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Abstract

The problem addressed in this paper is heuristically-guided learning of finite automata

from examples. Given positive sample strings and negative sample strings. a finite

automaton is generated and incrementally refined to accept all positive samples but no

negative samples. This paper describes some experiments in appling hill.climbing to
modify finite automata to accept a desired regular language. We show that many problems

can be solved by this simple method. We then describe the method hcw to re-construct
a finite automaton if the positive and/or negative samples are slightly altered. without
starting from the beginning. Finally, we have an actual system. RR: Regular set
Recognizer, that learns to recognize a regular set from the samples that are given by a

human teacher one by one.
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INTRODUCTION

1. Introduction

Consider the following problem:

Describe the property that all strings in the right-list have but no string in the wrong-list has. Does a
string (1 1 0 1) have this property? You may answer the question by using any of the following:

English, a regular expression, or a finite automaton.1

riaht-list wrona-list

0 (10)
(1) (101)
(0) (010)
(01) (1010)
(11) (1110)
(00) (1011)
(100) (10001)
(110) (111010)

(111) (1001000)

(000) (1 1111000)
(100100) (0111001101)
(110000011100001) (11011100110)

(111101100010011100)

It might be possible to construct the finite automaton by a "typical" schemafilling method (.e,
Finding rough property in the samplse fir* comparing these strings carefully). However, In this paper,
we try to construct the finite automaton directly by searching In the problem space (I.e., the Mt of all
finite automata) using hill-climbing, rather than by analyzing the uampls carefully. One of the biggest
advantages of hill-climbing IS its simplicity, that is, we do not hawe to know our problem space well,
while a "typical" schema-filling method require us to provide all possible schemes, and therefore to
know everything about our problem space. We shall see that hill-climbing works much bter than
expected in our problem space, and in fact solved most of the problems.

1.1 The finite automata used in this paper

We restrict our problem domain to be only over (1,0). Furthermore, since every non-deterministic
finite automaton has an equivalent deterministic finite automaton (see[Hopcroft 79), we deal only

with deterministic finite.automata, that is, there is at most one 1-arrow and one 0-arrow from each
stl. Thus, in this paper, the terms "finite automaton", "automaton" or "machine" all mean
"deterministic finite automaton". Given a string a, if there is a transition from the initial state to any of
the final states, then 3 is accepted by the machine, otherwise a is rejected. For example, the machine
of the sample problem is shown In figure 1-1.

1The maw is airngs ovr (1 10)4 w~llout an odd nmbr of conecutim O's AFTER an odd numbr at con m i's.

Ttwom (1 101) his the popery.

2



INTRODUCTION

Figure 1-1 : The machine of the sample problem

Each machine with n states is denoted by the following form:

((A1, Bi, F1 ) (A2, B2, F ) .... (An, B, Fn)).

Each (A, EB, F.) corresponds to the state i, and A, and B, indicate the destination state of the 0-arrow

and the 1-arrow from the state i, respectively. If A, or B is zero, then there is no 0-arrow or 1-arrow
from the state i, respectively. Fi indicate whether state i is one of the final states or not If F, is equal
to 1, the state i is one of the final states The initial state is always state 1. For instance, figure 1-1 is
represented as follows:

((12 1)(3 11)(400)(4,41)).

1.2 The problem
We now we reedy to describe the problem precisely. Gkit a rfight-st (a set of postve sampe

strings) an s wrong-list (a set of negative sample strings), we can think of the following three tsks:

1. To find a machine th mcephe all ings in the right-list but none In the wrong-EeL

2. To find a machine with n states that accept all strings In the right-list but none in the
wrong-Ee

3. To find the machine with fewest staMs (simplest machine) that accepts all strings In the

right-list but none in thwwrong-Ilst.

The first task is trivial because one can emily construct a trivial machine that accepts exactly all
sings In the right-list but nothing 0se

2 The second task and the third task are shown to be NP-
complft problems by [Gold 74]. We call the second task construction of finite automata, and the
third took simplification of finite automata.

1.3 Past Work

Feldman, Gips, Horing and Reder [Feldman 67] [Feldman 69] built a system that constructs a
grammar in SNF from given examples. It takes only positive examples, and its problem domain is
context.free languages We quote a couple of sample runs of this system from [Feldman 69], to mke
clear how ther system worked

2An o fms the *iWi m h will be found in section 3-41

3



INTRODUCTION

Figure 1 -2: Sample Strings and BNF grammar produced by Feldman's system

(b)
(a is b)
(a w a a b)
(a In a a a a b)

S <- b I S1US
S1 <- a

(c d)
(A b d)
(acab d)
(a a b b d)
(a a c b b d)
(a a a. b b b 4)
(a a a a b b b d)

S <- S~4

<1 -aS1 bC

(a a a r a a)
(a a 7 a a a r)
(a a a r 0 1 a 0 a r)
(Ia a I a In a r r a a).
(I a a a r a a r * a)

(a In a- a 1 a a a r r)
(am n Ia aer aa r)

Ct - Sr

Their system firs constructs & 'tMalw granmmar, and then simplifies It As we can see, their system
requires us to provide nlcely-chaeen qxamples, and It cannot solve from poorly organized examples
suich asthe problemn we introduced at fth beginning.

Bleman and Feldman then built a system that constructs a finite automaton from given examples.
Although it takes only positive examples, they showed an application to the case where both positive
and negative examples awe given. Their algorithm also requires nicely-chosen examples, and they
showed the method to choose the examples from a regular set "nicely", so that it always turns out the
aimples machine. Howeve If the examples are not nicely-chosen, as in the problem we introduced at
the beginning, their system hardly turns out the simplest machine.

Apart from fth grammatical Inference, there has been a good deal of work on discovery of a
regularit or a common pattern In the given examples that are not necessarily nicely-chosen
([Langley 81la] [Langley 81ib] [Buchanan 761 [Hayes-roth 77] [Michalski 73] [Vere 751 [Winston 70]).

4
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INTRODUCTION

1.4 Overview of the Paper

In the rest of this chapter, we present the 7 sample problems, that we will consider throughout this

paper (7 sample problems and their inverses).

In chapter 2, we present the result. of an experimentjn constructing finite automata with n states

using hill-climbing, in particular, we let n , 8. We shall see that all 14 sample problems can be solved

by this method.

In chapter 3, we present the result of an experiment in simplifying the finite automata which we
have found in chapter 2, also using hill-climbinl. We shall seethat we can find the simplest machine

for most of the problems by this method.

In chapter 4, we discuss re-construction of finite automata, that is, how to re-construct a finite

automaton if the right-list and the wrong-list are slightly altered. We might not want to construct it

from the beginning. Rather, we want to construct the new machine by modifying the previous
machine.

Finally, we have an actual system called Regular set Recognizer [RRJ, using the techniques above.

RR learns to recognize a regular set, given examples by a human "teacher". We present several

sample runs well as a user's manual, in chapter .

1.5 Sample Problems

1.5.1 Sample Problems

Throughout this pap, we consider th. following 7 sample problemW

right-IIt wrong-Ht

0 (0)
(1) (10)
(11) (01)
(111) (00)
(1111) (011)
(11111) (110)
(111111) ( 1'111110 )

(1 I1 11.1 1) (1 01 1 1 1 11)

(1 1 1 1111)

5



INTRODUCTION

Problem2

right-list w rong-list

0 (1)
(1 0) (0)
(1010) (11)
(101010) (00)
(10101010) (01)
(10101010101010) (101)

(1 00)
(1001010)
(1 0110)
(110101010)

right-list wrong-list

0 (10)
(1) (101)

(0) (010)

(01) (1010)

(11) (1110)
(00) (1011)
(100) (10001)
(11) (111010)
(1 t 1) (1001000)
(000) (11111000)
(100100) (0111001101)

(110000011100001) (11011100110)

(1111 O 100010011100)

right-list wrong-list

0 (000)
(1) (11000)

(0) (0001)

(10) (000000000)
(01) (11111000011)
(00) (1101010000010111)

(100100) (1010010001)

(00111.1110100) (0000)

(0100100100) (00000)

(11100)
(01 0)

3Ts pm a W~ode at In V(Y beginning

I

.



INTRODUCTION

Problem 5

right-list w rong-list

0 (1)(1 1) (0)

(00) (111)

(1001) (010)

(01 01) (000000000)

(1010) (1000)

(1000111101) (01)

(100 i10 000 11010) (10)

(11 111 1) (1 1 10010100)

(0000) (010111111110)

(0001)
(011)

Problems

right-list wrong-list

0 (1)
(10) (0)

(01) (1 1)
(1100) (00)
(101010) (101)
(I111) (011),

(000000) (11001).

(10111) (1111)

(0111101111) (00000000)

(100100100) (01011-1)

(10111101111)

(1001001001)

rdght-Ilist w ong-list

0 (1010)

(1) (00110011000)

(0) (0101010101)

(10) (1011010)

(01) (10101)

(11111) (010100)

(000) (101001)

(00110011) (100100110101)

(01 01)

(0000100001111)
(00100)
(011111011111)
(00)

r7
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INTRODUCTION

1.5.2 Solution of Sample Problems

The solution of these problems are:

1.1

z (10)

3. any string without an odd number of consecutive 0's AFTER an odd number of

consecutive l's.

4. any string without more than 2 consecutive 0's.

5. any string of even length which, making pairs, has an odd number of (0 1) or (1 0)'s.

6. any string such that the difference between the numbers of l's and 0's is 3n.

7. 01 "01.

1.5.3 Finite Automata of Solutions

The machines corresponding to these solutions are s follows.
Solution of Problem 1

Solution of Problem 2

Solution of Problem 3

Solution of Problem 4

0
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Solution of Problem5

0

0 0 0 0

Slution of -Problem 6

0

Solution of Problem7

9



INTROOUCTION

1.5.4 Inverse Problems

We also consider the inverse problems of these sample problems. The inverse problems are
created by exchanging the right-list and wrong-list. We use these 14 problems in our experiments
and refer to the inverse problem of problem 1 as problem 1-, the inverse problem of problem 2 as
problem 2-, and so on.

Solution of Problem 1.

~01 ;,

Solution of Problem 2-

,0

0

0
0

Solution of Pmblon 3-

Solution of Problem 4-

100

t1
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Solution of Problem 5.

01

00

0 0

Solution of Problem 7.



CONSTRUCTION OF FINITE AUTOMATA

2. Construction of Finite Automata

In this chapter, we describe an experiment in constructing a finite automaton with n states from a
given right-list and a wrong-list, using hill-climbing. In particular, we let n equal 8. We shall see that
each of the 14 problems can be solved in at most a few thousands steps.

2.1 Algorithm

The hill-climbing algorithm of this experiment is shown in figure 2-1.

Figure 2-1: Flowchart of the Hill-Climbing

W mutate(M)

I yes E(M)

We first construct a random machine with 8 s We next make a copy of this machine, where the
copy is slightly altered from the original by an operator mutate. We compare the new machine with
the original by an evaluation function E. The better machine is called current generation and we
make a copy of this machine, and so forth. The worse machine is simply discarded. The operator
mutate and the evaluation function E are defined more precisely in the following.

Operator mutatm Taking a machine ((A1 , 61, F1)... (As, Be, Fs)) as its argument, the operator
mutate chooses one digit randomly, and replaces it by another digit.4 That is, the mutation In our
algorithm is randomly one of the following: delete an arrow, insert an arrow, change the destination

40 a< A -<80 -(B I. a< 8; rdO a< F ,,1.

12



CONSTRUCTION OF FINITE AUTOMATA

of an arrow to another destination, make a non-final state into a final state, and make a final state into

a non-final state.

Evaluation Function E: The evaluation function E takes a machine as its argument and returns r
- w, where r is the number of strings in the right-list accepted by the machine, and w is the number of
strings in the wrong-list accepted by the machine. If r - w < 0 then it returns 0.

2.2 Results

We show in this'chapter the result of our experiments. We first show in figure 2-2 the trace of the

experiment of problem 3, to see how our algorithm gradually refines a random machine into the
desired machine. Each line corresponds to the current generation M. The column E indicates E(M),
and G indicates the cumulative number of generation. The final machine of this trace accepts all
strings in the right-list but none in the wrong-list of problem 3 (figure 2-3).

We show the results for the other 13 problems in figure 2-4.

Figure 2-2: Sample Trace of Problem 3

-- - . ... ------- --------- ------------ :-:---- .----------- ..
4 061 3 311 0 10(0 01(460 411 1) 01

6210 31 10 6141 4 11 3 221 52)
24 : 1 4.3 1 0 001(,14 1 1)i 031I 4I 23 1: 4 i0 3 * 4011 3410
24 1 4 31 1 0 0 0 1(4 1 1 64 04

62 a31 431 16 601(41 4 1 3 4106
140 6 3 1 4 3 1 1 ( 6 4 )41 4)1 321 07
14 63 1 4 3 10 0 1 4 3 1 1 321
1 46 31 4 31 1 00 00 1)(4 1)4 0 51
4, 3 1 '4 3 1) 1 0( )40 )4t0(

631 431 10 1 1 40 3 240)(1 0

14 83 41 15 0161 406 321 123
4 1 31 441 100 001 1 4 3 1 214
41 6 441 1 01o 0 466 3 21 2

1 4 1614110000 1 1 40 216
141 1 4 1 0 001 0 460 17

34 1 661 0oo 10 2 14 32t 41s
4 10 6 0 3 1 0 ooIt 0o 10 1146o321 41

1 4  0 .1 41 0 0 00(1 1 400 321 4o 2
4 1 O 8 1 0 6 3 1 1 ) 4 6 4 21

1 41 13 1 3o 1 00 6 3 0 (06 1 48 32 1 4
14 1 1 31 8 3 oe(0)1) 32 1 2 2

4 a11•61)00ob0 (• 1)( •21 427
141 3.1 06 0 1( 0 9 0 1 0 1)(70(121 62

14 31061(0 5( ( 2 1( 4 )(1(1 3I : S :1)( o e(2 o(0 0 2 12264634 1 04 1 00 1(2 4 710 1 1 4 2o6
14 1 1 4 6 1( 400(2 o( 1)(7 12 24 03

(1 I I 3 •41( a 1 0( 1(7)(7 101)3 2

(1 5 500 4 61(460 021 1(24 03(2 7 1 5 011 13 206

1 51 a 0 e4 6 1• :: , 1) IM 4)o( 4 1 1 o) aI( I M

%*"I1 remltn 126.036006 sag

13
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CONSTRUCTION OF FINITE AUTOMATA

Figure 2-3: The final machine of problem 3

0

0

figure 2.4: The results of the othe 13 probleM

FlnajMachrneof rBlM=

((D 1 1)(2 8 1)(7 4 1)(11 0 0)(7 Z 1)(1 6 0)(7 7 0)(8 8 0)) 98

14







CONSTRUCTION OF FINITE AUTOMATA

Final Machine of Problem 7

00

000

(161)(0 0 1)(Z 41)(Z 7 0)(0 5 1)(7 6 1)(7 5 1)(4 2 1)) 206
Final Machin, of Problem 1.

((3 6 0) (9 3 0) (1 7 1) (S 4 1)( 3 1) (7 1 0) (0 4 1) (0 0 0)) 300

17



CC? STFIUCTION OF FINITE AUTOMATA

Final Machine of Problem 2-

((6 0)(2 3 1)(2 0 0)(2 8 1)(1 A 1)(1 4 1)(0 4:0)(4 t 1)) SO
Fnal Msebhin of Probim .

00

((3 6 0)(4 5 1)(1 4 0)(Z 4 0)(6 7 1)(2 3 0)(0 S 1)(0 0 0)) 1939

I-s



CONSrtRUC;TION OF FINITE AUTOMATA

Finail Machine of Problem-

00

((8 3 0)(0 (1 0)(a Z 1)(1 7 1)(3 1 1)(6 a 1)(5 4 0)(1 5 1)) 1844

.19



CONSTRUCTION OF FINITE AUTOMATA

Final Machine of Problem 6.

((127 0) (7 1. 1) (3 2 0) (5 1 1) (0 3 0) (3 7 0) (1 8 1)(3 1 1)) 886
Final Machine of PrabkmZ7.

02

((7 0)4 20)(4Z 1(4 1)5 Z )(2Cl )(75 0)6 01))372
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2.3 Discussion

2.3.1 Hill-Climbing vs. Exhaustive Search

To see how effectively our hill-climbin algorithm has performed, we compare our method with an
exhaustive search. There are (9 x 9 x 2) - about 5 x 1017 machines in our problem space. We now
.iant to know the number of the desired inachines in our problem space, so that we can calculate the
expected number of steps until the exhaustive algorithm finds the first desired machine. This can be
done by the following "sampling" method: take one machine in the problem space randomly, and test
it this machine is the desired machine; repeat this procedure 100,000 times.

We show the expected number of steps using the exhaustive search calculated by this procedure in
figure 2-5. Although the exhaustive search works better on "easy" problems, it is obvious in general
that our hill-climbing works much better than the exhaustive search.

Figure 2-3: The number of Steps to get the desired machine

Problem H11l-Climbing Exhaustlve-Search

P1 9 33
P2 134 318
PS 2052 > 60000
P4 442 12600
Pe 1761 > 60000
IPe 2T7 60000
P7 106 50000
PIL- 300 167

Psl- lose > $0000
P4- 246 > 50000

Pi- 1844 > 50000
Pe- 886 > $0000
PT- 3725 > 50000

2.3.2 Result with Different Numbers of States

So for, we fixed the number of states to be & In this section, we shall try the same experiment with
different numbers of status (4.10). Figure 2-6 shows the result of this experiment In the table, "---"

indicates "it could not solve within the given time". This can happen when the hill-climbing algorithm
climbs a "local hill". This table implies that the number of states n should be reasonably large to
avoid climbing a local hill, and we can hardly get the simplest machine by this method. We shall,
however, see that we can simplify the machine with 8 states that we have gotten in this chapter, so
that it becomes the simplest machine.

21
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CONSTRUCTION OF FINITE AUTOMATA

Figure 2-6: The Number of States and Runtime [sec.]

NUMBER OF STATES

PROBLEM. 4 5 6 7 8 9 10

1 0.4 0.4 1.9 6.3 2.2 1.9 0.6

z 0.5 0.4 6.4 2.2 3.0 4.1 3.6
3 338.1 --- 3.3 '39.6 129.0 16.2 158.3

4 12.3 4.8 18.1 9.4 13.1 1.4 11.7

G --- .- 164.7 7.9 56.6 220.4 "98.6

6 3.1 12.6 5.2 20.5 7.9 26.3 137.8
7 49.5 10.9 Z3.Z 2.8 7.1 5.6 18.6

1- 2.4 0.8 1.3 4.3 8.1 1.8 2.5
2- 18.3 1.9 13.9 7.4 2.4 19.2 17.9

3- --- -. -- 76.5 78.4 --- 243.6
4- -- 23.9 12.8 20.7 7.7 14.8 17.6.
5- 162.0 -. -- 28.8 66.6 52.1 68.4

2.8 3.0 53.4 13.6 29.0 5.5 7.8

7- --- 26- 83.6 --- 138.7 54.5 33.3

22



SIMPLIFICATION OF FINITE AUTCrIA7A

3. Simjpibic ,tion of Finite Auto t

In the previous chapter, we saw that our hill.climbing method successfully produced a machine
that accepts all strings in the right-list but no string in the wrong-list. However, the final machine of
the result of problem 2, for example, does not accept our desired regular set (1 0) . For instance, it
does accept a string (1 1 0 0), which is not in (1 0)*. We therefore want the machine to be
"generalized" so that it accepts exactly (1 0) . In fact, the final machines of all problems except
problem 1, 3 and 7, need to be generalized.

We define the generality of a machine in terms of its simplicity. The simplicity of a machine is
determined by the number of states the machine has, and if two machines have the same number of
states, a machine with fewer arrows and final states is simpler.

Our task is to simplify the machines we have obtained in the previous chapter, so that the machines
become the simplest or the most general . We call this task simplification of finite automata, and it
can be also done by using a hill-climbing method.

3.1 Minimization

Before we simplify the final machine of the previous experiment, we first remove any useless arrows
and states, using a Minimization Algorithm (see, for example, [Hopcroft 79]). We show the result of
the minimization in figure 3-1. Note that even after minimization, all problems except 1, 3 and 7 still
need to be generalized.

Figure 3-1: Minimized Final Machine

-- ----------- - ---------- ----------------------------
ProbTle'm Minimized Machine

Pt ((a 1 1))
P2 ((0 4 1)(3 0 0)(S 0 1)(1 9 0)(Z 2 0)(6 6 1))
P3 ((1 2 1)(3 1 1)(4 0 0)(3 4 1))
P4 ((4 1 1)(3 3 1)(1 2 0)(5 1 1)(0 3 1))
PS ((6 3 1)(3 6 0)(2 1 0)(5 4 0)(0 1 0)(1 4 0))
PO ((6 3 1)(6 3 1)(1 6. 0)(Z 6 0)(4 Z 0)(4 1 0))
P7 ((1 2 1)(3 2 1)(3 4 1)(0 4 1))
P1- ((3 Z 0)(6 1 0)(3 6 1)(3 4 1)(0 4 1))
P2- ((5 6 0)(Z 3 1)(Z 0 0)(Z S 1)(4 2 1)(1 4 1))
P3- ((36 0)(4 S 1)(1 4 0)(2 4 0)(6 7 1)(Z 3 0)(0 6 1))
P4- ((4 7 0)(2 Z 1)(2 6 0)(6 1 0)(Z 0 0)(7 4 1)(1 3 0))
PS- ((4 3 0)(6 6 0)(6 2 1)(1 S 1)(3 1 1)(5 4 1))
PG- ((Z 4 0)(4 1 1)(3 2 0)(1 5 1)(3 1 1))
PT- ((7 6 0)(4 Z 0)(4 2 1)(4 3 1)(5 2 0)(Z 0 0)(7 5 0))

3.2 Simplification Algorithm

The algorithm for simplification is similar to the algorithm described in the previous chapter. The
major differences are as follows: (1) the evaluation function E(M) returns a higher value if the
machine M is simpler;, (2) if M does not accept some strings in the right-list, or does accept some

23



SIMPLIFICATION F FII.ITE AUTOMATA

strings in the wrong-list, E(M) returns minus infinity; (3) the algorithm starts with the minimized final
machine of the previous experiment instead of a random machine; (4) whenever a "useless state" (i.e.

a non-final state with neither O-arrow nor 1-arrow) is found, delete it.

3.3 Results

A sample trace of problem 2- is shown in figure 3-2. Each line corresponds to current generation
M, and the right-most number is the cumulative number of steps. The final machine of this trace is the

desired simplest machine.

The final machines of all 14 problems are shown in figure 3-3. We see that some problems could

not be simplified completely within the given time, probably because the search was climbing a local
hill.

3.4 Discussion

3.4.1 Hill-Climbing vs. Exhaustive Search

We compare our method with an exhaustive search. The exhaustive search enumerates all

machines in the order of simplicity, and the first machine that accepts all strings in the right-list but
none in the wrong-list is considered the simplest machine. Thus we can calculate the expected

number of steps until the exhaustive search finds the desired machine's . The result is shown in figure

SLWi n be the umbnr of satm the simplest machine. Then the expected number of steps n i

Sn " I , 1- Ito n-1 Ul + IUn/ (2 x(n" 1)!)1.

were Ul is the number of al ponible mchinm with I slsa, tha is.

U1 . U + 1)2" .

6Th mber of stepe usig hill-climbing in this figure is the sum of the number of steps to construct the 8 state machine aid

the nwumer of step to simplify it into the simplest machine.
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Figure 3-2: Sample Trace of Problem 2-

(((5 50 ) (23 1) ( 0 O) (Z 51) (4 2 1) (1 4 1)) 0)
((( 0 6 0) (2 31 2 0 0) (2 0 1) (4 2 1) (1 4 1)) )
(( 6) (31) 00 ) 0) 1 1) (1 41)) 21 )

((( ) (2 3 1) (6 2 1 ) (s 2) (14 1)) 41 )
(((10) (23 1) (200o) (201) (21) (141)) 75)
s ( 231 200 (2 521 (121)) 6)

23 1 0 (100 521 (11))62
3 o) ( 1 2 0) 0 4 2 1 2 1 3

4 2 5 0 3 1 4 5 2 1 2 )) 12 1 I
4 : p 1 206 1 1 s111

3 4 (l 3 1 4 2 1 21 1)

4 3 1) (2 21 121 1"6

4 1 (4 3 1 (4 11 21 22
4 2 3 1) (4 31 1 2 114 4 1) (4 3 1 1 233

4 0 1) 321 121 246
4 6 1 1 2 21 121 254 I) I I 3 6  22 (1124
4 0 3 1 22 1 121 366
3 4 13 21 121

34 3 0 1 2 121 33
4 3 301 4 1 121
4 o 0 1 4 121 36
4 0 1 4 21 121 3N6
4 0 1 o 0 4 2 1 121 364
4 0 0 1

2 22 121 64
01 1 121 434

34 0 41 2 21 1 21 61
34 O 3 221 121 466
34 301 4 2 1 21 416
34 0 301 421 131 626
34 401 421 1
34 4 40 421 21 on

34 0 1 421 121 546
34 0 0 3 2 1 121 56
34 01 :4 1 121 677
34 30 421 41 566
34 3 01 421 1 21 IN
34 4 01 4 121 6G6
34 4 o1 4 131 662

4 46 1 1 13 31 1"
34 40 321 121 673 ' 451 3 2 11 3 1 on
34 46 1 14 1 131 712
34 361 4 2 1 131 127
34 0 36a 1 42
346 0 1 4 121 756
34 0 4 21 121 772
340 40 3 13 31 76
340 461 421 1L31 766

4 461 321 13 1 11
46 0 4 13 3 62

34 40) 4 1 121 U234 46 1 4 2 1 1 34 ) 0 1 3 21 121
34 3 61 3 2 1 131
34 361 321 1

34 361 3 21 1 1 (1

3 4 6 01 321 1 31 6334 366 3 31 1 3 16
123 11215 1 21 ) 571)

Figure 3-3: The Result of Simplification

[P23 ((0 2 1)(1 0 0)) 7
[P4] ((2 1 1)(3 1 1)(0 1 1)) 68
[P53 ((4 3 1)(3 4 0)(2 1 0)(1 2 0)) 42
[P6] ((3 2 1)(1 3 0)(2 1 0)) 174
[P1-) ((2 1 0)(2 2 1)) 146
(P2-] ((2 3 0)(2 2 1)(1 2 1)) 971
[P3-] ((1 5 0)(3 4 1)(Z 3 0)(2 4 1)(2 1 0)) 363
(P4-] ((3 6 0)(2 2 1)(4 1 0)(2 0 0)(1 1 0)) (NOT-SIMPLEST)
[PG-] ((4 3 0)(S 6 0)(6 2 1)(1 5 1)(3 1 1)(5 4 1)) (NOT-SIMPLEST)
CP6-] ((Z 3 0)(3 1 1)(1 2 1)) 44
[P7-] ((1 5 0)(4 S 0)(4 2 1)(4 3 1)(6 2 0)(4 0 0)) (NOT-SIMPLEST)
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Figure 3-4: The Number of Stops to obtain the sim;ist n'chine

Problem Hill-Climbing ExhauStiva-Search

P1 98 4
PZ 141 170
P3 2052 553933
P4 510 8524
P5 1810 553933

P6 451 8524
P7 206 653933

P1- 445 170
P2- 1060 8524
P3- 2302 46593884
P4- --- 653933

P- -.. 553933
P6- 930 8524
P7- --- 46593884

3.4.2 Simplification from Trivial Machine

We have seen that our hill-climbing works rather successfully, although some problems could not

be simplified completely. Our method consists of 2 parts, the construction process (chapter 2) and

the simplification process (chapter 3). That is, we first construct a machine with 8 states and then
simplify it. One might suppose that we could get the simplest machine using only the construction
process, by choosing the number of states sufficiently small. Unfortunately, in the previous chapter,

we showed that the number of states should be reasonably large, and we cannot do that. One might

also notice that we would not need any construction process, because we can easily construct a
trivial machine, which accepts exactly all strings in the right-list but nothing else. Figure 3-6 is an

example of the trivial machine. In this section, we describe some experiments to try to simplify from
the trivial machine. We shall see that to simplify from the trivial machine is much less effective than

our construction-simplification method. The result of the experiments is shown in figure 3-7. When
we compare figure 3-3 and figure 3-7, it is obvious that our construction-simplification method is more
effective than the second method.
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Figure 3-6: Trivial klachine of Problem 5

Figure 3-7: Result of Simplification from Trivial Machine

------------------------------------------------------------
[P1] ((0 1 1)) 2 10?
(P2) ((0 2 1)(1 0 0)) 3 13Z
CP3] ((1 2 1) (5 4 1) (3 6 0)(Q 8 1) (6 0 0) (0 2 1) (3 0 1) (0 9 1) (10 0 0)

(0 11 0)(0 12 0)(13 0 0)(14 0 0)(2 0 0)) 24 <NOT-SIMPLEST)
[P4] ((3 2 1) (1 5 1)(4 2 1)(0 5 1)(0 2 0)) 12 (NOT-SIMPLEST>
CPS] ((3 2 1)(4 1 0)(1 4 0)(2 3 0)) 9 1879
[P6] ((3 2 1)(1 3 0)(2 1 0)) 7 1801
[P7) ((3 2 1)(4 6 1)(6a 6 1)(0 0 1)(1 2 1)(3 3 0)) 15 <NOT-SIMPLEST)
(P1-] ((2 1 0)(2 2 1)) 5 446
(P2-) ((3 2 0)(1 3 1)(3 3 1)) 8 1249
(P3-) ((1 2 0)(3 1 0)(5 4 1)(4 3 1)(3 5 0)) 12 (NOT-SIMPLEST)
[P4-) ((3 1 0)(2 2 1)(4 1 0)(2 1 0)) 9 3692
(P5-) ((3 2 0)(2 4 1)(1 6 1)(0 5 0)(8 0 1)(7 0 1)(0 10 1)(9 0 0)(0 3 0)

(0 11 0)(0 12 0)(0 13 0)(0 14 0)(0 9 0)) 22 <NOT-SIMPLEST>
(PO-] ((3 2 0)(5 3 1)(4 1 1)(1 0 1)(1 2 0)) 12 (NOT-SIMPLEST>
(P7-] ((3 7 0)(2 2 1)(4 7 0)(0 5 0)(0 6 0)(7 0 0)(8 0 0)(2 8 0)) 13

(NOT-S IMPLEST>
--------------------------------------------------------------
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So far, we have described a method for constructing the simplest Finite Automaton from given
examples. Suppose we have solved one problem, and are.given another problem whose examples

are very close to the previous one. To solve this new problem starting from the beginning is rather
tedious because we already have some information about the solution. In this chapter, we describe
how to re-construct a finite automaton if the right-list and/or wrong-list is slightly altered.

After the sample lists are altered, if the machine still accepts all strings in the right-list but no strings

in the wrong-list, the previous solution is the new solution. If the machine does not accept some
strings in the right-list, and/or does accept some strings i the wrong-list, we refer to such strings as
inconsistent strings. Whenever we find an inconsistent string in the right-list, we call a procedure,

add-trivially, which revises the machine, so that it accepts all strings in the right-list. On the other
hand, whenever we find an inconsistent string in the wrong-list, we call a procedure,

cut-wrong-arrow, which revises the machine, so that it accepts no string in the wrong-list. Although
after calling add-trivially there is no inconsistent string in the right-list, there may now be another
inconsistent string(s) in the wrong-list. In this case, we call cut-wrong-arrow. Similarly, although after

calling cut-wrong-arrow there is no inconsistent string in the wrong-list, there may now be another
inconsistent string(s) in the right-list. In this case, we call add-trivially. Thus, we call add-trivially and

cut-wrong-arrow again and again.

We first define add-trivially and cut-wrong-arrow, and then we show that our process always

terminates, producing the desired machine that accepts all strings in the right-list but no string in the

wrong-list, although the machine is not the simplest.

4.1 Add-trivially

The purpose of this add-trivially routine is to accept an inconsistent string in the right-list, no matter
how many strings in the wrong-list the machine comes to accept. We first define trivial state and

trivial path, then finally we define add-trivially.

Definition: In each machine, we consider that there is a special arrow named starting arrow, which
always points to the initial state q,.

Definition: If more than one arrow (including the starting arrow and the one from q itself) point to
a state q, then q is called a non-trivial state. If only one arrow points to q, then q is called a trivial

state.

Definition: A sequence of states q1(1).q1(2)..qi(k) is called a path of a string a1 ,a2 ...... k-l' where

each a, is in {1,0), iff for all j such that 1 < j :_ k- 1, ifia = 0 then A j) = i(i + 1) else B l) , i(j + 1).

Definition: A sequence of states q,(,),q(2) ...... qi(k) is called a trivial path, iff this sequence is a path,

and for all j such that 2 < j < k, qi(i)-is a trivial state, and for all j such that 2 < j < k-1, q) is a

non-final state, and q i(k) is a final state. This path accepts only one string.

That the machine M does not accept a string a1, 2 - ...... ak means either of the followings:

1. There is a path of a1,a 2 ..... Iak' but the last state is a non-final state.

2. There exists an integer j such that there is a path of av .... ai.1 , but the last state of this

path does not have an ,-arrow.

where each a, is in (1,01.
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For each inconsitant string in the right-list, add-trivially works as follows: in caze 1. let the last

non-final stata be tlhe final state; in case 2. create a trivial path from the last state so that the machine

accepts the whole string.

It is easy to show that after calling add-trivially the machine accepts all strings in the right-list.
However, it also may come to accept some strings in the wrong-list, as we mentioned before. In this

case, we call cut-wrong-arrow defined below.

4.2 Cut-wrong-arrow

If there are some inconsistent strings in the wrong-list (i.e. the machine does accept the strings), we

call cut-wrong-arrow so that the machine comes to accept none of these strings, no matter how many
strings in the right-list the machine comes to reject.

For each inconsistent string in the wrong-list, cut-wrong-arrow works as follows: Let

q.l,'qj(2 ) ..-- qi(k) be a path of the string w that should not be accepted. To reject w, one of the arrows
oltbe path must be cut. Let qi(n) be one of the non-trivial states in the path.7 Cut the arrow from

qjin 1 to q()" If q, (initial state) is the only non-trivial state, then let the machine M be ((0 0 0)),
which does not accept anything.

It is easy to show that after calling cut-wrong-arrow all strings in the wrong-list are rejected,

although the machine may come to reject some strings in the right.list. In this case, we call add-

trivialily.

4.3 Termination

In this section, we show that the algorithm above always terminates.

Theorem: The algorithm above always terminates.

Proof: Consider the following partial ordering:

non-triviality of state: the number of arrows which point to the state.

non-triviality of machine: total of non-triviality of all non-trivial states.

We denote this by flt(M), where M is a machine. Note that nt(M) = 0, iff M is a trivial machine.

Let M' be the result of adding-trivially to M, then fit(M') a fli(M), because add-trivially adds only a
trivial path. Next, let M' be a result of cut-wrong-arrow over M, then flt(M') < l(M), because we
always cut the arrow that points to a non-trivial state q, and non-triviality of the state q decreases, and
therefore non-triviality of machine also decreases. Thus, we cannot have an infinite loop, add-
trivially, cut-wrong-arrow, add-trivially, cut-wrong-arrow, add-trivially ...... , because nt(M) always

decreases but fli(M) > 0. <end of proof>

7
Such a non-trivial state always exists if the original machine has been simplified, and throughout this paper, we deal only

with the re-construction of a simplified machine.

29

i l i l El .. "..... -- - ,, - =-- _ _ . ..



RR: :2EULAR CET RECOCW!ZER

Finall. .ve describe an actual system. RR. that learns to construct finite automata. RR is running in

MACLISP either on CMU-20C or CMU-10A.

RR has a machine (finite automaton) and each time RR is given a string in (1 + 0)' as its input, RR
runs the machine with the string given. If the machine accepts the string, RR answers ACCEPT,

otherwise it answers REJECT. At the very beginning, RR has a null machine, which accepts nothing,
and therefore RR does not accept any string at all. Now, consider some regular set PI that we want to
teach to RR. When we input a string s to RR, it should accept s if and only if s is in P. If s in not in IR,
RR should reject it. Whenever RR answers incorrectly, we scold it. When RR answers correctly and
we think this example is important8 , we encourage it. When RR is scolded or encouraged, it
memorizes the fact that the string must be accepted or rejected, that is, if it is the case that the string
must be accepted. RR puts it into right-list, which is a set of strings that must be accepted, and
similarly, if the string must be rejected, RR puts it into wrong-list. After memorizing, RR re-constructs9

the machine in the way described in chapter 4, so that it accepts all strings in the right-list and none
in the wrong-list. After each re-construction, RR simplifies the machine in the way described in

chapter 3.

Figure 5-1 shows a flow chart of the RR system.

6W6 do not need to encourage it every Mie it answeMS correctly.

90y when it has been smold.
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Ficjure 5-1: Top Level of RR S,,stem
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5.1 H-ow to execute the RR system

In this section. we describe how to execute the RR system, and in the following section, we show

several sample runs.

5.1.1 Getting Started

RR runs in MACLISP either on CMUC or CMUA. in MACLISP, type

(slurp <tommy> rr) (CMUC)

or

(slurp c410mt80 rr) (CMUA).

And call function:

(main) (both CMUA and CMUC).

Then you get prompt ">W and are in the RR system.

5.1.2 How to teach

" Giving example: The format for giving an example to RR is the following:

(0-or- 1 (space> 0-or- I (space> ...... (space> 0-or- I)

Typical input is:

>>>(I 0 1 0 1 0 1 0)

RR then outputs the answer, either ACCEPTED or REJECTED.

" Scolding: To scold for a wrong answer, input n right after the wrong answer.

" Encouraging: To encourage RR, input y right after the answer.

>>

* Anyway-accept If the example string starts with +, this means :it this string is accepted
then encourage: otherwise scold. Typical input is:

>>>(+ 1 0 1 0 0 1)

* Anyway-reject: If the example string starts with -, this means: if this string is rejected

then encourage: otherwise scold. A typical input is:

>>>(- 0 0 0 1 0 0 1 0)

To give the null string, use () or (+) or (-).

5.1.3 Other Commands

9 r: show present right-list.

* w: show present wrong-list.
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* m: show present machine.

* 1: show last input.

* o: show order of memorized strings.

* t: show runtime of each step and total runtime.

*?: show every thing above.

* new: initialize.

* tG: quit.

5.2 Sample Runs

5.2.1 Sample Run 1:

As the simplest example, let us teach the regular set 1" to RR. The desired machine is:

((0 1 )).

The underlined strings are user's inputs, and the Italic strings are comments.

[PHOTO: Recording Initiated Thu 4-Mar-82 2:38PN]

TOPS-ZO Command processor 4(723)-7

slm
[Keeping]

MacLisp for TOMMY

(sluro (tomii> rrJ

(<TOMMY> RR FASL)
(man)
, >> An Initialization.

> L Input null string as an example.
REJECTED The null string was rejected.

>> ]I Since null should be accepted, scold it.
MODIFYING S It is trying to modify.

>>> Li. Next, input (1).
REJECTED (1) was rejected.

>> ift Since (1) should be accepted, scold it.

MODIFYING It is modifying itself.

>>> (I I13. Next try (1 1 1).

ACCEPTED This was accepted, all right, no scolding.

>>) L Next try (0). which should not be accepted.

REJECTED This was rejected. all right, no scolding.

>> (1 1.). Next try (1 0 1 1 1). which should not be accepted.

REJECTED Rejected, all right, no scolding.

> (1 I 1 1 1 1 1 1 I 1 1 1 1 1) Next try this.

ACCEPTED Accepted, all right. it should be accepted.

) > Maybe we've got 1, let us look inside the machine.

RIGHT-LIST
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(NIL (1)) Rignt-list contents null string and (1).

i.',ONG - LIST

NIL Wrong-list contents nothing.

PRESENT-MACHINE
((0 1 1)) Present machine is, yes, 1".

LAST-INPUT

(+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

ORDER
((+) (+ 1)) We taught it in this order. + means "in right-list".

TIME
(0.019 0.048) Time spent to teach (+) and(+ 1).

TOTALTIME
(0.067) Total time in seconds to learn 1. "

5.2.2 Sample Run 2:

Let us try to teach a harder automaton, problem 4. This regular set is:

The difference between the number of 0's and the number of l's Is
divisible by 3.

For instance, the string (1 0 1 1 1) should be accepted because 4-1 .3 is divisible by 3. The

desired machine is as follows:

((3 2 1)(1 3 0)(2 1 0)).

>>> .J. First, let us try null, which should be accepted.

REJECTED

>)> al No. null should be accepted.

MODIFYING S

>>> a Show the present machine.

((0 0 1)) This machine accepts nothing but a null string.
>>> (I IZ

REJECTED

>>> A No, this should be accepted.

MODIFYING 00
>>> 2

((0 1 1)) This machine is 1'.

>>> Li
ACCEPTED
> No. this should be rejected.

MODIFYING 00

>>> l

((0 2 1) (0 3 0) (0 1 0)) This machine is (1 1 ).
>>> (

ACCEPTED All right, it should be accepted.
>>> LUZ

REJECTED

>>> 3t Yes, it should be rejected. Particularly, encourage it.

REJECTED
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>>> (0 0 o
REJECTED

> n No. this should be accepted.
MODIFYING
>>> (0 0 0 0 0 0)

ACCEPTED All right.

>>> .a)
REJECTED All right.

>>> m
((4 2 1) (0 3 0) (0 1 0) (6 0 0) (1 0 0)) (11 + 000)'.
>>> LL.
REJECTED
>>> ft No, this should be accepted.

MODIFYING 000
>>> I
((4 2 1) (1 3 0) (0"1 0) (2 0 0))
>>> L_ 1
REJECTED
>>> a No, this should be accepted.

MODIFYING ***

>>> M

((3 2 1) (1 3 0) (2 1 0)) Now, we get the desired machine.
>>> (1100 00 10 0100 10 00 0O)

REJECTED Ok.

)> l1100 00 10 0100 10 000 0 1 11
ACCEPTED Ok.

>>> 1
RIGHT-LIST
(NIL (1 1 1) (0 0 0) (1 0) (0 1))
WRONG-LIST

((1) (0))
PRESENT-MACHINE

((3 2 1) (1 3 0) (2 1 0))
LAST- INPUT

(+ 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 1)

ORDER
(() (+Ill) (-1) (-0) (+000) (+ 10) (+0 1))
TIME

(0.014 0.087 0.117 -0.01 0.364 0.564 1.413)
TOTALTIME

(2.649)

5.2.3 Sample Run 3:

The total run time to learn the desired machine depends very much on the order of input examples.
We now try the previous sample again but with a different order.

>> L>>
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REJECTED

>>> n
MODIFYING *
>>> M

((0 0 1))

>>> U 01
REJECTED

>>> f
MODIFYING e
>>> (L .)
REJECTED

>>> It
MODIFYING *

>>> a
((3 2 1) (1 0 0) (0 1 0)) Present machine is (10. 01)*.
>>> (I 1 1)
REJECTED

>>> In
MODIFYING ***
>>> ia

((3 2 1) (1 3 0) (0 1 0)) (10+ 01+ 111),
>>> (1 1
REJECTED
>>> (
ACCEPTED

>>> (0 00)
REJECTED

>>> ]I
MODIFYING *0
>>> i
((3 2 1) (1 3 0) (2 1 0)) This is the desired machine.
>>> (0 10 10 1 0 1 0 0 0 0 0 1 1 1 1 1 1 11
ACCEPTED

>>> (1 0 1 010 1 0 a 0 0 0 0 a0 1 1 1 0 1 1 1 1 1)

REJECTED

RIGHT-LIST
(NIL (1 0) (0 1) (1 1 1) (0 0 0))
WRONG-LIST
NIL
PRESENT-MACHINE

((3 2 1) (1 3 0) (2 1 0))
LAST- INPUT
(- 10 10 10 10 0 0 0 0 0 0 11110 1 11 11)

ORDER

((+) (+10) (+0 1) (+1l1) (+000))
TIME

(0.014 0.086 0.008 0.21 0.875)
TOTALTIME
(1.262) The total time is much shorter.
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5.2.4 S.rmple Run 4:

Ve net try' problem 3. which is very hard. This regular set is:

Any strings without odd number of consecutive O's AFTER odd number
of consecutive I's.

>>> new

>>> (+)(+ I )(+ 0)(- 1 0)(+ 0 1)(+ 1 1)(+ 0 0)(- 1 0 1)(- 0 1 0)(* 1 0 0)
(+ 1 1 0)(+ 1 1 1)(+ 0 0 0)(- 1 0 1 0)(- 1 1 1 0)(- 1 0 1 1)(- 1 0 0 0 1)
(-1 11 0 1 0)(- 1 0 0 1 0 0 0)(- 11 1 1 10 0 0)
(-0 1 1 10 0 1 1 0 1)(- 1 1 0 1 1 1 0 0 1 1 0)

(+ 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1)(+ 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 O)
MODIFYING

MODIFYING

MODIFYING ,

MODIFYING "

ACCEPTED

>>>

MODIFYING =1

ACCEPTED

>>>

REJECTED

REJECTED

MODIFYING *

ACCEPTED

ACCEPTED

>>>

REJECTED

REJECTED

REJECTED

~>>>

MODIFYING 0 0

REJECTED

>>>

MODIFYING 00000000000
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!'EJECTED

REJECTED>>>

REJECTED>>>

MODIFYING **
>>>,

MODIFYING "
>>> 2

RIGHT-LIST
(NIL(1)(0)(0 1)(1 1)(0 0)(1 0 0)(1 1 0)(1 1 1)(0 0 0)(1 1 0 0 0 0 0 1
1 1 0 0 0 0 1)(1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0))
WRONG-LIST
((1 0)(1 0 1)(0 1 0)(1 0 1 0)(1 1 1 0)(1 0 1 1)(1 0 0 0 1)(1 1 1 0 1 0)(

1 0 0 1 0 0 0)(1 1 1 1 1 0 0.0)(0 1 1 1 0 0 1 1 0 1)(1 1 0 1 1 1 0 0 1 1 0))

PRESENT-MACHINE

((1 2 1)(3 1 1)(4 0 0)(3 4 1)) This is the desired machine.

LAST- INPUT

NIL
ORDER
((+)(+ 1)(+ 0)(- 1 0)(+ 0 1)(+ 1 1)(+ 0 0)(- 1 0 1)(- 0 1 0)(+ 1 0 0)(
+ I 1 0)(+ 1 1 1)(+ 0 O O)(- 1 0 1 O)(- 1 1 1 O)(- 1 0 1 1)(- 1 0 0 0 1)(
- 1 1 1 0 1 0)(- 1 0 0 1 0 0 0)(- 1 1 1 1 1 0 0 0)(- 0 1 1 1 0 0 1 1 0 1)(-

I 10 1 1 1 0 0 1 1 0)(+ 1 1 1 0 0 0 0 1)(+ 1- 1 00 1 1 0 0
0100111001)() 1 0 0 0 1 0 00 )+ 1 1 1
0 1 0 0 1 1 1 0 0))
TIME
(0.014 0.04Z 0.08 0.078 8.0E-3 0.116 8.OE-3 0.013 0.011 0.357 0.011 0.012
8.0E-3 9.0E-3 0.01 0.011 2.06 0.012 3.686 0.014 0.018 0.02 0.283 3.736)

TOTALTIME
(10.282)

5.2.5 Sample Run 5:

We now try the previous run again with a more effective ordering.

>>> nW

>>> (- 1 0)(- 1 0 0 1 01(- 1 0 0 0)(- 1 0 0 1 1 01(+)m(+ O)m(+ 0 I)m
_+ 0 1 1 0)m(+ 1 00)m+ 1 l)m(+ 1 00 1)m(+ 1 00 0)

REJECTED

REJECTED

REJECTED>>>

REJECTED

MODIFYING
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((0 0 1))

M:ODIFYING

((1 0 1))

MODIFYING
>>>

((1 2 1) (0 0 ))

>>>

MODIFYING

>>>

MODIFYING

((1 2 1) (3 1 1) (4 0 0) (0 0 1))

ACCEPTED

((1 2 1) (3 1 1) (4 0 0) (0 0 1))

MODIFYING S

((1 2 1) (3 1 1) (4 0 0) (0 4 1))

MODIFYING *
>>> w

((1 2 1) (3 1 1) (4 0 0) (3 4 1))
>>> z
RIGHT-LIST

(NIL (0) (0 1) (0 1 1 0) (1 0 0) (1 1) (1 0 0 1) (1 0 0 0 0))

WRONG-LIST
((10 ) (1 0 0 1 0) (1 0 0 0) (1 0 0 1 1 0))
PRESENT-MACHINE

((1 2 1) (3 1 1) (4 0 0) (3 4 1)) This is the desired machine.

LAST- INPUT

NIL

ORDER
((- 1 0)(- 1 0 0 1 0)(- 1 0 0 0)(- 1 a 0 1 1 0)(+)(+ 0)(+ 0 1)(+ 0 1 1 0)

(+ 10 0)(+ 1 1)(+ 1 0 0 1)(+ 1 0 0 0 0))
TIME

( 9.OE-3 9.OE-3 0.017 9.OE-3 0.016 0.047 0.029 0.091 0.042 0.013 0.38 0.342)

TOTALTIME
(0 .89) This is much faster than the previous run.
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5.3 Discussion

4We saw in the previous section that the run-time of sample run 3 is much shorter than the run-time
of sample run 2. and also sample run 5 is much faster than sample run 4. Thus. RR is very sensitive to
what is given as examples, and how these are ordered. In this section, we are interested in how to
teach RR effectively.

First. we consider the worst case and the best case of re-construction. In the worst case, RR calls
add-trivially and cut-wrong-arrow again and again, and eventually its machine becomes the trivial
machine.10 We know that a trivial machine can be constructed easily without such a special
technique as re-construction.

On the other hand. the best case is that RR calls add-trivially once but no further cut-wrong-arrow.
Thus. in order to "teach" the RR system effectively, we have to choose the examples nicely so that
RR can re-construct its machine only by add-trivially. For instance, the example inputs of sample run
3 and sample run 5 are so chosen, and their run-time is in fact very short. Also, to avoid calling
cut-wrong-arrow, we had better give the negative examples earlier.

A trivial machine is a machine that accepts exactly all strings in the right-list and nothing else. See chapter 3.

40

m im i I,_ J J, = ._ • .. ,,j ,.. = ,= ,m .



CONJCLUDIN4G kE?.IARK

,J. Conclud~ing R.3mark

Our new approach to construction of finite automata from given examples has been shown to work
very nicely. despite the fact that its algorithm is quite simple. In chapter 2. we saw that construction of
finite automata with n states can be nicely done using hill-climbing if n is a reasonable number. In
chapter 3. we saw that we could often simplify the resulting machine of chapter 2 also using hill-
climbing, although some problems could not be solved. In chapter 4, we discussed how to utilize past
wori. if a given problem is very close to the past problem. The RR system, which uses these
techniques. was introduced and described in chapter 5. Finally, we enumerate several extensions of
this work.

" Our hill-climbing algorithm sometimes climbs a local hill, and therefore fails to find a
correct solution. There are several ways to avoid climbing a local hill, and one of them is
adaptive search [Cavicchio 701, [Holland 75]. Adaptive search can be considered as a
powerful version of hill-climbing. There are not only one "current generation", but
usually a population of 20.30. The best five or so are chosen as winners (the others are
discarded) and 15-2 ; slightly-altered copies of them are made as the new population.
Altering way is not only mutation, but also cross-over (mix two and produce one), inverse
(inverse a certain part of one) ,1 and so on. This approach becomes really powerful if
parallel computation is available.

" Our finite automata have been deterministic, that is, arrows either exist or do not exist.
The operator create-arrow or delete-arrow often makes too much difference to climb hill
smoothly. The idea is to let our finite automata be probabilistic, that is, an arrow exists
partially with a real number between 0.0 and 1.0, which indicates a probability of
existence of the arrow. (See [Rabin 63].) In this case, we increase or decrease the real
numbers, rather than create or delete an arrow. This method might help to climb hills
smoothly.

* Our mutation function might be modified so that the mutation does not take place
completely randomly, but somewhat "cleverly". For instance, if the machine accepts a
string in the wrong-list, then delete-arrow or decrease-prob-of -arrow should take place
more often on this wrong path than on others. Our idea becomes more concrete if we
deal with the probabilistic automata described in the previous paragraph. If the machine
somehow accepts a string in the wrong-list, then we should decrease all probabilities of
the arrows on this path. If the machine accepts a string in the right-list, we increase the
probabilities on this path, etc.

" Our problem domain in this paper has been regular sets. It might be possible to extend it
to context-tree sets by constructing Push-Down Automata (finite automata with stack, see
[Hopcroft 791). Since construction of Push-Down Automata must be much harder than
finite automata, we would definitely need techniques just listed.

" A finite automaton can be viewed as a program that takes a string as its argument and
outputs TRUE or FALSE. Therefore we might be able somehow to apply our method to
automatic programming from specification by examples.

1The cross-over operator acts on a pair of strings by breaking each string at somre point and rejoining the subsegments
from different strings. The inver sion oper ator makes two breaks, inverts the inner segment and then meoin the string.
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