particular, abstr(r0, w) is the abstraction of an arbitrary sequence w of input-
output pairs.

In a concrete setup for learning a model of the SUT, we envisage that the
abstraction is performed by introducing a Mapper module between the Learner
and the SUT, which carries out the transformations of the abstraction. The
Learner can then interact with the combination of the Mapper and the SUT,
using the finite sets ΣA

I and ΣA
O , whereas the Mapper and the SUT interact

using the alphabets ΣI and ΣO. The Mapper maintains the local state r of
the abstraction. Note that the Mapper must transform between original and
abstract symbols in two different directions, depending on whether the symbol



is an input or output symbol. Each abstract input symbol aA supplied by the
Learner is translated by the Mapper to a concrete input symbol a such that
aA = abstrI(r, a), and sent to the SUT, while also updating the local state r
to δR(r, a). The corresponding reply b by SUT is translated to the abstract
symbol abstrO(δR(r, a), b) and sent back to the Learner. Finally the local state
r is updated to δR(r, a/b).

An example of a possible round of exchanged symbols is depicted in Fig-
ure 4. In this round, the abstract symbol openSession(USR,OK) is received by
the Mapper. Here the combination USR,OK represents a valid combination of
user and password. The Mapper chooses appropriate concrete data values as pa-
rameters, including to choose a session identifier to create an input symbol for
the SUT. It also stores the chosen session identifier into a local variable. The
SUT recognizes the input symbol as a valid start of a session, and so acknowl-
edges this by returning the provided session identifier. The Mapper compares the
session identifier returned with its stored local variable containing the session
identifier in the preceding input symbol, finds out that they are equal, and there-
fore transforms 42 into the abstract symbol CUR, representing “current session
identifier”.

Learner Mapper SUT

-
openSession(USR,OK)

-
openSession(Mary, 1346,42)

�
42

� CUR

Fig. 4. Introduction of Mapper module

Example Let us suggest an abstraction that could be applied in order to learn
a model of the seat booking service. In Section 4, we already described the
domains and predicates for modeling data parameters. Let us first suggest a
representation of the local state of the abstraction. This can be represented by
two state variables:

– cur session which stores the value of the “current” session, and and
– cur seats which stores the set of seats that has been proposed by the service.

The initial values of both variables is ⊥ (undefined). Thus, a state of the abstrac-
tion is a valuation ρ which maps cur session and cur seats to values. Initially, ρ
maps these variables to the undefined value.

Let us then define the set of abstract input symbols and the state-dependent
mapping abstrI from input symbols of the service to abstract input symbols.
The abstraction of an input symbol depends on whether certain guards, that



may be evaluated when such an input symbol is received, hold. For each com-
bination of input symbol and applicable guard, we create a suitable abstract
input symbol. In Table 1, we show the different combinations of input sym-
bols and guards, and the corresponding abstract input symbols. For instance, if

Table 1. Mapping from combinations of input symbols and guards to abstract input
symbols

input guard abstract symbol

openSession(u, p, s) has passwd(u, p) openSession(USR,OK)
¬has passwd(u, p) openSession(USR,NOK)

getSeats(s) s = cur session getSeats(CUR)
s 6= cur session getSeats(BAD)

getSeat(s, seat) s = cur session ∧ seat ∈ cur seats getSeat(CUR,SEAT)
s = cur session ∧ seat 6∈ cur seats getSeat(CUR,NO SEAT)
s 6= cur session ∧ seat ∈ cur seats getSeat(BAD,SEAT)
s 6= cur session ∧ seat 6∈ cur seats getSeat(BAD,NO SEAT)

ρ(cur session) = 42, and ρ(cur seats) = {C, D, G}, then abstrI(ρ, getSeat(42, F ))
is getSeat(CUR, NO SEAT).

Let us next define the set of abstract output symbols and the mapping abstrO.
As described in Section 4, the set of output symbols correspond to data values
in domains SESSION, SEATS, and SEAT. In addition, there is an output symbol
error which is returned on input that does not make the current session progress.
These output symbols are mapped to abstract output symbols as follows.

– Data values in SESSION are mapped to CUR or BAD, depending on whether
they are equal to cur session or not.

– Data values in SEATS are mapped to OFFERED or NOT OFFERED, depend-
ing on whether they are equal to the set of seats offered by the service. Here,
we have performed a modeling trick in order to be able to model the service
as a (deterministic) Mealy machine, in spite of the fact that the set of seats
it may return cannot be predicted from the past sequence of input and out-
put symbol. In order not to have to model the return of a set of seats using
nondeterminism, we invent a constant, named offered (say), which represents
the set of seats offered by the service in the session considered.

– Data values in SEAT are mapped to SEAT or NO SEAT, depending on whether
the seat is a member of the set cur seats or not.

– The output symbol error is left unchanged by the abstraction.

Let us finally consider how the state of the abstraction is updated on the oc-
currence of an input or output symbol. This state is unchanged, except for the
following cases.

– When an input symbol of form openSession(u, p, s) is received, such that
has passwd(u, p) and when cur session is previously undefined, then cur session
is assigned the value s received in the input symbol.



– When an output symbol in domain SEATS is produced in a situation where
cur seats is previously undefined, then cur seats is assigned the value of the
output symbol. ⊓⊔

In order to better understand what behavior is obtained by wrapping the SUT
with the Mapper, and which is observed by the Learner, let us model the behavior
of the combination of the Mapper and SUT, which we denote by A〈〈SM〉〉. Un-
fortunately, A〈〈SM〉〉 cannot in general be modeled as a (deterministic) Mealy
machine. The reason is that each (abstract) input symbol aA can be translated
by the Mapper (in state r) to any input symbol a with aA = abstrI(r, a): dif-
ferent choices of a will, in general, cause the SUT to move to different states
and subsequently cause different (abstract) output symbols to be generated. In
addition, the Mapper should have a defined reaction for the case that there is
no input symbol a with aA = abstrI(r, a). We therefore need to introduce a gen-
eralization of Mealy machines that allows nondeterminism, and represent the
behavior of A〈〈SM〉〉 as a nondeterministic Mealy machine. A nondeterministic
Mealy machine differs from a Mealy machine as defined in Definition 1 in that
the reception of an input symbol can result in several possible combinations of
output symbols and next states. For this situation, it is more suitable to use only

the notation q
a/b
−→ q′ to denote that when the machine is in state q and receives

input symbol a, a possible reaction is to emit output symbol b and move to state
q′.

Let MSM = 〈ΣI , ΣO, Q, q0, δ, λ〉 denote the Mealy machine model of SM,
let (ΣA

O )⊤ = ΣA
O ∪ {⊤} and R⊤ = R ∪ {r⊤}, where ⊤ is an output symbol

denoting that the provided abstract input symbol cannot be translated by the
Mapper. Then the behavior of A〈〈SM〉〉 can be modeled as a nondeterministic
Mealy machine in which

– ΣA
I and (ΣA

O )⊤ are the sets of input and output symbols,
– Q × R⊤ is the set of states,
– 〈q0, r0〉 is the initial state, and
– whenever A〈〈SM〉〉 is in state 〈q, r〉 and receives an abstract input symbol

aA, then for any concrete input symbol a such that aA = abstrI(r, a)
• the state 〈q, r〉 can be updated to 〈δ(q, a), δR(r, a/b)〉, where b = λ(q, a)

is the output symbol returned by SM, and
• the abstract output symbol abstrO(δR(r, a), b) can be produced.

We denote this possible symbol exchnage by

〈q, r〉
abstrI(r,a)/abstrO(δR(r,a),λ(q,a))

−→ 〈δ(q, a), δR(r, a/λ(q, a))〉 .

For the case where there is no concrete input symbol a such that aA =
abstrI(r, a), the output symbol ⊤ is produced and the state 〈q, r〉 is updated
to r⊤, where it remains, i.e.,

• 〈q, r〉
aA/⊤
−→ 〈q, r⊤〉, and

• 〈q, r⊤〉
aA/⊤
−→ 〈q, r⊤〉 for any aA ∈ ΣA

I .



Although the behavior of A〈〈SM〉〉 must, in general, be modeled as a Mealy
machine, which is internally nondeterministic, it is still possible that its external
behavior will appear to the Learner as being deterministic. The Learner can only
observe the sequences of abstract output symbols that are produced in response
to provided input sequences. So, for a sequence aA

1 · · · aA
n of abstract input sym-

bols, define λA〈〈SM〉〉(〈q, r〉, aA
1 · · · aA

n ) as the set of sequences of output symbols
of form bA1 · · · bAn such that for some sequence of states 〈q1, r1〉 · · · 〈qn, rn〉 we
have

〈q, r〉
aA

1
/bA

1−→ 〈q1, r1〉
aA

2
/bA

2−→ · · ·
aA

n
co/bA

n−→ 〈qn, rn〉

Intuitively, λA〈〈SM〉〉(〈q, r〉, aA
1 · · · aA

n ) is the set of abstract output sequences
that may be generated by A〈〈SM〉〉 in response to aA

1 · · · aA
n , starting from

state 〈q, r〉. In particular, λA〈〈SM〉〉(〈q0, r0〉, u) is the set of sequences that may
result from the input sequence u.

If tha input-output behavior of A〈〈SM〉〉 is equivalent to that of a determin-
istic Mealy machine, and if this (deterministic) Mealy machine is finite-state, it
will be possible to use L∗ for learning a model of its external behavior. Indeed, a
well-designed abstraction will preserve the determinism of the SUT so that the
input-output behavior of A〈〈SM〉〉 behaves deterministically, i.e., each sequence
of supplied (abstract) input symbols uniquely determines the subsequently pro-
duced (abstract) output symbol.

We make a formal definition of the condition under which the abstraction
will present a deterministic view to the Learner.

Definition 5. Let SM = 〈I, O, L, l0, X,−→〉 be an SMM, and let
A = 〈ΣA

I , ΣA
O , R, r0, abstrI , abstrO, δR〉 be an 〈I, O〉-abstraction. Then A is ad-

equate for SM if for any sequence u ∈ (ΣA
I )∗ of abstract input symbols, the set

λA〈〈SM〉〉(〈q0, r0〉, u) of correspondingly generated output sequences has at most
one element. ⊓⊔

Intuitively, adequacy means that A〈〈SM〉〉 exhibits a deterministic mapping
from sequences of abstract input symbols received by the Mapper to sequences of
abstract output symbols produced by the Mapper after abstracting the output of
the SUT. If A is adequate for SM, then the Learner will perceive that A〈〈SM〉〉
is equivalent to a (deterministic) Mealy machine (which may or may not be finite-
state). For any deterministic mapping from sequences of abstract input symbols
to sequences of abstract output symbols, there is a minimal Mealy machine
which generates it. This Mealy machine can be defined by a Nerode-like quotient
construction, as follows.

Let Q〈SM,A〉 denote the set of states of A〈〈SM〉〉 that are reachable. More
precisely, Q〈SM,A〉 is the smallest subset of Q × R which includes 〈q0, r0〉 and
such that 〈q, r〉 ∈ Q〈SM,A〉 implies 〈δ(q, a), δR(r, a/λ(q, a)〉 ∈ Q〈SM,A〉 for all
a ∈ ΣI). Note that we have excluded states where the Mapper has reached r⊤.

Define the equivalence ≃ on Q〈SM,A〉 by 〈q, r〉 ≃ 〈q′, r′〉 if λA〈〈SM〉〉(〈q, r〉, u) =
λA〈〈SM〉〉(〈q′, r′〉, u) for any sequence of abstract input symbols u ∈ (ΣA

I )∗. Intu-
itively, two elements of Q〈SM,A〉 are equivalent if they cannot be distinguished
by the Learner, i.e., any two subsequent sequences of input symbols that are



identified by abstrI trigger two subsequent output words that are identified by
abstrO.

If A is adequate for SM, then the input-output behavior of A〈〈SM〉〉 is equal
to that of a deterministic Mealy machine MA (in the sense that λA〈〈SM〉〉(〈q0, r0〉, u) =
{λMA(u)} for any sequence u ∈ (ΣA

I )∗ of abstract input symbols), which is de-
fined by MA = 〈ΣA

I , ΣA
O , QA, qA0 , δA, λA〉, where

– QA = Q〈SM,A〉/ ≃ ∪{q⊤}, i.e., the set of states is the set of equivalence
classes under ≃ plus an extra state q⊤ denoting that an abstract input
symbol with no corresponding concrete input symbol has been received,

– qA0 = [〈q0, r0〉]≃ is the equivalence class of the initial state of A〈〈SM〉〉,
– δA and λA are defined as follows:

for any a ∈ ΣI with abstrI(r, a) = aA we have

• δA([〈q, r〉]≃, aA) = [〈δ(q, a), δR(r, a/λ(q, a))〉]≃, and
• λA([〈q, r〉]≃, aA) = abstrO(δR(r, a), λ(q, a)),

for any aA ∈ ΣA
I s.t. there is no a ∈ ΣI with abstrI(r, a) = aA we have

• λA([〈q, r〉]≃, aA) = ⊤, and
• δA([〈q, r〉]≃, aA) = q⊤.

To complete the definition, we define δA(q⊤, aA) = q⊤ for any aA ∈ ΣA
I .

The definition of ≃ can be used to show that MA is well-defined.
The Mealy machine MA may be finite- or infinite-state. If a finite-state Mealy

machine MA = 〈ΣA
I , ΣA

O , QA, qA0 , δA, λA〉 is produced by the Learner, then we
must finally “reverse” the effect of the abstraction A to obtain the original SMM
SM, such that A〈〈SM〉〉 is equivalent to MA. In general, there can of course be
many SMMs with this property. In order that the SMMs be determined uniquely
up to equivalence (which is anyway the best we can hope for), it is necessary
that each abstract output symbol correspond to a uniquely determined concrete
output symbol generated by the SMM. We formulate this as follows.

Definition 6. An 〈I, O〉-abstraction A = 〈ΣA
I , ΣA

O , R, r0, abstrI , abstrO, δR〉 is
unambiguous if for all abstract output symbols bA and all r ∈ R there is at most
one output symbol b such that bA = abstrO(δR(r, a), b) for some input symbol
a ∈ ΣI . ⊓⊔

Intuitively, this means that we can deduce which output symbol is produced by
SM by seeing only its abstraction.

If A is unambiguous, and MA = 〈ΣA
I , ΣA

O , QA, qA0 , δA, λA〉 is a finite-state
mealy machine, define A−1〈〈MA〉〉 as be the Mealy machine 〈ΣI , ΣO, QA ×
R, 〈qA0 , r0〉, δ, λ〉, where δ and λ are defined by

– λ(〈qA, r〉, a) = b, where b the unique output symbol such that
λA(qA, abstrI(r, a)) = abstrO(δR(r, a), b), and

– δ(〈qA, r〉, a) = 〈δA(qA, abstrI(r, a)), δR(r, a/b)〉.

We can now prove that under the conditions we have introduced, the SUT can
be inferred from MA, of course up to equivalence.



Proposition 1. If A is unambiguous and adequate for SM, and if A〈〈SM〉〉 is
equivalent to MA (i.e., λA〈〈SM〉〉(〈q0, r0〉, u) = {λMA(u)} for any u ∈ (ΣA

I )∗),
then SM is equivalent to A−1〈〈MA〉〉. ⊓⊔

The proposition can be proven by establishing that A−1〈〈MA〉〉 satisfies the
conditions of the propsition, i.e., that A〈〈A−1〈〈MA〉〉〉〉 is equivalent to MA, and
by establishing (e.g., by induction on the length of u) that the ouput generated
in response to an input sequence u, by any SM such that A〈〈SM〉〉 is equivalent
to MA, is uniquely determined.

6 Illustrating Example

In this section, we sketch how a model of the booking service could be obtained
by combining automata learning, and the abstraction that was developed in the
course of the two previous sections.

Having supplied the abstraction described in the previous section, we can now
employ the L∗ algorithm to learn a finite-state Mealy machine, which interacts
using the sets ΣA

I and ΣA
O of symbols. Assume that the result is as described

by the finite-state Mealy machine in Figure 5. In this figure, we have omitted
all transitions that return error, and concentrate on those that make the session
progress.

?

��
��

l0 XXXXXXXXXXXXXXXXXXXXXXXz

openSession(USR,OK)/CUR

��
��

l1�����������������������9

getSeats(CUR)/OFFERED

��
��

l2 XXXXXXXXXXXXXXXXXXXXXXXz

getSeat(CUR,SEAT)/SEAT

��
��

l3

Fig. 5. Learned Abstract Mealy machine (self-loops suppressed)



Starting from the finite-state Mealy machine in Figure 5, we can apply the
construction described at the end of the preceding section to generate a possible
SMM that models the service. It is shown in Figure 6.

?

��
��

l0 XXXXXXXXXXXXXXXXXXXXXXXz

openSession(u, p, s) when has passwd(u, p)/

cur session := s; s

��
��

l1�����������������������9

getSeats(s) when s = cur session/

seatsvar := offered; offered

��
��

l2 XXXXXXXXXXXXXXXXXXXXXXXz

getSeat(s, seat) when s = cur session ∧ seat ∈ cur seats/seat

��
��

l3

Fig. 6. Constructed Symbolic Mealy machine (self-loops suppressed)

7 Systematic Construction of Abstractions

The construction of a suitable abstraction is crucial for successful inference of
an SMM SM. In this subsection, we discuss how a successful abstraction can
be constructued more systematically. A necessary prerequisite for constructing
an abstraction is obviously that the sets I and O of input and output actions of
SM, together with their arities, are known a priori.

Furthermore, it appears necessary to have some a priori knowledge about
how SM stores and manipulates data that it receives and emits. On the other
hand, the control aspects of SM can be inferred by the Learner using automata
learning, provided that the abstraction is “good enough”. In the following, we
give some sufficient criteria for “good enough” abstractions, under which learning
and SM, according to the technique described in Section 5 can be successful.
At the end of this section, we discuss how such knowledge can sometimes be
obtained by testing and experimentation on SM.

In the running example in the previous subsection, we see that the abstraction
mapping for input symbols uses expressions that become guards in the resulting



SMM, and that the abstraction mapping for output symbols uses expressions
that occur in output expressions of the SMM. When SM is only available as a
black box, such an abstraction can be produced if the following information is
available.

– An “overestimate” of the information that is stored in state variables of SM.
More precisely, such an overestimate can be represented by a set R of states
of the abstraction and an update function δR such that after any sequence
of pairs of input and output symbols, the information in the “data state”,
represented by the current valuation σ of state variables, of SM can be
obtained from the current state r of the abstraction. One way to formalize
is by finding a mapping h from the set of valuations of the state variables X
to the set r of states of the Mapper, which has the properties that

• h(σ0) = r0, and
• for any symbolic transition in −→ of form

il il′-
α(p) when g / x1, . . . , xk := e1, . . . , ek ; β(eout

1, . . . , e
out

m)

and valuation σ and data values d such that σ(g[d/p]) evaluates to true,
then if h(σ) = r, then it holds that for σ′ defined by
∗ σ′(xi) = σ(ei[d/p]) for 1 ≤ i ≤ k, and
∗ σ′(x) = σ(x) if x is not among x1, . . . , xk,

we have h(σ′) = δR(r, α(d)/β(σ′(eout
1 [d/p]), . . . , σ′(eout

m [d/p]))).

– The abstraction should distinguish between the different symbolic transitions
from a location. More precisely, this means that if from a location and from
some state 〈l, σ〉 with h(σ) = r, there are two different symbolic transitions

taken for input α(d) and α′(d
′
), then abstrI(r, α(d)) 6= abstrI(r, α

′(d
′
)). This

can be achieved by letting each possible guard correspond to a different
abstract input symbol. For the case that the abstraction is not fine enough
to distinguish between symbolic transitions that cause different output, a
technique for refining the abstraction on-the-fly, during the learning process,
has been developed by Howar, Steffen, and Merten [19].

– The abstraction should be unambiguous. This can be achieved if different
output expressions are mapped to different abstract output symbols. For
instance, one could let abstract output symbols “be” the output expressions
that can occur in symbolic transitions, assuming that an output expression
is uniquely obtainable from the actual output symbol produced.

Under the above assumptions, we can construct an abstraction which maps
combinations of parameterized input actions and guards in a possibe SMM to
abstract input symbols, and maps combinations of expressions in output symbols
of a possible SMM to abstract output symbols, as in the running example. The
updates to state variables will simply consist in assigning some input parameters
to state variables: the problem here is to decide which input parameters will
influence the future behavior of SM, and must be remembered in state variables.
In our experiments, we have made this decision based on observing the response
of SM to selected input strings, i.e., by posing membership queries, and saving



those parameter values that are used to produce future output. For parameter
values on which the only performed operation is a test for equality, such as the
id parameter of the running example, we have made these ideas more precise in
our earlier work [6], as follows:

Consider an input string u, which contains a parameter value d. We observe
the output of M in response to u and to selected continuations of u, and decide
to store d in a state variable if there is some continuation v of u such that d
is used to produce the response to v. More precisely, this happens if there is a
fresh (i.e., previously unused) data value d′ such that the response λ(δ(q0, u), v)
to v and the response λ(δ(q0, u), v[d′/d]) to v[d′/d] (i.e., v where all occurrences
of d have been replaced by d′) satisfy λ(δ(q0, u), v)[d′/d] 6= λ(δ(q0, u), v[d′/d]),
i.e., SM does not treat d in the same way as a fresh (previously unused) value
d′. This happens, e.g., if λ(δ(q0, u), v[d′/d]) contains the data value d implying
that d must have been remembered before seeing the subsequent input v[d′/d],
and that d should be stored in a state variable.

8 Conclusions and Future Work

We have considered the problem of extending automata learning to incorporate
data parameters, including their influence on control behavior. We concentrated
on presenting an approach that adapts ideas using abstraction that have been
successfully applied in formal verification. This approach has been used on some
nontrivial examples [1, 2], and techniques for revising abstractions by need have
been developed [19]. However, it is clear that much work remains in order to
make automata learning with data easily applicable to a wide class of systems.
Issues that need to be addressed include to remove (some of) the need for manual
construction of abstractions: this could be addressed by developing more canon-
ical models for automata with data. Another issue is that the determinism of
the Mealy machine model is limiting the modeling power: ways should be found
to effectively learn nondeterministic models.

References

1. F. Aarts, B. Jonsson, and J. Uijen. Generating models of infinite-state communi-
cation protocols using regular inference with abstraction. In Proc. ICTSS, 22nd
IFIP WG 6.1 International Conference on Testing Software and Systems, Natal,
Brazil, November 8-10, 2010, volume 6435 of Lecture Notes in Computer Science,
pages 188–204. Springer, 2010.

2. F. Aarts, J. Schmaltz, and F. Vaandrager. Inference and abstraction of the bio-
metric passport. In Proc. ISoLA, 4th International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation 18-20 October 2010 -
Amirandes, Heraclion, Crete, volume 6415 of Lecture Notes in Computer Science,
pages 673–686. Springer, 2010.

3. G. Ammons, R. Bodik, and J. Larus. Mining specifications. In Proc. 29th ACM
Symp. on Principles of Programming Languages, pages 4–16, 2002.



4. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

5. T. Berg, B. Jonsson, and H. Raffelt. Regular inference for state machines with
parameters. In L. Baresi and R. Heckel, editors, FASE, volume 3922 of Lecture
Notes in Computer Science, pages 107–121. Springer, 2006.

6. T. Berg, B. Jonsson, and H. Raffelt. Regular inference for state machines using
domains with equality tests. In J. L. Fiadeiro and P. Inverardi, editors, FASE,
volume 4961 of Lecture Notes in Computer Science, pages 317–331. Springer, 2008.

7. M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors. Model-
Based Testing of Reactive Systems, volume 3472 of Lecture Notes in Computer
Science. Springer Verlag, 2004.

8. Y. Brun and M. Ernst. Finding latent code errors via machine learning over
program executions. In ICSE’04: 26th Int. Conf. on Software Enginering, May
2004.

9. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of the ACM,
50(5):752–794, 2003.

10. J. Cobleigh, D. Giannakopoulou, and C. Pasareanu. Learning assumptions for
compositional verification. In Proc. TACAS ’03, 9th Int. Conf. on Tools and Al-
gorithms for the Construction and Analysis of Systems, volume 2619 of Lecture
Notes in Computer Science, pages 331–346. Springer Verlag, 2003.

11. P. Dupont. Incremental regular inference. In L. Miclet and C. de la Higuera,
editors, ICGI, volume 1147 of Lecture Notes in Computer Science, pages 222–237.
Springer, 1996.

12. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The daikon system for dynamic detection of likely invariants. Sci.
Comput. Program., 69(1-3):35–45, 2007.

13. E. M. Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

14. O. Grinchtein. Learning of Timed Systems. PhD thesis, Dept. of IT, Uppsala
University, Sweden, 2008.

15. O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-recording automata.
In Proceedings of the Joint Conferences FORMATS and FTRTFT, volume 3253 of
LNCS, pages 379–396, Sept. 2004.

16. A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In J.-P. Katoen
and P. Stevens, editors, Proc. TACAS ’02, 8th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems, volume 2280 of Lecture Notes in
Computer Science, pages 357–370. Springer Verlag, 2002.

17. R. Groz, K. Li, A. Petrenko, and M. Shahbaz. Modular system verification by
inference, testing and reachability analysis. In TestCom/FATES, volume 5047 of
Lecture Notes in Computer Science, pages 216–233, 2008.

18. A. Hagerer, H. Hungar, O. Niese, and B. Steffen. Model generation by moderated
regular extrapolation. In R.-D. Kutsche and H. Weber, editors, Proc. FASE ’02,
5th Int. Conf. on Fundamental Approaches to Software Engineering, volume 2306
of Lecture Notes in Computer Science, pages 80–95. Springer Verlag, 2002.

19. F. Howar, B. Steffen, and M. Merten. Automata learning with automated alphabet
abstraction refinement. In VMCAI, Verification, Model Checking, and Abstract
Interpretation - 12th International Conference, VMCAI 2011, Austin, TX,, volume
6538 of Lecture Notes in Computer Science, pages 263–277. Springer, 2011.



20. A. Huima. Implementing conformiq qtronic. In A. Petrenko, M. Veanes, J. Tret-
mans, and W. Grieskamp, editors, Proc. TestCom/FATES, Tallinn, Estonia, June,
2007, volume 4581 of Lecture Notes in Computer Science, pages 1–12, 2007.

21. H. Hungar, O. Niese, and B. Steffen. Domain-specific optimization in automata
learning. In Proc. 15th Int. Conf. on Computer Aided Verification, 2003.

22. V. Issarny, B. Steffen, B. Jonsson, G. S. Blair, P. Grace, M. Z. Kwiatkowska, R. Ca-
linescu, P. Inverardi, M. Tivoli, A. Bertolino, and A. Sabetta. Connect challenges:
Towards emergent connectors for eternal networked systems. In ICECCS, pages
154–161, 2009.

23. M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory.
MIT Press, 1994.

24. K. Li, R. Groz, and M. Shahbaz. Integration testing of distributed components
based on learning parameterized I/O models. In E. Najm, J.-F. Pradat-Peyre, and
V. Donzeau-Gouge, editors, FORTE, volume 4229 of Lecture Notes in Computer
Science, pages 436–450, 2006.

25. D. Lo and S. Maoz. Scenario-based and value-based specification mining: better
together. In ASE 2010, 25th IEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, pages 387–396. ACM, 2010.

26. C. Loiseaux, S. Graf, J. Sifakis, A. Boujjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6(1):11–44, 1995.

27. D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software behav-
ioral models. In Proc. ICSE’08: 30th Int. Conf. on Software Enginering, pages
501–510, 2008.

28. L. Mariani and M. Pezzè. Dynamic detection of COTS components incompatibility.
IEEE Software, 24(5):76–85, September/October 2007.

29. D. Peled, M. Y. Vardi, and M. Yannakakis. Black box checking. In J. Wu, S. T.
Chanson, and Q. Gao, editors, Formal Methods for Protocol Engineering and Dis-
tributed Systems, FORTE/PSTV, pages 225–240, Beijing, China, 1999. Kluwer.

30. R. Rivest and R. Schapire. Inference of finite automata using homing sequences.
Information and Computation, 103:299–347, 1993.

31. M. Shahbaz, K. Li, and R. Groz. Learning and integration of parameterized compo-
nents through testing. In A. Petrenko, M. Veanes, J. Tretmans, and W. Grieskamp,
editors, TestCom/FATES, volume 4581 of Lecture Notes in Computer Science,
pages 319–334. Springer, 2007.

32. G. Shu and D. Lee. Testing security properties of protocol implementations - a
machine learning based approach. In Proc. ICDCS’07, 27th IEEE Int. Conf. on
Distributed Computing Systems, Toronto, Ontario. IEEE Computer Society, 2007.

33. B. Trakhtenbrot and J. Barzdin. Finite automata: behaviour and synthesis. North-
Holland, 1973.


