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Learning of spatiotemporal patterns in a spiking neural 
network with resistive switching synapses

Wei Wang1, Giacomo Pedretti1, Valerio Milo1, Roberto Carboni1, Alessandro Calderoni2,  

Nirmal Ramaswamy2, Alessandro S. Spinelli1, Daniele Ielmini1*

The human brain is a complex integrated spatiotemporal system, where space (which neuron fires) and time (when 
a neuron fires) both carry information to be processed by cognitive functions. To parallel the energy efficiency 
and computing functionality of the brain, methodologies operating over both the space and time domains are 
thus essential. Implementing spatiotemporal functions within nanoscale devices capable of synaptic plasticity 
would contribute a significant step toward constructing a large-scale neuromorphic system that emulates the 
computing and energy performances of the human brain. We present a neuromorphic approach to brain-like 
spatiotemporal computing using resistive switching synapses. To process the spatiotemporal spike pattern, 
time-coded spikes are reshaped into exponentially decaying signals that are fed to a McCulloch-Pitts neuron. 
Recognition of spike sequences is demonstrated after supervised training of a multiple-neuron network with 
resistive switching synapses. Finally, we show that, due to the sensitivity to precise spike timing, the spatio-
temporal neural network is able to mimic the sound azimuth detection of the human brain.

INTRODUCTION

The human brain outperforms most of the existing artificial neural 
networks (ANNs) in terms of energy-efficient and error-tolerant 
computing (1, 2). One of the main differences between ANNs 
and the human brain is the representation of information (3, 4): 
While most ANNs represent input/output data as real-valued 
vectors, the human brain encodes information via binary spikes. 
Biological neurons follow an all-or-none rule, where a neuron emits 
a unanimous action potential, or spike, when the stimulus is large 
enough; otherwise it keeps silent (5, 6). Spiking neural networks 
(SNNs) (7, 8) were introduced to emulate the style of information 
processing in the human brain, although the representation 
methodology, that is, how the sensory information is coded by 
neuron spikes, is still under debate (9, 10). In rate coding (fig. S1A) 
(11), the intensity of an external stimulus is represented by the 
spiking rate. However, information is carried by a train of spikes, 
thus resulting in relatively low information density and low energy 
efficiency. Recent biological studies provide evidence for spatio-
temporal coding (12, 13), where information is represented by 
the spatial and temporal occurrences of the spikes. The neuron 
representing the strongest stimulus spikes first, followed by spikes 
of neurons representing lower-intensity stimuli (fig. S1B) (14). 
This spatiotemporal coding enables a high density of information 
with relatively few neurons and spikes, hence with high energy/area 
efficiency (9, 15).

To emulate the high synaptic density and the energy efficiency of 
biological neural networks, nanoscale resistive switching devices 
(16, 17), such as resistive random access memory (RRAM) and the 
phase change memory, were introduced. These devices are two- 
terminal nanoscale devices that can change their resistive switching 
in response to external stimuli, similar to the plasticity mechanism 
in biological synapses. Recently, a close resemblance with biological 

synaptic and neuronal behaviors was reported by adopting volatile 
RRAM devices (18–20). Because of the good scaling ability and 
compatibility with the silicon-based technology of today’s micro-
electronic systems, resistive switching devices might enable the con-
struction of large-scale neural networks with complexity comparable 
to the human brain (21, 22). There has been a hardware demon-
stration of both conventional ANNs with real-valued neuronal 
signals (23, 24), directly implementing matrix-vector multiplication 
by cross-point arrays (25–28), and SNNs where the information is 
carried by spiking signals (21). However, the spike representation 
relied on a simple spatial coding, that is, neurons spike synchro-
nously to form a spatial-only pattern (21, 29–32). SNNs capable of 
spatiotemporal computing with RRAM synapses would greatly 
improve the energy and information efficiency of neuromorphic 
hardware, thus accelerating the progress toward human-like cognitive 
computing.

RESULTS

RRAM synapses and network structure
Figure 1A illustrates an elementary biological neural system with 
three presynaptic neurons (PREs) connected to a postsynaptic 
neuron (POST) via synapses between PRE axons and POST den-
drites. When a PRE emits a spike, the action potential is conveyed 
through its axon to the synapse. PREs spiking at various times form 
a spatiotemporal spiking pattern. Each synaptic weight dictates the 
amount of the action potential that is imparted to the POST upon 
PRE spiking. The biological synapse, where the amount of neuro-
transmitter controls the synaptic weight, can be emulated by a 
RRAM device (Fig. 1B), where the conductance between the top 
electrode (TE) and the bottom electrode (BE) is controlled by the 
defect distribution within a dielectric layer, such as hafnium 
oxide (HfO2) (21, 33).

The basic properties of a RRAM synapse are shown in Fig. 1C. 
The synapse can switch from a high-resistance state (HRS) to a low- 
resistance state (LRS), also called set process, for a positive voltage 
applied to the TE. This is due to the migration of positively ionized 
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defects such as oxygen vacancies and the consequent formation of a 
conductive filament connecting the two electrodes. With the appli-
cation of a negative voltage, the migration-induced disconnection 
of the conductive filament results in a reset process, namely, the 
switching from LRS to HRS. Note that the LRS conductance is 
determined by the final size of the conductive filament, which in 
turn depends on the compliance current IC, that is, the maximum 
current that can be supplied to the RRAM device during the set 
transition (34). As IC increases, the size of the conductive filament 
formed during the set transition increases, thus resulting in an in-
creased synaptic weight of the RRAM.

To enable time-dependent control of the synaptic weight, we 
connected the RRAM in series with a field-effect transistor (FET) in 
the synaptic circuit of Fig. 1D. The one-transistor/one-resistor 
(1T1R) synapse is controlled by the PRE via the FET gate terminal 
and conveys the synaptic current Isyn to the POST via the FET 
source terminal (21). The axon terminal in the PRE circuit (fig. S2B) 
shapes the PRE spike into an exponentially decaying pulse Vaxon 
controlling the gate, hence the FET current. As a result, the time 
delay between the PRE spike Vaxon and the POST spike VTE applied 
to the TE results in a time-dependent set transition or synaptic 
potentiation of the RRAM device, which forms the basis of the 
spatiotemporal processing by the RRAM synapse (35). The axon 
signal resembles the shape of the action potential. To represent the 
binary nature of the input spikes and the purpose of using the 
action potential–like axon signal as the temporal messenger, we use 
separated symbols for PRE (soma) and axon in our circuit (Fig. 1D), 
although they cannot be distinguished in biology.

Inference and training algorithm
First, we consider a simple 3 × 1 neural network in Fig. 2A, con-
sisting of three PREs connected to a single POST via three RRAM 
synapses and the corresponding spatiotemporal recognition 
depicted in Fig. 2B. Let us assume that three spikes with spatio-
temporal coding are emitted by the three PREs with sequence 1-2-3 
and that the synaptic weights are in decreasing order from synapse #3 
to synapse #1. In this case, there is a positive time/amplitude 
correlation of current spikes received by the POST, where later 
spikes have larger amplitudes. This is further shown in Fig. 2C, 
reporting the calculated spatiotemporal-coded PRE spikes (top), 
the resulting axon potentials (center), and the POST internal 
voltage Vint, which is proportional to the summation of the synaptic 
currents, namely, Vint = RnSIsyn (bottom), where Rn is the resistance 
of the transimpedance amplifier (TIA) within the POST circuit 
(fig. S2A). Note that the individual synaptic currents are physically 
summed by Kirchhoff’s law at the input terminal of the POST, 
which thus behaves as a summing McCulloch-Pitts neuron (36). 
In this way, the leaky behavior of the POST Vint directly arises from 
the exponential shape of the axon potential, with no need for a leaky 
integrate-and-fire structure of the POST. In the case of positive 
correlation between spike times and synaptic weight (increasing 
weight with increasing time), Vint is relatively large, thus able to 
overcome the threshold Vth. Negative correlation between spike time 
and synaptic weight, namely, spikes arriving later being processed 
by weaker synapses, however, results in relatively low Vint (cannot 
reach Vth; Fig. 2D). The value and order of the synaptic weights 
thus enable selective sensitivity to a particular sequence (1-2-3 in 
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Fig. 1. Illustrative scheme of biological and hardware neural networks. (A) Illustration of a biological neural subsystem with PREs connected with a POST via plastic 

synapses. PREs spike by generating an action potential along its axon and through the synapse. PREs spiking at various times form a spatiotemporal spiking pattern. 

(B) The biological synapse can be represented by a RRAM device, where the conductivity changes by voltage-induced ion migration and corresponding formation/disso-

lution of a conductive filament. (C) Typical current-voltage (I-V) curves of the RRAM device, where a positive voltage applied to the TE causes set transition (resistance 

change from HRS to LRS) and a negative voltage causes reset transition (resistance change from LRS to HRS). The transition to LRS is controlled by the compliance current 

IC, where a large IC results in a high conductance of the LRS, thus enabling time-dependent potentiation of the RRAM synapse. (D) Schematic diagram of a 1T1R synapse, 

connecting a PRE axon to the POST, the latter providing a feedback spike for potentiation and depression.
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Fig. 2), that is, the ability to recognize spatiotemporal patterns by 
the network.

To recognize a specific spatiotemporal pattern, the network must 
be instructed so that synaptic weights show positive correlation 
with the “true” sequence as in Fig. 2C. To this purpose, weights are 
updated by the Widrow-Hoff (WH) learning rule (37–39). According 
to the WH rule (see Materials and Methods and the figs. S4A and S5), 
after collecting each spike in the sequence, the POST compares its 
output signal with the teacher signal, which labels the spiking 
pattern as true. The comparison can lead to three cases: If both the 
POST and the teacher spikes are present, the true pattern has been 
correctly detected (true fire), thus requiring no further weight 
update. If the POST spike is present without any teacher spike, a 
false pattern has been erroneously detected (false fire), thus re-
quiring depression of the synaptic weights. The synapses are de-
pressed by applying a negative update spike with amplitude VTE− < 0 
(Fig. 1D), thus leading to a reset transition. Finally, if the POST 
spike is not present while the teacher is, the true pattern has been 
erroneously missed (false silence), thus requiring potentiation of 
the synaptic weights to achieve positive correlation with the spike 
sequence. This is achieved by the application of a positive update 
spike with amplitude VTE+ > 0 to the synapse, which results in a set 
transition or potentiation of the synaptic weights. A short delay 
Dt = tPRE − tPOST between the PRE spike and the POST spike leads 
to strong potentiation, while a long Dt leads to a weak potentiation 
(Fig. 3A). Note that this corresponds to a spike timing–dependent 

plasticity (STDP) relating spike timing with strength of the 
potentiation (37, 40). As a result of STDP, synaptic weights are 
automatically potentiated to gain a positive correlation with the 
sequence.

The time-dependent potentiation and depression were charac-
terized for HfO2-based RRAM synapses with 1T1R structure. 
Figure 3B summarizes the STDP characteristics, namely, the ratio 
G/G0 between the final and initial synaptic conductance, as a 
function of the time delay Dt (more data and measurement details 
can be seen in the Supplementary Materials).

Learning and recognition of spike sequences
To demonstrate spatiotemporal sequence learning, we adopted a 
neural network with 16 PREs in the first layer, fully connected to a 
second layer of one POST via 16 RRAM synapses (Fig. 4A and fig. S4). 
All components were assembled on a printed circuit board (PCB), 
where an Arduino Due microcontroller (mC) served as supervisor to 
generate input and teacher spikes for the supervised training and 
the subsequent testing of pattern recognition (fig. S4). The 16 PREs 
received spatiotemporal-coded patterns in groups of four spikes for 
each training cycle, each pattern being labeled as true/false by the 
supervisor. Within each pattern, spikes were separated by a 1-ms 
time interval, while a pause of 50 ms was used to distinguish sub-
sequent patterns and to allow recovery of the rest state in the axon 
potential Vaxon and the internal potential Vint. False patterns (for 
example, cycle 1 and n in Fig. 4A) and the true pattern (for example, 
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Fig. 2. Recognition of spatiotemporal patterns. (A) Schematic SNN with three PREs and one POST. Increasing weights w1 = 10 ms, w2 = 20 ms, and w3 = 50 ms were 

assumed in the simulation. (B) Conceptual scheme of a spatiotemporal network where the synaptic weight increases from synapse #1 to synapse #3, and PRE spikes have 

different timing. (C) Calculated PRE spikes (top), axon potential Vaxon (middle), and POST internal potential Vint (bottom), and spike sequence 1-2-3 with spike times T1 = 

{t1 = 2 ms, t2 = 4 ms, t3 = 6 ms}. (D) Same as (C), but for the opposite spike sequence, namely, 3-2-1 with spike times T2 = {t1 = 6 ms, t2 = 4 ms, t3 = 2 ms}. The POST internal 

potential overcomes the threshold in (C) due to the positive correlation between synaptic weights and spike timing, thus enabling spatiotemporal recognition.
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Fig. 3. Time-dependent potentiation and depression. (A) Measured Vaxon and VTE for relatively short (left) and long (right) delays Dt = tPRE − tPOST between PRE and POST 

spikes (top) and corresponding change of the synaptic weight (bottom). Short and long delays lead to a strong and weak potentiation, respectively, due to the variation of 

IC driven by the exponential Vaxon. (B) Relative change of synaptic weight G/G0 as a function of Dt for potentiation (VTE > 0) and depression (VTE < 0). The weight change de-

creases for increasing Dt, thus evidencing STDP behavior of the 1T1R synapse. The peak value of Vaxon was 2.5 V with time constant t = 8 ms. The TE voltage was VTE+ = 3 V for 

potentiation and VTE− = −1.6 V for depression. Calculation results (lines) obtained by a physical-based analytical RRAM model accurately describe the experimental behavior.
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Fig. 4. Experimental learning of spatiotemporal patterns. (A) Schematic illustration of the input spike patterns submitted to a 16 × 1 spatiotemporal neuromorphic 

network supervised by a teacher signal. The network consists of 16 PREs, 1 POST, and 16 RRAM synapses. PRE spikes are grouped in spatiotemporal patterns of four spikes, 

which form a training cycle. For the true sequence 1-4-9-16 (cycle i), the teacher spike is submitted to the POST to guide potentiation/depression. (B) Teacher signal and 

measured Vint during the training experiment, and (C) true fire, false fire, and false silence events occurring during training. (D) Color plot of the evolution of the synaptic 

weights. False silence events lead to synaptic potentiation of the synapses #1, #4, #9, and #16, while false fire events cause synaptic depression. After training, the synaps-

es #1, #4, #9, and #16 are found in LRS with increasing weight, as a result of time-dependent potentiation, while other synapses are found in HRS.
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cycle i in Fig. 4A) were submitted sequentially and randomly. 
For each spatiotemporal pattern, the teacher signal was sub-
mitted immediately after the last spike of the true pattern (in 
case of false silence) or the false pattern (in case of false fire; see 
figs. S5 and S6).

We chose the spike sequence 1-4-9-16, corresponding to the 1st, 
4th, 9th, and 16th PREs sequentially spiking, as the true spatio-
temporal pattern. Figure 4 (B to D) shows the details of the training 
process, including the measured internal potential Vint (Fig. 4B), the 
indication of true fire, false fire, and false silence events (Fig. 4C), 
and the synaptic weights evolution (Fig. 4D). The teacher signal, 
serving as the label to mark the presentation of the true pattern, is 
also shown in Fig. 4B. All synaptic weights were initially prepared in 
random states between HRS and LRS. Convergence of the training 
algorithm was confirmed by successful training for different initial 
synaptic weights (figs. S7 and S8). From the comparison between 
Fig. 4C and Fig. 4D, it appears that false silence events lead to 
potentiation of true-pattern synapses, while false fire events result 
in depression of false-pattern synapses. As a result, the weights of 
synapses #1, #4, #9, and #16 in Fig. 4D are potentiated to LRS, while 
all other weights are left in HRS after training (see fig. S6). Weights 
of the synapses #1, #4, #9, and #16 show decreasing values from #16 
to #1 as a result of the time-dependent potentiation.

After training, we tested spatiotemporal pattern recognition by 
applying all possible four neuron sequences and collecting Vint 
(Fig. 5A). As expected, the true pattern 1-4-9-16 shows the maximum 
Vint, as a result of the synaptic weights showing positive correlation 
with the spike time after training. Patterns similar to the true 
one, for example, the permutations of the true pattern (for example, 
9-1-16-4), or patterns sharing only a fraction of the true pattern (for 
example, 6-4-16-9), show slightly lower Vint, thus demonstrating 
some level of error tolerance of the SNN. Other false patterns 
instead show decreasingly low Vint. To further clarify the details of 

the recognition process, Fig. 5B shows the measured real-time 
evolution of Vint in response to the submission of the true pattern 
collected from an oscilloscope: The internal potential increases 
spike after spike, eventually overcoming Vth and inducing a POST 
fire in response to the true pattern. On the other hand, submission 
of a false pattern, such as 16-7-4-1, although similar to the true 
pattern, cannot induce fire in Fig. 5C. Circuit simulations of our 
SNN are also reported in Fig. 5 (B and C), showing accurate 
agreement with the oscilloscope measurements. The staircase shape 
of Vint resembles the excitatory postsynaptic potential (EPSP) 
observed in a biological neural system (5, 41, 42), thus highlighting 
the analogy of our spatiotemporal sensitive network to biological 
networks in the human brain.

Note that Vint in Fig. 5A provides a figure of merit for the 
similarity between a generic test sequence and a true sequence, 
which can be generalized to any type of sequence. For instance, a 
SNN with 26 PREs, each representing a letter, can check spelling 
errors in words. Figure S9 shows simulation results of supervised 
training of the word “word” and its subsequent recognition against 
competing sequences. The internal potential Vint was compared 
to the Damerau-Levenshtein (DL) distance (43), which is used for 
spell checking in speech recognition, DNA analysis, and other 
applications. Results show that Vint is more accurate and faster than 
the DL distance, which requires many steps for comparing each 
element of the sequences within at least two programming loops 
(44), thus supporting the applicability of our spatiotemporal 
network for checking spell and other sequences.

Sound localization by precise timing detection
The similarity of our spatiotemporal SNN to the biological neural 
system can be further illustrated by its ability to detect the precise 
spike timing interval, which mimics the detection of the sound 
location by the brain (45). As depicted in Fig. 6A, the brain detects 
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spikes eventually exceeding the threshold for POST fire, whereas weaker accumulation and no fire are seen for the false sequence. The evolutionary accumulation of Vint 

resembles the EPSP observed in a biological neural system.
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sound location by the interaural time difference (ITD) = tL − tR, 
where tL and tR are the times of the sound arriving at the left and 
right ears, respectively. The ITD, which is typically in the range 
of −0.6 to 0.6 ms, is the most important clue for sound azimuth 
location and can be processed by the brain in real time. The proposed 
resistive synaptic network consists of a fully connected network of 
two PREs, corresponding to sensors in each ear, and two POSTs, with 
the corresponding 2 × 2 RRAM synapses (Fig. 6B). The synaptic 
weight matrix is diagonal, so that one POST fires in response to the 
left/right pattern, while the other one fires in response to the opposite 
sequence. As a result, the difference between the internal potentials 
Vint of the two POSTs provides an indication of the sound azimuth, 
that is, the sound direction angle. For instance, a typical audio 
signal for the left and right ears (Fig. 6C) triggers the spikes of the 
corresponding left and right PRE neurons, which respond to the 
first detected wave front and dispatch the spatiotemporal spiking 
pattern to the network. The corresponding evolution of Vint for the 
two POSTs and their difference DVint = Vint1 − Vint2 between POST1 
and POST2 at the time of the second PRE spike (Fig. 6E) thus indi-
cate the azimuth of the sound signal. The positive DVint is due to the 

sound reaching the right ear first, revealing that the origin of the 
sound was from the right side of the receiver. Figure 6F shows the 
DVint as a function of the ITD, hence the sound azimuth, which can 
thus be evaluated by the value of DVint. The dependence of DVint on 
the sound azimuth shows the capability of the constructed spatio-
temporal neural network to convert external analog stimuli into 
inner-brain (or inner-network) representation via spatiotemporal 
coding.

DISCUSSION

The SNN is considered to be the third generation of neural networks 
(7), following the first generation based on McCulloch-Pitts neurons 
(36) and the second generation relying on neural activation functions 
and gradient descent (for example, error backpropagation) as the 
core of the learning algorithm (46). The computational capability of 
the SNN is improved thanks to the brain-inspired spatiotemporal 
representation of spiking neurons containing multiple information, 
such as the timing of a specific sensory input and its relationship 
with other events. Previous works on RRAM-based SNNs showed 
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Fig. 6. Sound location via spatiotemporal processing. (A) Schematic illustration of binaural effect, where the ITD provides an estimate of the direction of the sound 

propagation with respect to the listener. (B) Schematic structure of a 2 × 2 SNN to detect the sound direction from the ITD. The difference DVint between internal potentials 

in the two POSTs serves as the output of the network, providing information about sound direction. The inset shows the map of synaptic weights in the 2 × 2 synapse 

array, which enables discrimination between different directions. (C) Experimental sound waveforms of left and right ears, (D) corresponding axon potential of the two 

PREs, and (E) Vint for the two POSTs with their corresponding difference. The difference DVint in correspondence to the second PRE spike reveals the direction of the sound 

from the right of the listener in (C). (F) Measured and calculated DVint as a function of sound azimuth revealing analog information about the sound propagation direction. 

To correct for the different axon potential decay constant (t = 8 ms in the hardware circuit, compared to a biological time t = 0.5 ms), the experimental time scale in 

(F) was reduced by a factor of 16.
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learning and recognition of spatial-only patterns with no specific 
temporal information, which strongly reduces the capability of the 
SNN (21, 29). For instance, a spiking pattern of 16 PREs and only 
4 PREs spiking can result in 1820 possible spatial-only patterns, 
while the number of possible spatiotemporal patterns with a 
constant spike timing interval is 43,680, that is, 24 times higher. For 
the case of sound origin detection, only two PREs are needed to 
represent all possible azimuth angles. On the other hand, rate-based 
coding, which is extensively embraced in RRAM SNNs (47, 48) and 
complementary metal-oxide semiconductor (CMOS) neuromorphic 
computing (49), has been questioned by many experimental obser-
vations in neuroscience (14); for instance, in the human brain visual 
cortex, the ability of visual pattern classification is about 100 ms, 
which would be too short to carry sufficient rate-based information 
given the low spiking rate of neurons of about 10 Hz (50). Spatio-
temporal coding strongly reduces the number of spikes (hence, 
amount of energy) needed to represent a given analog information, 
compared to rate-based coding.

In summary, a RRAM-based synaptic neuromorphic network is 
proposed to learn and recognize spatiotemporal patterns, including 
spike sequences and spike groups (for example, pairs) where the 
spike timing carries information. The time difference of spikes 
among different neurons provides spatiotemporal coding with high 
sparsity and high information capacity. Our experiments demon-
strate that the RRAM-based SNN, combined with suitable neuron 
circuit and operation scheme, is capable of learning spatiotemporal 
patterns via STDP, followed by recognition, thanks to suitably 
potentiated/depressed synapses. The results provide one step forward 
toward biorealistic computing machines capable of paralleling the 
energy efficiency and computing functionality of the brain.

MATERIALS AND METHODS

RRAM synapses
The RRAM devices (33) used in this study consist of a 10-nm-thick 
switching layer of Si-doped HfOx deposited by atomic layer deposi-
tion on a confined TiN BE with 50-nm diameter. After deposition 
of the reactive Ti TE on the HfOx dielectric layer, partial Ti oxida-
tion led to depletion of oxygen from the HfOx layer and forming of 
an interfacial oxygen exchange layer (OEL). The OEL was functional 
in increasing the concentration of oxygen vacancies in HfOx, thus 
enhancing the leakage current in the pristine state and reducing the 
forming voltage. A forming operation was conducted by the appli-
cation of a pulse of 3-V amplitude and 100-ms pulse width to initiate 
the conductive filament creation before any other operations and 
characteristics. The RRAM was connected via the bottom TiN elec-
trode to a FET, which was integrated in the front-end of the same 
silicon chip by conventional CMOS process. The resulting 1T1R 
structure was controlled during forming, set, and reset processes by 
applying pulses to the TE and gate contacts, with grounded source 
contact. The conduction and switching characteristics of the RRAM 
(Fig. 1C) were collected by an HP4155B semiconductor parameter 
analyzer connected to the experimental device within a conventional 
probe station for electrical characterization.

Spiking neural network
In the network, each PRE represents a neuron cell and its axon ter-
minal. Each axon terminal was connected to the gate terminal of a 
1T1R synapse. All synaptic TEs were controlled by a CMOS circuit 

providing a constant bias Vread = −0.3 V to induce the synaptic 
current Isyn in response to an axon spike (21). All source terminals 
were connected to the POST input (23, 35, 36), consisting of a TIA 
to convert the summed synaptic currents SIsyn into the internal 
potential Vint. The latter was compared with the threshold voltage 
Vth to induce fire for Vint > Vth. During supervised training, a teacher 
spike was applied to the TE to induce potentiation or depression. 
The voltage of the TEs was switched from Vread to a pulse of posi-
tive voltage VTE+ after false silence, or negative voltage VTE− after 
false fire, to induce time-dependent potentiation or depression, 
respectively.

Training and test control system
The synaptic network was connected to an Arduino Due mC on a 
PCB for the training and testing of the synaptic network. To operate 
the network, the PRE spike sequence was first stored in the internal 
memory of the mC, and then the sequence was launched while 
monitoring the synaptic weights G and internal potential Vint at 
each cycle. The spike and fire potential and input currents were also 
monitored by a LeCroy WaveRunner oscilloscope with 600-MHz 
bandwidth and maximum 4 G sample/s sampling rate. Note that the 
mC is only necessary in providing spiking information (including 
the teacher signal) during the training and test stage, whereas all 
learning processes, that is, the adjustment of synaptic, were all 
achieved by the network of hybrid CMOS-neurons/resistive 
switching synapses in real time. For best accuracy in our PCB 
system, we adopted an axon potential decay constant t = 8 ms, 
that is, longer than the biological action potential of about 1 ms. To 
match with the biological timescale (t = 0.5 ms), the experimental 
timescale in Fig. 6 (C to F) was scaled down by a factor of 16. The 
time delay between the synaptic current detection and the update 
spike for the TE of the 1T1R synapse is about 12 ms to enable in situ 
learning.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/

content/full/4/9/eaat4752/DC1

Note S1. STDP characteristics of single RRAM synapse.

Note S2. Inference of the network.

Note S3. Learning algorithm.

Note S4. Hardware implementation of POSTs and weight updates.

Fig. S1. Coding methods in SNN.

Fig. S2. Neuron and axon circuits.

Fig. S3. STDP experiments.

Fig. S4. Hardware implementation of the SNN.

Fig. S5. Simulation of supervised learning of spatiotemporal patterns.
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