
Learning on the Border:
Active Learning in Imbalanced Data Classification

Şeyda Ertekin1, Jian Huang2, Léon Bottou3, C. Lee Giles2,1

1Department of Computer Science and Engineering
2College of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802, USA

3NEC Laboratories America
4 Independence Way, Princeton, NJ 08540, USA

sertekin@cse.psu.edu, {jhuang, giles}@ist.psu.edu, leon@bottou.org

ABSTRACT

This paper is concerned with the class imbalance problem which
has been known to hinder the learning performance of classification
algorithms. The problem occurs when there are significantly less
number of observations of the target concept. Various real-world
classification tasks, such as medical diagnosis, text categorization
and fraud detection suffer from this phenomenon. The standard
machine learning algorithms yield better prediction performance
with balanced datasets. In this paper, we demonstrate that active
learning is capable of solving the class imbalance problem by
providing the learner more balanced classes. We also propose
an efficient way of selecting informative instances from a smaller
pool of samples for active learning which does not necessitate a
search through the entire dataset. The proposed method yields
an efficient querying system and allows active learning to be
applied to very large datasets. Our experimental results show
that with an early stopping criteria, active learning achieves a fast
solution with competitive prediction performance in imbalanced
data classification.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Miscellaneous; I.2.6
[Artificial Intelligence]: Learning—concept learning, induction

General Terms

Algorithms, experimentation

Keywords

Active learning, imbalanced data, support vector machines

1. INTRODUCTION
Classification is a supervised learning method which acquires a

training dataset to form its model for classifying unseen examples.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’07, November 6–8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011 ...$5.00.

A training dataset is called imbalanced if at least one of the classes
are represented by significantly less number of instances (i.e.
observations, examples, cases) than the others. Real world appli-
cations often face this problem because naturally normal examples
which constitute the majority class in classification problems are
generally abundant; on the other hand the examples of interest are
generally rare and form the minority class. Another reason for
class imbalance problem is the limitations (e.g., cost, difficulty
or privacy) on collecting instances of some classes. Examples
of applications which may have class imbalance problem include,
but are not limited to, predicting pre-term births [8], identifying
fraudulent credit card transactions [4], text categorization [7],
classification of protein databases [19] and detecting certain objects
from satellite images [13]. Despite that they are difficult to
identify, rare instances generally constitute the target concept in
classification tasks. However, in imbalanced data classification, the
class boundary learned by standard machine learning algorithms
can be severely skewed toward the target class. As a result, the
false-negative rate can be excessively high.

In classification tasks, it is generally more important to correctly
classify the minority class instances. In real-world applications
mispredicting a rare event can result in more serious consequences
than mispredicting a common event. For example in the case of
cancerous cell detection, misclassifying non-cancerous cells leads
to additional clinical testing but misclassifying cancerous cells
leads to very serious health risks. Similar problem might occur
in detection of a threatening surveillance event from video streams,
where misclassifying a normal event may only result in increased
security but misclassifying a life threatening event may lead to
disastrous consequences. However in classification problems with
imbalanced data, the minority class examples are more likely to be
misclassified than the majority class examples. Due to their design
principles, most of the machine learning algorithms optimize
the overall classification accuracy hence sacrifice the prediction
performance on the minority classes. This paper proposes an
efficient active learning framework which has high prediction
performance to overcome this serious data mining problem.

In addition to the naturally occurring class imbalance problem,
the imbalanced data situation may also occur in one-against-rest
schema in multiclass classification. Assuming there are N different
classes, one of the simplest multiclass classification schemes built
on top of binary classifiers is to train N different binary classifiers.
Each classifier is trained to distinguish the examples in a single
class from the examples in all remaining classes. When it is
desired to classify a new example, the N classifiers are run, and the

classifier which has the highest classification confidence is chosen.
Therefore, even though the training data is balanced, issues related
to the class imbalance problem can frequently surface.

In this paper we propose an alternative to the existing methods:
using active learning strategy to deal with the class imbalance
problem. Active learning has been pronounced by some researchers
[18, 1] as a sampling method but no systematic study has been done
to show that it works well with imbalanced data. We demonstrate
that by selecting informative instances for training, active learning
can indeed be a useful technique to address the class imbalance
problem. We constrain our discussion to a standard two-class
classification problem with Support Vector Machines (SVMs). In
the rest of the paper, we refer to the minority and majority classes
as ”positive” and ”negative” respectively.

In this paper, we propose an efficient SVM based active learning
selection strategy which queries small pool of data at each iterative
step instead of querying the entire dataset. The proposed method
brings the advantage of efficient querying in search of the most
informative instances, thus enabling active learning strategy to
be applied to large datasets without high computational costs.
Rather than using a traditional batch SVM, we use an online SVM
algorithm [3] which suits better to the nature of active learning due
to its incremental learning steps. We present that active learning’s
querying strategy yields a balanced training set in the early stages
of the learning without any requirement of preprocessing of the
data. Major research direction in recent literature to overcome
the class imbalance problem is to resample the original training
dataset to create more balanced classes. This is done either by
oversampling the minority class and/or undersampling the majority
class until the classes are approximately equally represented. Our
empirical results show that active learning can be a more efficient
alternative to resampling methods in creating balanced training
set for the learner. AL does not risk losing information as
in undersampling and does not bring an extra burden of data
as in oversampling. With early stopping, active learning can
achieve faster and scalable solution without sacrificing prediction
performance.

2. RELATED WORK
Recent research on class imbalance problem has focused on

several major groups of techniques. One is to assign distinct
costs to the classification errors [6, 17]. In this method, the
misclassification penalty for the positive class is assigned a higher
value than that of the negative class. This method requires tuning
to come up with good penalty parameters for the misclassified
examples. The second is to resample the original training dataset,
either by over-sampling the minority class and/or under-sampling
the majority class until the classes are approximately equally
represented [5, 11, 14, 15]. Both resampling methods introduce
additional computational costs of data preprocessing and over-
sampling can be overwhelming in the case of very large scale
training data. Undersampling has been proposed as a good means
of increasing the sensitivity of a classifier. However this method
may discard potentially useful data that could be important for
the learning process therefore significant decrease in the prediction
performance may be observed. Discarding the redundant examples
in undersampling has been discussed in [16] but since it is an
adaptive method for ensemble learning and does not involve an
external preprocessing step it can not be applied to other types of
algorithms. Oversampling has been proposed to create synthetic
positive instances from the existing positive samples to increase
the representation of the class. Nevertheless, oversampling may
suffer from overfitting and due to the increase in the number of

Margin

Origin

Negative instances seen so far
Rest of the data to be queried

Positive instances seen so far

w

H2

w · Φ(xi) + b = 0

w · Φ(xi) + b = +1

w · Φ(xi) + b = −1

H1

Figure 1: Active Learning with SVM (separable case). The

most informative sample among the unseen training samples

is the one (in bold circle) closest to the hyperplane (solid line).

The circled samples on the dashed lines are support vectors.

samples, the training time of the learning process gets longer.
If a complex oversampling method is used, it also suffers from
high computational costs during preprocessing data. In addition
to those, oversampling methods demand more memory space for
the storage of newly created instances and the data structures
based on the learning algorithm (i.e., extended kernel matrix in
kernel classification algorithms). Deciding on the oversampling
and undersampling rate is also another issue of those methods.
Another technique suggested for class imbalance problem is to
use a recognition-based, instead of discrimination-based inductive
learning [10, 20]. These methods attempt to measure the amount
of similarity between a query object and the target class, where
classification is accomplished by imposing a threshold on the
similarity measure. The major drawback of those methods is the
need for tuning the similarity threshold of which the success of the
method mostly relies on. On the other hand, discrimination-based
learning algorithms have been proved to give better prediction
performance in most domains.

In [2] the behavior of Support Vector Machines (SVM) with
imbalanced data is investigated. They applied [5]’s SMOTE
algorithm to oversample the data and trained SVM with different
error costs. SMOTE is an oversampling approach in which the
minority class is oversampled by creating synthetic examples rather
than with replacement. The k nearest positive neighbors of all
positive instances are identified and synthetic positive examples
are created and placed randomly along the line segments joining
the k minority class nearest neighbors. Preprocessing the data
with SMOTE may lead to improved prediction performance at the
classifiers, however it also brings more computational cost to the
system for preprocessing and yet the increased number of training
data makes the SVM training very costly since the training time at
SVMs scales quadratically with the number of training instances.
In order to cope with today’s tremendously growing dataset sizes,
we believe that there is a need for more computationally efficient
and scalable algorithms. We show that such a solution can be
achieved by using active learning strategy.

3. METHODOLOGY
Active learning is mostly regarded as a technique that addresses

the unlabeled training instance problem. The learner has access to a

Figure 2: Comparison of PRBEP and g-means of RS, AL(full search) and AL(random pool). The training times of AL(full search)

vs. AL(random pool) until saturation in seconds are: 272 vs. 50 (grain), 142 vs. 32 (ship) and 126 vs. 13 (USPS). AL(random pool) is

4 to 10 times faster than AL(full search) with similar prediction performance.

vast pool of unlabeled examples, and it tries to make a clever choice
to select the most informative example to obtain its label. However,
in the cases where all the labels are available beforehand, active
learning can still be leveraged to obtain the informative instances
through the training sets [21, 3, 9]. In SVMs, informativeness of an
instance is synonymous with its distance to the hyperplane. The
farther an instance is to the hyperplane, the more the learner is
confident about its true class label, hence it does not bring much (or
any) information to the system. On the other hand, the instances
close to the hyperplane are informative for learning. SVM based
active learning can pick up the informative instances by checking
their distances to the hyperplane. The closest instances to the
hyperplane are considered to be the most informative instances.

The strategy of selecting instances within the margin addresses
the imbalanced dataset classification very well. Suppose that the
class distributions of an imbalanced dataset is given in Figure 3.
The shaded region corresponds to the class distribution of the data
within the margin. As it can be observed, the imbalance ratio of the
classes within the margin is much smaller than the class imbalance
ratio of the entire dataset. Any selection strategy which focuses
on the instances in the margin most likely ends up with a more
balanced class distribution than that of the entire dataset. Our
empirical findings with various type of real-world data confirm that
the imbalance ratios of the classes within the margin in real-world
data are generally much lower than that of the entire data as shown
in Figure 3.

A brief explanation of the SVMs is given in Section 3.1 followed
by the working principles of the efficient active learning algorithm
in Section 3.2. We explain the advantage of using online SVMs
with the active sample selection in Section 3.3. In Section 3.4, we
then describe an early stopping heuristics for active learning.

3.1 Support Vector Machines
Support Vector Machines [24] are well known for their strong

theoretical foundations, generalization performance and ability to

Figure 3: Data within the margin is less imbalanced than the

entire data.

handle high dimensional data. In the binary classification setting,
let ((x1, y1) · · · (xn, yn)) be the training dataset where xi are the
feature vectors representing the instances and yi ∈ (−1, +1) be
the labels of the instances. Using the training set, SVM builds an
optimum hyperplane – a linear discriminant in a higher dimensional
feature space – that separates the two classes by the largest margin
(see Figure 1). This hyperplane can be obtained by minimizing the
following objective function:

min
w,b,ξi

1

2
w · wT + C

N
X

i=1

ξi (1)

subject to



∀i yi(w
T Φ(xi) − b) ≥ 1 − ξi

∀i ξi ≥ 0
(2)

where w is the norm of the hyperplane, b is the offset, yi are
the labels, Φ(·) is the mapping from input space to feature space,

Figure 4: 3-fold cross-validation results for the training set of the category COMM in CiteSeer dataset. Vertical lines correspond to

early stopping points.

and ξi are the slack variables that permit the non-separable case
by allowing misclassification of training instances. In practice
the convex quadratic programming (QP) problem in Equation
1 is solved by optimizing the dual cost function. The dual
representation of Equation 1 is given as

max W (α) ≡
N

X

i=1

αi −
1

2

X

i,j

αiαjyiyjK(xi,xj) (3)

subject to



∀i 0 ≤ αi ≤ C
PN

i=1
αiyi = 0

(4)

where yi are the labels, Φ(·) is the mapping from the input space
to the feature space, K(xi,xj) = 〈Φ(xi), Φ(xj)〉 is the kernel
matrix and the αi’s are the Lagrange multipliers which are non-
zero only for the training instances which fall in the margin. Those
training instances are called support vectors and they define the
position of the hyperplane. After solving the QP problem, the norm
of the hyperplane w can be represented as

w =

n
X

i=1

αiΦ(xi) (5)

3.2 Active Learning
Note that in equation 5, only the support vectors have an effect

on the SVM solution. This means that if SVM is retrained with
a new set of data which only consist of those support vectors, the
learner will end up finding the same hyperplane. This fact leads
us to the idea that not all the instances are equally important in
the training sets. Then the question is how to select the most
informative examples in the datasets. In this paper we will focus on
a form of selection strategy called SVM based active learning. In
SVMs, the most informative instance is believed to be the closest
instance to the hyperplane since it divides the version space into
two equal parts. The aim is to reduce the version space as fast as
possible to reach the solution faster in order to avoid certain costs

associated with the problem. For the possibility of a non-symmetric
version space, there are more complex selection methods suggested
by [23], but it has been observed that the advantage of those are not
significant when compared to their high computational costs.

Active Learning with Small Pools:The basic work-
ing principle of SVM active learning is: i) learn an SVM on
the existing training data, ii) select the closest instance to the
hyperplane, and iii) add the new selected instance to the training

set and train again. In classical active learning [23], the search
for the most informative instance is performed over the entire
dataset. Note that, each iteration of active learning involves
the recomputation of each training example’s distance to the
new hyperplane. Therefore, for large datasets, searching the
entire training set is a very time consuming and computationally
expensive task. We believe that we do not have to search the entire
set at each iteration.

By using the ”59 trick” [22], we propose a selection method,
which does not necessitate a full search through the entire dataset
but locates an approximate most informative sample by examining
a small constant number of randomly chosen samples. The method
picks L (L ≪ # training instances) random training samples in each
iteration and selects the best (closest to the hyperplane) among
them. Suppose, instead of picking the closest instance among all
the training samples XN = (x1, x2, · · · , xN) at each iteration,
we first pick a random subset XL, L ≪ N and select the closest
sample xi from XL based on the condition that xi is among the
top p% closest instances in XN with probability (1 − η). Any
numerical modification to these constraints can be met by varying
the size of L, and is independent of N . To demonstrate, the
probability that at least one of the L instances is among the closest
p% is 1−(1−p%)L. Due to the requirement of (1−η) probability,
we have

1 − (1 − p%)L = 1 − η (6)

which follows the solution of L in terms of η and p

L = log η / log(1 − p%) (7)

For example, the active learner will pick one instance, with 95%
probability, that is among the top 5% closest instances to the
hyperplane, by randomly sampling only ⌈log(.05)/ log(.95)⌉ =
59 instances regardless of the training set size. This approach scales
well since the size of the subset L is independent of the training set
size N , requires significantly less training time and does not have
an adverse effect on the classification performance of the learner.

In our experiments, we set L = 59 which means we pick 59
random instances to form the query pool at each learning step and
pick the closest instance to the hyperplane from this pool. Figure
2 shows the comparisons of PRBEP and g-means performances of
the proposed method AL(random pool) and the traditional active
learning method AL(full search) [23]. RS corresponds to random
sampling where instances are selected randomly. As Figure 2
depicts, the proposed active learning method with small pools
achieves as good prediction performance as the traditional active

Figure 5: Comparison of g-means of AL and RS on the waveform datasets with different imbalance ratios (Imb.R.=2, 4, 8, 16, 32).

learning method. Moreover, the proposed strategy is 4 to 10 times
faster than the traditional active learning for the given datasets.

3.3 Online SVM for Active Learning
Online learning algorithms are usually associated with problems

where the complete training set is not available. However, in cases
where the complete training set is available, their computational
properties can be leveraged for faster classification and incremental
learning. In our framework, we use an online SVM algorithm,
LASVM [3] instead of a traditional batch SVM tool (e.g., libsvm,
SVMlight). LASVM is an online kernel classifier which relies on
the traditional soft margin SVM formulation. LASVM yields the
classification accuracy rates of the state-of-the art traditional SVM
solvers but requires less computational resources. Traditional SVM
works in a batch setting where all the training instances are used to
form the one and final model. LASVM, on the other hand, works
in an online setting, where its model is continually modified as it
processes training instances one by one. Each LASVM iteration
receives a fresh training example and tries to optimize the dual cost
function in Equation (3) using feasible direction searches.

Online learning algorithms can select the new data to process
either by random or active selection.They can integrate the infor-
mation of the new seen data to the system without training all
the samples again, hence they can incrementally build a learner.
This working principle of LASVM leads to speed improvement
and less memory demand which makes the algorithm applicable
to very large datasets. More importantly, this incremental working
principle suits the nature of active learning in a much better way
than the batch algorithms. The new informative instance selected
by active learning can be integrated to the existing model without
retraining all the samples repeatedly. Empirical evidence indicates
that a single presentation of each training example to the algorithm
is sufficient to achieve training errors comparable to those achieved
by the SVM solution [3]. In section 3.4 we also show that if we
use an early stopping criteria in active sample selection, we do not
have to introduce all the training instances to the learner.

3.4 Active Learning with Early Stopping
Early stopping criteria is advantageous to the active learning

method since it converges to the solution faster than the random
sample selection method. A theoretically sound method to stop
training is when the examples in the margin are exhausted. To
check if there are still unseen training instances in the margin, the
distance of the new selected instance is compared to the support
vectors of the current model. If the new selected instance by
active learning (closest to the hyperplane) is not closer than any
of the support vectors, we conclude that the margin is exhausted.
A practical implementation of this idea is to count the number of
support vectors during the active learning training process. If the
number of the support vectors stabilizes, it implies that all possible
support vectors have been selected by the active learning method.

In order to analyze this method, we conducted a 3-fold cross-
validation on one of the datasets (see Figure 4). In cross-validation,
2/3 of the training set is used for training and the remaining
1/3 is reserved as the hold-out dataset. Since the training set
distribution is representative of the test set distribution, we believe
that the algorithm’s behavior would most likely be the same in the
test set. As can be seen in Figure 4, in active learning setups,
after using certain number of labeled training data, the number of
support vectors saturates and g-means levels off as well. Those
graphs support the idea that the model does not change after the
system observes enough informative samples. Further, adding
more training data after this point does not make a remarkable
change in the model and consequently in prediction performance.
Notice that in Figure 4 the vertical line indicates the suggested early
stopping point and it is approximately equal in all three folds. As
a result, we adopt the early stopping strategy of examining the
number of support vectors in the entire training datasets without
performing cross-validation.

4. PERFORMANCE METRICS
Classification accuracy is not a good metric to evaluate classifiers

in applications with class imbalance problem. SVMs have to

Figure 6: Comparison of PRBEP of AL and RS on the adult

datasets with different imbalance ratios (Imb.R.=3, 10, 20, 30).

achieve a tradeoff between maximizing the margin and minimizing
the empirical error. In the non-separable case, if the misclassi-
fication penalty C is very small, SVM learner simply tends to
classify every example as negative. This extreme approach makes
the margin the largest while making no classification errors on the
negative instances. The only error is the cumulative error of the
positive instances which are already few in numbers. Considering
an imbalance ratio of 99 to 1, a classifier that classifies everything
as negative, will be 99% accurate but it will not have any practical
use as it can not identify the positive instances.

For evaluation of our results, we use several other predic-
tion performance metrics such as g-means, AUC and PRBEP
which are commonly used in imbalanced data classification. g-
means [14] is denoted as g =

√
sensitivity · specifity where

sensitivity is the accuracy on the positive instances given as
TruePos./(TruePos.+FalseNeg.) and specificity is the accu-
racy on the negative instances given as TrueNeg./(TrueNeg. +
FalsePos.).

The Receiver Operating Curve (ROC) displays the relationship
between sensitivity and specificity at all possible thresholds for a
binary classification scoring model, when applied to independent
test data. In other words, ROC curve is a plot of the true positive
rate against the false positive rate as the decision threshold is
changed. The area under the ROC curve (AUC) is a numerical
measure of a model’s discrimination performance and shows how
successfully and correctly the model separates the positive and neg-
ative observations and ranks them. Since AUC metric evaluates the
classifier across the entire range of decision thresholds, it gives a
good overview about the performance when the operating condition
for the classifier is unknown or the classifier is expected to be used
in situations with significantly different class distributions.

Precision Recall Break-Even Point (PRBEP) is another com-
monly used performance metric for imbalanced data classifica-
tion. PRBEP is the accuracy of the positive class at the thresh-
old where precision equals to recall. Precision is defined as
TruePos./(TruePos. + FalsePos.) and recall is defined as
TruePos./(TruePos. + FalseNeg.)

5. DATASETS
We study the performance of the algorithm on various bench-

mark real-world datasets. The overview of the datasets are given
in Table 2. The Reuters-21578 is a popular text mining benchmark
dataset. We test the algorithms with 8 of the top 10 most populated
categories of Reuters-21578. We did not use categories ‘earn’
and ‘acq’ since their class imbalance ratios are not high enough.
As a text dataset, we also used 5 categories from CiteSeer1 data.
We used 4 benchmark datasets from the popular UCI Machine
Learning Repository as well. Letter and satimage are image
datasets. The ‘letter A’ is used as the positive class in letter and
‘class 4’ (damp grey soil) is used as positive class in satimage.
Abalone is a biology dataset. respectively. In abalone, instances
labeled as ‘class 7’ are used to form the positive class. MNIST

and USPS are OCR data of handwritten digits and ‘digit 8’ is used
as a positive class in Mnist. Adult is a census dataset to predict
if the income of a person is greater than 50K based on several
census parameters, such as age, education, marital status etc. The
training set consists of 32,562 instances and the class imbalance
ratio is 3. Waveform is a popular artificial dataset used commonly
in simulation studies. These datasets cover a wide range of data
imbalance ratio.

1http://citeseer.ist.psu.edu

Table 1: Comparison of g-means and AUC for AL and RS with entire training data (Batch). Support vector ratios are given at the

saturation point. Data efficiency corresponds to the percentage of training instances which AL processes to reach saturation.

Dataset
g-means (%) AUC (%) Imb. SV- / Data

EfficiencyBatch AL Batch AL Rat. SV+

R
eu

te
rs

Corn 85.55 86.59 99.95 99.95 41.9 3.13 11.6%
Crude 88.34 89.51 99.74 99.74 19.0 2.64 22.6%
Grain 91.56 91.56 99.91 99.91 16.9 3.08 29.6%
Interest 78.45 78.46 99.01 99.04 21.4 2.19 30.9%
Money-fx 81.43 82.79 98.69 98.71 13.4 2.19 18.7%
Ship 75.66 74.92 99.79 99.80 38.4 4.28 20.6%
Trade 82.52 82.52 99.23 99.26 20.1 2.22 15.4%
Wheat 89.54 89.55 99.64 99.69 35.7 3.38 11.6%

C
it

eS
ee

r

AI 87.83 88.58 94.82 94.69 4.3 1.85 33.4%
COMM 93.02 93.65 98.13 98.18 4.2 2.47 21.3%
CRYPT 98.75 98.87 99.95 99.95 11.0 2.58 15.2%
DB 92.39 92.39 98.28 98.46 7.1 2.50 18.2%
OS 91.95 92.03 98.27 98.20 24.2 3.52 36.1%

U
C

I Abalone-7 100.0 100.0 100.0 100.0 9.7 1.38 24.0%
Letter-A 99.28 99.54 99.99 99.99 24.4 1.46 27.8%
Satimage 82.41 83.30 95.13 95.75 9.7 2.62 41.7%

USPS 99.22 99.25 99.98 99.98 4.9 1.50 6.8%

MNIST-8 98.47 98.37 99.97 99.97 9.3 1.59 11.7%

Figure 7: Comparison of ROC curves of AL, RS (early stopped at the same number of instances as AL) and RS (with all training

data) in Interest, Adult and Satimage datasets.

6. EXPERIMENTS AND

EMPIRICAL EVALUATION
We first conduct experiments to compare the performance of

the proposed active learning strategy AL(random pool) with the
traditional active learning method, AL(full search). The results
show that with the proposed method, we can make faster active
learning without sacrificing any prediction performance (see Figure
2). In the rest of the paper, we refer to our proposed method as AL
since it is the only active learning method that we used afterwards.

In order to make a thorough analysis on the effect of AL to
imbalanced data classification, we examine its performance by
varying class imbalance ratios using two performance metrics.
We randomly remove the instances from the minority class in
Waveform and Adult datasets to achieve different data imbalance
ratios. Comparisons of g-means of AL and RS in Figure 5 show
that the prediction performance of AL is less sensitive to the
class imbalance ratio changes than that of the RS. Comparisons

of another performance metric PRBEP in Figure 6 give even more
interesting results. As the class imbalance ratio is increased, AL
curves display peaks in the early steps of the learning. This
implies that by using an early stopping criteria AL can give higher
prediction performance than RS can possibly achieve even after
using all the training data. Figure 6 curves allow us to think
that addition of any instances to the learning model after finding
the informative instances can be detrimental to the prediction
performance of the classifier. This finding strengthens the idea of
applying an early stopping to the active learning algorithms.

We also compared the performance of early stopped AL with
Batch algorithm. Table 1 presents the g-means and the AUC values
of the two methods. Data efficiency column for AL indicates that
by processing only a portion of the instances from the training
set, AL can achieve similar or even higher prediction performance
than that of Batch which sees all the training instances. Another
important observation from Table 1 is that support vector imbalance
ratios in the final models are much less than the class imbalance

ratios of the datasets. This confirms our discussion of Figure 3 in
section 3. The class imbalance ratio within the margins are much
less than the class imbalance ratio of the entire data and active
learning can be used to reach those informative instances which
most likely become support vectors without seeing all the training
instances.

In order to evaluate the methods at different thresholds, we also
investigate the ROC curves as given in Figure 7. The ROC curves
of AL are similar and sometimes better than of the Batch algorithm
(RS, seeing all the training instances). The AUC of AL and Batch
are 0.8980 and 0.8910 respectively in the Adult dataset. At the same
number of training instances where AL is early stopped, AUC of
RS can be substantially lower. As Figure 7 shows, the ROC curve
of AL is markedly higher than that of RS (early stopping) and the
AUC values are 0.8980 and 0.8725 respectively for Adult dataset.
These results suggest that AL converges faster than RS using fewer
and informative instances and AL can get even higher prediction
performance than the Batch algorithm by processing only a portion
of the training set.

Figure 8: Support Vector ratios in AL and RS

In Figure 8, we investigate how the number of support vec-
tors changes in AL and Random Sampling (RS). With random
sampling, the instances are selected for the learner randomly
from the entire pool of the training data. Therefore, the support
vector imbalance ratio quickly approaches the data imbalance ratio.
As learning continues, the learner should gradually see all the
instances within the final margin and the support vector imbalance
ratio decreases. When RS finishes learning, the support vector
imbalance ratio is the data imbalance ratio within the margin. The
support vector imbalance ratio curve of AL is drastically different
than RS. AL intelligently picks the instances closest to the margin
in each step. Since the data imbalance ratio within the margin
is lower than data imbalance ratio, the support vectors in AL are
more balanced than RS during learning. Using AL, the model
saturates by seeing only 2000 (among 7770) training instances
and reaches the final support vector imbalance ratio. Note that
both methods achieve similar support vector imbalance ratios when
learning finishes, but AL achieves this in the early steps of the
learning.

We compare the AL method discussed in this paper with several
other strategies as well. Among them, undersampling (US), and
an oversampling method (SMOTE) are examples of resampling
techniques which require preprocessing. Recent research showed
that oversampling at random does not help to improve prediction
performance [12] therefore we use a more complex oversampling

Table 2: Overview of the datasets.
Dataset #Feat. #Pos #Neg Ratio c γ

R
eu

te
rs

Crude 8315 389 7381 19.0 2 1
Grain 8315 433 7337 16.9 2 1
Interest 8315 347 7423 21.4 1 2
Money-fx 8315 538 7232 13.4 1 0.5
Ship 8315 197 7573 38.4 1 0.5
Wheat 8315 212 7558 35.7 1 0.5

C
it

eS
ee

r

AI 6946 1420 5353 4.3 50 0.1
COMM 6946 1252 5341 4.2 50 0.1
Crypt 6946 552 6041 11.0 50 0.1
DB 6946 819 5775 7.1 50 0.1
OS 6946 262 6331 24.2 50 0.1

U
C

I

Abalone-7 9 352 3407 9.7 100 0.01
Letter-A 16 710 17290 24.4 10 0.01
Satimage 36 415 4020 9.69 50 0.001

USPS 256 1232 6097 5.0 1000 2
MNIST-8 780 5851 54149 9.3 1000 0.02

method (SMOTE). As an algorithmic method to compare, we use
the method of assigning different costs (DC) to the positive and
negative classes as the misclassification penalty parameter. For
instance, if the imbalance ratio of the data is 19:1 in favor of the
negative class, the cost of misclassifying a positive instance is set
to be 19 times greater than that of misclassifying a negative one. We
use LASVM2, an online SVM tool, in all experiments. Other than
the results of the methods addressing class imbalance problem, we
also give results of Batch algorithm with the original training set to
form a baseline. LASVM is run in random sampling mode for US,
SMOTE and DC.

We give the comparisons of the methods for g-means perfor-
mance metric for several datasets in Figure 9. The right border
of the shaded pink area is the place where the aforementioned early
stopping strategy is applied. The curves in the graphs are averages
of 10 runs. For completeness we did not stop the AL experiments
at the early stopping point but allow them to run on the entire
training set. We present the PRBEP of the methods and the total
running times of the SMOTE and AL on 18 benchmark and real-
world datasets in Table 3. The results for active learning in Table
3 depict the results in the early stopping points. The results for
the other methods in Table 3 depict the values at the end of the
curves –when trained with the entire dataset– since those methods
do not employ any early stopping criteria. We did not apply early
stopping criteria to the other methods because as observed from
Figure 9, no early stopping criteria would achieve a comparable
training time with of AL’s training time without a significant loss in
their prediction performance based on convergence time. The other
methods converge to similar levels of g-means when nearly all
training instances are used, and applying an early stopping criteria
would have little, if any, effect on their training times.

Since AL involves discarding some instances from the training
set, it can be perceived as a type of undersampling method. Unlike
US which discards majority samples randomly, AL performs an
intelligent search for the most informative ones adaptively in each
iteration according to the current hyperplane. In datasets where
class imbalance ratio is high such as corn, wheat, letter and
satimage, we observe significant decrease in PRBEP of US (see
Table 3). Note that US’s undersampling rate for the majority
class in each category is set to the same value as the final support
vector ratio which AL reaches in the early stopping point and RS
reaches when it sees the entire training data. Although the class
imbalance ratio provided to the learner in AL and US are the same,

2Available at http://leon.bottou.org/projects/lasvm

Table 3: Comparison of PRBEP and training time.

Metric PRBEP Training time (sec.)

Dataset Batch US SMOTE DC AL SMOTE AL

R
eu

te
rs

Corn 91.07 78.57 91.07 89.28 89.29 87 16
Crude 87.83 85.70 87.83 87.83 87.83 129 41
Grain 92.62 89.93 91.44 91.94 91.94 205 50
Interest 76.33 74.04 77.86 75.57 75.57 116 42
Money-fx 73.74 74.30 75.42 75.42 76.54 331 35
Ship 86.52 86.50 88.76 89.89 89.89 49 32
Trade 77.77 76.92 77.77 77.78 78.63 215 38
Wheat 84.51 81.61 84.51 84.51 85.92 54 25

C
it

eS
ee

r

AI 78.80 80.68 78.99 78.79 79.17 1402 125
COMM 86.59 86.76 86.59 86.59 86.77 1707 75
CRYPT 97.89 97.47 97.89 97.89 97.89 310 19
DB 86.36 86.61 86.98 86.36 86.36 526 41
OS 84.07 83.19 84.07 84.07 84.07 93 23

U
C

I Abalone-7 100.0 100.0 100.0 100.0 100.0 16 4
Letter-A 99.48 96.45 99.24 99.35 99.35 86 3
Satimage 73.46 68.72 73.46 73.93 73.93 63 21

USPS 98.44 98.44 98.13 98.44 98.75 4328 13

MNIST-8 97.63 97.02 97.74 97.63 97.74 83,339 1,048

AL achieves significantly better PRBEP performance metric than
US. The Wilcoxon signed-rank test (2-tailed) reveals that the zero
median hypothesis can be rejected at the significance level 1%
(p=0.0015), implying that AL performs statistically better than US
in these 18 datasets. These results reveal the importance of using
the informative instances for learning.

Table 4 presents the rank of PRBEP prediction performance of
the five approaches in a variety of datasets. The values in bold
correspond to the cases where AL wins and it’s clear that winning
cases are very frequent for AL (12 out of 18 cases). The average
rank also indicates that AL achieves the best PRBEP among the
five methods. SMOTE and DC achieve higher PRBEP than the
Batch algorithm. The loss of information when undersampling
the majority class affects US’s prediction performance. Table
3 also gives the comparison of the computation times of the

Table 4: Comparison of ranks of different methods in PRBEP.

The values in bold correspond to the cases where AL win. AL

wins in 12 out of 18 cases in PRBEP.
Metric Rank
Dataset Batch US SMOTE DC AL

R
eu

te
rs

Corn 1 5 1 4 3
Crude 1 5 1 1 1

Grain 1 5 4 2 2
Interest 2 5 1 3 3
Money-fx 5 4 2 2 1

Ship 4 5 3 1 1

Trade 3 5 3 2 1

Wheat 2 5 2 2 1

C
it

eS
ee

r

AI 4 1 3 5 2
COMM 3 2 3 3 1

CRYPT 1 5 1 1 1

DB 3 2 1 3 3
OS 1 5 1 1 1

U
C

I Abalone-7 1 1 1 1 1

Letter-A 1 5 4 2 2
Satimage 3 5 3 1 1

USPS 2 2 5 2 1

MNIST-8 3 5 1 3 1

Avg. Rank 2.28 4.00 2.22 2.17 1.50

AL and SMOTE. Note that SMOTE requires significantly long
preprocessing time which dominates the training time in large
datasets, e.g., MNIST-8 dataset. The low computation cost,
scalability and high prediction performance of AL suggest that AL
can efficiently handle the class imbalance problem.

7. CONCLUSIONS
The class imbalance problem has been known to impact the

prediction performance of classification algorithms. The results of
this paper offer a better understanding of the effect of the active
learning on imbalanced datasets. We first propose an efficient
active learning method which selects informative instances from
a randomly picked small pool of examples rather than making
a full search in the entire training set. This strategy renders
active learning to be applicable to very large datasets which
otherwise would be computationally very expensive. Combined
with the early stopping heuristics, active learning achieves a fast
and scalable solution without sacrificing prediction performance.
We then show that the proposed active learning strategy can be used
to address the class imbalance problem. In simulation studies, we
demonstrate that as the imbalance ratio increases, active learning
can achieve better prediction performance than random sampling
by only using the informative portion of the training set. By
focusing the learning on the instances around the classification
boundary, more balanced class distributions can be provided to the
learner in the earlier steps of the learning. Our empirical results
on a variety of real-world datasets allow us to conclude that active
learning is comparable or even better than other popular resampling
methods in dealing with imbalanced data classification.

8. REFERENCES

[1] N. Abe. Invited talk: Sampling approaches to learning from
imbalanced datasets: Active learning, cost sensitive learning
and beyond. Proc. of ICML Workshop: Learning from

Imbalanced Data Sets, 2003.

[2] R. Akbani, S. Kwek, and N. Japkowicz. Applying support
vector machines to imbalanced datasets. Proc. of European

Conference on Machine Learning, pages 39–50, 2004.

Figure 9: Comparisons of g-means. The right border of the shaded area corresponds to the early stopping point.

[3] A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel
classifiers with online and active learning. Journal of

Machine Learning Research (JMLR), 6:1579–1619, 2005.

[4] P. K. Chan and S. J. Stolfo. Toward scalable learning with
non-uniform class and cost distributions: A case study in
credit card fraud detection. In Proc. of ACM SIGKDD Int.

Conf. on Knowledge Discovery and Data Mining, 1998.

[5] N. V. Chawla, K. W. Bowyer., L. O. Hall, and W. P.
Kegelmeyer. Smote: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research (JAIR),
16:321–357, 2002.

[6] P. Domingos. Metacost: A general method for making
classifiers cost-sensitive. In Proc. of the ACM SIGKDD Int.

Conf. on Knowledge Discovery and Data Mining, 1999.

[7] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive
learning algorithms and representations for text
categorization. In Proc. of Int. Conference on Information

and Knowledge Management (CIKM), 1998.

[8] J. W. Grzymala-Busse, Z. Zheng, L. K. Goodwin, and W. J.
Grzymala-Busse. An approach to imbalanced datasets based
on changing rule strength. In Proc. of In Learning from

Imbalanced Datasets, AAAI Workshop, 2000.

[9] J. Huang, S. Ertekin, and C. L. Giles. Efficient name
disambiguation for large scale datasets. In Proc. of European

Conference on Principles and Practice of Knowledge

Discovery in Databases (ECML/PKDD), 2006.

[10] N. Japkowicz. A novelty detection approach to classification.
In Proc. of the Int. Joint Conference on Artificial Intelligence

(IJCAI), pages 518–523, 1995.

[11] N. Japkowicz. The class imbalance problem: Significance
and strategies. In Proc. of 2000 Int. Conference on Artificial

Intelligence (IC-AI’2000), volume 1, pages 111–117, 2000.

[12] N. Japkowicz and S. Stephen. The class imbalance problem:
A systematic study. Intelligent Data Analysis, 2002.

[13] M. Kubat, R. C. Holte, and S. Matwin. Machine learning for
the detection of oil spills in satellite radar images. Machine

Learning, 30(2-3):195–215, 1998.

[14] M. Kubat and S. Matwin. Addressing the curse of
imbalanced training datasets: One sided selection. Proc. of

Int. Conference on Machine Learning (ICML), 30(2-3), 1997.

[15] C. X. Ling and C. Li. Data mining for direct marketing:
Problems and solutions. In Knowledge Discovery and Data

Mining, pages 73–79, 1998.

[16] X.-Y. Liu, J. Wu, and Z.-H. Zhou. Exploratory
under-sampling for class-imbalance learning. In Proc. of the

International Conference on Data Mining (ICDM), 2006.

[17] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and
C. Brunk. Reducing misclassification costs. In Proc. of 11th

Int. Conference on Machine Learning (ICML), 1994.

[18] F. Provost. Machine learning from imbalanced datasets 101.
In Proc. of AAAI Workshop on Imbalanced Data Sets, 2000.

[19] P. Radivojac, N. V. Chawla, A. K. Dunker, and Z. Obradovic.
Classification and knowledge discovery in protein databases.
Journal of Biomedical Informatics, 37(4):224–239, 2004.

[20] B. Raskutti and A. Kowalczyk. Extreme re-balancing for
svms: a case study. SIGKDD Explorations Newsletter,
6(1):60–69, 2004.

[21] G. Schohn and D. Cohn. Less is more: Active learning with
support vector machines. In Proc. of the 17th Int. Conference

on Machine Learning (ICML), pages 839–846, 2000.

[22] A. J. Smola and B. Schölkopf. Sparse greedy matrix
approximation for machine learning. In Proc. of 17th Int.

Conference on Machine Learning (ICML).

[23] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification. Journal of

Machine Learning Research (JMLR), 2:45–66, 2002.

[24] V. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, 1995.

Journal of Machine Learning Research 6 (2005) 1579–1619 Submitted 3/05; Published 9/05

Fast Kernel Classifiers

with Online and Active Learning

Antoine Bordes ANTOINE.BORDES@BDE.ESPCI.FR

NEC Laboratories America

4 Independence Way

Princeton, NJ 08540, USA, and

Ecole Supérieure de Physique et Chimie Industrielles

10 rue Vauquelin

75231 Paris CEDEX 05, France

Seyda Ertekin SEYDA@PSU.EDU

The Pennsylvania State University

University Park, PA 16802, USA

Jason Weston JASONW@NEC-LABS.COM

Léon Bottou LEON@BOTTOU.ORG

NEC Laboratories America

4 Independence Way

Princeton, NJ 08540, USA

Editor: Nello Cristianini

Abstract

Very high dimensional learning systems become theoretically possible when training examples are

abundant. The computing cost then becomes the limiting factor. Any efficient learning algorithm

should at least take a brief look at each example. But should all examples be given equal attention?

This contribution proposes an empirical answer. We first present an online SVM algorithm

based on this premise. LASVM yields competitive misclassification rates after a single pass over

the training examples, outspeeding state-of-the-art SVM solvers. Then we show how active exam-

ple selection can yield faster training, higher accuracies, and simpler models, using only a fraction

of the training example labels.

1. Introduction

Electronic computers have vastly enhanced our ability to compute complicated statistical models.

Both theory and practice have adapted to take into account the essential compromise between the

number of examples and the model capacity (Vapnik, 1998). Cheap, pervasive and networked com-

puters are now enhancing our ability to collect observations to an even greater extent. Data sizes

outgrow computer speed. During the last decade, processors became 100 times faster, hard disks

became 1000 times bigger.

Very high dimensional learning systems become theoretically possible when training examples

are abundant. The computing cost then becomes the limiting factor. Any efficient learning algorithm

should at least pay a brief look at each example. But should all training examples be given equal

attention?

c©2005 Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou.

BORDES, ERTEKIN, WESTON, AND BOTTOU

This contribution proposes an empirical answer:

• Section 2 presents kernel classifiers such as Support Vector Machines (SVM). Kernel classi-

fiers are convenient for our purposes because they clearly express their internal states in terms

of subsets of the training examples.

• Section 3 proposes a novel online algorithm, LASVM, which converges to the SVM solution.

Experimental evidence on diverse data sets indicates that it reliably reaches competitive ac-

curacies after performing a single pass over the training set. It uses less memory and trains

significantly faster than state-of-the-art SVM solvers.

• Section 4 investigates two criteria to select informative training examples at each iteration

instead of sequentially processing all examples. Empirical evidence shows that selecting in-

formative examples without making use of the class labels can drastically reduce the training

time and produce much more compact classifiers with equivalent or superior accuracy.

• Section 5 discusses the above results and formulates theoretical questions. The simplest ques-

tion involves the convergence of these algorithms and is addressed by the appendix. Other

questions of greater importance remain open.

2. Kernel Classifiers

Early linear classifiers associate classes y = ±1 to patterns x by first transforming the patterns into

feature vectors Φ(x) and taking the sign of a linear discriminant function:

ŷ(x) = w′Φ(x)+b. (1)

The parameters w and b are determined by running some learning algorithm on a set of training

examples (x1,y1) · · ·(xn,yn). The feature function Φ is usually hand chosen for each particular

problem (Nilsson, 1965).

Aizerman et al. (1964) transform such linear classifiers by leveraging two theorems of the Re-

producing Kernel theory (Aronszajn, 1950).

The Representation Theorem states that many Φ-machine learning algorithms produce parame-

ter vectors w that can be expressed as a linear combinations of the training patterns:

w =
n

∑
i=1

αiΦ(xi).

The linear discriminant function (1) can then be written as a kernel expansion

ŷ(x) =
n

∑
i=1

αiK(x,xi)+b, (2)

where the kernel function K(x,y) represents the dot products Φ(x)′Φ(y) in feature space. This

expression is most useful when a large fraction of the coefficients αi are zero. Examples such that

αi 6= 0 are then called Support Vectors.

Mercer’s Theorem precisely states which kernel functions correspond to a dot product for some

feature space. Kernel classifiers deal with the kernel function K(x,y) without explicitly using the

1580

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

corresponding feature function Φ(x). For instance, the well known RBF kernel K(x,y) = e−γ‖x−y‖2

defines an implicit feature space of infinite dimension.

Kernel classifiers handle such large feature spaces with the comparatively modest computational

costs of the kernel function. On the other hand, kernel classifiers must control the decision funcion

complexity in order to avoid overfitting the training data in such large feature spaces. This can be

achieved by keeping the number of support vectors as low as possible (Littlestone and Warmuth,

1986) or by searching decision boundaries that separate the examples with the largest margin (Vap-

nik and Lerner, 1963; Vapnik, 1998).

2.1 Support Vector Machines

Support Vector Machines were defined by three incremental steps. First, Vapnik and Lerner (1963)

propose to construct the Optimal Hyperplane, that is, the linear classifier that separates the training

examples with the widest margin. Then, Guyon, Boser, and Vapnik (1993) propose to construct

the Optimal Hyperplane in the feature space induced by a kernel function. Finally, Cortes and

Vapnik (1995) show that noisy problems are best addressed by allowing some examples to violate

the margin condition.

Support Vector Machines minimize the following objective function in feature space:

min
w,b
‖w‖2 +C

n

∑
i=1

ξi with

{

∀ i yi ŷ(xi)≥ 1− ξi

∀ i ξi ≥ 0.
(3)

For very large values of the hyper-parameter C, this expression minimizes ‖w‖2 under the constraint

that all training examples are correctly classified with a margin yi ŷ(xi) greater than 1. Smaller values

of C relax this constraint and produce markedly better results on noisy problems (Cortes and Vapnik,

1995).

In practice this is achieved by solving the dual of this convex optimization problem. The coef-

ficients αi of the SVM kernel expansion (2) are found by defining the dual objective function

W (α) = ∑
i

αiyi−
1

2
∑
i, j

αiα jK(xi,x j) (4)

and solving the SVM Quadratic Programming (QP) problem:

max
α

W (α) with















∑i αi = 0

Ai ≤ αi ≤ Bi

Ai = min(0,Cyi)
Bi = max(0,Cyi).

(5)

The above formulation slightly deviates from the standard formulation (Cortes and Vapnik, 1995)

because it makes the αi coefficients positive when yi = +1 and negative when yi =−1.

SVMs have been very successful and are very widely used because they reliably deliver state-

of-the-art classifiers with minimal tweaking.

Computational Cost of SVMs There are two intuitive lower bounds on the computational cost

of any algorithm able to solve the SVM QP problem for arbitrary matrices Ki j = K(xi,x j).

1581

BORDES, ERTEKIN, WESTON, AND BOTTOU

1. Suppose that an oracle reveals whether αi = 0 or αi = ±C for all i = 1 . . .n. Computing the

remaining 0 < |αi| < C amounts to inverting a matrix of size R×R where R is the number

of support vectors such that 0 < |αi| < C. This typically requires a number of operations

proportional to R3.

2. Simply verifying that a vector α is a solution of the SVM QP problem involves computing

the gradients of W (α) and checking the Karush-Kuhn-Tucker optimality conditions (Vapnik,

1998). With n examples and S support vectors, this requires a number of operations propor-

tional to n S.

Few support vectors reach the upper bound C when it gets large. The cost is then dominated by

the R3 ≈ S3. Otherwise the term n S is usually larger. The final number of support vectors therefore

is the critical component of the computational cost of the SVM QP problem.

Assume that increasingly large sets of training examples are drawn from an unknown distribu-

tion P(x,y). Let B be the error rate achieved by the best decision function (1) for that distribution.

When B > 0, Steinwart (2004) shows that the number of support vectors is asymptotically equiv-

alent to 2nB . Therefore, regardless of the exact algorithm used, the asymptotical computational

cost of solving the SVM QP problem grows at least like n2 when C is small and n3 when C gets

large. Empirical evidence shows that modern SVM solvers (Chang and Lin, 2001-2004; Collobert

and Bengio, 2001) come close to these scaling laws.

Practice however is dominated by the constant factors. When the number of examples grows,

the kernel matrix Ki j = K(xi,x j) becomes very large and cannot be stored in memory. Kernel values

must be computed on the fly or retrieved from a cache of often accessed values. When the cost of

computing each kernel value is relatively high, the kernel cache hit rate becomes a major component

of the cost of solving the SVM QP problem (Joachims, 1999). Larger problems must be addressed

by using algorithms that access kernel values with very consistent patterns.

Section 3 proposes an Online SVM algorithm that accesses kernel values very consistently.

Because it computes the SVM optimum, this algorithm cannot improve on the n2 lower bound.

Because it is an online algorithm, early stopping strategies might give approximate solutions in

much shorter times. Section 4 suggests that this can be achieved by carefully choosing which

examples are processed at each iteration.

Before introducing the new Online SVM, let us briefly describe other existing online kernel

methods, beginning with the kernel Perceptron.

2.2 Kernel Perceptrons

The earliest kernel classifiers (Aizerman et al., 1964) were derived from the Perceptron algorithm (Rosen-

blatt, 1958). The decision function (2) is represented by maintaining the set S of the indices i of the

support vectors. The bias parameter b remains zero.

Kernel Perceptron

1) S ← /0, b← 0.

2) Pick a random example (xt ,yt)
3) Compute ŷ(xt) = ∑i∈S αi K(xt ,xi)+b

4) If yt ŷ(xt) ≤ 0 then S ← S ∪{t}, αt ← yt

5) Return to step 2.

1582

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

Such Online Learning Algorithms require very little memory because the examples are pro-

cessed one by one and can be discarded after being examined.

Iterations such that yt ŷ(xt) < 0 are called mistakes because they correspond to patterns mis-

classified by the perceptron decision boundary. The algorithm then modifies the decision boundary

by inserting the misclassified pattern into the kernel expansion. When a solution exists, Novikoff’s

Theorem (Novikoff, 1962) states that the algorithm converges after a finite number of mistakes, or

equivalently after inserting a finite number of support vectors. Noisy data sets are more problematic.

Large Margin Kernel Perceptrons The success of Support Vector Machines has shown that large

classification margins were desirable. On the other hand, the Kernel Perceptron (Section 2.2) makes

no attempt to achieve large margins because it happily ignores training examples that are very close

to being misclassified.

Many authors have proposed to close the gap with online kernel classifiers by providing larger

margins. The Averaged Perceptron (Freund and Schapire, 1998) decision rule is the majority vote of

all the decision rules obtained after each iteration of the Kernel Perceptron algorithm. This choice

provides a bound comparable to those offered in support of SVMs. Other algorithms (Frieß et al.,

1998; Gentile, 2001; Li and Long, 2002; Crammer and Singer, 2003) explicitely construct larger

margins. These algorithms modify the decision boundary whenever a training example is either

misclassified or classified with an insufficient margin. Such examples are then inserted into the

kernel expansion with a suitable coefficient. Unfortunately, this change significantly increases the

number of mistakes and therefore the number of support vectors. The increased computational cost

and the potential overfitting undermines the positive effects of the increased margin.

Kernel Perceptrons with Removal Step This is why Crammer et al. (2004) suggest an additional

step for removing support vectors from the kernel expansion (2). The Budget Perceptron performs

very nicely on relatively clean data sets.

Budget Kernel Perceptron (β,N)

1) S ← /0, b← 0.

2) Pick a random example (xt ,yt)
3) Compute ŷ(xt) = ∑i∈S αi K(xt ,xi)+b

4) If yt ŷ(xt) ≤ β then,

4a) S ← S ∪{t}, αt ← yt

4b) If |S |> N then S ← S −{argmaxi∈S yi (ŷ(xi)−αi K(xi,xi))}
5) Return to step 2.

Online kernel classifiers usually experience considerable problems with noisy data sets. Each

iteration is likely to cause a mistake because the best achievable misclassification rate for such prob-

lems is high. The number of support vectors increases very rapidly and potentially causes overfitting

and poor convergence. More sophisticated support vector removal criteria avoid this drawback (We-

ston et al., 2005). This modified algorithm outperforms all other online kernel classifiers on noisy

data sets and matches the performance of Support Vector Machines with less support vectors.

3. Online Support Vector Machines

This section proposes a novel online algorithm named LASVM that converges to the SVM solution.

This algorithm furthers ideas first presented by Bordes and Bottou (2005). Unlike this previous

1583

BORDES, ERTEKIN, WESTON, AND BOTTOU

work, LASVM relies on the traditional “soft margin” SVM formulation, handles noisy data sets, and

is nicely related to the SMO algorithm. Experimental evidence on multiple data sets indicates that

it reliably reaches competitive test error rates after performing a single pass over the training set. It

uses less memory and trains significantly faster than state-of-the-art SVM solvers.

3.1 Quadratic Programming Solvers for SVMs

Sequential Direction Search Efficient numerical algorithms have been developed to solve the

SVM QP problem (5). The best known methods are the Conjugate Gradient method (Vapnik, 1982,

pages 359–362) and the Sequential Minimal Optimization (Platt, 1999). Both methods work by

making successive searches along well chosen directions.

Each direction search solves the restriction of the SVM problem to the half-line starting from the

current vector α and extending along the specified direction u. Such a search yields a new feasible

vector α +λ∗u, where

λ∗ = argmaxW (α +λu) with 0≤ λ ≤ φ(α,u). (6)

The upper bound φ(α,u) ensures that α +λu is feasible as well:

φ(α,u) = min







0 if ∑k uk 6= 0

(Bi−αi)/ui for all i such that ui > 0

(A j−α j)/u j for all j such that u j < 0.







(7)

Calculus shows that the optimal value is achieved for

λ∗ = min

{

φ(α,u) ,
∑i gi ui

∑i, j uiu j Ki j

}

(8)

where Ki j = K(xi,x j) and g = (g1 . . .gn) is the gradient of W (α), and

gk =
∂W (α)

∂αk

= yk−∑
i

αiK(xi,xk) = yk− ŷ(xk)+b. (9)

Sequential Minimal Optimization Platt (1999) observes that direction search computations are

much faster when the search direction u mostly contains zero coefficients. At least two coefficients

are needed to ensure that ∑k uk = 0. The Sequential Minimal Optimization (SMO) algorithm uses

search directions whose coefficients are all zero except for a single +1 and a single −1.

Practical implementations of the SMO algorithm (Chang and Lin, 2001-2004; Collobert and

Bengio, 2001) usually rely on a small positive tolerance τ > 0. They only select directions u such

that φ(α,u) > 0 and u′g > τ. This means that we can move along direction u without immediately

reaching a constraint and increase the value of W (α). Such directions are defined by the so-called

τ-violating pair (i, j):

(i, j) is a τ-violating pair ⇐⇒







αi < Bi

α j > A j

gi−g j > τ.

1584

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

SMO Algorithm

1) Set α← 0 and compute the initial gradient g (equation 9)

2) Choose a τ-violating pair (i, j). Stop if no such pair exists.

3) λ←min

{

gi−g j

Kii +K j j−2Ki j

, Bi−αi, α j−A j

}

αi← αi +λ , α j← α j−λ
gs← gs−λ(Kis−K js) ∀s ∈ {1 . . .n}

4) Return to step (2)

The above algorithm does not specify how exactly the τ-violating pairs are chosen. Modern

implementations of SMO select the τ-violating pair (i, j) that maximizes the directional gradient u′g.

This choice was described in the context of Optimal Hyperplanes in both (Vapnik, 1982, pages 362–

364) and (Vapnik et al., 1984).

Regardless of how exactly the τ-violating pairs are chosen, Keerthi and Gilbert (2002) assert

that the SMO algorithm stops after a finite number of steps. This assertion is correct despite a slight

flaw in their final argument (Takahashi and Nishi, 2003).

When SMO stops, no τ-violating pair remain. The corresponding α is called a τ-approximate

solution. Proposition 13 in appendix A establishes that such approximate solutions indicate the

location of the solution(s) of the SVM QP problem when the tolerance τ become close to zero.

3.2 Online LASVM

This section presents a novel online SVM algorithm named LASVM. There are two ways to view

this algorithm. LASVM is an online kernel classifier sporting a support vector removal step: vectors

collected in the current kernel expansion can be removed during the online process. LASVM also is

a reorganization of the SMO sequential direction searches and, as such, converges to the solution of

the SVM QP problem.

Compared to basic kernel perceptrons (Aizerman et al., 1964; Freund and Schapire, 1998), the

LASVM algorithm features a removal step and gracefully handles noisy data. Compared to kernel

perceptrons with removal steps (Crammer et al., 2004; Weston et al., 2005), LASVM converges to the

known SVM solution. Compared to a traditional SVM solver (Platt, 1999; Chang and Lin, 2001-

2004; Collobert and Bengio, 2001), LASVM brings the computational benefits and the flexibility

of online learning algorithms. Experimental evidence indicates that LASVM matches the SVM

accuracy after a single sequential pass over the training examples.

This is achieved by alternating two kinds of direction searches named PROCESS and REPRO-

CESS. Each direction search involves a pair of examples. Direction searches of the PROCESS kind

involve at least one example that is not a support vector of the current kernel expansion. They po-

tentially can change the coefficient of this example and make it a support vector. Direction searches

of the REPROCESS kind involve two examples that already are support vectors in the current kernel

expansion. They potentially can zero the coefficient of one or both support vectors and thus remove

them from the kernel expansion.

Building Blocks The LASVM algorithm maintains three essential pieces of information: the set

S of potential support vector indices, the coefficients αi of the current kernel expansion, and the

partial derivatives gi defined in (9). Variables αi and gi contain meaningful values when i ∈ S only.

1585

BORDES, ERTEKIN, WESTON, AND BOTTOU

The coefficient αi are assumed to be null if i /∈ S . On the other hand, set S might contain a few

indices i such that αi = 0.

The two basic operations of the Online LASVM algorithm correspond to steps 2 and 3 of the

SMO algorithm. These two operations differ from each other because they have different ways to

select τ-violating pairs.

The first operation, PROCESS, attempts to insert example k /∈ S into the set of current support

vectors. In the online setting this can be used to process a new example at time t. It first adds

example k /∈ S into S (step 1-2). Then it searches a second example in S to find the τ-violating pair

with maximal gradient (steps 3-4) and performs a direction search (step 5).

LASVM PROCESS(k)

1) Bail out if k ∈ S .

2) αk← 0 , gk← yk−∑s∈S αsKks , S ← S ∪{k}

3) If yk = +1 then

i← k , j← argmins∈S gs with αs > As

else

j← k , i← argmaxs∈S gs with αs < Bs

4) Bail out if (i, j) is not a τ-violating pair.

5) λ←min

{

gi−g j

Kii +K j j−2Ki j

, Bi−αi, α j−A j

}

αi← αi +λ , α j← α j−λ
gs← gs−λ(Kis−K js) ∀s ∈ S

The second operation, REPROCESS, removes some elements from S . It first searches the τ-

violating pair of elements of S with maximal gradient (steps 1-2), and performs a direction search

(step 3). Then it removes blatant non support vectors (step 4). Finally it computes two useful

quantities: the bias term b of the decision function (2) and the gradient δ of the most τ-violating pair

in S .

LASVM REPROCESS

1) i← argmaxs∈S gs with αs < Bs

j← argmins∈S gs with αs > As

2) Bail out if (i, j) is not a τ-violating pair.

3) λ←min

{

gi−g j

Kii +K j j−2Ki j

, Bi−αi, α j−A j

}

αi← αi +λ , α j← α j−λ
gs← gs−λ(Kis−K js) ∀s ∈ S

4) i← argmaxs∈S gs with αs < Bs

j← argmins∈S gs with αs > As

For all s ∈ S such that αs = 0

If ys =−1 and gs ≥ gi then S = S −{s}
If ys = +1 and gs ≤ g j then S = S −{s}

5) b← (gi +g j)/2 , δ← gi−g j

1586

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

Online LASVM After initializing the state variables (step 1), the Online LASVM algorithm al-

ternates PROCESS and REPROCESS a predefined number of times (step 2). Then it simplifies the

kernel expansion by running REPROCESS to remove all τ-violating pairs from the kernel expansion

(step 3).

LASVM

1) Initialization:

Seed S with a few examples of each class.

Set α← 0 and compute the initial gradient g (equation 9)

2) Online Iterations:

Repeat a predefined number of times:

- Pick an example kt

- Run PROCESS(kt).

- Run REPROCESS once.

3) Finishing:

Repeat REPROCESS until δ≤ τ.

LASVM can be used in the online setup where one is given a continuous stream of fresh random

examples. The online iterations process fresh training examples as they come. LASVM can also be

used as a stochastic optimization algorithm in the offline setup where the complete training set is

available before hand. Each iteration randomly picks an example from the training set.

In practice we run the LASVM online iterations in epochs. Each epoch sequentially visits all

the randomly shuffled training examples. After a predefined number P of epochs, we perform the

finishing step. A single epoch is consistent with the use of LASVM in the online setup. Multiple

epochs are consistent with the use of LASVM as a stochastic optimization algorithm in the offline

setup.

Convergence of the Online Iterations Let us first ignore the finishing step (step 3) and assume

that online iterations (step 2) are repeated indefinitely. Suppose that there are remaining τ-violating

pairs at iteration T .

a.) If there are τ-violating pairs (i, j) such that i ∈ S and j ∈ S , one of them will be exploited by

the next REPROCESS.

b.) Otherwise, if there are τ-violating pairs (i, j) such that i ∈ S or j ∈ S , each subsequent PRO-

CESS has a chance to exploit one of them. The intervening REPROCESS do nothing because

they bail out at step 2.

c.) Otherwise, all τ-violating pairs involve indices outside S . Subsequent calls to PROCESS and

REPROCESS bail out until we reach a time t > T such that kt = i and kt+1 = j for some τ-

violating pair (i, j). The first PROCESS then inserts i into S and bails out. The following

REPROCESS bails out immediately. Finally the second PROCESS locates pair (i, j).

This case is not important in practice. There usually is a support vector s ∈ S such that

As < αs < Bs. We can then write gi− g j = (gi− gs)+ (gs− g j) ≤ 2τ and conclude that we

already have reached a 2τ-approximate solution.

1587

BORDES, ERTEKIN, WESTON, AND BOTTOU

The LASVM online iterations therefore work like the SMO algorithm. Remaining τ-violating

pairs is sooner or later exploited by either PROCESS or REPROCESS. As soon as a τ-approximate

solution is reached, the algorithm stops updating the coefficients α. Theorem 18 in the appendix

gives more precise convergence results for this stochastic algorithm.

The finishing step (step 3) is only useful when one limits the number of online iterations. Run-

ning LASVM usually consists in performing a predefined number P of epochs and running the fin-

ishing step. Each epoch performs n online iterations by sequentially visiting the randomly shuffled

training examples. Empirical evidence suggests indeed that a single epoch yields a classifier almost

as good as the SVM solution.

Computational Cost of LASVM Both PROCESS and REPROCESS require a number of operations

proportional to the number S of support vectors in set S . Performing P epochs of online iterations

requires a number of operations proportional to n P S̄. The average number S̄ of support vectors

scales no more than linearly with n because each online iteration brings at most one new support

vector. The asymptotic cost therefore grows like n2 at most. The finishing step is similar to running

a SMO solver on a SVM problem with only S training examples. We recover here the n2 to n3

behavior of standard SVM solvers.

Online algorithms access kernel values with a very specific pattern. Most of the kernel values

accessed by PROCESS and REPROCESS involve only support vectors from set S . Only PROCESS

on a new example xkt
accesses S fresh kernel values K(xkt

,xi) for i ∈ S .

Implementation Details Our LASVM implementation reorders the examples after every PRO-

CESS or REPROCESS to ensure that the current support vectors come first in the reordered list

of indices. The kernel cache records truncated rows of the reordered kernel matrix. SVMLight

(Joachims, 1999) and LIBSVM (Chang and Lin, 2001-2004) also perform such reorderings, but do

so rather infrequently (Joachims, 1999). The reordering overhead is acceptable during the online

iterations because the computation of fresh kernel values takes much more time.

Reordering examples during the finishing step was more problematic. We eventually deployed

an adaptation of the shrinking heuristic (Joachims, 1999) for the finishing step only. The set S of

support vectors is split into an active set Sa and an inactive set Si. All support vectors are initially

active. The REPROCESS iterations are restricted to the active set Sa and do not perform any reorder-

ing. About every 1000 iterations, support vectors that hit the boundaries of the box constraints are

either removed from the set S of support vectors or moved from the active set Sa to the inactive set

Si. When all τ-violating pairs of the active set are exhausted, the inactive set examples are trans-

ferred back into the active set. The process continues as long as the merged set contains τ-violating

pairs.

3.3 MNIST Experiments

The Online LASVM was first evaluated on the MNIST1 handwritten digit data set (Bottou et al.,

1994). Computing kernel values for this data set is relatively expensive because it involves dot

products of 784 gray level pixel values. In the experiments reported below, all algorithms use the

same code for computing kernel values. The ten binary classification tasks consist of separating

each digit class from the nine remaining classes. All experiments use RBF kernels with γ= 0.005

1. This data set is available at http://yann.lecun.com/exdb/mnist.

1588

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

Figure 1: Compared test error rates for the ten

MNIST binary classifiers.

Figure 2: Compared training times for the ten

MNIST binary classifiers.

and the same training parameters C = 1000 and τ = 0.001. Unless indicated otherwise, the kernel

cache size is 256MB.

LASVM versus Sequential Minimal Optimization Baseline results were obtained by running

the state-of-the-art SMO solver LIBSVM (Chang and Lin, 2001-2004). The resulting classifier ac-

curately represents the SVM solution.

Two sets of results are reported for LASVM. The LASVM×1 results were obtained by performing

a single epoch of online iterations: each training example was processed exactly once during a

single sequential sweep over the training set. The LASVM×2 results were obtained by performing

two epochs of online iterations.

Figures 1 and 2 show the resulting test errors and training times. LASVM×1 runs about three

times faster than LIBSVM and yields test error rates very close to the LIBSVM results. Standard

paired significance tests indicate that these small differences are not significant. LASVM×2 usually

runs faster than LIBSVM and very closely tracks the LIBSVM test errors.

Neither the LASVM×1 or LASVM×2 experiments yield the exact SVM solution. On this data

set, LASVM reaches the exact SVM solution after about five epochs. The first two epochs represent

the bulk of the computing time. The remaining epochs run faster when the kernel cache is large

1589

BORDES, ERTEKIN, WESTON, AND BOTTOU

Algorithm Error Time

LIBSVM 1.36% 17400s

LASVM×1 1.42% 4950s

LASVM×2 1.36% 12210s

Figure 3: Training time as a function of the

number of support vectors.

Figure 4: Multiclass errors and training times

for the MNIST data set.

Figure 5: Compared numbers of support vec-

tors for the ten MNIST binary clas-

sifiers.

Figure 6: Training time variation as a func-

tion of the cache size. Relative

changes with respect to the 1GB

LIBSVM times are averaged over all

ten MNIST classifiers.

enough to hold all the dot products involving support vectors. Yet the overall optimization times are

not competitive with those achieved by LIBSVM.

Figure 3 shows the training time as a function of the final number of support vectors for the

ten binary classification problems. Both LIBSVM and LASVM×1 show a linear dependency. The

Online LASVM algorithm seems more efficient overall.

1590

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

Figure 4 shows the multiclass error rates and training times obtained by combining the ten

classifiers using the well known 1-versus-rest scheme (Schölkopf and Smola, 2002). LASVM×1

provides almost the same accuracy with much shorter training times. LASVM×2 reproduces the

LIBSVM accuracy with slightly shorter training time.

Figure 5 shows the resulting number of support vectors. A single epoch of the Online LASVM

algorithm gathers most of the support vectors of the SVM solution computed by LIBSVM. The first

iterations of the Online LASVM might indeed ignore examples that later become support vectors.

Performing a second epoch captures most of the missing support vectors.

LASVM versus the Averaged Perceptron The computational advantage of LASVM relies on its

apparent ability to match the SVM accuracies after a single epoch. Therefore it must be compared

with algorithms such as the Averaged Perceptron (Freund and Schapire, 1998) that provably match

well known upper bounds on the SVM accuracies. The AVGPERC×1 results in Figures 1 and 2 were

obtained after running a single epoch of the Averaged Perceptron. Although the computing times are

very good, the corresponding test errors are not competitive with those achieved by either LIBSVM

or LASVM. Freund and Schapire (1998) suggest that the Averaged Perceptron approaches the actual

SVM accuracies after 10 to 30 epochs. Doing so no longer provides the theoretical guarantees. The

AVGPERC×10 results in Figures 1 and 2 were obtained after ten epochs. Test error rates indeed

approach the SVM results. The corresponding training times are no longer competitive.

Impact of the Kernel Cache Size These training times stress the importance of the kernel cache

size. Figure 2 shows how the AVGPERC×10 runs much faster on problems 0, 1, and 6. This is hap-

pening because the cache is large enough to accomodate the dot products of all examples with all

support vectors. Each repeated iteration of the Average Perceptron requires very few additional ker-

nel evaluations. This is much less likely to happen when the training set size increases. Computing

times then increase drastically because repeated kernel evaluations become necessary.

Figure 6 compares how the LIBSVM and LASVM×1 training times change with the kernel cache

size. The vertical axis reports the relative changes with respect to LIBSVM with one gigabyte of

kernel cache. These changes are averaged over the ten MNIST classifiers. The plot shows how

LASVM tolerates much smaller caches. On this problem, LASVM with a 8MB cache runs slightly

faster than LIBSVM with a 1024MB cache.

Useful orders of magnitude can be obtained by evaluating how large the kernel cache must be

to avoid the systematic recomputation of dot-products. Following the notations of Section 2.1, let n

be the number of examples, S be the number of support vectors, and R ≤ S the number of support

vectors such that 0 < |αi|< C.

• In the case of LIBSVM, the cache must accommodate about nR terms: the examples selected

for the SMO iterations are usually chosen among the R free support vectors. Each SMO

iteration needs n distinct dot-products for each selected example.

• To perform a single LASVM epoch, the cache must only accommodate about SR terms: since

the examples are visited only once, the dot-products computed by a PROCESS operation can

only be reutilized by subsequent REPROCESS operations. The examples selected by RE-

PROCESS are usually chosen amont the R free support vectors; for each selected example,

REPROCESS needs one distinct dot-product per support vector in set S .

1591

BORDES, ERTEKIN, WESTON, AND BOTTOU

• To perform multiple LASVM epochs, the cache must accommodate about nS terms: the

dot-products computed by processing a particular example are reused when processing the

same example again in subsequent epochs. This also applies to multiple Averaged Perceptron

epochs.

An efficient single epoch learning algorithm is therefore very desirable when one expects S to be

much smaller than n. Unfortunately, this may not be the case when the data set is noisy. Section

3.4 presents results obtained in such less favorable conditions. Section 4 then proposes an active

learning method to contain the growth of the number of support vectors, and recover the full benefits

of the online approach.

3.4 Multiple Data Set Experiments

Further experiments were carried out with a collection of standard data sets representing diverse

noise conditions, training set sizes, and input dimensionality. Figure 7 presents these data sets and

the parameters used for the experiments.

Kernel computation times for these data sets are extremely fast. The data either has low di-

mensionality or can be represented with sparse vectors. For instance, computing kernel values for

two Reuters documents only involves words common to both documents (excluding stop words).

The Forest experiments use a kernel implemented with hand optimized assembly code (Graf et al.,

2005).

Figure 8 compares the solutions returned by LASVM×1 and LIBSVM. The LASVM×1 experi-

ments call the kernel function much less often, but do not always run faster. The fast kernel com-

putation times expose the relative weakness of our kernel cache implementation. The LASVM×1

accuracies are very close to the LIBSVM accuracies. The number of support vectors is always

slightly smaller.

LASVM×1 essentially achieves consistent results over very diverse data sets, after performing

one single epoch over the training set only. In this situation, the LASVM PROCESS function gets

only once chance to take a particular example into the kernel expansion and potentially make it a

support vector. The conservative strategy would be to take all examples and sort them out during

the finishing step. The resulting training times would always be worse than LIBSVM’s because

the finishing step is itself a simplified SMO solver. Therefore LASVM online iterations are able to

very quickly discard a large number of examples with a high confidence. This process is not perfect

because we can see that the LASVM×1 number of support vectors are smaller than LIBSVM’s. Some

good support vectors are discarded erroneously.

Figure 9 reports the relative variations of the test error, number of support vectors, and training

time measured before and after the finishing step. The online iterations pretty much select the right

support vectors on clean data sets such as “Waveform”, “Reuters” or “USPS”, and the finishing step

does very little. On the other problems the online iterations keep much more examples as potential

support vectors. The finishing step significantly improves the accuracy on noisy data sets such as

“Banana”, “Adult” or “USPS+N”, and drastically increases the computation time on data sets with

complicated decision boundaries such as “Banana” or “Forest”.

1592

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

Train Size Test Size γ C Cache τ Notes

Waveform1 4000 1000 0.05 1 40M 0.001 Artificial data, 21 dims.

Banana1 4000 1300 0.5 316 40M 0.001 Artificial data, 2 dims.

Reuters2 7700 3299 1 1 40M 0.001 Topic “moneyfx” vs. rest.

USPS3 7329 2000 2 1000 40M 0.001 Class “0” vs. rest.

USPS+N3 7329 2000 2 10 40M 0.001 10% training label noise.

Adult3 32562 16282 0.005 100 40M 0.001 As in (Platt, 1999).

Forest3 (100k) 100000 50000 1 3 512M 0.001 As in (Collobert et al., 2002).

Forest3 (521k) 521012 50000 1 3 1250M 0.01 As in (Collobert et al., 2002).
1 http://mlg.anu.edu.au/∼raetsch/data/index.html
2 http://www.daviddlewis.com/resources/testcollections/reuters21578
3 ftp://ftp.ics.uci.edu/pub/machine-learning-databases

Figure 7: Data Sets discussed in Section 3.4.

LIBSVM LASVM×1

Data Set Error SV KCalc Time Error SV KCalc Time

Waveform 8.82% 1006 4.2M 3.2s 8.68% 948 2.2M 2.7s

Banana 9.96% 873 6.8M 9.9s 9.98% 869 6.7M 10.0s

Reuters 2.76% 1493 11.8M 24s 2.76% 1504 9.2M 31.4s

USPS 0.41% 236 1.97M 13.5s 0.43% 201 1.08M 15.9s

USPS+N 0.41% 2750 63M 305s 0.53% 2572 20M 178s

Adult 14.90% 11327 1760M 1079s 14.94% 11268 626M 809s

Forest (100k) 8.03% 43251 27569M 14598s 8.15% 41750 18939M 10310s

Forest (521k) 4.84% 124782 316750M 159443s 4.83% 122064 188744M 137183s

Figure 8: Comparison of LIBSVM versus LASVM×1: Test error rates (Error), number of support

vectors (SV), number of kernel calls (KCalc), and training time (Time). Bold characters

indicate significative differences.

Relative Variation

Data Set Error SV Time

Waveform -0% -0% +4%

Banana -79% -74% +185%

Reuters 0% -0% +3%

USPS 0% -2% +0%

USPS+N% -67% -33% +7%

Adult -13% -19% +80%

Forest (100k) -1% -24% +248%

Forest (521k) -2% -24% +84%

Figure 9: Relative variations of test error, number of support vectors and training time measured

before and after the finishing step.

1593

BORDES, ERTEKIN, WESTON, AND BOTTOU

3.5 The Collection of Potential Support Vectors

The final step of the REPROCESS operation computes the current value of the kernel expansion bias

b and the stopping criterion δ:

gmax = max
s∈S

gs with αs < Bs b =
gmax +gmin

2
gmin = min

s∈S
gs with αs > As δ = gmax−gmin.

(10)

The quantities gmin and gmax can be interpreted as bounds for the decision threshold b. The quantity

δ then represents an uncertainty on the decision threshold b.

The quantity δ also controls how LASVM collects potential support vectors. The definition of

PROCESS and the equality (9) indicate indeed that PROCESS(k) adds the support vector xk to the

kernel expansion if and only if

yk ŷ(xk) < 1+
δ
2
− τ. (11)

When α is optimal, the uncertainty δ is zero, and this condition matches the Karush-Kuhn-Tucker

condition for support vectors yk ŷ(xk)≤ 1.

Intuitively, relation (11) describes how PROCESS collects potential support vectors that are com-

patible with the current uncertainty level δ on the threshold b. Simultaneously, the REPROCESS

operations reduce δ and discard the support vectors that are no longer compatible with this reduced

uncertainty.

The online iterations of the LASVM algorithm make equal numbers of PROCESS and REPRO-

CESS for purely heuristic reasons. Nothing guarantees that this is the optimal proportion. The

results reported in Figure 9 clearly suggest to investigate this arbitrage more closely.

Variations on REPROCESS Experiments were carried out with a slightly modified LASVM al-

gorithm: instead of performing a single REPROCESS, the modified online iterations repeatedly run

REPROCESS until the uncertainty δ becomes smaller than a predefined threshold δmax.

Figure 10 reports comparative results for the “Banana” data set. Similar results were obtained

with other data sets. The three plots report test error rates, training time, and number of support

vectors as a function of δmax. These measurements were performed after one epoch of online it-

erations without finishing step, and after one and two epochs followed by the finishing step. The

corresponding LIBSVM figures are indicated by large triangles on the right side of the plot.

Regardless of δmax, the SVM test error rate can be replicated by performing two epochs followed

by a finishing step. However, this does not guarantee that the optimal SVM solution has been

reached.

Large values of δmax essentially correspond to the unmodified LASVM algorithm. Small values

of δmax considerably increases the computation time because each online iteration calls REPROCESS

many times in order to sufficiently reduce δ. Small values of δmax also remove the LASVM ability

to produce a competitive result after a single epoch followed by a finishing step. The additional

optimization effort discards support vectors more aggressively. Additional epochs are necessary to

recapture the support vectors that should have been kept.

There clearly is a sweet spot around δmax = 3 when one epoch of online iterations alone almost

match the SVM performance and also makes the finishing step very fast. This sweet spot is difficult

to find in general. If δmax is a little bit too small, we must make one extra epoch. If δmax is a little

1594

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

Figure 10: Impact of additional REPROCESS measured on “Banana” data set. During the LASVM

online iterations, calls to REPROCESS are repeated until δ < δmax.

bit too large, the algorithm behaves like the unmodified LASVM. Short of a deeper understanding

of these effects, the unmodified LASVM seems to be a robust compromise.

SimpleSVM The right side of each plot in Figure 10 corresponds to an algorithm that optimizes

the coefficient of the current support vectors at each iteration. This is closely related to the Sim-

pleSVM algorithm (Vishwanathan et al., 2003). Both LASVM and the SimpleSVM update a current

kernel expansion by adding or removing one or two support vectors at each iteration. The two key

differences are the numerical objective of these updates and their computational costs.

Whereas each SimpleSVM iteration seeks the optimal solution of the SVM QP problem re-

stricted to the current set of support vectors, the LASVM online iterations merely attempt to improve

the value of the dual objective function W (α). As a a consequence, LASVM needs a finishing step

and the SimpleSVM does not. On the other hand, Figure 10 suggests that seeking the optimum

at each iteration discards support vectors too aggressively to reach competitive accuracies after a

single epoch.

Each SimpleSVM iteration updates the current kernel expansion using rank 1 matrix updates

(Cauwenberghs and Poggio, 2001) whose computational cost grows as the square of the number of

support vectors. LASVM performs these updates using SMO direction searches whose cost grows

1595

BORDES, ERTEKIN, WESTON, AND BOTTOU

linearly with the number of examples. Rank 1 updates make good sense when one seeks the optimal

coefficients. On the other hand, all the kernel values involving support vectors must be stored in

memory. The LASVM direction searches are more amenable to caching strategies for kernel values.

4. Active Selection of Training Examples

The previous section presents LASVM as an Online Learning algorithm or as a Stochastic Opti-

mization algorithm. In both cases, the LASVM online iterations pick random training examples.

The current section departs from this framework and investigates more refined ways to select an

informative example for each iteration.

This departure is justified in the offline setup because the complete training set is available

beforehand and can be searched for informative examples. It is also justified in the online setup

when the continuous stream of fresh training examples is too costly to process, either because the

computational requirements are too high, or because it is inpractical to label all the potential training

examples.

In particular, we show that selecting informative examples yields considerable speedups. Fur-

thermore, training example selection can be achieved without the knowledge of the training example

labels. In fact, excessive reliance on the training example labels can have very detrimental effects.

4.1 Gradient Selection

The most obvious approach consists in selecting an example k such that the PROCESS operation

results in a large increase of the dual objective function. This can be approximated by choosing the

example which yields the τ-violating pair with the largest gradient. Depending on the class yk, the

PROCESS(k) operation considers pair (k, j) or (i,k) where i and j are the indices of the examples in

S with extreme gradients:

i = argmax
s∈S

gs with αs < Bs , j = argmin
s∈S

gs with αs > As.

The corresponding gradients are gk− g j for positive examples and gi− gk for negative examples.

Using the expression (9) of the gradients and the value of b and δ computed during the previous

REPROCESS (10), we can write:

when yk =+1, gk−g j = yk gk−
gi +g j

2
+

gi−g j

2
= 1+

δ
2
− yk ŷ(xk)

when yk =−1, gi−gk =
gi +g j

2
+

gi−g j

2
+ yk gk = 1+

δ
2
− yk ŷ(xk).

This expression shows that the Gradient Selection Criterion simply suggests to pick the most mis-

classified example

kG = argmin
k/∈S

yk ŷ(xk). (12)

4.2 Active Selection

Always picking the most misclassified example is reasonable when one is very confident of the train-

ing example labels. On noisy data sets, this strategy is simply going to pick mislabelled examples

or examples that sit on the wrong side of the optimal decision boundary.

1596

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

When training example labels are unreliable, a conservative approach chooses the example kA

that yields the strongest minimax gradient:

kA = argmin
k/∈S

max
y=±1

y ŷ(xk) = argmin
k/∈S

|ŷ(xk)| . (13)

This Active Selection Criterion simply chooses the example that comes closest to the current deci-

sion boundary. Such a choice yields a gradient approximatively equal to 1 + δ/2 regardless of the

true class of the example.

Criterion (13) does not depend on the labels yk. The resulting learning algorithm only uses the

labels of examples that have been selected during the previous online iterations. This is related to

the Pool Based Active Learning paradigm (Cohn et al., 1990).

Early active learning literature, also known as Experiment Design (Fedorov, 1972), contrasts

the passive learner, who observes examples (x,y), with the active learner, who constructs queries x

and observes their labels y. In this setup, the active learner cannot beat the passive learner because

he lacks information about the input pattern distribution (Eisenberg and Rivest, 1990). Pool-based

active learning algorithms observe the pattern distribution from a vast pool of unlabelled examples.

Instead of constructing queries, they incrementally select unlabelled examples xk and obtain their

labels yk from an oracle.

Several authors (Campbell et al., 2000; Schohn and Cohn, 2000; Tong and Koller, 2000) propose

incremental active learning algorithms that clearly are related to Active Selection. The initialization

consists of obtaining the labels for a small random subset of examples. A SVM is trained using

all the labelled examples as a training set. Then one searches the pool for the unlabelled example

that comes closest to the SVM decision boundary, one obtains the label of this example, retrains the

SVM and reiterates the process.

4.3 Randomized Search

Both criteria (12) and (13) suggest a search through all the training examples. This is impossible in

the online setup and potentially expensive in the offline setup.

It is however possible to locate an approximate optimum by simply examining a small constant

number of randomly chosen examples. The randomized search first samples M random training

examples and selects the best one among these M examples. With probability 1− ηM , the value

of the criterion for this example exceeds the η-quantile of the criterion for all training examples

(Schölkopf and Smola, 2002, theorem 6.33) regardless of the size of the training set. In practice this

means that the best among 59 random training examples has 95% chances to belong to the best 5%

examples in the training set.

Randomized search has been used in the offline setup to accelerate various machine learning

algorithms (Domingo and Watanabe, 2000; Vishwanathan et al., 2003; Tsang et al., 2005). In the

online setup, randomized search is the only practical way to select training examples. For instance,

here is a modification of the basic LASVM algorithm to select examples using the Active Selection

Criterion with Randomized Search:

1597

BORDES, ERTEKIN, WESTON, AND BOTTOU

LASVM + Active Example Selection + Randomized Search

1) Initialization:

Seed S with a few examples of each class.

Set α← 0 and g← 0.

2) Online Iterations:

Repeat a predefined number of times:

- Pick M random examples s1 . . .sM.

- kt ← argmin
i=1...M

| ŷ(xsi
) |

- Run PROCESS(kt).

- Run REPROCESS once.

3) Finishing:

Repeat REPROCESS until δ≤ τ.

Each online iteration of the above algorithm is about M times more computationally expen-

sive that an online iteration of the basic LASVM algorithm. Indeed one must compute the kernel

expansion (2) for M fresh examples instead of a single one (9). This cost can be reduced by heuris-

tic techniques for adapting M to the current conditions. For instance, we present experimental

results where one stops collecting new examples as soon as M contains five examples such that

| ŷ(xs) |< 1+δ/2.

Finally the last two paragraphs of appendix A discuss the convergence of LASVM with example

selection according to the gradient selection criterion or the active selection criterion. The gradient

selection criterion always leads to a solution of the SVM problem. On the other hand, the active

selection criterion only does so when one uses the sampling method. In practice this convergence

occurs very slowly. The next section presents many reasons to prefer the intermediate kernel classi-

fiers visited by this algorithm.

4.4 Example Selection for Online SVMs

This section experimentally compares the LASVM algorithm using different example selection

methods. Four different algorithms are compared:

• RANDOM example selection randomly picks the next training example among those that have

not yet been PROCESSed. This is equivalent to the plain LASVM algorithm discussed in

Section 3.2.

• GRADIENT example selection consists in sampling 50 random training examples among those

that have not yet been PROCESSed. The sampled example with the smallest yk ŷ(xk) is then

selected.

• ACTIVE example selection consists in sampling 50 random training examples among those

that have not yet been PROCESSed. The sampled example with the smallest |ŷ(xk)| is then

selected.

• AUTOACTIVE example selection attempts to adaptively select the sampling size. Sampling

stops as soon as 5 examples are within distance 1 +δ/2 of the decision boundary. The max-

imum sample size is 100 examples. The sampled example with the smallest |ŷ(xk)| is then

selected.

1598

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

Figure 11: Comparing example selection criteria on the Adult data set. Measurements were per-

formed on 65 runs using randomly selected training sets. The graphs show the error

measured on the remaining testing examples as a function of the number of iterations

and the computing time. The dashed line represents the LIBSVM test error under the

same conditions.

Adult Data Set We first report experiments performed on the “Adult” data set. This data set

provides a good indication of the relative performance of the Gradient and Active selection criteria

under noisy conditions.

Reliable results were obtained by averaging experimental results measured for 65 random splits

of the full data set into training and test sets. Paired tests indicate that test error differences of 0.25%

on a single run are statistically significant at the 95% level. We conservatively estimate that average

error differences of 0.05% are meaningful.

Figure 11 reports the average error rate measured on the test set as a function of the number

of online iterations (left plot) and of the average computing time (right plot). Regardless of the

training example selection method, all reported results were measured after performing the LASVM

finishing step. More specifically, we run a predefined number of online iterations, save the LASVM

state, perform the finishing step, measure error rates and number of support vectors, and restore the

saved LASVM state before proceeding with more online iterations. Computing time includes the

duration of the online iterations and the duration of the finishing step.

The GRADIENT example selection criterion performs very poorly on this noisy data set. A

detailed analysis shows that most of the selected examples become support vectors with coefficient

reaching the upper bound C. The ACTIVE and AUTOACTIVE criteria both reach smaller test error

rates than those achieved by the SVM solution computed by LIBSVM. The error rates then seem to

increase towards the error rate of the SVM solution (left plot). We believe indeed that continued

iterations of the algorithm eventually yield the SVM solution.

Figure 12 relates error rates and numbers of support vectors. The RANDOM LASVM algorithm

performs as expected: a single pass over all training examples replicates the accuracy and the num-

1599

BORDES, ERTEKIN, WESTON, AND BOTTOU

Figure 12: Comparing example selection criteria on the Adult data set. Test error as a function of

the number of support vectors.

ber of support vectors of the LIBSVM solution. Both the ACTIVE and AUTOACTIVE criteria yield

kernel classifiers with the same accuracy and much less support vectors. For instance, the AUTOAC-

TIVE LASVM algorithm reaches the accuracy of the LIBSVM solution using 2500 support vectors

instead of 11278. Figure 11 (right plot) shows that this result is achieved after 150 seconds only.

This is about one fifteenth of the time needed to perform a full RANDOM LASVM epoch.2

Both the ACTIVE LASVM and AUTOACTIVE LASVM algorithms exceed the LIBSVM accuracy

after a few iterations only. This is surprising because these algorithms only use the training labels

of the few selected examples. They both outperform the LIBSVM solution by using only a small

subset of the available training labels.

MNIST Data Set The comparatively clean MNIST data set provides a good opportunity to verify

the behavior of the various example selection criteria on a problem with a much lower error rate.

Figure 13 compares the performance of the RANDOM, GRADIENT and ACTIVE criteria on the

classification of digit “8” versus all other digits. The curves are averaged on 5 runs using different

random seeds. All runs use the standard MNIST training and test sets. Both the GRADIENT and

ACTIVE criteria perform similarly on this relatively clean data set. They require about as much

computing time as RANDOM example selection to achieve a similar test error.

Adding ten percent label noise on the MNIST training data provides additional insight regarding

the relation between noisy data and example selection criteria. Label noise was not applied to the

testing set because the resulting measurement can be readily compared to test errors achieved by

training SVMs without label noise. The expected test errors under similar label noise conditions

can be derived from the test errors measured without label noise. Figure 14 shows the test errors

achieved when 10% label noise is added to the training examples. The GRADIENT selection cri-

2. The timing results reported in Figure 8 were measured on a faster computer.

1600

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

Figure 13: Comparing example selection criteria on the MNIST data set, recognizing digit “8”

against all other classes. Gradient selection and Active selection perform similarly on

this relatively noiseless task.

Figure 14: Comparing example selection criteria on the MNIST data set with 10% label noise on

the training examples.

1601

BORDES, ERTEKIN, WESTON, AND BOTTOU

Figure 15: Comparing example selection criteria on the MNIST data set. Active example selection

is insensitive to the artificial label noise.

terion causes a very chaotic convergence because it keeps selecting mislabelled training examples.

The ACTIVE selection criterion is obviously undisturbed by the label noise.

Figure 15 summarizes error rates and number of support vectors for all noise conditions. In the

presence of label noise on the training data, LIBSVM yields a slightly higher test error rate, and a

much larger number of support vectors. The RANDOM LASVM algorithm replicates the LIBSVM

results after one epoch. Regardless of the noise conditions, the ACTIVE LASVM algorithm reaches

the accuracy and the number of support vectors of the LIBSVM solution obtained with clean training

data. Although we have not been able to observe it on this data set, we expect that, after a very long

time, the ACTIVE curve for the noisy training set converges to the accuracy and the number of

support vectors achieved of the LIBSVM solution obtained for the noisy training data.

4.5 Online SVMs for Active Learning

The ACTIVE LASVM algorithm implements two dramatic speedups with respect to existing active

learning algorithms such as (Campbell et al., 2000; Schohn and Cohn, 2000; Tong and Koller, 2000).

First it chooses a query by sampling a small number of random examples instead of scanning all

unlabelled examples. Second, it uses a single LASVM iteration after each query instead of fully

retraining the SVM.

Figure 16 reports experiments performed on the Reuters and USPS data sets presented in table

7. The RETRAIN ACTIVE 50 and RETRAIN ACTIVE ALL select a query from 50 or all unlabeled

examples respectively, and then retrain the SVM. The SVM solver was initialized with the solution

from the previous iteration. The LASVM ACTIVE 50 and LASVM ACTIVE ALL do not retrain the

SVM, but instead make a single LASVM iteration for each new labeled example.

1602

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of labels

T
e

s
t

E
rr

o
r

USPS zero−vs−rest

LASVM ACTIVE 50
LASVM ACTIVE ALL
RETRAIN ACTIVE 50
RETRAIN ACTIVE ALL
RANDOM

0 500 1000 1500
2

2.5

3

3.5

4

4.5

5

5.5

Number of labels

T
e
s
t
E

rr
o
r

Reuters money−fx

LASVM ACTIVE 50
LASVM ACTIVE ALL
RETRAIN ACTIVE 50
RETRAIN ACTIVE ALL
RANDOM

Figure 16: Comparing active learning methods on the USPS and Reuters data sets. Results are

averaged on 10 random choices of training and test sets. Using LASVM iterations instead

of retraining causes no loss of accuracy. Sampling M = 50 examples instead of searching

all examples only causes a minor loss of accuracy when the number of labeled examples

is very small.

All the active learning methods performed approximately the same, and were superior to ran-

dom selection. Using LASVM iterations instead of retraining causes no loss of accuracy. Sampling

M = 50 examples instead of searching all examples only causes a minor loss of accuracy when the

number of labeled examples is very small. Yet the speedups are very significant: for 500 queried

labels on the Reuters data set, the RETRAIN ACTIVE ALL, LASVM ACTIVE ALL, and LASVM AC-

TIVE 50 algorithms took 917 seconds, 99 seconds, and 9.6 seconds respectively.

5. Discussion

This work started because we observed that the data set sizes are quickly outgrowing the computing

power of our calculators. One possible avenue consists of harnessing the computing power of

multiple computers (Graf et al., 2005). Instead we propose learning algorithms that remain closely

related to SVMs but require less computational resources. This section discusses their practical and

theoretical implications.

5.1 Practical Significance

When we have access to an abundant source of training examples, the simple way to reduce the

complexity of a learning algorithm consists of picking a random subset of training examples and

running a regular training algorithm on this subset. Unfortunately this approach renounces the

more accurate models that the large training set could afford. This is why we say, by reference to

statistical efficiency, that an efficient learning algorithm should at least pay a brief look at every

training example.

The online LASVM algorithm is very attractive because it matches the performance of a SVM

trained on all the examples. More importantly, it achives this performance after a single epoch,

1603

BORDES, ERTEKIN, WESTON, AND BOTTOU

faster than a SVM (figure 2) and using much less memory than a SVM (figure 6). This is very im-

portant in practice because modern data storage devices are most effective when the data is accessed

sequentially.

Active Selection of the LASVM training examples brings two additional benefits for practical

applications. It achieves equivalent performances with significantly less support vectors, further

reducing the required time and memory. It also offers an obvious opportunity to parallelize the

search for informative examples.

5.2 Informative Examples and Support Vectors

By suggesting that all examples should not be given equal attention, we first state that all training

examples are not equally informative. This question has been asked and answered in various con-

texts (Fedorov, 1972; Cohn et al., 1990; MacKay, 1992). We also ask whether these differences can

be exploited to reduce the computational requirements of learning algorithms. Our work answers

this question by proposing algorithms that exploit these differences and achieve very competitive

performances.

Kernel classifiers in general distinguish the few training examples named support vectors. Ker-

nel classifier algorithms usually maintain an active set of potential support vectors and work by

iterations. Their computing requirements are readily associated with the training examples that be-

long to the active set. Adding a training example to the active set increases the computing time

associated with each subsequent iteration because they will require additional kernel computations

involving this new support vector. Removing a training example from the active set reduces the

cost of each subsequent iteration. However it is unclear how such changes affect the number of

subsequent iterations needed to reach a satisfactory performance level.

Online kernel algorithms, such as the kernel perceptrons usually produce different classifiers

when given different sequences of training examples. Section 3 proposes an online kernel algorithm

that converges to the SVM solution after many epochs. The final set of support vectors is intrin-

sically defined by the SVM QP problem, regardless of the path followed by the online learning

process. Intrinsic support vectors provide a benchmark to evaluate the impact of changes in the ac-

tive set of current support vectors. Augmenting the active set with an example that is not an intrinsic

support vector moderately increases the cost of each iteration without clear benefits. Discarding an

example that is an intrinsic support vector incurs a much higher cost. Additional iterations will be

necessary to recapture the missing support vector. Empirical evidence is presented in Section 3.5.

Nothing guarantees however that the most informative examples are the support vectors of the

SVM solution. Bakır et al. (2005) interpret Steinwart’s theorem (Steinwart, 2004) as an indication

that the number of SVM support vectors is asymptotically driven by the examples located on the

wrong side of the optimal decision boundary. Although such outliers might play a useful role in the

construction of a decision boundary, it seems unwise to give them the bulk of the available com-

puting time. Section 4 adds explicit example selection criteria to LASVM. The Gradient Selection

Criterion selects the example most likely to cause a large increase of the SVM objective function.

Experiments show that it prefers outliers over honest examples. The Active Selection Criterion by-

passes the problem by choosing examples without regard to their labels. Experiments show that it

leads to competitive test error rates after a shorter time, with less support vectors, and using only

the labels of a small fraction of the examples.

1604

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

5.3 Theoretical Questions

The appendix provides a comprehensive analysis of the convergence of the algorithms discussed in

this contribution. Such convergence results are useful but limited in scope. This section underlines

some aspects of this work that would vastly benefit from a deeper theoretical understanding.

• Empirical evidence suggests that a single epoch of the LASVM algorithm yields misclassifi-

cation rates comparable with a SVM. We also know that LASVM exactly reaches the SVM

solution after a sufficient number of epochs. Can we theoretically estimate the expected dif-

ference between the first epoch test error and the many epoch test error? Such results exist for

well designed online learning algorithms based on stochastic gradient descent (Murata and

Amari, 1999; Bottou and LeCun, 2005). Unfortunately these results do not directly apply to

kernel classifiers. A better understanding would certainly suggest improved algorithms.

• Test error rates are sometimes improved by active example selection. In fact this effect has

already been observed in the active learning setups (Schohn and Cohn, 2000). This small

improvement is difficult to exploit in practice because it requires very sensitive early stopping

criteria. Yet it demands an explanation because it seems that one gets a better performance

by using less information. There are three potential explanations: (i) active selection works

well on unbalanced data sets because it tends to pick equal number of examples of each class

(Schohn and Cohn, 2000), (ii) active selection improves the SVM loss function because it

discards distant outliers, (iii) active selection leads to more sparse kernel expansions with

better generalization abilities (Cesa-Bianchi et al., 2005). These three explanations may be

related.

• We know that the number of SVM support vectors scales linearly with the number of examples

(Steinwart, 2004). Empirical evidence suggests that active example selection yields transitory

kernel classifiers that achieve low error rates with much less support vectors. What is the

scaling law for this new number of support vectors?

• What is the minimal computational cost for learning n independent examples and achieving

“optimal” test error rates? The answer depends of course of how we define these “optimal”

test error rates. This cost intuitively scales at least linearly with n because one must pay a

look at each example to fully exploit them. The present work suggest that this cost might

be smaller than n times the reduced number of support vectors achievable with the active

learning technique. This range is consistent with previous work showing that stochastic gra-

dient algorithms can train a fixed capacity model in linear time (Bottou and LeCun, 2005).

Learning seems to be much easier than computing the optimum of the empirical loss.

5.4 Future Directions

Progress can also be achieved along less arduous directions.

• Section 3.5 suggests that better convergence speed could be attained by cleverly modulating

the number of calls to REPROCESS during the online iterations. Simple heuristics might go a

long way.

1605

BORDES, ERTEKIN, WESTON, AND BOTTOU

• Section 4.3 suggests a heuristic to adapt the sampling size for the randomized search of in-

formative training examples. This AUTOACTIVE heuristic performs very well and deserves

further investigation.

• Sometimes one can generate a very large number of training examples by exploiting known

invariances. Active example selection can drive the generation of examples. This idea was

suggested in (Loosli et al., 2004) for the SimpleSVM.

6. Conclusion

This work explores various ways to speedup kernel classifiers by asking which examples deserve

more computing time. We have proposed a novel online algorithm that converges to the SVM solu-

tion. LASVM reliably reaches competitive accuracies after performing a single pass over the training

examples, outspeeding state-of-the-art SVM solvers. We have then shown how active example se-

lection can yield faster training, higher accuracies and simpler models using only a fraction of the

training examples labels.

Acknowledgments

Part of this work was funded by NSF grant CCR-0325463. We also thank Eric Cosatto, Hans-Peter

Graf, C. Lee Giles and Vladimir Vapnik for their advice and support, Ronan Collobert and Chih-

Jen Lin for thoroughly checking the mathematical appendix, and Sathiya Keerthi for pointing out

reference (Takahashi and Nishi, 2003).

Appendix A. Convex Programming with Witness Families

This appendix presents theoretical elements about convex programming algorithms that rely on

successive direction searches. Results are presented for the case where directions are selected from

a well chosen finite pool, like SMO (Platt, 1999), and for the stochastic algorithms, like the online

and active SVM discussed in the body of this contribution.

Consider a compact convex subset F of R
n and a concave function f defined on F . We assume

that f is twice differentiable with continuous derivatives. This appendix discusses the maximization

of function f over set F :

max
x∈F

f (x). (14)

This discussion starts with some results about feasible directions. Then it introduces the notion

of witness family of directions which leads to a more compact characterization of the optimum.

Finally it presents maximization algorithms and establishes their convergence to approximate solu-

tions

A.1 Feasible Directions

Notations Given a point x ∈ F and a direction u ∈ R
n
∗ = R

n, let

φ(x,u) = max{λ ≥ 0 | x+λu ∈ F }

f ∗(x,u) = max{ f (x+λu), x+λu ∈ F }.

1606

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

In particular we write φ(x,0) = ∞ and f ∗(x,0) = f (x).

Definition 1 The cone of feasible directions in x ∈ F is the set

Dx = {u ∈ R
n |φ(x,u) > 0}.

All the points x + λu, 0 ≤ λ ≤ φ(x,u) belong to F because F is convex. Intuitively, a direction

u 6= 0 is feasible in x when we can start from x and make a little movement along direction u without

leaving the convex set F .

Proposition 2 Given x ∈ F and u ∈ R
n,

f ∗(x,u) > f (x) ⇐⇒

{

u′∇ f (x) > 0

u ∈Dx.

Proof Assume f ∗(x,u) > f (x). Direction u 6= 0 is feasible because the maximum f ∗(x,u) is reached

for some 0 < λ∗ ≤ φ(x,u). Let ν ∈ [0,1]. Since set F is convex, x + νλ∗u ∈ F . Since function f

is concave, f (x + νλ∗u)) ≥ (1− ν) f (x)+ ν f ∗(x,u). Writing a first order expansion when ν→ 0

yields λ∗u′∇ f (x) ≥ f ∗(x,u)− f (x) > 0. Conversely, assume u′∇ f (x) > 0 and u 6= 0 is a feasible

direction. Recall f (x + λu) = f (x)+ λu′∇ f (x)+ o(λ). Therefore we can choose 0 < λ0 ≤ φ(x,u)
such that f (x+λ0u) > f (x)+λ0u′∇ f (x)/2. Therefore f ∗(x,u)≥ f (x+λ0u) > f (x).

Theorem 3 (Zoutendijk (1960) page 22) The following assertions are equivalent:

i) x is a solution of problem (14).

ii) ∀u ∈ R
n f ∗(x,u)≤ f (x).

iii) ∀u ∈Dx u′∇ f (x)≤ 0.

Proof The equivalence between assertions (ii) and (iii) results from proposition 2. Assume asser-

tion (i) is true. Assertion (ii) is necessarily true because f ∗(u,x)≤maxF f = f (x). Conversely, as-

sume assertion (i) is false. Then there is y ∈ F such that f (y) > f (x). Therefore f ∗(x,y−x) > f (x)
and assertion (ii) is false.

A.2 Witness Families

We now seek to improve this theorem. Instead of considering all feasible directions in R
n, we wish

to only consider the feasible directions from a smaller set U.

Proposition 4 Let x ∈ F and v1 . . .vk ∈ Dx be feasible directions. Every positive linear combina-

tion of v1 . . .vk (i.e. a linear combination with positive coefficients) is a feasible direction.

Proof Let u be a positive linear combination of the vi. Since the vi are feasible directions there are

yi = x +λivi ∈ F , and u can be written as ∑i γi(yi− x) with γi ≥ 0. Direction u is feasible because

the convex F contains (∑γiyi)/(∑γi) = x+(1/∑γi)u.

1607

BORDES, ERTEKIN, WESTON, AND BOTTOU

Definition 5 A set of directions U ⊂ R
n
∗ is a “witness family for F ” when, for any point x ∈ F ,

any feasible direction u ∈Dx can be expressed as a positive linear combination of a finite number

of feasible directions v j ∈U∩Dx.

This definition directly leads to an improved characterization of the optima.

Theorem 6 Let U be a witness family for convex set F .

The following assertions are equivalent:

i) x is a solution of problem (14).

ii) ∀u ∈U f ∗(x,u)≤ f (x).
iii) ∀u ∈U∩Dx u′∇ f (x)≤ 0.

Proof The equivalence between assertions (ii) and (iii) results from proposition 2. Assume as-

sertion (i) is true. Theorem 3 implies that assertion (ii) is true as well. Conversely, assume asser-

tion (i) is false. Theorem 3 implies that there is a feasible direction u ∈ R
n on point x such that

u′∇ f (x) > 0. Since U is a witness family, there are positive coefficients γ1 . . .γk and feasible direc-

tions v1, . . . ,vk ∈U∩Dx such that u = ∑γivi. We have then ∑γjv
′
j∇ f (x) > 0. Since all coefficients

γj are positive, there is at least one term j0 such that v′j0 ∇ f (x) > 0. Assertion (iii) is therefore false.

The following proposition provides an example of witness family for the convex domain Fs that

appears in the SVM QP problem (5).

Proposition 7 Let (e1 . . .en) be the canonical basis of R
n. Set Us = {ei− e j, i 6= j} is a witness

family for convex set Fs defined by the constraints

x ∈ Fs ⇐⇒

{

∀ i Ai ≤ xi ≤ Bi

∑i xi = 0.

Proof Let u ∈ R
n
∗ be a feasible direction in x ∈ Fs. Since u is a feasible direction, there is λ > 0

such that y = x+λu ∈ Fs. Consider the subset B ⊂ Fs defined by the constraints

z ∈ B ⇔

{

∀ i, Ai ≤min(xi,yi)≤ zi ≤max(xi,yi)≤ Bi

∑i zi = 0.

Let us recursively define a sequence of points z(j) ∈ B . We start with z(0) = x ∈ B . For each

t ≥ 0, we define two sets of coordinate indices I+
t = {i |zi(t) < yi} and I−t = { j |z j(t) > y j}. The

recursion stops if either set is empty. Otherwise, we choose i ∈ I+
t and j ∈ I−t and define z(t+1) =

z(t)+ γ(t)v(t) ∈ B with v(t) = ei− e j ∈Us and γ(t) = min(yi− zi(t),z j(t)− y j) > 0. Intuitively, we

move towards y along direction v(t) until we hit the boundaries of set B .

Each iteration removes at least one of the indices i or j from sets I+
t and I−t . Eventually one of

these sets gets empty and the recursion stops after a finite number k of iterations. The other set is

also empty because

∑
i∈I+

k

|yi− zi(k)|− ∑
i∈I−k

|yi− zi(k)| =
n

∑
i=1

yi− zi(k) =
n

∑
i=1

yi−
n

∑
i=1

zi(k) = 0.

1608

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

Therefore z(k) = y and λu = y− x = ∑t γ(t) v(t). Moreover the v(t) are feasible directions on x be-

cause v(t) = ei− e j with i ∈ I+
t ⊂ I+

0 and j ∈ I−t ⊂ I−0 .

Assertion (iii) in Theorem 6 then yields the following necessary and sufficient optimality criterion

for the SVM QP problem (5):

∀(i, j) ∈ {1 . . .n}2 xi < Bi and x j > A j ⇒
∂ f

∂xi

(x)−
∂ f

∂x j

(x)≤ 0.

Different constraint sets call for different choices of witness family. For instance, it is sometimes

useful to disregard the equality constraint in the SVM polytope Fs. Along the lines of proposition 7,

it is quite easy to prove that {±ei, i = 1 . . .n} is a witness family. Theorem 6 then yields an adequate

optimality criterion.

A.3 Finite Witness Families

This section deals with finite witness families. Theorem 9 shows that F is necessarily a convex

polytope, that is a bounded set defined by a finite number of linear of linear equality and inequality

constraints (Schrijver, 1986).

Proposition 8 Let Cx = {x+u , u ∈Dx} for x ∈ F . Then F =
T

x∈F Cx.

Proof We first show that F ⊂
T

x∈F Cx. Indeed F ⊂ Cx for all x because every point z ∈ F defines

a feasible direction z− x ∈Dx.

Conversely, Let z ∈
T

x∈F Cx and assume that z does not belong to F . Let ẑ be the projection

of z on F . We know that z ∈ Cẑ because z ∈
T

x∈F Cx. Therefore z− ẑ is a feasible direction in

ẑ. Choose 0 < λ < φ(ẑ,z− ẑ). We know that λ < 1 because z does not belong to F . But then

ẑ+λ(z− ẑ) ∈ F is closer to z than ẑ. This contradicts the definition of the projection ẑ.

Theorem 9 Let F be a bounded convex set.

If there is a finite witness family for F , then F is a convex polytope.3

Proof Consider a point x ∈ F and let {v1 . . .vk} = U ∩Dx. Proposition 4 and definition 5 imply

that Dx is the polyhedral cone {z = ∑γivi, γi ≥ 0} and can be represented (Schrijver, 1986) by a

finite number of linear equality and inequality constraints of the form nz≤ 0 where the directions n

are unit vectors. Let Kx be the set of these unit vectors. Equality constraints arise when the set Kx
contains both n and −n. Each set Kx depends only on the subset {v1 . . .vk} = U ∩Dx of feasible

witness directions in x. Since the finite set U contains only a finite number of potential subsets,

there is only a finite number of distinct sets Kx.

Each set Cx is therefore represented by the constraints nz≤ nx for n∈Kx. The intersection F =
T

x∈F Cx is then defined by all the constraints associated with Cx for any x ∈ F . These constraints

involve only a finite number of unit vectors n because there is only a finite number of distinct sets

Kx.

Inequalities defined by the same unit vector n can be summarized by considering only the most

restrictive right hand side. Therefore F is described by a finite number of equality and inequality

1609

BORDES, ERTEKIN, WESTON, AND BOTTOU

constraints. Since F is bounded, it is a polytope.

A convex polytope comes with useful continuity properties.

Proposition 10 Let F be a polytope, and let u ∈ R
n be fixed.

Functions x 7→ φ(x,u) and x 7→ f ∗(x,u) are uniformly continous on F .

Proof The polytope F is defined by a finite set of constraints n x ≤ b. Let KF be the set of pairs

(n,b) representing these constraints. Function x 7→ φ(x,u) is a continuous on F because we can

write:

φ(x,u) = min

{

b−n x

n u
for all (n,b) ∈KF such that n u > 0

}

.

Function x 7→ φ(x,u) is uniformly continuous because it is continuous on the compact F .

Choose ε > 0 and let x,y ∈ F . Let the maximum f ∗(x,u) be reached in x +λ∗u with 0≤ λ∗ ≤
φ(x,u). Since f is uniformly continous on compact F , there is η > 0 such that | f (x+λ∗u)− f (y+
λ′u)|< ε whenever ‖x−y+(λ∗−λ′)u‖< η(1+‖u‖). In particular, it is sufficient to have ‖x−y‖<
η and |λ∗−λ′|< η. Since φ is uniformly continuous, there is τ > 0 such that |φ(y,u)−φ(x,u)|< η
whenever ‖x−y‖< τ. We can then select 0≤ λ′ ≤ φ(y,u) such that |λ∗−λ′|< η. Therefore, when

‖x− y‖< min(η,τ), f ∗(x,u) = f (x+λ∗u)≤ f (y+λ′u)+ ε≤ f ∗(y,u)+ ε.

By reversing the roles of x and y in the above argument, we can similary establish that f ∗(y,u)≤
f ∗(x,u)+ ε when ‖x− y‖ ≤min(η,τ). Function x 7→ f ∗(x,u) is therefore uniformly continuous on

F .

A.4 Stochastic Witness Direction Search

Each iteration of the following algorithm randomly chooses a feasible witness direction and per-

forms an optimization along this direction. The successive search directions ut are randomly se-

lected (step 2a) according to some distribution Pt defined on U. Distribution Pt possibly depends on

values observed before time t.

Stochastic Witness Direction Search (WDS)

1) Find an initial feasible point x0 ∈ F .

2) For each t = 1,2, . . . ,
2a) Draw a direction ut ∈U from a distribution Pt

2b) If u ∈Dxt−1
and u′t ∇ f (xt−1) > 0 ,

xt ← argmax f (x) under x ∈ {xt−1 +λut ∈ F , λ ≥ 0}
otherwise

xt ← xt−1.

Clearly the Stochastic WDS algorithm does not work if the distributions Pt always give probabil-

ity zero to important directions. On the other hand, convergence is easily established if all feasible

directions can be drawn with non zero minimal probability at any time.

3. We believe that the converse of Theorem 9 is also true.

1610

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

Theorem 11 Let f be a concave function defined on a compact convex set F , differentiable with

continuous derivatives. Assume U is a finite witness set for set F , and let the sequence xt be defined

by the Stochastic WDS algorithm above. Further assume there is π> 0 such that Pt(u) > π for all

u ∈U ∩Dxt−1
. All accumulation points of the sequence xt are then solutions of problem (14) with

probability 1.

Proof We want to evaluate the probability of event Q comprising all sequences of selected directions

(u1,u2, . . .) leading to a situation where xt has an accumulation point x∗ that is not a solution of

problem (14).

For each sequence of directions (u1,u2, . . .), the sequence f (xt) is increasing and bounded. It

converges to f ∗ = supt f (xt). We have f (x∗) = f ∗ because f is continuous. By Theorem 6, there is

a direction u ∈U such that f ∗(x∗,u) > f ∗ and φ(x∗,u) > 0. Let xkt
be a subsequence converging to

x∗. Thanks to the continuity of φ, f ∗ and ∇ f , there is a t0 such that f ∗(xkt
,u) > f ∗ and φ(xkt

,u) > 0

for all kt > t0.

Choose ε > 0 and let QT ⊂ Q contain only sequences of directions such that t0 = T . For any

kt > T , we know that φ(xkt
,u) > 0 which means u ∈U ∩Dxkt

. We also know that ukt
6= u because

we would otherwise obtain a contradiction f (xkt+1) = f ∗(xkt
,u) > f ∗. The probability of selecting

such a ukt
is therefore smaller than (1−π). The probability that this happens simultaneously for

N distinct kt ≥ T is smaller than (1−π)N for any N. We get P(QT) ≤ ε/T 2 by choosing N large

enough.

Then we have P(Q) = ∑T P(QT)≤ ε
(

∑T 1/T 2
)

= Kε. Hence P(Q) = 0 because we can choose

ε as small as we want, We can therefore assert with probability 1 that all accumulation points of

sequence xt are solutions.

This condition on the distributions Pt is unfortunately too restrictive. The PROCESS and RE-

PROCESS iterations of the Online LASVM algorithm (Section 3.2) only exploit directions from very

specific subsets.

On the other hand, the Online LASVM algorithm only ensures that any remaining feasible direc-

tion at time T will eventually be selected with probability 1. Yet it is challenging to mathematically

express that there is no coupling between the subset of time points t corresponding to a subsequence

converging to a particular accumulation point, and the subset of time points t corresponding to the

iterations where specific feasible directions are selected.

This problem also occurs in the deterministic Generalized SMO algorithm (Section 3.1). An

asymptotic convergence proof (Lin, 2001) only exist for the important case of the SVM QP problem

using a specific direction selection strategy. Following Keerthi and Gilbert (2002), we bypass this

technical difficulty by defining a notion of approximate optimum and proving convergence in finite

time. It is then easy to discuss the properties of the limit point.

A.5 Approximate Witness Direction Search

Definition 12 Given a finite witness family U and the tolerances κ > 0 and τ > 0, we say that x is

a κτ-approximate solution of problem (14) when the following condition is verified:

∀u ∈U, φ(x,u)≤ κ or u′∇ f (x)≤ τ.

A vector u ∈ Rn such that φ(x,u) > κ and u′∇ f (x) > τ is called a κτ-violating direction in point x.

1611

BORDES, ERTEKIN, WESTON, AND BOTTOU

This definition is inspired by assertion (iii) in Theorem 6. The definition demands a finite witness

family because this leads to proposition 13 establishing that κτ-approximate solutions indicate the

location of actual solutions when κ and τ tend to zero.

Proposition 13 Let U be a finite witness family for bounded convex set F . Consider a sequence

xt ∈ F of κtτt-approximate solutions of problem (14) with τt → 0 and κt → 0. The accumulation

points of this sequence are solutions of problem (14).

Proof Consider an accumulation point x∗ and a subsequence xkt
converging to x∗. Define function

(x,τ,κ) 7→ ψ(x,τ,κ,u) =
(

u′∇ f (x)− τ
)

max{0,φ(x,u)−κ}

such that u is a κτ-violating direction if and only if ψ(x,κ,τ,u) > 0. Function ψ is continuous thanks

to Theorem 9, proposition 10 and to the continuity of ∇ f . Therefore, we have ψ(xkt
,κkt

,τkt
,u)≤ 0

for all u ∈U. Taking the limit when kt → ∞ gives ψ(x∗,0,0,u)≤ 0 for all u ∈U. Theorem 6 then

states that x∗ is a solution.

The following algorithm introduces the two tolerance parameters τ > 0 and κ > 0 into the Stochastic

Witness Direction Search algorithm.

Approximate Stochastic Witness Direction Search

1) Find an initial feasible point x0 ∈ F .

2) For each t = 1,2, . . . ,
2a) Draw a direction ut ∈U from a probability distribution Pt

2b) If ut is a κτ-violating direction,

xt ← argmax f (x) under x ∈ {xt−1 +λut ∈ F , λ ≥ 0}
otherwise

xt ← xt−1.

The successive search directions ut are drawn from some unspecified distributions Pt defined on U.

Proposition 16 establishes that this algorithm always converges to some x∗ ∈F after a finite number

of steps, regardless of the selected directions (ut). The proof relies on the two intermediate results

that generalize a lemma proposed by Keerthi and Gilbert (2002) in the case of quadratic functions.

Proposition 14 If ut is a κτ-violating direction in xt−1,

φ(xt ,ut)u′t ∇ f (xt) = 0.

Proof Let the maximum f (xt)= f ∗(xt−1,ut) be attained in xt = xt−1+λ∗ut with 0≤ λ∗ ≤ φ(xt−1,ut).
We know that λ∗ 6= 0 because ut is κτ-violating and proposition 2 implies f ∗(xt−1,ut) > f (xt−1).
If λ∗ reaches its upper bound, φ(xt ,ut) = 0. Otherwise xt is an unconstrained maximum and

u′t ∇ f (xt) = 0.

Proposition 15 There is a constant K > 0 such that

∀t , f (xt)− f (xt−1) ≥ K ‖xt − xt−1‖.

1612

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

Proof The relation is obvious when ut is not a κτ-violating direction in xt−1. Otherwise let the

maximum f (xt) = f ∗(xt−1,ut) be attained in xt = xt−1 +λ∗ut .

Let λ = νλ∗ with 0 < ν ≤ 1. Since xt is a maximum,

f (xt)− f (xt−1) = f (xt−1 +λ∗ut)− f (xt−1)≥ f (xt−1 +λut)− f (xt−1).

Let H be the maximum over F of the norm of the Hessian of f .

A Taylor expansion with the Cauchy remainder gives

∣

∣ f (xt−1 +λut)− f (xt−1)−λu′t ∇ f (xt−1)
∣

∣≤
1

2
λ2‖ut‖

2H

or, more specifically,

f (xt−1 +λut)− f (xt−1)−λu′t ∇ f (xt−1) ≥ −
1

2
λ2‖ut‖

2H.

Combining these inequalities yields

f (xt)− f (xt−1)≥ f (xt−1 +λut)− f (xt−1)≥ λu′t ∇ f (xt−1)−
1

2
λ2‖ut‖

2H.

Recalling u′t ∇ f (xt−1) > τ, and λ‖ut‖= ν‖xt − xt−1‖, we obtain

f (xt)− f (xt−1)≥ ‖xt − xt−1‖

(

ν
τ
U
−ν2 1

2
DH

)

where U =max
U
‖u‖ and D is the diameter of the compact convex F .

Choosing ν = min
(

1,
τ

UDH

)

then gives the desired result.

Proposition 16 Assume U is a finite witness set for set F . The Approximate Stochastic WDS

algorithm converges to some x∗ ∈ F after a finite number of steps.

Proof Sequence f (xt) converges because it is increasing and bounded. Therefore it satisfies

Cauchy’s convergence criterion:

∀ ε > 0, ∃ t0, ∀ t2 > t1 > t0,
f (xt2)− f (xt1) = ∑

t1<t≤t2

f (xt)− f (xt−1) < ε.

Using proposition 15, we can write

∀ ε > 0, ∃ t0, ∀ t2 > t1 > t0,

‖xt2− xt1‖ ≤ ∑
t1<t≤t2

‖xt − xt−1‖ ≤ ∑
t1<t≤t2

f (xt)− f (xt−1)

K
<

ε
K

.

Therefore sequence xt satisfies Cauchy’s condition and converges to some x∗ ∈ F .

Assume this convergence does not occur in a finite time. Since U is finite, the algorithm ex-

ploits at least one direction u ∈U an infinite number of times. Therefore there is a strictly increas-

ing sequence of positive indices kt such that ukt
= u is κτ-violating in point xkt−1. We have then

1613

BORDES, ERTEKIN, WESTON, AND BOTTOU

φ(xkt−1,u) > κ and u′∇ f (xkt−1) > τ. By continuity we have φ(x∗,u)≥ κ and u′∇ f (x∗)≥ τ. On the

other hand, proposition 14 states that φ(xkt
,u)u′∇ f (xkt

) = 0. By continuity when t→ 0, we obtain

the contradiction φ(x∗,u)u′∇ f (x∗) = 0.

In general, proposition 16 only holds for κ > 0 and τ > 0. Keerthi and Gilbert (2002) assert a similar

property for κ = 0 and τ > 0 in the case of SVMs only. Despite a mild flaw in the final argument of

the initial proof, this assertion is correct (Takahashi and Nishi, 2003).

Proposition 16 does not prove that the limit x∗ is related to the solution of the optimization

problem (14). Additional assumptions on the direction selection step are required. Theorem 17 ad-

dresses the deterministic case by considering trivial distributions Pt that always select a κτ-violating

direction if such directions exist. Theorem 18 addresses the stochastic case under mild conditions

on the distribution Pt .

Theorem 17 Let the concave function f defined on the compact convex set F be twice differen-

tiable with continuous second derivatives. Assume U is a finite witness set for set F , and let the

sequence xt be defined by the Approximate Stochastic WDS algorithm above. Assume that step

(2a) always selects a κτ-violating direction in xt−1 if such directions exist. Then xt converges to a

κτ-approximate solution of problem (14) after a finite number of steps.

Proof Proposition 16 establishes that there is t0 such that xt = x∗ for all t ≥ t0. Assume there is

a κτ-violating direction in x∗. For any t > t0, step (2a) always selects such a direction, and step

(2b) makes xt different from xt−1 = x∗. This contradicts the definition of t0. Therefore there are no

κτ-violating direction in x∗ and x∗ is a κτ-approximate solution.

Example (SMO) The SMO algorithm (Section 3.1) is4 an Approximate Stochastic WDS that

always selects a κτ-violating direction when one exists. Therefore Theorem 17 applies.

Theorem 18 Let the concave function f defined on the compact convex set F be twice differen-

tiable with continuous second derivatives. Assume U is a finite witness set for set F , and let the

sequence xt be defined by the Approximate Stochastic WDS algorithm above. Let pt be the condi-

tional probability that ut is κτ-violating in xt−1 given that U contains such directions. Assume that

limsup pt > 0. Then xt converges with probability one to a κτ-approximate solution of problem (14)

after a finite number of steps.

Proof Proposition 16 establishes that for each sequence of selected directions ut , there is a time

t0 and a point x∗ ∈ F such that xt = x∗ for all t ≥ t0. Both t0 and x∗ depend on the sequence of

directions (u1,u2, . . .).
We want to evaluate the probability of event Q comprising all sequences of directions (u1,u2, . . .)

leading to a situation where there are κτ-violating directions in point x∗. Choose ε > 0 and let

QT ⊂ Q contain only sequences of decisions (u1,u2, . . .) such that t0 = T .

Since limsup pt > 0, there is a subsequence kt such that pkt
≥ π> 0. For any kt > T , we know

that U contains κτ-violating directions in xkt−1 = x∗. Direction ukt
is not one of them because this

4. Strictly speaking we should introduce the tolerance κ > 0 into the SMO algorithm. We can also claim that (Keerthi

and Gilbert, 2002; Takahashi and Nishi, 2003) have established proposition 16 with κ = 0 and τ > 0 for the specific

case of SVMs. Therefore Theorems 17 and 18 remain valid.

1614

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

would make xkt
different from xkt−1 = x∗. This occurs with probability 1− pkt

≤ 1−π< 1. The

probability that this happens simultaneously for N distinct kt > T is smaller than (1−π)N for any

N. We get P(QT)≤ ε/T 2 by choosing N large enough.

Then we have P(Q) = ∑T P(QT)≤ ε
(

∑T 1/T 2
)

= Kε. Hence P(Q) = 0 because we can choose

ε as small as we want. We can therefore assert with probability 1 that U contains no κτ-violating

directions in point x∗.

Example (LASVM) The LASVM algorithm (Section 3.2) is5 an Approximate Stochastic WDS

that alternates two strategies for selecting search directions: PROCESS and REPROCESS. Theorem

18 applies because limsup pt > 0.

Proof Consider a arbitrary iteration T corresponding to a REPROCESS.

Let us define the following assertions:

A – There are τ-violating pairs (i, j) with both i ∈ S and j ∈ S .

B – A is false, but there are τ-violating pairs (i, j) with either i ∈ S or j ∈ S .

C – A and B are false, but there are τ-violating pairs (i, j).
Qt – Direction ut is τ-violating in xt−1.

A reasoning similar to the convergence discussion in Section 3.2 gives the following lower bounds
(where n is the total number of examples).

P(QT |A) = 1

P(QT |B) = 0 P(QT+1|B)≥ n−1

P(QT |C) = 0 P(QT+1|C) = 0 P(QT+2|C) = 0 P(QT+3|C)≥ n−2.

Therefore
P(QT ∪QT+1∪QT+2∪QT+2 | A)≥ n−2

P(QT ∪QT+1∪QT+2∪QT+2 | B)≥ n−2

P(QT ∪QT+1∪QT+2∪QT+2 |C)≥ n−2.

Since pt = P(Qt | A∪B∪C) and since the events A, B, and C are disjoint, we have

pT + pT+1 + pT+2 + pT+4 ≥ P(QT ∪QT+1∪QT+2∪QT+2 | A∪B∪C)≥ n−2.

Therefore limsup pt ≥
1
4

n−2.

Example (LASVM + Gradient Selection) The LASVM algorithm with Gradient Example Selec-

tion remains an Approximate WDS algorithm. Whenever Random Example Selection has a non

zero probability to pick a τ-violating pair, Gradient Example Selection picks the a τ-violating pair

with maximal gradient with probability one. Reasoning as above yields limsup pt ≥ 1. Therefore

Theorem 18 applies and the algorithm converges to a solution of the SVM QP problem.

Example (LASVM + Active Selection + Randomized Search) The LASVM algorithm with Ac-

tive Example Selection remains an Approximate WDS algorithm. However it does not necessarily

verify the conditions of Theorem 18. There might indeed be τ-violating pairs that do not involve the

example closest to the decision boundary.

However, convergence occurs when one uses the Randomized Search method to select an ex-

ample near the decision boundary. There is indeed a probability greater than 1/nM to draw a sample

5. See footnote 4 discussing the tolerance κ in the case of SVMs.

1615

BORDES, ERTEKIN, WESTON, AND BOTTOU

containing M copies of the same example. Reasonning as above yields limsup pt ≥
1
4

n−2M. There-

fore, Theorem 18 applies and the algorithm eventually converges to a solution of the SVM QP

problem.

In practice this convergence occurs very slowly because it involves very rare events. On the other

hand, there are good reasons to prefer the intermediate kernel classifiers visited by this algorithm

(see Section 4).

References

M. A. Aizerman, É. M. Braverman, and L. I. Rozonoér. Theoretical foundations of the potential

function method in pattern recognition learning. Automation and Remote Control, 25:821–837,

1964.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society,

68:337–404, 1950.

G. Bakır, L. Bottou, and J. Weston. Breaking SVM complexity with cross-training. In Lawrence

Saul, Bernhard Schölkopf, and Léon Bottou, editors, Advances in Neural Information Processing

Systems, volume 17, pages 81–88. MIT Press, 2005.

A. Bordes and L. Bottou. The Huller: a simple and efficient online SVM. In Proceedings of

the 16th European Conference on Machine Learning (ECML2005), Lecture Notes in Artificial

Intelligence, to appear. Springer, 2005.

L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L.D. Jackel, Y. LeCun, U. A. Muller,

E. Sackinger, P. Simard, and V. Vapnik. Comparison of classifier methods: a case study in

handwritten digit recognition. In Proceedings of the 12th IAPR International Conference on

Pattern Recognition, Conference B: Computer Vision & Image Processing., volume 2, pages 77–

82, Jerusalem, October 1994. IEEE.

L. Bottou and Y. LeCun. On-line learning for very large datasets. Applied Stochastic Models in

Business and Industry, 21(2):137–151, 2005.

C. Campbell, N. Cristianini, and A. J. Smola. Query learning with large margin classifiers. In

Proceedings of ICML’2000, 2000.

G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning. In

Advances in Neural Processing Systems, 2001.

N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Worst-case analysis of selective sampling for linear-

threshold algorithms. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Infor-

mation Processing Systems 17, pages 241–248. MIT Press, Cambridge, MA, 2005.

C.-C. Chang and C.-J. Lin. LIBSVM : a library for support vector machines. Technical re-

port, Computer Science and Information Engineering, National Taiwan University, 2001-2004.

http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

D. Cohn, L. Atlas, and R. Ladner. Training connectionist networks with queries and selective

sampling. In D. Touretzky, editor, Advances in Neural Information Processing Systems 2, San

Mateo, CA, 1990. Morgan Kaufmann.

1616

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

R. Collobert and S. Bengio. SVMTorch: Support vector machines for large-scale regression prob-

lems. Journal of Machine Learning Research, 1:143–160, 2001.

R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of SVMs for very large scale problems.

In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information

Processing Systems 14, Cambridge, MA, 2002. MIT Press.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.

K. Crammer, J. Kandola, and Y. Singer. Online classification on a budget. In Sebastian Thrun,

Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing

Systems 16. MIT Press, Cambridge, MA, 2004.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Journal

of Machine Learning Research, 3:951–991, 2003.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and other kernel-

based learning methods. Cambridge University Press, Cambridge, UK, 2000.

C. Domingo and O. Watanabe. MadaBoost: a modification of AdaBoost. In Proceedings of the 13th

Annual Conference on Computational Learning Theory, COLT’00, pages 180–189, 2000.

B. Eisenberg and R. Rivest. On the sample complexity of PAC learning using random and chosen

examples. In M. Fulk and J. Case, editors, Proceedings of the Third Annual ACM Workshop on

Computational Learning Theory, pages 154–162, San Mateo, CA, 1990. Kaufmann.

V. V. Fedorov. Theory of Optimal Experiments. Academic Press, New York, 1972.

Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. In

J. Shavlik, editor, Machine Learning: Proceedings of the Fifteenth International Conference, San

Francisco, CA, 1998. Morgan Kaufmann.

T.-T. Frieß, N. Cristianini, and C. Campbell. The kernel Adatron algorithm: a fast and simple

learning procedure for support vector machines. In J. Shavlik, editor, 15th International Conf.

Machine Learning, pages 188–196. Morgan Kaufmann Publishers, 1998. See (Cristianini and

Shawe-Taylor, 2000, section 7.2) for an updated presentation.

C. Gentile. A new approximate maximal margin classification algorithm. Journal of Machine

Learning Research, 2:213–242, 2001.

H.-P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik. Parallel support vector machines:

The Cascade SVM. In Lawrence Saul, Bernhard Schölkopf, and Léon Bottou, editors, Advances

in Neural Information Processing Systems, volume 17. MIT Press, 2005.

I. Guyon, B. Boser, and V. Vapnik. Automatic capacity tuning of very large VC-dimension classi-

fiers. In S. J. Hanson, J. D. Cowan, and C. Lee Giles, editors, Advances in Neural Information

Processing Systems, volume 5, pages 147–155. Morgan Kaufmann, San Mateo, CA, 1993.

T. Joachims. Making large–scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and

A. J. Smola, editors, Advances in Kernel Methods — Support Vector Learning, pages 169–184,

Cambridge, MA, 1999. MIT Press.

1617

BORDES, ERTEKIN, WESTON, AND BOTTOU

S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier

design. Machine Learning, 46:351–360, 2002.

Y. Li and P. Long. The relaxed online maximum margin algorithm. Machine Learning, 46:361–387,

2002.

C.-J. Lin. On the convergence of the decomposition method for support vector machines. IEEE

Transactions on Neural Networks, 12(6):1288–1298, 2001.

N. Littlestone and M. Warmuth. Relating data compression and learnability. Technical report,

University of California Santa Cruz, 1986.

G. Loosli, S. Canu, S.V.N. Vishwanathan, A. J. Smola, and M. Chattopadhyay. Une boı̂te à outils

rapide et simple pour les SVM. In Michel Liquière and Marc Sebban, editors, CAp 2004 -

Confrence d’Apprentissage, pages 113–128. Presses Universitaires de Grenoble, 2004. ISBN

9-782706-112249.

D. J. C. MacKay. Information based objective functions for active data selection. Neural Computa-

tion, 4(4):589–603, 1992.

N. Murata and S.-I. Amari. Statistical analysis of learning dynamics. Signal Processing, 74(1):

3–28, 1999.

N. J. Nilsson. Learning machines: Foundations of Trainable Pattern Classifying Systems. McGraw–

Hill, 1965.

A. B. J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium on the

Mathematical Theory of Automata, volume 12, pages 615–622. Polytechnic Institute of Brooklyn,

1962.

J. Platt. Fast training of support vector machines using sequential minimal optimization. In

B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods — Sup-

port Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in

the brain. Psychological Review, 65(6):386–408, 1958.

G. Schohn and D. Cohn. Less is more: Active learning with support vector machines. In Pat

Langley, editor, Proceedings of the Seventeenth International Conference on Machine Learning

(ICML 2000), pages 839–846. Morgan Kaufmann, June 2000.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, New York, 1986.

I. Steinwart. Sparseness of support vector machines—some asymptotically sharp bounds. In Se-

bastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information

Processing Systems 16. MIT Press, Cambridge, MA, 2004.

1618

FAST KERNEL CLASSIFIERS WITH ONLINE AND ACTIVE LEARNING

N. Takahashi and T. Nishi. On termination of the SMO algorithm for support vector machines.

In Proceedings of International Symposium on Information Science and Electrical Engineering

2003 (ISEE 2003), pages 187–190, November 2003.

S. Tong and D. Koller. Support vector machine active learning with applications to text classi-

fication. In P. Langley, editor, Proceedings of the 17th International Conference on Machine

Learning, San Francisco, California, 2000. Morgan Kaufmann.

I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Very large SVM training using core vector machines.

In Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (AIS-

TAT’05). Society for Artificial Intelligence and Statistics, 2005.

V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, Berlin, 1982.

V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method. Automation and

Remote Control, 24:774–780, 1963.

V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

V. N. Vapnik, T. G. Glaskova, V. A. Koscheev, A. I. Mikhailski, and A. Y. Chervonenkis. Algorihms

and Programs for Dependency Estimation. Nauka, 1984. In Russian.

S. V. N. Vishwanathan, A. J. Smola, and M. Narasimha Murty. SimpleSVM. In Proceedings of

ICML 2003, pages 760–767, 2003.

J. Weston, A. Bordes, and L. Bottou. Online (and offline) on an even tighter budget. In Robert G.

Cowell and Zoubin Ghahramani, editors, Proceedings of the Tenth International Workshop on

Artificial Intelligence and Statistics, Jan 6-8, 2005, Savannah Hotel, Barbados, pages 413–420.

Society for Artificial Intelligence and Statistics, 2005.

G. Zoutendijk. Methods of Feasible Directions. Elsevier, 1960.

1619

Ignorance is Bliss: Non-Convex Online

Support Vector Machines

Şeyda Ertekin sertekin@cse.psu.edu

Department of Computer Science and Engineering
Pennsylvania State University
University Park, PA 16802 USA
NEC Laboratories America
4 Independence Way, Suite 200
Princeton, NJ 08540

Léon Bottou leon@bottou.org

NEC Laboratories America
4 Independence Way, Suite 200
Princeton, NJ 08540

C. Lee Giles giles@ist.psu.edu

College of Information Science and Technology

Pennsylvania State University

University Park, PA 16802 USA

Editor:

Abstract

In this paper, we propose a non-convex online Support Vector Machine (SVM) algorithm
(LASVM-NC) based on the Ramp Loss, which has strong ability of suppressing the influ-
ence of outliers. Then, again in the online learning setting, we propose an outlier filtering
mechanism (LASVM-I) based on approximating non-convex behavior in convex optimiza-
tion. These two algorithms are built upon another novel SVM algorithm (LASVM-G) that
is capable of generating accurate intermediate models in its iterative steps by leveraging
the primal/dual gap. We present experimental results that demonstrate the merit of our
frameworks in achieving significant robustness to outliers in noisy data classification where
mislabeled training instances are in abundance. Experimental results show that the pro-
posed approaches yield more scalable online SVM algorithm with sparser models and less
computational running time both in the training and recognition phases without sacrific-
ing generalization performance. We also point out the relation between the non-convex
behavior in SVMs and active learning.

Keywords: Online Learning, Non-Convex Optimization, Support Vector Machines, Ac-
tive Learning

1. Introduction

In supervised learning systems, the generalization performance of classification algorithms
are shown to be greatly improved with large margin training. Large margin classifiers
find the maximal margin hyperplane that separates the training data in the appropriately
chosen kernel induced feature space. It has been shown numerous times that if a large

c©2008 Şeyda Ertekin and Léon Bottou and C. Lee Giles.

S. Ertekin, L. Bottou and C. Lee Giles

margin is obtained, the separating hyperplane is likely to have a small misclassification
rate during recognition (or prediction) (Bousquet and Elisseeff, 2002; Schölkopf and Smola,
2002; Shawe-Taylor and Cristianini, 2004). The maximal margin methodology forms the
fundamental principles of Support Vector Machines (SVMs). In the presence of noise,
however, the standard maximum margin algorithm can be subject to overfitting. Cortes
and Vapnik (1995) address this problem by proposing the soft margin criterion, which allows
some misclassified examples in the training phase for better predictive power. However, the
soft margin approach in SVMs has brought a serious shortcoming along with its advantages.
With the soft margin criterion, patterns are allowed to be misclassified for a certain cost and
outlier (misclassified) examples start to play a dominant role in determining the decision
hyperplane, since they tend to have the largest margin loss according to the Hinge Loss.
Nonetheless, due to its convex property and practicality, Hinge Loss became a commonly
used loss function in SVMs.

Convexity is viewed as a virtue by most of the machine learning researchers both from a
theoretical and experimental point of view. Convex methods can easily be mathematically
analyzed and bounds can be produced. In addition, convex solutions are guaranteed to reach
to the global optimum, avoiding the fear of ending up in the local optimum. The popularity
of convexity further increased after the success of convex algorithms, particularly with
SVMs, which yield good generalization performance and strong theoretical foundations.
However, despite many advantages of convex modeling, the price we pay for insisting on
convexity is an increase in the size of the model and the scaling properties of the algorithm.
In this paper, we show that shifting gears from convexity to non-convexity can be very
effective for achieving sparse and scalable solutions, particularly when the data consists of
abundant label noise. We present herein experimental results showing how a non-convex
loss function, Ramp Loss, can be efficiently integrated to an online SVM algorithm in order
to suppress the influence of misclassified examples.

Various works in the history of machine learning research focused on using non-convex
loss functions as an alternate to convex Hinge Loss, in large margin classifiers. While
Mason et al. (2000) and Krause and Singer (2004) applied it to Boosting, Perez-Cruz et al.
(2002) and Linli Xu (2006) proposed training algorithms for SVMs with the Ramp Loss
and solved the non-convex optimization by utilizing semi-definite programming and convex
relaxation techniques. On the other hand, some previous work of Liu et al. (2005) and Wang
et al. (2008) used the concave-convex programming (CCCP) for non-convex optimization as
the work presented here. Those studies are worthwhile in the endeavor of achieving sparse
models or competitive generalization performance, nevertheless none of them are efficient in
terms of computational running time and scalability for real-world data mining applications
and yet the improvement in classification accuracy is only marginal. Collobert et al. (2006)
pointed out the scalability advantages of non-convex approaches and used CCCP for non-
convex optimization in order to achieve faster batch SVMs and Transductive SVMs. In
this paper, we focus on bringing the scalability advantages of non-convexity to the online
learning setting by using an online SVM algorithm, LASVM (Bordes et al., 2005).

Online learning is advantageous when dealing with streaming, or very large scale data.
Online learners incorporate the information of new seen training data into the model without
retraining it with the previously seen entire training data. Since they process the data one
at a time in the training phase, selective sampling can be applied and evaluation of the

2

Ignorance is Bliss: Non-Convex Online Support Vector Machines

informativeness of the data prior to the processing by the learner becomes possible. We
implement an online SVM training with non-convex loss function (LASVM-NC), which yields
a significant speed improvement in training and builds a sparser model, hence resulting in
faster recognition than its convex version as well. Based on selective sampling, we further
propose an SVM algorithm (LASVM-I) that ignores the instances that lie in the flat region
of the Ramp Loss in advance, before they are processed by the learner. Although this may
sound like an over-aggressive training sample elimination process, we point out that those
instances do not play role in determining the decision hyperplane according to the Ramp
Loss anyway. Making a right decision about whether to eliminate or process a training
data highly depends on the trustworthiness of the current model. The intermediate models
should be well enough trained in order to capture the characteristics of the training data,
but on the other hand, should not be over-optimized since only part of the entire training
data is seen at that point in time. We build a balance within those two situations by
leveraging the gap between primal and dual functions during the optimization steps of
online SVM (LASVM-G). We then build a non-convex optimization scheme and a training
sample ignoring mechanism on top of LASVM-G. We show that for a particular case of
sample elimination scenario, misclassified instances according to the current learned model
are not taken into account at the training process (s = 0). For another case, only the
instances in the margin pass the barrier of elimination and are processed in the training,
hence leading to an extreme case of the well-known small pool active learning framework
(Ertekin et al., 2007) in online SVMs (when s = −1).

The proposed non-convex implementation and selective sample ignoring policy yields
sparser models with fewer support vectors (SVs) and faster training with less computa-
tional time and kernel computations which overall leads to a more scalable online SVM
algorithm. The advantages of the proposed methods become more pronounced in noisy
data classification where mislabeled samples are in abundance.

2. Support Vector Machines

Support Vector Machines (Cortes and Vapnik, 1995) are well known for their strong theo-
retical foundations, generalization performance and ability to handle high dimensional data.
In the binary classification setting, let ((x1, y1) · · · (xn, yn)) be the training dataset where xi

are the feature vectors representing the instances and yi ∈ (−1,+1) are the labels of those
instances. Using the training set, SVM builds an optimum hyperplane – a linear discrimi-
nant in a higher dimensional feature space – that separates the two classes by the largest
margin. The SVM solution is obtained by minimizing the following objective function:

min
θ

J(θ) = min
w,b,ξi

‖w‖2 + C

n∑

i=1

ξi with

{
∀ i yi(w

T Φ(xi)− b) ≥ 1− ξi
∀ i ξi ≥ 0

(1)

where w is the norm of the hyperplane, b is the offset, yi are the labels, Φ(·) is the mapping
from input space to feature space, and ξi are the slack variables that permit the non-
separable case by allowing misclassification of training instances. In practice, the convex

3

S. Ertekin, L. Bottou and C. Lee Giles

quadratic programming (QP) problem (1) is solved through its dual formulation:

max
α

G(α) ≡

N∑

i=1

αi −
1

2

∑

i,j

αiαjyiyjK(xi,xj) (2)

subject to







∑

i αi = 0
Ai ≤ αi ≤ Bi

Ai = min(0, Cyi)
Bi = max(0, Cyi)

(3)

whereK(xi,xj) = 〈Φ(xi),Φ(xj)〉 is the kernel matrix representing the dot products Φ(xi)Φ(xj)
in feature space and the αi are the Lagrange multipliers. This formulation slightly deviates
from the original formulation; the coefficients αi in Eq. 3 inherit the signs of the labels yi,
permitting α’s to take on negative values. The training instances with αi 6= 0 are called
support vectors and they define the position of the hyperplane, with its norm w represented
as

w =

n∑

i=1

αiΦ(xi) (4)

Once a model is trained, a soft margin SVM classifies a pattern x according to the sign
of a decision function, which can be represented as a kernel expansion

ŷ(x) =

n∑

i=1

αiK(x,xi) + b (5)

where the sign of ŷ(x) represents the predicted classification of x. A widely popular method-
ology for solving the SVM QP problem is Sequential Minimal Optimization (SMO) (Platt,
1999). SMO works by making successive direction searches and taking steps along directions
based on “τ -violating pairs”

(i, j) is a τ -violating pair ⇐⇒







αi < Bi

αj > Aj

gi − gj > τ

where A and B follow the same definition as the constraint in Eq. 3 and τ is a small positive
tolerance. Each SMO step, then, involves finding such a pair and taking an optimization step
along that feasible direction. The coefficients αi and αj are modified by opposite amounts,
satisfying the first constraint in (3). This ability to break down large optimization problems
into small bits of pairwise optimizations that can be solved analytically is the underlying
reason for SMO’s efficiency and wide adoption in optimization of SVM solvers.

4

Ignorance is Bliss: Non-Convex Online Support Vector Machines

SMO Algorithm
Denote Kij = K(xi,xj)

1) Set α← 0 and compute the initial gradient gi = yi −
∑

k αkKik

2) Choose a τ -violating pair (i, j). Stop if no such pair exists.

3) λ← min

{
gi − gj

Kii +Kjj − 2Kij

, Bi − αi, αj −Aj

}

αi ← αi + λ , αj ← αj − λ
gs ← gs − λ(Kis −Kjs) ∀ s ∈ {1 . . . n}

4) Return to step (2)

Although SMO was originally developed for batch (offline) SVMs, SMO-like optimization
schemes have enabled the development of online SVMs that can achieve the generalization
performance of batch learners at a faster rate. The next section presents LASVM, an efficient
online SVM algorithm (LASVM)that provides the basis for the online non-convex SVM solver
presented in this paper.

3. LASVM

LASVM is an efficient online SVM solver that uses less memory and trains significantly
faster than other state-of-the-art SVM solvers while yielding competitive misclassification
rates after a single pass over the training examples. LASVM realizes these benefits due its
novel optimization steps that has been inspired by SMO. LASVM applies the same pairwise
optimization principle to online learning by defining two direction search operations. The
first operation, PROCESS, attempts to insert an example k /∈ S into S, the set of current
support vector indices (steps 1-2 of the algorithm). In the online setting, this relates to
processing a new example at time t. Then it searches a second example in S to find the
τ -violating pair with maximal gradient (steps 3-4) and performs a direction search (step 5).
Direction searches of the PROCESS kind involve at least one example that is not a support
vector of the current kernel expansion. They potentially can change the coefficient of this
example and make it a support vector.

LASVM PROCESS(k)
1) Bail out if k ∈ S.

2) αk ← 0 , gk ← yk −
∑

s∈S αsKks , S ← S ∪ {k}

3) If yk = +1 then
i← k , j ← arg mins∈S gs with αs > As

else
j ← k , i← arg maxs∈S gs with αs < Bs

4) Bail out if (i, j) is not a τ -violating pair.

5) λ← min

{
gi − gj

Kii +Kjj − 2Kij

, Bi − αi, αj −Aj

}

αi ← αi + λ , αj ← αj − λ
gs ← gs − λ(Kis −Kjs) ∀ s ∈ S

5

S. Ertekin, L. Bottou and C. Lee Giles

The second operation, REPROCESS, removes some elements from S. It first searches
the τ -violating pairs of instances from S with maximal gradient (steps 1-2), and performs a
direction search (step 3). Then it removes blatant non support vectors (step 4). Direction
searches of the REPROCESS kind involve two examples that are support vectors in the
current kernel expansion. They potentially can zero the coefficient of one or both support
vectors and thus remove them from the kernel expansion. In short, PROCESS adds new
instances to S and REPROCESS removes the ones that the learner does not benefit from
anymore. Repeating LASVM iterations on randomly chosen training set examples provably
converges to the SVM solution.

LASVM REPROCESS

1) i← arg maxs∈S gs with αs < Bs

j ← arg mins∈S gs with αs > As

2) Bail out if (i, j) is not a τ -violating pair.

3) λ← min

{
gi − gj

Kii +Kjj − 2Kij

, Bi − αi, αj −Aj

}

αi ← αi + λ , αj ← αj − λ
gs ← gs − λ(Kis −Kjs) ∀ s ∈ S

4) i← arg maxs∈S gs with αs < Bs

j ← arg mins∈S gs with αs > As

For all s ∈ S such that αs = 0
If ys = −1 and gs ≥ gi then S = S − {s}
If ys = +1 and gs ≤ gj then S = S − {s}

5) b← (gi + gj)/2 , δ ← gi − gj

Online Iterations In its original formulation, after initializing the state variables (step
1), the Online LASVM algorithm alternates between single PROCESS and REPROCESS

operations (step 2). Then it simplifies the kernel expansion by running REPROCESS to
remove all τ -violating pairs from the kernel expansion, a step known as FINISHING (step
3). The optimizations performed in the FINISHING step reduce the number of support
vectors in the SVM model.

LASVM

1) Initialization:
Seed S with a few examples of each class.
Set α← 0 and compute the initial gradient g = y − ŷ(x) + b

2) Online Iterations:
Repeat a predefined number of times:

- Pick an example kt

- Run PROCESS(kt).
- Run REPROCESS once.

3) Finishing:
Repeat REPROCESS until δ ≤ τ .

6

Ignorance is Bliss: Non-Convex Online Support Vector Machines

4. LASVM with Gap-based Optimization – LASVM-G

In this section, we present LASVM-G – an efficient online SVM algorithm that brings per-
formance enhancements to LASVM. Instead of running a single REPROCESS operation after
each PROCESS step, LASVM-G adjusts the number of REPROCESS operations at each on-
line iteration by leveraging the gap between the primal and the dual functions. Further,
LASVM-G replaces LASVM’s one time FINISHING optimization and cleaning stage with
the optimizations performed in each REPROCESS cycle at each iteration and the periodic
non-SV removal steps. These improvements enable LASVM-G to generate more reliable
intermediate models than LASVM, which lead to sparser SVM solutions that have better
generalization performance.

4.1 Leveraging the Gap Between the Primal and the Dual Functions

One question regarding the optimization scheme in LASVM is the rate at which to per-
form REPROCESS operations. A simple approach would be to perform one REPROCESS

operation after each PROCESS step. However, this heuristic approach may result in under
optimization of the objective function in the intermediate steps if this rate is smaller than
the optimal proportion. Another option would be to run REPROCESS until a small pre-
defined threshold ε exceeds the L∞ norm of the projection of the gradient (∂G(α)/∂αi).
Little work has been done to determine the correct value of the threshold ε. A geometrical
argument relates this norm to the position of the support vectors relative to the margins
(Keerthi et al., 2001). As a consequence, one usually chooses a relatively small threshold,
typically in the range 10−4 to 10−2. Using such a small threshold to determine the rate
of REPROCESS operations results in many REPROCESS steps after each PROCESS opera-
tion. This will not only increase the training time and computational complexity, but can
potentially over optimize the objective function at each iteration. Since non-convex itera-
tions work towards suppressing some training instances (outliers), the intermediate learned
models should be well enough trained in order to capture the characteristics of the training
data but on the other hand, should not be over-optimized since only part of the entire
training data is seen at that point in time. Therefore, it is necessary to employ a criteria
to determine an accurate rate of REPROCESS operations after each PROCESS. We define
this policy as the minimization of the gap between the primal and the dual (Schölkopf and
Smola, 2002).

Optimization of Primal/Dual Gap From the formulations of the primal and dual
functions in (1) and (2) respectively, it can be shown that the optimal values of the primal
and dual are same (Chapelle, 2007). At any non-optimal point, the primal function is
guaranteed to lie above the dual curve. In formal terms, let θ̂ and α̂ be solutions of problems
(1) and (2), respectively. The strong duality asserts that for any feasible θ and α,

G(α) ≤ G(α̂) = J(θ̂) ≤ J(θ) with θ̂ =
∑

i

α̂iyiΦ(xi) (6)

That is, at any time during the optimization, the value of the primal J(·) is higher than
the dual G(·). Using the equality w =

∑

l αlxl, we show that this holds as follows:

7

S. Ertekin, L. Bottou and C. Lee Giles

J(θ)−G(α) =
1

2
‖w‖2 + C

∑

l

|1− yl(w · xl + b)|+ −
∑

l

αlyl +
1

2
‖w‖2

= ‖w‖2 −
∑

l

αlyl + C
∑

l

|1− yl(w · xl + b)|+

= w(
∑

l

αlyl)−
∑

l

αlyl + C
∑

l

|1− yl(w · xl + b)|+

= −
∑

l

αlyl|1− yl(w · xl + b)|+ + C
∑

l

|1− yl(w · xl + b)|+

=
∑

l

(C − αlyl
︸ ︷︷ ︸

≥0

) |1− yl(w · xl + b)|+
︸ ︷︷ ︸

≥0

≥ 0

where C − αlyl ≥ 0 is satisfied by the constraint of the dual function (3). Then, the SVM
solution is obtained when one reaches θ̄, ᾱ such that

ε > J(θ̄)−G(ᾱ) where θ̄ =
∑

i

ᾱiyiΦ(xi) (7)

The strong duality in Equation 6 then guarantees that J(θ̄) < J(θ̂) + ε. Few solvers imple-
ment this criterion since it requires the additional calculation of the gap J(θ)−G(α). In this
paper, we advocate using criterion (7) using a threshold value ε that grows sublinearly with
the number of examples. Letting ε grow makes the optimization coarser when the number
of examples increases. As a consequence, the asymptotic complexity of optimizations in
online setting can be smaller than that of the exact optimization.

Most SVM solvers use the dual formulation of the QP problem. However, increasing
the dual does not necessarily reduce the primal/dual gap. The dual function follows a
nice monotonically increasing pattern at each optimization step, whereas the primal shows
significant up and down fluctuations. In order to keep the size of the primal/dual gap in
check, before each PROCESS operation we compute the standard deviation of the primal,
which we call the Gap Target Ĝ

Ĝ = max(0,

√
√
√
√

n∑

i=1

h2
i −

(
∑n

i=1 hi)
2

l
) (8)

where l is the number of support vectors and hi = Ciyigi. After computing the gap target,
we run a PROCESS step and check the new Gap G between the primal and the dual. After
an easy derivation, the gap is computed as

G = −

n∑

i=1

(αigi + max(0, C · gi)) (9)

We cycle between running REPROCESS and computing the gap G until the termination
criteria G ≤ max(C, Ĝ) is reached. That is, we require the primal/dual gap after the

8

Ignorance is Bliss: Non-Convex Online Support Vector Machines

REPROCESS operations to be smaller than or equal to initial gap target Ĝ. After this
point, the learner continues with computing the new Gap Target and running PROCESS

and REPROCESS operation on the next fresh instance from the unseen example pool.

4.2 Building Blocks

The implementation of LASVM-G maintains the following pieces of information as its key
building blocks: the coefficients αi of the current kernel expansion S, the bounds for each
α, and the partial derivatives of the instances in the expansion, given as

gk =
∂W (α)

∂αk

= yk −
∑

i

αiK(xi, xk) = yk − ŷ(xk) (10)

The kernel expansion here maintains all the training instances in the learner’s active set,
both the support vectors and the instances with α = 0.

Optimization is driven by two kinds of direction searches. The first operation, PROCESS,
inserts an instance into the kernel expansion and initializes its αi and gradient gi (Step 1).
After computing the step size (Step 2), it performs a direction search (Step 3). We set the
offset term for kernel expansion b to zero for computational simplicity. This removes the
necessity of satisfying the constraint

∑

i∈S αi = 0, enabling the algorithm to update a single
α at a time, both in PROCESS and REPROCESS operations.

LASVM-G PROCESS(i)
1) αi ← 0, gi ← yk −

∑

s∈S αsKis

2) If gi < 0 then

λ = max
{

Ai − αi,
gi

Kii

}

Else
λ = max

{

Bi − αi,
gi

Kii

}

3) αi ← αi + λ
gs ← gs − λKis ∀s in kernel expansion

The second operation, REPROCESS, searches all of the instances in the kernel expansion
and selects the instance with the maximal gradient (Steps 1-3). Once an instance is selected,
LASVM-G computes a step size (Step 4) and performs a direction search (Step 5).

LASVM-G REPROCESS()
1) i← arg mins∈S gs with αs > As

j ← arg maxs∈S gs with αs < Bs

2) Bail out if (i, j) is not a τ -violating pair.
3) If gi + gj < 0 then g ← gi

Else g ← gj

4) If g < 0 then

λ = max
{

Ai − αi,
g
Kii

}

Else
λ = min

{

Bi − αi,
g
Kii

}

5) αi ← αi + λ
gs ← gs − λKis ∀s in kernel expansion

9

S. Ertekin, L. Bottou and C. Lee Giles

Both PROCESS and REPROCESS operate on the instances in the kernel expansion, but
neither of them remove any instances from it. A removal step is necessary for improved
efficiency because as the learner evolves, the instances that were admitted to the kernel
expansion in earlier iterations as support vectors may not serve as support vectors any-
more. Keeping such instances in the kernel expansion slows down the optimization steps
without serving much benefit to the learner and increases the application’s requirement for
computational resources. A straightforward approach to address this inefficiency would be
to remove all of the instances with αi = 0, namely all non-support vectors. One concern
with this approach is that once an instance is removed, it will not be seen by the learner
again, and thus, it will no longer be eligible to become a support vector in the later stages
of training. It is important to find a balance between maintaining the efficiency of a small
sized kernel expansion and not aggressively removing instances from the kernel expansion.
Therefore, the cleaning policy needs to preserve the instances that can potentially become
SVs at a later stage of training while removing instances that have the lowest possibility of
becoming SV’s in the future.

CLEAN

n : number of non-SVs in the kernel expansion.
m : maximum number of allowed non-SVs.
~v : Array of partial derivatives.

1) If n < m return

2) ~v ← ~v ∪ |gi|+, ∀i with αi = 0

3) Sort the gradients in ~v in ascending order.
gthreshold ← v[m]

4) If |gi|+ ≥ gthreshold then remove xi, ∀i with αi = 0

Our cleaning procedure periodically checks the number of non-SVs in the kernel expansion
If the number of non-SVs n is more than the number of instances that is permitted in
the expansion m by the algorithm, CLEAN selects the extra non-SV instances with highest
gradients for removal. Note that, it is immaterial to distinguish whether an instance has
not been an SV for many iterations or it has just become a non-SV. In either case, those
examples do not currently contribute to the classifier and are treated equally from a cleaning
point of view.

4.3 Online Iterations in LASVM-G

LASVM-G exhibits the same learning principle as LASVM, but in a more systematic way.
Both algorithms make one pass (one epoch) over the training set. Empirical evidence
suggests that a single epoch over the entire training set yields a classifier as good as the
SVM solution. The β parameter shown in the LASVM-G algorithm block controls the
optimization behavior and will be described in detail when LASVM-NC is introduced in the
next section. LASVM-G initially sets β ← 0 and never updates the β’s and thus maintains
convex optimization behavior based on Hinge Loss.

10

Ignorance is Bliss: Non-Convex Online Support Vector Machines

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of Training Instances

N
o
rm

a
li

z
e
d
J

(θ
)
−
G

(α
)

Adult Dataset

0 500 1000 1500 2000 2500 3000 3500 4000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Training Instances

N
o
rm

a
li

z
e
d
J

(θ
)
−
G

(α
)

Banana Dataset

0 1000 2000 3000 4000 5000 6000 7000 8000
1

2

3

4

5

6

7
x 10

−3

Number of Training Instances

N
o
rm

a
li

z
e
d
J

(θ
)
−
G

(α
)

Reuters(Money−fx) Dataset

0 15000 30000 45000 60000

2

4

6

8

10

12

14
x 10

−3

Number of Training Instances

N
o
rm

a
li

z
e
d
J

(θ
)
−
G

(α
)

Mnist(8) Dataset

0 1000 2000 3000 4000 5000 6000 7000 8000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

−3

Number of Training Instances

N
o
rm

a
li

z
e
d
J

(θ
)
−
G

(α
)

USPS Dataset

0 1000 2000 3000 4000 5000 6000 7000 8000
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Number of Training Instances

N
o
rm

a
li

z
e
d
J

(θ
)
−
G

(α
)

USPS−N Dataset

Figure 1: The primal/dual gap (J(θ) − G(α)), normalized by the number of training in-
stances. The normalization eliminates the bias on the primal and dual values
caused by different number of support vectors at various snapshots of training
LASVM-G

Upon initialization, LASVM-G alternates between its PROCESS and REPROCESS steps
during the epoch like LASVM, but distributes LASVM’s one time FINISHING step to the op-
timizations performed in each REPROCESS cycle at each iteration and the periodic CLEAN

operations. Another important property of LASVM-G is that it leverages the gap between
the primal and the dual functions to determine the number of REPROCESS steps after each
PROCESS (the -G suffix emphasizes this distinction). Reducing the primal/dual gap too fast
can cause over optimization in early stages without yet observing sufficient training data.
Conversely, reducing the gap too slow can result in under optimization in the intermediate
iterations. Figure 1 shows that as the learner sees more training examples, the primal/dual
gap gets smaller.

LASVM-G

1) Initialization:
Set β ← 0, α← 0

2) Online Iterations:
Pick an example xi

Compute Gap Target Ĝ

Threshold← max(C, Ĝ)
Run PROCESS(xi)
while Gap G > Threshold

Run REPROCESS

end
Periodically run CLEAN

11

S. Ertekin, L. Bottou and C. Lee Giles

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

Adult Dataset

Iterations

T
e

s
t

E
rr

o
r

LASVM

LASVM−G

(a) Test Error Convergence

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

3000

6000

9000

12000

15000

Iterations

N
u

m
b

e
r

o
f

S
u

p
p

o
rt

 V
e

c
to

rs

Adult Dataset

LASVM

LASVM−G

(b) Growth of the Number of Support Vectors

Figure 2: Comparison of LASVM and LASVM-G for Adult dataset. We see that LASVM-G

arrives at a more accurate SVM solution (Fig. (a)) with fewer support vectors at
a faster rate (Fig. (b)). The drop of the Test Error and the number of support
vectors in the end of one pass of the iterations for LASVM is the result of the
optimizations done by the FINISHING step.

The major enhancements that are introduced to LASVM enable LASVM-G to achieve
higher prediction accuracies than LASVM in the intermediate stages of training. Figure 2
presents a comparative analysis of LASVM-G versus LASVM for the Adult dataset. While
both algorithms report the same generalization performance in the end of training, LASVM-

G reaches a better classification accuracy at an earlier point in training than LASVM and
is able to maintain its performance relatively stable with a more reliable model over the
course of training. Furthermore, LASVM-G maintains fewer number of support vectors in
the intermediate training steps, as evidenced in Figure 2(b).

In the next sections, we further introduce three SVM algorithms that are implemented
based on LASVM-G, namely LASVM-NC, LASVM-I and FULL SVM. While these SVM al-
gorithms share the main building blocks of LASVM-G, each algorithm exhibits a distinct
learning principle. LASVM-NC uses the LASVM-G methodology in a non-convex learner
setting. LASVM-I is a learning scheme that we propose as a convex variant of LASVM-NC.
FULL SVM does not take advantage of the non-convexity or the efficiency of the CLEAN

operation, and acts as a baseline case for comparisons in our experimental evaluation.

5. Non-convex Online SVM Solver – LASVM-NC

In this section, we present LASVM-NC, a non-convex online SVM solver that achieves sparser
SVM solutions in less time than online convex SVMs and batch SVM solvers. We first
introduce the non-convex Ramp Loss function and discuss how non-convexity can overcome
the inefficiencies and scalability problems of convex SVM solvers. We then present the

12

Ignorance is Bliss: Non-Convex Online Support Vector Machines

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

z

R
−

1

s=

(a) Ramp Loss

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

z

H
1

(b) Convex Hinge Loss

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

z

−
H

−
1

s=

(c) Concave Loss

Figure 3: The Ramp Loss 3(a) can be decomposed into a Convex Hinge Loss 3(b) and a
Concave Loss 3(c)

methodology to optimize the non-convex objective function, followed by the description of
the online iterations of LASVM-NC.

5.1 Ramp Loss

Traditional convex SVM solvers rely on the Hinge Loss H1 (shown in Figure 3(b)) to solve
the QP problem, which can be represented in Primal form as

min
w,b

J(w, b) =
1

2
‖w‖2 + C

n∑

l=1

H1(yif(xi)) (11)

In the Hinge Loss formulation Hs(z) = max(0, s − z), s indicates the Hinge point and the
elbow at s = 1 indicates the point at which ylfθ(xl) = yl(w · Φ(xl) + b) = 1. Assume for
simplicity that the Hinge Loss is made differentiable with a smooth approximation on a
small interval z ∈ [1 − ǫ, 1 + ǫ] near the hinge point. Differentiating (11) shows that the
minimum w must satisfy

w = −C

L∑

l=1

ylH
′

1(yl)fθ(xl)Φ(xi) (12)

In this setting, correctly classified instances outside of the margin (z ≥ 1) can not become
SVs because H

′

1(z) = 0. On the other hand, for the training examples with (z < 1), H
′

1(z)
is 1, so they cost a penalty term at the rate of misclassification of those instances. One
problem with Hinge Loss based optimization is that it imposes no limit on the influences
of the outliers; that is, the misclassification penalty is unbounded. Furthermore in Hinge
Loss based optimization, all misclassified training instances become support vectors. Conse-
quently, the number of support vectors scales linearly with the number of training examples
(Steinwart, 2003). Specifically,

#SV

#Examples
→ 2BΦ (13)

13

S. Ertekin, L. Bottou and C. Lee Giles

where BΦ is the best possible error achievable linearly in the feature space Φ(·). Such fast
pace of growth of the number of support vectors becomes prohibitive for training SVMs in
large scale datasets.

In practice, not all misclassified training examples are necessarily informative to the
learner. For instance in noisy datasets, many instances with label noise become support
vectors due to misclassification, even though they are not informative about the correct
classification of new instances in recognition. Thus it is reasonable to limit the influence
of the outliers and allow the real informative training instances define the model. Since
Hinge Loss admits all outliers into the SVM solution, we need to select an alternative loss
function that enables to selectively ignore the instances that are misclassified according to
the current model. For this purpose, we propose to use the Ramp Loss (Figure 3(a))

Rs(z) = H1(z)−Hs(z) (14)

to control the score window for z at which we are willing to convert instances into sup-
port vectors. Replacing H1(z) with Rs(z) in (12), we see that the Ramp Loss suppresses
the influence of the instances with score z < s by not converting them into support vec-
tors. However, since Ramp Loss is non-convex, it prohibits us from using widely popular
optimization schemes devised for convex functions.

While convexity has many advantages and nice mathematical properties, we point out
that non-convexity has its own benefits of yielding faster and sparser solutions. In this
work, our aim is to achieve the best of both worlds; generate a reliable and robust SVM
solution that is faster and sparser than traditional convex optimizers. This can be achieved
by reducing the complexity of non-convex loss function by transforming the problem into a
difference of convex parts. We employ the Concave-Convex Procedure (CCCP) (Yuille and
Rangarajan, 2002) to solve the non-convex optimization problem in this fashion. CCCP
is closely related to the “Difference of Convex” methods that have been applied to many
problems, including dealing with missing values in SVMs (Smola et al., 2005), improving
boosting algorithms (Krause and Singer, 2004), and implementing ψ-learning (Shen et al.,
2003; Liu et al., 2005). The elegance of CCCP comes from the fact that it first decomposes
a non-convex cost function into a combination of convex parts (by a local approximation
of the concave part) and performs optimization on the difference of these convex functions.
Formally, CCCP can be described as follows.

Assume that a cost function J(θ) can be decomposed into the sum of a convex part
Jvex(θ) and a concave part Jcav(θ). Each iteration of CCCP approximates the concave part
by its tangent and minimizes the resulting convex function.

Algorithm 1 The Concave-Convex Procedure (CCCP)

Initialize θ0 with a best guess
repeat

θt+1 = arg min
θ

(Jvex(θ) + J
′

cav(θ
t) · θ)

until convergence of θt

By summing two inequalities for θ and from the concavity of Jcav(θ), it is easy to infer that
the cost J(θt) decreases after each iteration:

14

Ignorance is Bliss: Non-Convex Online Support Vector Machines

Jvex(θt+1) + J
′

cav(θ
t) · θt+1 ≤ Jvex(θt) + J

′

cav(θ
t) · θt

Jcav(θ
t+1) ≤ Jcav(θ

t) + J
′

cav(θ
t) · (θt+1 − θt) (15)

We do not need any hyper-parameters for this optimization, and since the problem is now
purely convex, we can use any efficient convex algorithm to solve this problem. Similarly,
the Ramp Loss can be decomposed into a difference convex parts (as shown in Figure 3 and
Equation 14), which makes it amenable to CCCP optimization. The new cost Js(θ) after
substituting the Hinge Loss with the Ramp Loss then reads:

min
θ

Js(θ) =
1

2
‖w‖2 + C

n∑

l=1

Rs(yif(xi))

=
1

2
‖w‖2 + C

n∑

l=1

H1(yif(xi))

︸ ︷︷ ︸

Js
vex(θ)

−C
n∑

l=1

Hs(yif(xi))

︸ ︷︷ ︸

Js
cav(θ)

(16)

For simplification purposes, we introduce the notation

βl = yl

∂Js
cav(θ)

∂fθ(xl)
=

{
C if ylfθ(xl) < s
0 otherwise

(17)

where fθ(xl) =
∑n

i=1 αiK(xl, xi)+ b is the kernel expansion. The cost function in Equation
16, along with the notation introduced in Equation 17 is then reformulated as the following
dual optimization problem:

max
α

G(α) =
∑

i

yiαi −
1

2

∑

i,j

αiαjKi,j with







Ai ≤ αi ≤ Bi

Ai = min(0, Cyi)− βiyi

Bi = max(0, Cyi)− βiyi

βi from Equation 17

(18)

There is a fundamental difference between non-convex optimization in batch and online
SVMs. Batch non-convex SVMs alternate between solving (18) and updating the β’s of
all training instances. LASVM-NC, on the other hand, adjusts the β of only the new
fresh instance based on the current model and solves (18) while the online algorithm is
progressing. We also would like to point out that if the β’s of all of the training instances
are initialized to zero and left unchanged in the online iterations, the algorithm becomes
traditional Hinge Loss SVM. From another viewpoint, if s ≪ 0, then the β’s will remain
zero and the effect of Ramp Loss will not be realized. Therefore, (18) can be viewed as a
generic algorithm that can act as both Hinge Loss SVM and Ramp Loss SVM with CCCP
that enables non-convex optimization.

5.2 Online Iterations in LASVM-NC

The online iterations in LASVM-NC are similar to LASVM-G in the sense that they are also
based on alternating PROCESS and REPROCESS steps, with the distinction of replacing

15

S. Ertekin, L. Bottou and C. Lee Giles

the Hinge Loss with the Ramp Loss. When a new example xi is encountered, LASVM-NC

first computes the βi for this instance as presented in the algorithm block, where yi is the
class label, fθ(xi) is the decision score for xi, and s is the score threshold for permitting
instances to become support vectors.

LASVM-NC

1) Initialization:
Set β ← 0, α← 0

2) Online Iterations:
Pick an example xi

Set βi =

{
C if yifθ(xi) < s
0 otherwise

Set αi bounds for xi to (min(0, Cyi)− βiyi ≤ αi ≤ max(0, Cyi)− βiyi)
Compute Gap Target Ĝ

Threshold← max(C, Ĝ)
Run PROCESS(xi)
while Gap G > Threshold

Run REPROCESS

end
Periodically run CLEAN

Note from (18) that the α bounds for instances with β = 0 follow the formulation for the
traditional convex setting. On the other hand, the bounds for the instances with β = C, that
is, the outliers with score (z < s) are assigned new bounds based on the Ramp Loss criteria.
Once LASVM-NC establishes the α bounds for the new instance, it computes the Gap Target
Ĝ and takes a PROCESS step. Then, it makes optimizations of the REPROCESS kind until
the size of the primal/dual gap comes down to the Gap Threshold. Finally, LASVM-NC

periodically runs CLEAN operation to keep the size of the kernel expansion under control
and to maintain its efficiency throughout the training stage.

6. LASVM with Ignoring Instances – LASVM-I

This SVM algorithm employs the Ramp function in Figure 3(a) as a filter to the learner
prior to the PROCESS step. That is, once the learner is presented with a new instance,
it first checks if the instance is on the ramp region of the function (1 > yi

∑

j αjKij > s).
The instances that are outside of the ramp region are not eligible to participate in the
optimization steps and they are immediately discarded without further action. The rationale
is that the instances that lie on the flat regions of the Ramp function will have derivative
H

′

(z) = 0, and based on Equation 12, these instances will not play role in determining the
decision hyperplane w.

LASVM-I algorithm is also based on the following recordkeeping that we conducted when
running LASVM-G experiments. In LASVM-G, we kept track of two important data points.
First, we recorded the position of all instances on the Ramp Loss curve right before inserting
the instance into the kernel expansion. Second, we kept track of the number of instances
that were removed from the kernel expansion which were on the flat region of the Ramp
Loss curve when they were admitted. The numeric breakdown is presented in Table 1.

16

Ignorance is Bliss: Non-Convex Online Support Vector Machines

Table 1: Analysis of Adult dataset in the end of the training of the models. “Admitted”
column shows the number of examples that lie on the flat region (left and right)
of the Ramp Loss (with s = −1) when they were inserted into the expansion.
“Cleaned” column shows the number of examples removed during CLEAN.

Expansion Admitted Cleaned
SV # Non-SV Ramp(L) Ramp(R) Ramp(L) Ramp(R)

FULL SVM 11831 20731 32562 0

LASVM-G 11265 0 1340 20252 1 19562

Based on the distribution of these cleaned instances, it is evident that most of the cleaned
examples that were initially admitted from (z > 1) region were removed from the kernel
expansion with CLEAN at a later point in time. This is expected, since the instances with
(z > 1) are already correctly classified by the current model with a certain confidence and
hence do not become support vectors.

On the other hand, Table 1 shows that almost all of the instances inserted from left
flat region (misclassified examples due to z < s) became SVs and therefore were never
removed from the kernel expansion. Intuitively, the examples that are misclassified by a
wide margin should not become support vectors. Ideally, the support vectors should be
the instances that are within the margin of the hyperplane. As studies on Active Learning
show (Ertekin et al., 2007; Schohn and Cohn, 2000), the most informative instances to
determine the hyperplane lie within the margin. Thus, LASVM-I ignores the instances that
are misclassified by a margin (z < s) up front and prevents them from becoming support
vectors.

LASVM-I

1) Initialization:
Set β ← 0, α← 0

2) Online Iterations:
Pick an example xi

Compute z = yi

∑n
j=0 αjK(xi, xj)

if (z > 1 or z < s)
Skip xi and bail out

else
Compute Gap Target Ĝ

Threshold← max(C, Ĝ)
Run PROCESS(xi)
while Gap G > Threshold

Run REPROCESS

end
Periodically run CLEAN

Note that LASVM-I can not be regarded as a non-convex SVM solver since the instances
with β = C are already being ignored up front before the optimization steps. Consequently,

17

S. Ertekin, L. Bottou and C. Lee Giles

all the instances visible to the optimization steps have β = 0, which converts objective
function in (18) into the convex Hinge Loss from an optimization standpoint. Thus, com-
bining these two filtering criteria (z > 1 and z < s), LASVM-I trades non-convexity with a
filtering Ramp function to determine whether to ignore an instance or proceed with opti-
mization steps. Our goal with designing LASVM-I is that, based on this initial filtering step,
it is possible to achieve further speedups in training times while maintaining competitive
generalization performance. The experimental results validate this claim.

7. LASVM-G without CLEAN – FULL SVM

This algorithm serves as a baseline case for comparisons in our experimental evaluation.
The learning principle of FULL SVM is based on alternating between LASVM-G’s PROCESS

and REPROCESS steps throughout the training iterations. As in LASVM-G, the β’s are
initialized to zero and left that way throughout the online iterations, hence making the
algorithm a Hinge Loss SVM. When a new example is encountered, FULL SVM computes
the Gap Target (given in Eq. 8) and takes a PROCESS step. Then, it makes optimizations
of the REPROCESS kind until the size of the primal/dual gap comes down to the Gap
Threshold. In this learning scheme, FULL SVM admits every new training example into the
kernel expansion without any removal step (i.e. no CLEAN operation).

FULL SVM

1) Initialization:
Set β ← 0, α← 0

2) Online Iterations:
Pick an example xi

Compute Gap Target Ĝ

Threshold← max(C, Ĝ)
Run PROCESS(xi)
while Gap G > Threshold

Run REPROCESS

end

This behavior mimics the behavior of traditional SVM solvers by providing that the learner
has constant access to all training instances that it has seen during training and it can
make any of them a support vector any time if necessary. The SMO-like optimization in
the online iterations of FULL SVM enables it to converge to the batch SVM solution. Each
PROCESS operation introduces a new instance to the learner, updates its α coefficient and
optimizes the objective function. This is followed by potentially multiple REPROCESS steps,
which exploit τ -violating pairs in the kernel expansion. Within each pair, REPROCESS

selects the instance with maximal gradient, and potentially can zero the α coefficient of the
selected instance. After sufficient iterations, as soon as a τ -approximate solution is reached,
the algorithm stops updating the α coefficients. For full convergence to the batch SVM
solution, running FULL SVM usually consists of performing a number of epochs where each
epoch performs n online iterations by sequentially visiting the randomly shuffled training
examples. Empirical evidence suggests that a single epoch yields a classifier almost as good
as the SVM solution. For the theoretical explanation of the convergence results of the online
iterations, please refer to (Bordes et al., 2005).

18

Ignorance is Bliss: Non-Convex Online Support Vector Machines

Train Ex. Test Ex. # Features C K(x, x̄)

Adult (Census) 32562 16282 122 100 e−0.005‖x−x̄‖2

Banana 4000 1300 2 10 e−‖x−x̄‖2

Mnist (Digit 8) 60000 10000 784 100 e−0.001‖x−x̄‖2

Reuters(Money-fx) 7770 3299 8315 1 e−0.5‖x−x̄‖2

USPS 7329 1969 256 1 e−2‖x−x̄‖2

USPS+N 7329 1969 256 1 e−2‖x−x̄‖2

Table 2: Datasets and the train/test splits used in the experimental evaluations. The last
two columns show the SVM parameters C and γ for the RBF kernel.

The freedom to maintain and access the whole pool of seen examples during training in
FULL SVM does come with a price though. The kernel expansion needs to constantly grow
as new training instances are introduced to the learner, and it needs to hold all non-SVs in
addition to the SVs of the current model. Furthermore, the learner still needs to include
those non-SVs in the optimization steps and this additional processing becomes a significant
drag on the training time of the learner.

8. Experiments

The experimental evalutation involves evaluating these outlined SVM algorithms on vari-
ous datasets in terms of both their classification performances and algorithmic efficiencies
leading to scalability. In the experiments reported below, we run a single epoch over the
training examples, all experiments use RBF kernels and the results averaged over 10 runs
for each dataset. Table 2 presents the characteristics of the datasets and the SVM parame-
ters for running the experiments. In LASVM-G, LASVM-NC and LASVM-I experiments, we
empirically set the interval to perform CLEAN at every 300 new training instances.

Generalization Performances One of the metrics that we used in the evaluation of the
generalization performances is Precision-Recall Breakeven Point (PRBEP), a widely used
metric that measures the accuracy of the positive class where precision equals recall. Figure
4 shows the growth of PRBEP curves sampled over the course of training for the datasets.
Compared to the baseline case FULL SVM, all algorithms are able to maintain competitive
generalization performances in the end of training on all examples. Furthermore, LASVM-

NC and LASVM-I actually yield better results on some datasets. This can be attributed to
their ability to filter bad observations (i.e. noise) from training data. In noisy datasets,
most of the noisy instances are misclassified and become support vectors in FULL SVM and
LASVM-G due to the Hinge Loss. This increase in the number of support vectors (shown
in Figure 6) causes the SVM to learn complex classification boundaries that can overfit
to noise, which can adversely effect their generalization performances. LASVM-NC and
LASVM-I are less sensitive to noise, and they learn simpler models that are able to yield
better generalization performances under noisy conditions.

19

S. Ertekin, L. Bottou and C. Lee Giles

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

65

65.5

66

66.5

67

67.5

68

Number of Training Instances

P
R

B
E

P

Adult Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

500 1000 1500 2000 2500 3000 3500 4000
87

87.5

88

88.5

89

89.5

Number of Training Instances

P
R

B
E

P

Banana Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0 1000 2000 3000 4000 5000 6000 7000 8000
68

69

70

71

72

73

74

75

76

77

Number of Training Instances

P
R

B
E

P

Reuters Dataset (Money−fx)

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0 1 2 3 4 5 6

x 10
4

84

86

88

90

92

94

96

98

Number of Training Instances

P
R

B
E

P

Mnist(8) Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0 1000 2000 3000 4000 5000 6000 7000 8000

96

96.5

97

97.5

98

98.5

99

Number of Training Instances

P
R

B
E

P

USPS Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0 1000 2000 3000 4000 5000 6000 7000 8000
94.5

95

95.5

96

96.5

97

97.5

98

98.5

99

Number of Training Instances

P
R

B
E

P

USPS−N Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

Figure 4: Precision/Recall Breakeven Point (PRBEP) vs. Number of Training Instances
for all datasets. We used s = −1 for the Ramp Loss for LASVM-NC.

For the evaluation of classification performances, we report three other metrics, namely
prediction accuracy, AUC and g-means in Table 3. Prediction accuracy measures a model’s
ability to correctly predict the class labels of unseen observations. The area under the ROC
curve (AUC) is a numerical measure of a model’s discrimination performance and shows
how correctly the model separates the positive and negative observations and ranks them.
g-means is the geometric mean of sensitivity and specificity where sensitivity is the accuracy
on the positive instances, and specifity is the accuracy on the negative instances. We report
that all LASVM algorithms yield as good results for these performance metrics as FULL

SVM. Further, as is the case for PRBEP, LASVM-NC and LASVM-I achieve better results
on these metrics for some datasets than FULL SVM and LASVM-G.

We study the impact of the s parameter on the generalization performances of LASVM-

NC and LASVM-I and present our findings in Figure 5. Since FULL SVM and LASVM-G do
not use Ramp Loss, they are represented with their testing errors and total number of sup-
port vectors achieved in the end of training. The Banana dataset shows a clean separation
of LASVM-NC and LASVM-I plots, with LASVM-NC curve under the LASVM-I curve. This
indicates that LASVM-NC achieves higher classification accuracy with fewer support vectors
for all s values for this dataset. In all datasets, increasing the value of s into the positive ter-
ritory actually has the effect of preventing correctly classified instances that are within the
margin from becoming SVs. This becomes detrimental to the generalization performance of
LASVM-NC and LASVM-I since those instances are among the most informative instances
to the learner. Likewise, moving s into further down to the negative territory diminishes
the effect of the Ramp Loss on the outliers. If s→ −∞, then Rs → H1; in other words, if s

20

Ignorance is Bliss: Non-Convex Online Support Vector Machines

0 2000 4000 6000 8000 10000 12000
14.5

15

15.5

16

16.5

17

17.5

18

Adult Dataset

Number of Support Vectors

T
e

s
ti
n

g
 E

rr
o

r
(%

)

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0.5

0.75

−0.5
−0.75

−1

−2

0.25

−0.25

0

200 300 400 500 600 700 800 900 1000

10

10.1

10.2

10.3

10.4

10.5

10.6

Banana Dataset

Number of Support Vectors

T
e

s
ti
n

g
 E

rr
o

r
(%

)

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0.75

0.5

0.25

−2

−1−0.75
−0.25 −0.5

0

200 300 400 500 600 700 800 900 1000 1100 1200
2.5

3

3.5

4

4.5

5

5.5

Reuters Dataset (Money−fx)

Number of Support Vectors

T
e

s
ti
n

g
 E

rr
o

r
(%

)

Full SVM

LASVM−G

LASVM−NC

LASVM−I

−2

−0.75

−0.5

0

0.25

−1

−0.25

500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Mnist(8) Dataset

Number of Support Vectors

T
e
s
in

g
 E

rr
o
r

(%
)

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0.75

0.5

−0.25

−0.5

0.25

0

−0.75 −1 −2

200 220 240 260 280 300 320 340 360 380 400

0.4

0.6

0.8

1

1.2

1.4

1.6

USPS Dataset

Number of Support Vectors

T
e

s
ti
n

g
 E

rr
o

r
(%

)

Full SVM

LASVM−G

LASVM−NC

LASVM−I0.75

0.5

0.25

0

−0.25
−0.5

−1 −2

−0.75

0 500 1000 1500 2000 2500

0.5

1

1.5

2

2.5

USPS−N Dataset

Number of Support Vectors

T
e

s
ti
n

g
 E

rr
o

r
(%

)

Full SVM

LASVM−G

LASVM−NC

LASVM−I

−2

0.75

0.5

0.25

0
−0.5

−0.25

−0.75−1

Figure 5: Testing Error vs. Number of Support Vectors for various settings of the s param-
eter of the Ramp Loss.

takes large negative values, the Ramp Loss will not help to remove outliers from the SVM
kernel expansion.

It is important to note that at the point s = −1, the algorithm behaves as an Active
Learning (Schohn and Cohn, 2000; Tong and Koller, 2001) framework. Active Learning is
widely known as a querying technique for selecting the most informative instances from a
pool of unlabeled instances to acquire their labels. Even in cases where the labels for all
training instances are available beforehand, active learning can still be leveraged to select
the most informative instances from training sets. In SVMs, informativeness of an instance
is synonymous with its distance to the hyperplane and the instances closer to the hyperplane
are the most informative. For this reason, traditional SVM based active learners focus on
the instances that are within the margin of the hyperplane and pick an example from this
region to process next by searching the entire training set. However, such an exhaustive
search is impossible in the online setup and computationally expensive in the offline setup.
Ertekin et al. (2007) suggest that querying for the most informative example does not need
to be done from the entire training set, but instead, querying from randomly picked small
pools can work equally well in a more efficient way. Small pool active learning first samples
M random training examples from the entire training set and selects the best one among
those M examples. With probability 1 − ηM , the value of the criterion for this example
exceeds the η-quantile of the criterion for all training examples regardless of the size of
the training set. In practice this means that the best example among 59 random training
examples has 95% chance to belong to the best 5% examples in the training set.

In the extreme case of small pool active learning, setting the size of the pool to 1
corresponds to investigating whether that instance is within the margin or not. In this

21

S. Ertekin, L. Bottou and C. Lee Giles

Table 3: Experimental Results for the Datasets and all Four SVM algorithms. The First
Four Metrics are for Generalization Performance and the rest are for Computa-
tional Efficiency.

Datasets
Adult Mnist(8) Banana Reuters USPS USPSN

A
cc

u
ra

cy

FULL SVM 84.87 99.25 90.03 97.19 99.54 98.43
LASVM-G 84.81 99.27 89.81 97.19 99.54 99.42
LASVM-NC 85.01 99.15 89.97 97.16 99.52 99.51
LASVM-I 84.82 99.18 89.84 97.16 99.57 99.49

P
R

B
E

P

FULL SVM 67.55 95.98 88.54 76.48 98.62 98.53
LASVM-G 67.18 96.18 88.46 76.42 98.66 98.50
LASVM-NC 67.85 95.64 88.61 76.42 98.59 98.53
LASVM-I 67.71 95.80 88.54 76.20 98.65 98.56

A
U

C

FULL SVM 0.897 0.998 0.965 0.987 0.999 0.998
LASVM-G 0.893 0.998 0.966 0.987 0.999 0.998
LASVM-NC 0.901 0.998 0.965 0.987 0.999 0.998
LASVM-I 0.899 0.998 0.964 0.987 0.999 0.998

G
m

ea
n
s FULL SVM 73.13 97.29 89.51 81.00 98.93 98.42

LASVM-G 72.87 97.42 89.30 81.17 98.92 98.42
LASVM-NC 75.03 96.86 89.47 81.19 98.99 98.74
LASVM-I 73.72 97.06 89.38 81.06 98.89 98.72

#
S
V

FULL SVM 11831 3412 947 1122 384 2455
LASVM-G 11266 3157 941 1120 383 2288
LASVM-NC 4609 2653 551 1086 372 752
LASVM-I 5776 2722 669 1093 373 937

#
K

er
n
el

(x
1
0
6
)

FULL SVM 709.0 2269.7 8.51 33.2 27 30.2
LASVM-G 233.0 182.6 3.8 9.9 5.2 14.3
LASVM-NC 116.9 153.5 3.1 9.9 5.2 7.3
LASVM-I 105.9 121.2 2.0 8 3.2 6.8

T
ra

in
T

im
e FULL SVM 1186 4757.4 1 14.4 43.7 36

LASVM-G 479 547.1 0.6 5.3 17.3 17
LASVM-NC 129 526.0 0.4 4.7 8 8.3
LASVM-I 92 491.4 0.3 3.6 5.8 6

regard, setting s = −1 for the Ramp Loss in LASVM-NC and LASVM-I constrains the
learner’s focus only on the instances within the margin. Empirical evidence suggests that
LASVM-NC and LASVM-I algorithms exhibit the benefits of active learning at s = −1 point,
which seems to yield optimal results in most of our experiments. However, the exact setting
for the s hyperparameter should be determined by the requirements of the classification
task and the characteristics of the dataset.

Computational Efficiency A significant time consuming operation of SVMs is the com-
putation of kernel productsK(i, j) = Φ(xi)·Φ(xj). For each new example, its kernel product

22

Ignorance is Bliss: Non-Convex Online Support Vector Machines

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

2000

4000

6000

8000

10000

12000

Number of Training Instances

N
u

m
b

e
r

o
f

S
u

p
p

o
rt

 V
e

c
to

rs
Adult Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

500 1000 1500 2000 2500 3000 3500 4000
100

200

300

400

500

600

700

800

900

1000

Number of Training Instances

N
u

m
b

e
r

o
f

S
u

p
p

o
rt

 V
e

c
to

rs

Banana Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0 1000 2000 3000 4000 5000 6000 7000 8000
200

300

400

500

600

700

800

900

1000

1100

1200

Number of Training Instances

N
u

m
b

e
r

o
f

S
u

p
p

o
rt

 V
e

c
to

rs

Reuters Dataset (Money−fx)

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0 1 2 3 4 5 6

x 10
4

0

500

1000

1500

2000

2500

3000

3500

Number of Training Instances

N
u
m

b
e
r

o
f
S

u
p
p
o
rt

 V
e
c
to

rs

Mnist(8) Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0 1000 2000 3000 4000 5000 6000 7000 8000
50

100

150

200

250

300

350

400

Number of Training Instances

N
u

m
b

e
r

o
f

S
u

p
p

o
rt

 V
e

c
to

rs

USPS Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0 1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

2000

2500

Number of Training Instances

N
u

m
b

e
r

o
f

S
u

p
p

o
rt

 V
e

c
to

rs

USPS−N Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

Figure 6: Number of Support Vectors vs. Number of Training Instances

with every instance in the kernel expansion needs to be computed. By reducing the num-
ber of kernel computations, it is possible to achieve significant computational efficiency
improvements over traditional SVM solvers. In Figure 7, we report the number of kernel
calculations performed over the course of training iterations. FULL SVM suffers from un-
controlled growth of the kernel expansion, which results in steep increase of the number of
kernel products. This also shows why SVMs can not handle large scale datasets efficiently.
In comparison, LASVM-G requires fewer kernel products than FULL SVM since LASVM-G

keeps the number of instances in the kernel expansion under control by periodically remov-
ing uninformative instances through CLEAN operations.

LASVM-NC and LASVM-I yield significant reduction in the number of kernel compu-
tations and their benefit is most pronounced in the noisy datasets, Adult, Banana and
USPS-N. LASVM-I achieves better reduction of kernel computations than LASVM-NC. This
is due to the aggressive filtering done in LASVM-I where no kernel computation is performed
for the instances on the flat regions of the Ramp Loss. On the other hand, LASVM-NC ad-
mits those instances into the kernel expansion but achieves sparsity through the non-convex
optimization steps. The reason for the low number of kernel products in LASVM-NC is due
to its ability to create sparser models than other three algorithms. A comparison of the
growth of the number of support vectors during the course of training is shown in Figure 6.
LASVM-NC and LASVM-I end up with smaller number of support vectors than FULL SVM

and LASVM-G for all datasets. Furthermore, compared to LASVM-I, LASVM-NC builds
noticeably sparser models with less support vectors in noisy Adult, Banana and USPS-N
datasets. LASVM-I, on the other hand, makes fewer kernel calculations than LASVM-NC

for those datasets. This is a key distinction of these two algorithms: The computational
efficiency of LASVM-NC is the result of its ability to build sparse models. Conversely,
LASVM-I creates comparably more support vectors than LASVM-NC, but makes fewer ker-

23

S. Ertekin, L. Bottou and C. Lee Giles

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1

2

3

4

5

6

7

8
x 10

8

Number of Training Instances

N
u
m

b
e
r

o
f
K

e
rn

e
l
C

o
m

p
u
ta

ti
o
n
s

Adult Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

9
x 10

6

Number of Training Instances

N
u
m

b
e
r

o
f
K

e
rn

e
l
C

o
m

p
u
ta

ti
o
n
s

Banana Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Number of Training Instances

N
u
m

b
e
r

o
f
K

e
rn

e
l
C

o
m

p
u
ta

ti
o
n
s

Reuters Dataset (Money−fx)

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

2.5
x 10

9

Number of Training Instances

N
u
m

b
e
r

o
f
K

e
rn

e
l
C

o
m

p
u
ta

ti
o
n
s

Mnist(8) Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3
x 10

7

Number of Training Instances

N
u
m

b
e
r

o
f
K

e
rn

e
l
C

o
m

p
u
ta

ti
o
n
s

USPS Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Number of Training Instances

N
u
m

b
e
r

o
f
K

e
rn

e
l
C

o
m

p
u
ta

ti
o
n
s

USPS−N Dataset

Full SVM

LASVM−G

LASVM−NC

LASVM−I

Figure 7: Number of Kernel Computations vs. Number of Training Instances

nel calculations due to early filtering. The overall training times for all datasets and all
algorithms are presented both in Figure 8 and Table 3. All three LASVM algorithms are
significantly more efficient than FULL SVM. The fastest training times belong to LASVM-I

and LASVM-NC comes close second. The sparsest solutions are achieved by LASVM-NC

and this time LASVM-I comes close second. These two algorithms represent a compromise
between training time versus sparsity and recognition time, and the appropriate algorithm
should be chosen based on the requirements of the classification task.

9. Conclusions

In traditional convex SVM optimization, the number of support vectors scales linearly with
the number of training examples, which unreasonably increases the training time and com-
putational resource requirements. This fact has hindered widespread adoption of SVMs for
classification tasks in large-scale datasets. In this work, we have studied the ways in which
the computational efficiency of an online SVM solver can be improved without sacrificing
the generalization performance. This paper is concerned with suppressing the influences
of the outliers, which particularly becomes problematic in noisy data classification. For
this purpose, we first present a systematic optimization approach for an online learning
framework to generate more reliable and trustworthy learning models in intermediate itera-
tions (LASVM-G). We then propose two online algorithms, LASVM-NC and LASVM-I, which
leverage the Ramp function to avoid the outliers to become support vectors. LASVM-NC

replaces the traditional Hinge Loss with the Ramp Loss and brings the benefits of non-
convex optimization using CCCP to an online learning setting. LASVM-I uses the Ramp
function as a filtering mechanism to discard the outliers during online iterations. Empiri-
cal evidence suggests that the algorithms provide efficient and scalable learning with noisy
datasets in two respects: i) computational : there is a significant decrease in the number of

24

Ignorance is Bliss: Non-Convex Online Support Vector Machines

Full SVM LASVM−G LASVM−NC LASVM−I
0

200

400

600

800

1000

1200

T
ra

in
 t

im
e

 (
s
e

c
).

Adult Dataset

Full SVM LASVM−G LASVM−NC LASVM−I
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Banana Dataset

T
ra

in
 T

im
e

 (
s
e

c
.)

Full SVM LASVM−G LASVM−NC LASVM−I
0

5

10

15

Reuters Dataset (Money−fx)

T
ra

in
 T

im
e

 (
s
e

c
.)

Full SVM LASVM−G LASVM−NC LASVM−I
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

T
ra

in
 T

im
e
 (

s
e
c
.)

Mnist(8) Dataset

Full SVM LASVM−G LASVM−NC LASVM−I
0

5

10

15

20

25

30

35

40

45

USPS Dataset

T
ra

in
 T

im
e

 (
s
e

c
.)

Full SVM LASVM−G LASVM−NC LASVM−I
0

5

10

15

20

25

30

35

40

USPS−N Dataset

T
ra

in
 T

im
e

 (
s
e

c
.)

Figure 8: Training times of the algorithms for all datasets after one pass over the training
instances. The speed improvement in training time becomes more evident in
larger datasets.

computations and running time during training and recognition, and ii) statistical : there
is a significant decrease in the number of examples required for good generalization. Our
findings also reveal that discarding the outliers by leveraging the Ramp function is closely
related to the working principles of margin based Active Learning.

References

Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou. Fast kernel classifiers with
online and active learning. Journal of Machine Learning Research, 6:1579–1619, 2005.

Olivier Bousquet and Andre Elisseeff. Stability and generalization. Journal of Machine
Learning, 2, 2002.

Olivier Chapelle. Training a support vector machine in the primal. Neural Computation,
19(5):1155–1178, 2007.

Ronan Collobert, Fabian Sinz, Jason Weston, and Léon Bottou. Trading convexity for
scalability. In ICML ’06: Proceedings of the 23rd international conference on Machine
learning, pages 201–208. ACM, 2006.

Corinna Cortes and Vladimir Vapnik. Support vector networks. Machine Learning, 20:
273–297, 1995.

Seyda Ertekin, Jian Huang, Leon Bottou, and Lee Giles. Learning on the border: active
learning in imbalanced data classification. In CIKM ’07: Proceedings of the sixteenth
ACM conference on Conference on information and knowledge management, pages 127–
136, New York, NY, USA, 2007. ACM.

25

S. Ertekin, L. Bottou and C. Lee Giles

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to
platt’s smo algorithm for svm classifier design. Neural Computation, 13(3):637–649, 2001.

Nir Krause and Yoram Singer. Leveraging the margin more carefully. In ICML ’04: Pro-
ceedings of the twenty-first international conference on Machine learning, page 63, New
York, NY, USA, 2004. ACM.

Dale Schuurmans Linli Xu, Koby Cramer. Robust support vector machine training via
convex outlier ablation. In Twenty-First National Conference on Artificial Intelligence
(AAAI), 2006.

Yufeng Liu, Xiaotong Shen, and Hani Doss. Multicategory ψ learning and support vector
machine: Computational tools. Journal of Computational and Graphical Statistics, 14:
219–236, 2005.

Llew Mason, Peter L. Bartlett, and Jonathan Baxter. Improved generalization through
explicit optimization of margins. Machine Learning, 38:243–255, 2000.

Fernando Perez-Cruz, Angel Navia-Vazquez, and Anibal R. Figueiras-Vidal. Empirical risk
minimization for support vector classifiers. IEEE Tran. on Neural Networks, 14, 2002.

John C. Platt. Fast training of support vector machines using sequential minimal optimiza-
tion. pages 185–208, 1999.

Greg Schohn and David Cohn. Less is more: Active learning with support vector machines.
In ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learn-
ing, pages 839–846, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels. MIT Press, Cambridge,
MA, USA, 2002.

J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. 2004.

Xiaotong Shen, George C. Tseng, Xuegong Zhang, and Wing Hung Wong. On psi-learning.
Journal of the American Statistical Association, 98:724–734, January 2003.

A. Smola, S. Vishwanathan, and T. Hofmann. Kernel methods for missing variables. In
Proc. of the Tenth International Workshop on Artificial Intelligence and Statistics, 2005.

Ingo Steinwart. Sparseness of support vector machines. Journal of Machine Learninng
Research, 4:1071–1105, 2003.

Simon Tong and Daphne Koller. Support vector machine active learning with applications
to text classification. Journal of Machine Learning Research, 2:45–66, 2001.

Lei Wang, Huading Jia, and Jie Li. Training robust support vector machine with smooth
ramp loss in the primal space. Neurocomputing, pages 3020 – 3025, 2008.

Alan L. Yuille and Anand Rangarajan. The concave-convex procedure (CCCP). In
Thomas G. Dietterich, Sue Becker, and Zoubin Ghahramani, editors, Advances in Neural
Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.

26

	SeydaErtekin_ActiveLearning
	SeydaErtekin_LASVM
	SeydaErtekin_NonConvex

