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Abstract Despite ubiquitous claims that optical character

recognition (OCR) is a “solved problem,” many categories

of documents continue to break modern OCR software such

as documents with moderate degradation or unusual fonts.

Many approaches rely on pre-computed or stored character

models, but these are vulnerable to cases when the font of a

particular document was not part of the training set or when

there is so much noise in a document that the font model

becomes weak. To address these difficult cases, we present

a form of iterative contextual modeling that learns character

models directly from the document it is trying to recognize.

We use these learned models both to segment the characters

and to recognize them in an incremental, iterative process.

We present results comparable with those of a commercial

OCR system on a subset of characters from a difficult test

document in both English and Greek.

Keywords Character recognition · OCR · Cryptogram ·

Font-free models · Multilingual OCR

1 Introduction

Optical character recognition (OCR) has been a great suc-

cess of computer vision and pattern recognition, but it
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is by no means “a solved problem.” While there are

many applications, such as internet search, that can ben-

efit greatly from OCR in its current imperfect form, the

goal of transcribing documents completely and accurately,

under moderate degradation, variable fonts, interspersions

of numerals and other common difficulties, is still far

off.

In this work, we present an unsupervised OCR system that

performs well on a pair of real-world, degraded documents

in English and Greek. These documents are shown in Figs. 1

and 2. We presented an earlier version of this work using just

the English document in [12]. In this work, we extend our

approach to Greek.

Our approach is a font-independent method of OCR.

When a document is analyzed, the system has neither

appearance models of any characters nor training data

with examples of characters. Instead of relying on the a

priori expected appearance of characters, font-independent

OCR systems rely on the repetitions of similar symbols, cou-

pled with statistics of a language, to interpret a document. For

example, the character that occurs most in an English docu-

ment is likely (although not certain) to be an “e”, regardless

of its appearance.

Our approach to OCR is a form of iterative contextual

modeling, building a document-specific model by first rec-

ognizing the least ambiguous characters and then iteratively

refining the model to recognize more difficult characters.

Rather than relying on the appearance of characters relative to

a model developed a priori, we compare characters with other

characters within the same document to determine the likely

equivalence of those characters. A language model then helps

to determine the identity of the groups of similar characters

by comparing word hypotheses with a frequency-weighted

lexicon. In this paper, we demonstrate this approach using

English and Greek lexicons.
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Fig. 1 English document used

in experiments. We compare the

recognition of this document

using Omnipage and our own

system. All errors shown are for

Level 0 words only, i.e., words

containing only lowercase

letters. Errors made by our

system are shown in boxes.

Errors made by OmniPage are

shown in circles. Errors made

by both systems are shown in

diamonds. A blank circle

indicates an extra character was

added in the OCR output

2 Background

Much early work in OCR used a rigid pipeline approach that

used some approximation of the following sequence of steps:

find text, segment the characters, recognize the characters,

and then use a language model to correct errors. However,

these models made strong assumptions that broke down in

challenging settings.

Systems that make hard decisions at each stage without

the benefit of later stages can only accumulate errors, except

at the very end of processing, in which language models are

used to attempt to fix errors that have been made along the

way. Such systems are brittle and have ultimately been sur-

passed by systems that maintain degrees of uncertainty along

the way, borrowing tools developed by the speech recogni-

tion community, such as hidden Markov models. In these

systems, multiple hypotheses about both segmentations and

character identities are maintained in a lattice framework,

and a dynamic programming procedure is used to find the

maximum likelihood interpretation according to a Markov

probability model. Such systems today are at the heart of

many OCR systems and have been pushed quite far, as can

be seen for example, in the work of Jacobs et al. [11].

One assumption of these systems is that the classifier used

to evaluate characters has been trained on a font that is either

equivalent or highly similar to the font or fonts, which appear

in the target document. Even if a modern OCR system has

been trained with a very large number of fonts, document

noise can significantly alter the appearance of such fonts,

making them a poor match to the stored fonts.

When the appearance model is poor, it may seem that

an OCR system is lost, but it is still possible to recognize

documents, even when there is no appearance model at all.

Previous work has shown that if the characters in a docu-

ment can be clustered by appearance (which does not require

an appearance model for each character class), then even if

the identity of each character is initially unknown, it can

be inferred simply by leveraging the statistics of the occur-

rence of each character [4,5,7,8]. Huang et al. [10] give the

example of an English word encoded with random Greek

characters

α β γ γ β γ γ β δ δ β,

which matches only to the word Mississippi using an English

dictionary. This illustrates the idea that repetitions of appear-

ance, rather than models of appearance, can be enough to

infer the identity of characters in a document. Such meth-

ods are sometimes referred to as ciphering or cryptogram

decoding methods.

Treating OCR as a cryptogram decoding problem dates

back at least to papers by Nagy [15] and Casey [5] in 1986.

In [7], Ho and Nagy develop an unsupervised OCR system

that performs character clustering followed by lexicon-based

decoding. In [13], Lee uses hidden Markov models to decode

substitution ciphers based on character clusters. Breuel [4]

also presented a probabilistic method of clustering characters

based on the similarity of their appearance.

These previous approaches to font-independent OCR have

shown intriguing results, but have been limited by two criti-

cal factors. They all assume that characters can be segmented

accurately as a first step, which is known to be a very diffi-

cult problem. Second, with the exception of the work by Ho

and Nagy [7], they assume that all characters can be grouped

into pure clusters, i.e., clusters that contain only a single type

of character. However, these assumptions are too strong to

apply to anything but very clean documents.

2.1 Contributions

In this paper, we build on many of the ideas of previous

papers. The work most similar to our own is probably that of
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Fig. 2 Greek document used in

experiments. We compare the

recognition of this document

provided by Google Books with

our own system. All errors

shown are for Level 0 words

only, words containing only

lowercase letters. Furthermore,

we only consider whether the

base form (the base Greek

symbol without any diacritical

marks) of the letter is correct.

Boxes indicate all errors made

by our system, and circles

indicate a sample of the errors

made by Google Books

Ho and Nagy [7], which also incorporates language statistics

into a document-specific model. We introduce the following

innovations.

– Instead of segmenting characters first, we interleave

segmentation with character recognition in an iterative

process.

– Our approach first recognizes easier, less ambiguous

characters, and then the language model uses these partial

recognitions to build more context from which to evaluate

more difficult characters.

– In each iteration, the appearance classifier attempts to fix

probable mistakes made by the language model, improv-

ing the language information for the next iteration.

– We demonstrate that our approach is versatile and can be

applied to languages other than English, including lan-

guages with different alphabets like Greek or Russian,

given some mild assumptions about the language.
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2.2 Limitations

This work has several limitations. First, the experiments are

only preliminary, since we have only performed them on two

documents, each of only a single page. Second, the thresh-

old used for matching with normalized correlation was set

manually, specifically for the test documents. This is clearly

unacceptable for a real system and must eventually be recti-

fied. Still, we demonstrate a surprising level of performance

for a system with no character models. We now present the

details of our method.

3 Learning on the fly

We call our method “Learning on the Fly,” since we are not

only decoding a document but also learning models for the

appearance of each character as we go. We start by introduc-

ing some important terminology.

As discussed below in the section on assumptions, we

assume that the document has been pre-segmented into

strings of characters representing words or other strings

delimited by spaces or carriage returns. We assume that char-

acters within words have not been segmented and that, in

general, this may be a difficult thing to do independent of

character recognition. Figure 3 shows the initial state of the

document from our algorithm’s point of view: it has been seg-

mented into individual strings, but nothing is known about

the identity of any characters. Each yellow box is called a

blob.

A blob refers to any group of characters that has not yet

been segmented. Initially, every word in the document is

considered a blob. When a character is found in the middle of

a blob, we say that it shatters the blob into three pieces: the

character in the middle and the new, smaller blobs, on either

side. Of course, when a character is found at the beginning or

end of a blob, it shatters the blob into just two pieces. In our

method, segmentation occurs as the successive shattering of

blobs, until they are reduced to single characters. Figure 4

shows how a group of “a”s shatters an initially unsegmented

blob into smaller blobs.

The alphabet is the set of valid characters.

A glyph represents a rectangular portion of an image,

which is likely to be a single character, but may represent

a portion of a character, multiple characters, or a stray mark.

A glyph is a blob which is being considered as a character

candidate. We use θ to denote the glyph we want to iden-

tify in string form. θ can be assigned to any character in the

alphabet.

A glyph set is a collection of glyphs that are thought to be

the same character. This can be thought of as a cluster, but

we do not use the term cluster since the glyph sets are not

obtained through a typical clustering process. We use � to

denote the glyph set to which we want to assign a label. �

can be assigned to any character in the alphabet.

Recognition is the assignment of a glyph θ or a glyph set

� to a character class from the alphabet, like “e”.

A label from the alphabet is uncovered if we have

assigned that label to some glyph set. Otherwise, the label is

still covered. At the beginning of the process, all labels are

covered.

Matching is the process of comparing a glyph with a set

of blobs in order to find more instances of the same glyph

(typically using normalized cross-correlation). If a glyph is

matched to a portion of a blob, this will segment the blob

into smaller blobs. This approach to segmentation is similar

to that used by Hong et al. [9].

The notion of redacted strings is central to our method.

Two examples are given in Table 1. A redacted string is a par-

tially visible string representing a word in the document that

has been partially decoded. It is a mixture of assigned char-

acters, unsegmented blobs, and possibly one or more special

place markers θ representing examples of a glyph we want to

recognize. A probability distribution is associated with each

blob describing the probability that the blob contains vari-

ous numbers of characters. We use a shorthand notation for

blobs “{x}” denoting a blob which is most likely to contain

x characters, but may contain more or fewer characters.

Consider the two examples of redacted strings in Table 1

from an intermediate stage in the decoding process. On the

left side of the table are the two word images to be identified.

In the center column is shown the current state of segmen-

tation and recognition. The yellow blobs are as-yet unseg-

mented groups of characters. The purple boxes show a new

Fig. 3 First paragraph of english document shown as unsegmented blobs
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(a) Word image (b) Shattered word image

Fig. 4 a Actual document image of a word and b the “shattered” or

partially segmented version of the word after the two “a”s are extracted

and labeled. The yellow boxes represent unsegmented blobs

Table 1 Examples of word images, unsegmented blobs and redacted

strings

The first column is the word image. In the second column, the yellow

blocks represent unsegmented blobs and the purple blocks represent

the glyph we want to identify. In the third column, the redacted string

is represented as a mixture of brackets containing approximate length

information, some number (0 or more) placeholders θ and any previ-

ously identified characters. In the second case, for the word “catholic”

we are trying to recognize the “t” given that the “a” is already found

glyph that we wish to decode, which, in this case, corre-

sponds to the letter “t”. In the central column, the letter “a”

has already been segmented and recognized. In the right col-

umn, we show our notation for redacted strings. The “{2}”

shows a blob with a most likely length of two characters,

the θ shows an occurrence of the currently matched glyph,

which has not yet been identified, and the “a” shows that the

letter “a” has already been decoded.

By comparing a redacted string with our lexicon and

obtaining a list of words that are consistent with the redacted

string, we can assess the probability of θ being a particular

character.

A dominant font is a font (comprising both a style such

as Helvetica and a specific point size) that represents more

than 50% of the characters in a document. If no single font

represents more than 50% of the characters in the document,

we say that there is no dominant font.

In Greek, a base form refers to the base Greek symbol

without any diacritical marks. The base forms of an omicron

(o) and of an eta (η) along with some examples with diacritics

are shown in Table 2.

3.1 Some assumptions

The system we have built so far is not a commercial grade

OCR system. It is intended to illustrate the feasibility of the

ideas presented here. However, the text samples that we use

in our experiments are from real-world documents [14,17],

so our test data are not artificial. Nevertheless, our method is

dependent upon a number of conditions. Some of these are

Table 2 Examples of the omicron (o) and eta (η) base forms and

accented forms

central to the method, and others we hope to relax in future

research.

In our analysis of Greek text, we only attempt to label the

base forms for the letters and not the accented forms (this

distinction is shown in Fig. 2). It is possible to use post-

processing techniques to restore accents as described in the

study by [18] for Spanish and French texts.

3.1.1 Alphabetic languages

Our method is designed to work on alphabetic languages.

Languages such as Mandarin Chinese, with thousands of dis-

tinct symbols, are beyond the scope of the system. In prin-

ciple, given a large enough document, the system could be

applied, but here we only attempt to apply it to alphabetic lan-

guages like English and Greek with fewer than 100 distinct

symbols.

3.1.2 Non-cursive or non-connected scripts

While we do not assume the ability to pre-segment characters,

we do assume that characters are not continuously connected

in a script-like font. For example, typical Arabic writing is

beyond the scope of our method, as it is too difficult to match

individual characters.

3.1.3 Segmentation of words

While we do not assume that the characters within words

can be pre-segmented, we do assume that the words them-

selves can be segmented from each other in a pre-processing

step. Our method is robust to occasional errors in word seg-

mentations, but in general, it assumes a mostly correct word

segmentation (see Fig. 4).

3.1.4 Availability of lexicon

We assume that the language of the document is known (or

that it can be easily deduced). Furthermore, we assume that

we are provided with a Unicode lexicon for the language.

Note that such a lexicon need not contain any information
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about character appearances. It is simply a group of digital

strings, using a code for each character, that are consistent

with the strings in a lexicon. The method will work better,

in general, if the lexicon is paired with the likelihood, or fre-

quency, of each word. We emphasize that our method can

handle and in fact expects there to be many words that are

not part of the lexicon. It is only important that a large per-

centage of the words in a document, probably about 75%, are

contained in the lexicon.

3.1.5 Presence of a single-letter string

For our method to work, it is currently required that there

be at least one single-letter string in the document. For mod-

erately sized documents, this is usually true in languages

with common single-letter words, such as English (which

has “a” and “I”) or Greek (which has η and o). However,

there are languages, like German, which do not have com-

mon single-letter strings and therefore may not be suitable

for our method. Our method, could, however, be extended to

such languages with only minor changes. In a similar vein,

an assumption about the frequency of stop words has been

made by Ho et al. [6].

3.1.6 Statistical typicality of words

Since our method relies on the statistics of language, it may

have problems on a sufficiently unusual document, such as an

English document with no “e”s. While a document of prose

with no “e”s will virtually never occur naturally (unless it is

intentionally created this way), other issues may cause prob-

lems, such as documents with large numbers of completely

random strings, large numbers of digit strings, and so on.

For example, our method would not be expected to work on

tables of financial figures or vehicle identification numbers,

since there is little statistical regularity to leverage in such

documents.

3.2 Scope of our OCR system

Our system, as stated earlier, is not meant to be a commercial

grade OCR system. We do not address the important prob-

lems of page layout, line finding, and the segmentation of

words within lines, as these are handled sufficiently for our

purposes by the methods of others for the time being. The

segmentation of characters within words, however, is a key

focus of our work.

Most importantly, we only attempt to recognize words

that are all lower case and in the dominant font. We call

these “Level 0” words, since they are the simplest type of

word to recognize, and these are the words for which most

evidence is available. We report our results only on these

words. Words with capitals and punctuation could also be

recognized, but would probably require the analysis of much

larger documents.

3.3 Method

We now present our unsupervised, document-specific

method. We demonstrate the procedure using the first par-

agraph of the English document in Fig. 1. At the beginning

of the process, there are only unsegmented blobs as shown

in Fig. 3. We assume that the document is in English and that

there is a dominant font, as defined previously. Furthermore,

as described earlier, we assume that at least one blob in the

document is a string consisting of a single character and that

this blob is one of the shortest (in pixel width) blobs in the

document.

The goal of each stage of our algorithm is to find a blob

consisting of a single character, find other matching instances

of that single character to produce a glyph set, and determine

the identity of the characters in the glyph set. To do this, we

proceed with the steps given below, starting from the state

shown in Fig. 3.

1. Sorting and blob selection Sort all blobs by their width

in pixels. Select the M shortest blobs (we choose M to

be 10) as candidate glyphs.1 We wish to find a blob that

represents a single character. At the beginning of the

algorithm (Fig. 3), every blob is an entire word, so that

a blob representing a single character must be a single-

character word.

2. Matching For each of the M shortest blobs, we assume

that the blob is a glyph θ (a blob likely to be a single char-

acter). We then match θ across the document by perform-

ing a normalized correlation of the glyph’s rectangular

bounding box to every position in the document (search-

ing only along the baselines of text lines). An important

parameter in this matching process is the threshold used

in normalized correlation. When matching, our method

strongly favors high precision over high recall, which

corresponds to a high threshold (recall that this thresh-

old was set manually).

Let i ∈ [1..M] where i denotes the index of the blob

θi . Let �i be the glyph set generated by matching θi at

the manually set threshold. Recall that �i maps a set of

glyphs to a label g in the alphabet.

In Fig. 5, we show three of the shortest blobs in the text as

red, blue, and green boxes. The matches to each of these

candidates are shown in Fig. 6. Each set of matches rep-

resents a candidate glyph set.

1 Assuming that many are left in the document. Otherwise, we evaluate

as many as are available.

123



Learning on the fly

Fig. 5 Three of the shortest

blobs in the document. These

short blobs provide hypotheses

for single-character

appearances. They are matched

against other parts of the

document, producing matches as

shown in Fig. 6

Fig. 6 Matches to each of the three candidates using normalized cross-correlation

3. Glyph set identification For each i ∈ [1..M], we define

a measure of confidence in the assignment of �i as

δi = P(�i = gα) − P(�i = gβ),

where gα is the label with highest probability and gβ is

the label with second highest probability. We describe

how to compute P(�i = g) using our language model

in Sect. 3.5.

In general, we want values of i with large δi . However,

sometimes, there may be multiple values of i , which have

sufficiently high confidence, and in these cases, we want

to pick the value of i such that size of the glyph set �i

is largest. Picking the largest glyph set with high confi-

dence provides better context in which to assign future

glyph sets. We define high confidence to be the condi-

tion that δi > 0.99. Therefore, we want to find i such

that

arg max
i

Iδi >0.99 · si ,

where I is an indicator variable which is 1 when δi>0.99

and 0 otherwise, and si is the size of the glyph set

�i .

4. Model augmentation Once we find the maximizing value

of i , we assign �i to the label found in the previous step.

In Fig. 7, the glyph set has been assigned to the label

“a”.

5. Glyph reclassification After uncovering a new set of

glyphs in the document, we may want to reclassify cer-

tain glyphs that were previously classified. For exam-

ple, originally, we may have grouped an “i” with some

lower case “l”s. But, perhaps, after uncovering a new

glyph set of “i”s, our model of “i”s will have improved

(or there may have been no model of “i”s at all before

this point). To take advantage of this fact, we reclas-

sify all glyphs in every labeled glyph set by compar-

ing each glyph with the mean glyph of every labeled

glyph set and move it to the glyph set it matches best (as

measured by normalized cross-correlation). The mean

glyph is an average of the glyphs in a glyph set. This

allows us to recover from early errors in glyph set crea-

tion.

6. Iteration Steps 1–5 are repeated until none of the remain-

ing blobs match to any part of the remaining document

(i.e., no glyph set with more than a single glyph can

be produced). Each blob is then recognized by com-

paring it with its five nearest neighbors (as measured

by normalized cross-correlation) across all glyph sets

and using the majority vote as the assigned character

class. In Figs. 8 and 9, we repeat the previous steps

to match new candidate glyph sets and pick an assign-

ment for the glyph set in which we have highest confi-

dence.

3.4 Identifying the first glyph

Most glyphs are selected and identified as described in the

previous section. However, in the experiments, we used a

special procedure to select the first glyph in each document.

For the English document, we started by selecting the

shortest blobs in the document, consistent with steps 1 and 2
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Fig. 7 The state of the document after the red glyph set from Fig. 6 was identified as “a” and substituted into the document. Notice that this

substitution breaks, or shatters, many of the blobs into smaller pieces, thus beginning the work of segmenting the document

Fig. 8 After the “a”s have been identified, we match candidates again where the blue and purple boxes represent two different glyph sets to be

labeled. We label the glyph set that we have most confidence in, according to the language model calculations

Fig. 9 The first two glyph sets of “a” and “t” have been labeled. Note that we chose to accept the labeling of the purple boxes in the previous

figure, instead of labeling of the blue boxes

earlier. We then proceeded under the assumption that one of

these short blobs was the word “a”, since it is by far the most

common single word in English. We analyzed the frequen-

cies of the short blobs and selected the blob whose frequency

was closest to 7% of the estimated number of characters in

the document. The justification for this is that 7% is about the

percentage of the letter “a” expected in a document. While

we do not expect to match every “a” in the first glyph set

and thus are likely to get a number somewhat smaller than

7%, we believe it is unlikely for another blob representing

a whole short word to have percentages higher than that for

“a” and yet near 7%.

For Greek, we followed the same procedure for the single-

character word “o” (ignoring accents), where “o” (omicron)

accounts for about 9.5% of the characters in a Greek docu-

ment.

While this ad hoc method worked for the experiments in

this paper, we strongly favor using the same statistical method

described in Sect. 3.3 to identify the first glyph set, as this

will make our system more robust and elegant. We are cur-

rently adapting our system to work in this manner. We now

continue by discussing the general method for recognizing

the identity of a glyph set in all cases except for the first case

(see Fig. 9).

3.5 Language model

In each stage of our algorithm, the key questions are

1. Given a set of redacted strings and a new glyph set, what

is the most likely character assignment of that glyph?

2. What is our confidence in that assignment?

To answer this question, we evaluate the probability

P(� = g|R, V,B), (1)

where � represents the identity of the unknown glyph, g is

the character assignment we are considering, R is the cur-
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rent set of redacted strings in the document, V represents the

current counts of each character we have seen so far in previ-

ous stages, and B represents the set of blob lengths for each

word in the document at the beginning of the process.

We explain each of these terms in more detail in the fol-

lowing paragraphs. N , the number of characters in the doc-

ument, also plays a role in this probability computation, but

we simply introduce it where needed to simplify the deri-

vations. We estimate N by averaging the widths of the first

uncovered glyph set and dividing this number by the total

width of all word blobs. When performing language model

computations for the first glyph set, we compute N by taking

the average width for each glyph set under consideration and

dividing by the total width of all word blobs.

We assume that the label of � comes from some alphabet.

For English text, we assume that � can be labeled as any

lowercase letter, uppercase letter, digit, or punctuation mark.

For Greek text, we assume that � can be labeled as any base

form Greek letter. The following description of the language

model is for English text but we have also applied it to Greek

text. We do not attempt to automatically determine whether

the document is written in English or Greek, and instead, we

pick the appropriate model manually.

V is a conjunction of events where each event is a state-

ment about the observed count of a letter in the alphabet. In

particular, V is the conjunction of events Va, Vb, . . . , Vz . For

example, at the beginning, we have not observed anything yet

and so Va is the event of observing 0 instances of the letter

“a”.2

We define a set R = {Ri }, 1 ≤ i ≤ n of redacted strings,

where n is the total number of redacted strings in the docu-

ment. Each Ri may consist of previously assigned characters,

unsegmented blobs, and a place marker θ for a new glyph we

want to identify.

The blob length Bi represents the approximate num-

ber of characters for each unsegmented blob in document

word i . The approximate length for each blob is calcu-

lated by dividing the blob width by the average width of

the first uncovered glyph set. Typically, for English docu-

ments, the first assigned character is an “a” (or in Greek, an

omicron).

For two reasons, it is helpful to track the counts, V , of

characters that have already been identified in the document

as the algorithm progresses. To illustrate the first reason, con-

sider the example of a redacted string “ f re ∗ θ∗” where θ

represents a character whose identity we are trying to estab-

lish and the asterisks represent blobs that have not yet been

segmented into glyphs. One match for this string would be

the word freeze. To assess the likelihood that the word is

indeed “freeze”, we must consider not only the likelihood

2 Note that V does not tell us the total number of a particular letter in

the document, but only a lower bound on the total number.

that θ = z but also the probability that both asterisks rep-

resent the letter “e”. If we have reason to believe that most

of the “e”s in the document have already been identified,

then the probability that there are two additional “e”s that

have not yet been matched by the matching process is rel-

atively low. To make such an assessment, we need to know

the expected number of “e”s in the document and to have

an estimate of the number of such “e”s that have already

been “discovered” or identified. We describe how such intu-

itions are implemented into our probability calculations in

Sect. 3.5.2.

The second possible use for the counts is to rule out certain

possibilities for large glyph sets based upon the glyph sets

we have already seen. For example, imagine that early in the

processing of a document with 1,000 characters, we labeled

a glyph set of size 70 as an “a”. Then, we would not expect a

subsequent glyph set of size 100 to be labeled an “a”, since

this would make the total number of “a”s in the document

much higher than expected. In the experiments reported in

this paper, we do not use this method to assess the likeli-

hoods of glyph set labels, but we are currently working to

incorporate such information into our models.

We wish to find the character g, which maximizes Eq. 1.

Using Bayes’ rule, we have

arg max
g

P(� = g|R, V,B)

= arg max
g

P(R|� = g, V,B) · P(� = g|V,B)

P(R|V,B)

= arg max
g

P(R|� = g, V,B) · P(� = g|V,B),

since P(R|V,B) is not a function of g. We start by address-

ing the second factor , P(� = g|V,B).

3.5.1 Evaluating P(� = g|V,B)

We make the poor but workable assumption that P(� = g)

does not depend upon V or B, and so, we simply use unigram

probabilities for a prior. For example, P(� =“e”|V,B) is

assigned a value of about 0.12 since e’s represent about 12%

of the characters in most documents. Next, we discuss the

more complicated calculation of P(R|� = g, V,B).

3.5.2 Evaluating P(R|� = g, V,B)

We assume that the redacted strings Ri are conditionally inde-

pendent to obtain

P(R|� = g, V,B) =
∏

i

P(Ri |� = g, V, Bi ).

At this point, Ri can only contain a mixture of assigned char-

acters and unsegmented blobs (with an approximate length

for each blob). Note that we do not have a place marker θ at

this point because we condition on � = g.
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Fig. 10 Formulation for the probability of observing a single redacted string Ri

We incorporate a generative model for words. We assume

that words can be drawn from two sources, a lexicon and

a random string process. In particular, for each word w, we

define the random variable L , which indicates that w is drawn

from the lexicon and L̄ that indicates that w, is drawn from

a random string process. We arbitrarily set the prior proba-

bility of P(L) = 0.95 and P(L̄) = 0.05. That is, we assume

a word w is drawn from our lexicon with probability 0.95.

Otherwise, it is generated by a random string process. We

describe how a word w is generated in both cases later in this

section.

We can write the probability of observing a particular

redacted string Ri as shown in Fig. 10. In the first equality

in Fig. 10, we have introduced a summation over all possi-

ble strings w. In the second equality, we have introduced the

latent variables L and L̄ , which indicates whether the word

w is drawn from the lexicon or not. In the third equality,

we have simply expanded the joint probability. In the fourth

equality, we have reduced the summation to the set of words

w such that w matches the redacted string Ri . We have noted

this condition as w ⊃ Ri , where the notation is intended

to imply that w can generate the redacted string Ri . Notice

also that we have dropped the condition that � = g from

the first factor in each term in the fourth equality since it is

superfluous once w is given.

Next, we consider the factor P(Ri |w, L , V, Bi ). First note

that for a given word w, most redacted strings can only be

aligned with the word in a single fashion. For example, if

the word is tiger and the redacted string is “∗i ∗ r”, then we

know that the first unknown blob must represent “t” and the

second unknown blob must represent “ge”. There are cases,

however, when there are multiple ways that a redacted string

can match a word. For example, the word approach can be

matched to the redacted string “∗p∗” in two different ways,

one in which the first blob has length 1 and the second in

which the first blob has length 2. While it is not ideal, we

only use the first match generated by our regular expression

matcher. This may give us some problems in words with

multiple occurrences of the same character, especially early

in the process when there are not a lot of matched characters

in the words. We hope to address this deficiency in future

work.

Given an alignment of a redacted string Ri and a word w,

there is an implied length for each unknown blob b j in Ri .

If we let l j be the number of characters corresponding to a

blob b j , then we assign a probability to each blob length:

P(b j ) =

⎧

⎨

⎩

0.6 if number of chars l j equals blob length

0.2 if number of chars l j differs by 1

0 otherwise.

The other aspect of modeling P(Ri |w, L , V, Bi ) is the ques-

tion of how likely it is for various characters to be “covered”

or “uncovered”, as addressed in Sect. 3.5.

For a redacted string Ri , a word w, and each character wi

within the word, let c(wi ) = 1 if the character appears in the

redacted string, and c(wi ) = 0 if the character is part of an

unknown blob, i.e., the character does not appear. We wish to

assess the likelihood that a character is uncovered or covered

given the number of times we have already seen it, which is

encoded in the variable V that represents the global counts

of the number of characters that have been seen from each

class.

Given these considerations, we model P(Ri |w, L , V, Bi )

for lexicon words to be

P(Ri |w, L , V, Bi ) (2)

=
∏

j

P(b j |w, L , V, Bi )
∏

i

P(c(wi )|w, L , V, Bi ) (3)

=
∏

j

P(b j |w, L , Bi )
∏

i

P(c(wi )|w, L , V ), (4)

where we have dropped quantities in the last equation that

do not affect the conditional probabilities.

For the first set of factors, we use P(b j ) as defined earlier.

For the second set of factors, we use the counts V to estimate

the percentage fwi
of each type of character already seen in

the given document. This percentage is Og (the number of

occurrences of character g observed so far) divided by the

true number of occurrences of character g. Since we do not

know the true number of occurrences, we replace this by the

expected number of occurrences. Let Xg be a random vari-

able representing the number of occurrences of character g in

the document and has a binomial distribution (µg = N × pg ,

and σg =
√

N × pg × (1 − pg)) where pg is the unigram
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Fig. 11 Full formulation

percentage of character g and N is the total number of char-

acters in the document. Therefore, for a character g from the

alphabet, fg =
Og

N ·pg
.3

If the character is uncovered, we set P(c(wi )|w, V ) to

fwi
; if the character is covered, meaning it is still part of an

unseen blob, then we set P(c(wi )|w, V ) to be 1 − fwi
. For

example, if the redacted string is “{1}ye” and w = “eye”,

P(c(“e”)|w, V ) = (1 − fe) since the first “e” is covered.

Then P(c(“y”)|w, V ) = fy , and lastly, P(c(“e”)|w, V ) =

fe for the second “e”, since the second “e” was observed or

uncovered. Intuitively, if the percentage of e’s seen is esti-

mated to be high, we do not expect to observe many more

“e”s and so (1− fe) will be low.

For non-lexicon words w that match the redacted string Ri ,

we model P(Ri |w, L̄, V, Bi ) in essentially the same man-

ner, but due to the independence of the characters in the

non-lexicon strings, there is a dramatic simplification of the

expressions involved, leading to

P(Ri |w, L̄, V, Bi ) =
∏

wi ∈Ri

fwi
. (5)

Here, wi ∈ Ri means taking the product of fwi
over charac-

ters that actually appear in the redacted string Ri .

We compute P(w|L ,� = g, V, Bi ) according to the

probability of word w stored in the lexicon. We make a

simplification and replace P(w|L ,� = g, V, Bi ) with the

unconditional probability P(w). We are able to obtain good

results despite this approximation.

Lastly, we compute P(w|L̄,� = g, V, Bi ) by the follow-

ing random string process:

P(w|L̄,� = g, V, Bi ) = Plength(k)

k
∏

i=1

u(wi ). (6)

3 We do not let fg exceed 0.9. This is to approximate the Bayesian

approach to properly model pg as a random variable. In this approach,

there is a distribution on pg and so by not allowing fg to exceed 0.9,

we allow for error in our point estimate of pg .

Plength() gives the probability of observing a particular

length of a word, and u(wi ) gives the unigram frequency of

wi .
4

3.6 Total formulation

Combining the components in previous sections, we arrive

at the total formulation shown in Fig. 11.

3.7 Lexicon generation

We created a corpus of 10 texts gathered from the Project

Gutenberg archive [1] to generate a frequency-weighted Eng-

lish lexicon (i.e., words and their frequencies in the corpus).

There are a total of 1,525,460 words in our English corpus.

The Greek document we chose is from a book written in

1,867 and is written in polytonic Greek, which contains more

accent marks than found in modern Greek (which simplified

and collapsed the various accents). Therefore, to create a

period-appropriate Greek lexicon, we sampled a corpus of

Greek literature from 800 BCE to 1,450 CE that was written

in polytonic Greek. We removed accents and collected counts

of unaccented words. These frequency-weighted lexicons are

simply word lists with corresponding word frequencies and

no appearance information.

4 Experiments

We evaluated our system on a portion of an old IEEE paper

[14] shown in Fig. 1 written in English and a page from a

Greek book [17]. For both documents, we attempt to rec-

ognize all word blobs in the document but for evaluation,

4 In our implementation, we did not use the Plength() factor described

in Eq. 6, making P(w|L̄,� = g, V, Bi ) an approximate probability

rather than a true probability. We do not believe this had a major impact

on performance.
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Table 3 Results on English document

Method Word accuracy Character accuracy

Ours 164/175 = 0.937 0.981

Omnipage 164/175 = 0.937 0.979

Tesseract 172/175 = 0.983 0.996

This evaluation only considers Level 0 words (words containing only

lowercase letters)

Table 4 Sample errors in English document

Method Errors

Ours it → t, the → t, equated → eluated

Omnipage it → It, and → arid, be → he

we only consider words entirely in lowercase, which we call

Level 0 words. This excludes any words containing uppercase

letters, digits, or special characters. These characters occur

less frequently than most lowercase letters, and so, our lan-

guage model does not have enough leverage to accurately

classify these glyph sets.

We ran experiments on the English document on a

Core2Duo 2.66- GHz machine with 2 GB of RAM. The entire

process took about 12 h to run with most of computation time

spent on language model calculations. We later ran experi-

ments on the Greek document on a faster machine, and the

computations ran in about 8 h.

When we began our research, Omnipage 15 [2] had the

best performance of several systems on our test document,

and our goal was to achieve comparable or better perfor-

mance on the dominant font for this document. Just before

submission, we tried a new release (2.03) of Tesseract [3],

an open-source OCR system, and its results had improved

substantially, beating both our own results and those of Om-

nipage 15. Despite coming in behind Tesseract, we feel our

results are still of significant interest, since we produced com-

petitive results with no font models at all as shown in Tables 3

and 4.

We include a comparison of the output from our system

and from Google Books on the Greek document. The Go-

ogle Books recognition includes accent marks, which we

remove for evaluation. During evaluation, we only consider

Level 0 words (words containing only lowercase letters).

Furthermore, we only consider the base form of Greek let-

ters (without any diacritic markings). This is not an entirely

fair comparison because our system is trained to recognize

the base form of Greek letters only whereas Google Books

tries to also recognize accented forms of letters and punc-

tuation. We are not claiming that our system is superior

to Google Books’ system, but we do show in Table 5 that

Table 5 Results on Greek document

Method Word accuracy Character accuracy

Ours 231/236 = 0.979 0.996

Google Books 219/236 = 0.928 0.983

This evaluation only considers Level 0 words (words containing only

lowercase letters). Furthermore we only consider the base form of Greek

letters (without any diacritic markings)

Table 6 Sample errors in Greek document

Method Errors

Ours τη → τ ι, µǫτǫκoµιζoν → µǫτǫκoµιιoν

Google Books και → κα, ταξαµην → ταζαµην

our system can be competitive for base form Greek charac-

ters.

Following the conventions in [16], we define character

accuracy as n − #errors/n, where n is the total number of

correct characters and # errors is the number of edits needed

to correct the OCR output text. Word accuracy is defined to

be the percentage of correctly recognized words.

In Table 4, we list some representative errors made by

each system on the text in Fig. 1. Our approach and Omni-

Page incorrectly classified “it” as “t” and “It”, respectively.

The “i” glyph in the diamond in Fig. 1 is highly degraded and

was not recognized as a glyph candidate by our system. Our

system misrecognized “the” as “t”, illustrating a weakness in

our matching. Since no glyph matched to the “he” portion,

it was left unrecognized. Our approach also misrecognized

“equated” as “eluated”. This is because the “q” glyph is so

infrequent, there is not enough context for correct labeling.

Our approach is strongest when there are many examples of

a glyph.

Note the Greek document in Fig. 2 is cleaner than the

English document in Fig. 1, and so, character segmentation

was not as much of an issue as in the English document.

In Table 6, we show some errors made by our system and

Google Books. Our system mistakes η for ι in the first exam-

ple. Notice that in the green boxes in Fig. 2, four of the

five errors made were on the η with iota subscript (an η

with a small symbol in the lower left corner). This η with

iota subscript looks sufficiently different from regular ηs that

these instances could not be moved into the η cluster through

matching (i.e., step 6 in our algorithm). The second example

mistakes a ζ for an ι. This is due mostly to the fact that there

is only one ζ in the entire document, and it does not appear

in our lexicon. The Google Books system sometimes cut off

the ι letter as shown in the first example in Table 6. An exam-

ple of a substitution errors is shown in the second example,

where the ζ is mistaken for ξ .
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5 Conclusion and future work

We have shown that it is possible to achieve favorable results

on real documents in both English and Greek using only lan-

guage statistics and simple appearance features without using

any character models or training data. In the future, we plan

on testing our approach over a much larger set of test docu-

ments and relaxing constraints to allow for full recognition

of all character types.

We are working on a way to generate a training set of

character models directly from the document as a first step.

This is in contrast to the approach presented here, which does

not use any training set. Similar to the work presented, we

again extract document-specific character models by relying

on language statistics and simple appearance features. We

can then apply more traditional approaches to correct errors.

One significant drawback of our approach is the long time

necessary to compute the most likely character recognition

of a set of redacted strings. For our approach to be viable and

used in production, this computation time must be reduced

significantly.

Acknowledgments Supported by NSF CAREER Award 0546666 and

by NSF grant IIS-09165555. We would also like to thank Gary Huang

and Marwan Mattar for helpful discussions about the language model.

References

1. http://www.gutenberg.org/

2. http://www.nuance.com/omnipage/

3. http://code.google.com/p/tesseract-ocr/

4. Breuel, T.: Classification by probabilistic clustering. In: IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing

(2001)

5. Casey, R.: Text OCR by solving a cryptogram. In: International

Conference on Pattern Recognition (1986)

6. Ho, T.K.: Bootstrapping text recognition from stop words. In: Inter-

national Conference on Pattern Recognition (1998)

7. Ho, T.K., Nagy, G.: OCR with no shape training. In: International

Conference on Pattern Recognition (2000)

8. Hobby, J., Ho, T.: Enhancing degraded document images via bit-

map clustering and averaging. In: International Conference on Doc-

ument Analysis and Recognition (1997)

9. Hong, T., Hull, J.: Character segmentation using visual inter-word

constraints in a text page. In: Proceedings of SPIE (International

Society for Optics and Photonics) (1995)

10. Huang, G., Learned-Miller, E., McCallum, A.: Cryptogram decod-

ing for optical character recognition. In: International Conference

on Document Analysis and Recognition (2007)

11. Jacobs, C., Simard, P., Viola, P., Rinker, J.: Text recognition of

low-resolution document images. In: International Conference on

Document Analysis and Recognition, pp. 695–699 (2005)

12. Kae, A., Learned-Miller, E.: Learning on the fly: font free

approaches to difficult OCR problems. In: International Confer-

ence on Document Analysis and Recognition (2009)

13. Lee, D.: Substitution deciphering based on HMMs with applica-

tions to compressed document processing. In: IEEE Transactions

on Pattern Analysis and Machine Intelligence, 24(12) (2002)

14. MacKay, D.: Entropy, time and information (introduction to dis-

cussion). Inf. Theory, Trans. IRE Prof. Group 1(1), 162–165 (1953)

15. Nagy, G.: Efficient algorithms to decode substitution ciphers with

applications to OCR. In: International Conference on Pattern Rec-

ognition (1986)

16. Rice, S.V., Jenkins, F.R., Jenkins, F.R., Nartker, T.A., Nartker, T.A.:

The fifth annual test of OCR accuracy. Tech. Rep. University of

Nevada, Las Vegas (1996)

17. Valetta, J.N.: Homer’s Life and Poems. Oxford Univer-

sity, Oxford (1867)

18. Yarowsky, D.: A comparison of corpus-based techniques for restor-

ing accents in Spanish and French text. In: Proceedings of the

2nd Annual Workshop on Very Large Text Corpora. Las Cruces,

pp. 99–120 (1994)

123

http://www.gutenberg.org/
http://www.nuance.com/omnipage/
http://code.google.com/p/tesseract-ocr/

	Learning on the fly: a font-free approach toward multilingual OCR
	Abstract
	1 Introduction
	2 Background
	2.1 Contributions
	2.2 Limitations

	3 Learning on the fly
	3.1 Some assumptions
	3.1.1 Alphabetic languages
	3.1.2 Non-cursive or non-connected scripts
	3.1.3 Segmentation of words
	3.1.4 Availability of lexicon
	3.1.5 Presence of a single-letter string
	3.1.6 Statistical typicality of words

	3.2 Scope of our OCR system
	3.3 Method
	3.4 Identifying the first glyph
	3.5 Language model
	3.5.1 Evaluating 
	3.5.2 Evaluating 

	3.6 Total formulation
	3.7 Lexicon generation

	4 Experiments
	5 Conclusion and future work
	Acknowledgments
	References


