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Abstract

Building reliable predictive models from multiple com-
plementary genomic data for cancer study is a crucial
step towards successful cancer treatment and a full under-
standing of the underlying biological principles. To tackle
this challenging data integration problem, we propose a
hypergraph-based learning algorithm called HyperGene to
integrate microarray gene expressions and protein-protein
interactions for cancer outcome prediction and biomarker
identification. HyperGene is a robust two-step iterative
method that alternatively finds the optimal outcome predic-
tion and the optimal weighting of the marker genes guided
by a protein-protein interaction network. Under the hypoth-
esis that cancer-related genes tend to interact with each
other, the HyperGene algorithm uses a protein-protein in-
teraction network as prior knowledge by imposing a con-
sistent weighting of interacting genes. Our experimental
results on two large-scale breast cancer gene expression
datasets show that HyperGene utilizing a curated protein-
protein interaction network achieves significantly improved
cancer outcome prediction. Moreover, HyperGene can
also retrieve many known cancer genes as highly weighted
marker genes.

1. Introduction

Finding gene predictors of cancer outcome from ge-
nomic data is becoming an increasingly important focus in
cancer research under the assumption that the genomic in-
formation can shed light on the molecular mechanisms un-
derlying cancer development and progression. In the past
decade, enormous amount of large-scale microarray gene
expression profiles have been produced to study different
cancers such as breast cancer [18, 19], lung cancer [16] and
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prostate cancer [7] for the purposes of 1) detecting marker
genes for cancer-relevant phenotypes and 2) building reli-
able predictive models for cancer prognosis or diagnosis.
The two tasks are closely intervened with each other be-
cause on one hand, a predictive model built from highly
predictive marker genes is often more accurate in outcome
prediction; on the other hand, a highly accurate predic-
tion model can also be analyzed to reveal unknown cancer
marker genes. Different machine learning and data mining
strategies for feature selection have been applied to iden-
tifying a subset of genes that can maximize the prediction
performance of a classifier [18].

Although many interesting and promising findings have
been reported in these studies, the reliabilities of the studies
have been questioned with the concern on the unstable and
inconsistent results in cross-validations and cross-platform
comparisons due to the relatively small sample sizes in the
studies [6]. To overcome this difficulty, it has been pro-
posed to include other complementary genomic informa-
tion such as pathway information or functional annotations
to aid the process of model building and biomarker discov-
ery such that the prior knowledge from the complementary
data can improve the robustness of the model and result
in more consistent discoveries across independent datasets
[4, 3, 13]. The availability of large protein-protein inter-
action networks, which contain information on gene func-
tions, pathways and modularity of gene regulations, pro-
vides a desirable source of data for this purpose. Protein-
protein interactions can be derived from a number of ex-
perimental techniques such as yeast two-hybrid system and
mass spectrometry [11]. The high consistency between the
networks derived from different organisms allows integra-
tion of many small networks into a large scale network. It
has been observed that cancer genes tend to be highly con-
nected with each other in large scale protein-protein inter-
action networks [3]. It has been shown in [4] that by incor-
porating protein-protein interaction network into the model
built from microarray gene expressions, the authors can im-
prove cancer outcome prediction and get more reproducible
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Figure 1. Regularization framework of HyperGene.

results on two large scale gene expression datasets. In their
approach, the integration of gene expressions and protein-
protein interactions is achieved by two independent proce-
dures: discriminative subnetworks are first identified from a
curated protein-protein interaction network and the subnet-
works are then used as features to predict cancer metasta-
sis. Authors in [13] proposed a method which first com-
putes the spectral graph structure of a gene network and
then, uses the spectral graph structure to smooth microarray
gene expressions before used for sample classification. A
statistics-based method is proposed in [3] to identify can-
cer genes by scoring genes by their degree in a cancer-
specific interaction network, their differential expressions
in microarray data and their structural, functional and evo-
lutionary properties. However, designing a unified strategy
for integrating protein-protein interactions and microarray
gene expressions is still a challenging problem due to the
complexity of a joint learning on two different data types.

In this paper, we propose a hypergraph-based iterative
learning algorithm called HyperGene to integrate microar-
ray gene expressions with protein-protein interactions for
robust cancer outcome prediction and marker gene identifi-
cation. The HyperGene algorithm minimizes a cost func-
tion under a unified regularization framework which ele-
gantly takes a protein-protein interaction network as con-
straints on a hypergraph built from microarray gene expres-
sions. The HyperGene algorithm is a natural extension of
label propagation algorithms on hypergraphs [2, 1, 22]. Hy-
perGene is based on a hypergraph in which each sample is
denoted by a vertex and each gene is denoted by two hyper-
edges: a “up-regulated” hyperedge and a “down-regulated”
hyperedge. The two edges group samples by the expres-

sion state (up/down) of the gene in the samples (Figure 1
A&B). Our cluster assumption on the hypergraph is that the
samples of the same type tend to have similar gene expres-
sion patterns and thus are highly connected by the hyper-
edges. Since the original hypergraph-based learning algo-
rithms assume uniform weighting of the hyperedges [1, 22],
direct application of these algorithms to high-dimensional
and noisy genomic data results in inferior prediction accu-
racy. The HyperGene algorithm is fundamentally different
in reformulating the optimization problem as learning la-
bels and hyperedge weights together with the assignment
of edge weights constrained by a protein-protein interac-
tion network. Essentially, to avoid overfitting training data,
the HyperGene algorithm tries to find a weighting of hyper-
edges that nicely balances the two-class separation on the
hypergraph and the consistency with the protein-protein in-
teraction network. These properties of the HyperGene algo-
rithm promise to improve prediction accuracy and provide
more robust identification of marker genes. Furthermore,
the resulted weights on the genes can be used to discover
highly weighted subnetworks in the protein-protein interac-
tion network, which might also suggest important pathways
related to cancer outcomes.

2. Regularization Framework

In Figure 1, we show the regularization framework in
our formulation. We first discretize gene expression profiles
into three states: basal or up/down-regulated (Figure 1A),
and build a hypergraph with (positive/negative/test) samples
as vertices and gene expression states as hyperedges (Figure
1B). The regularization framework seeks for a global solu-
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tion to both outcome prediction and gene weighting by con-
sidering the connectivities in the hypergraph, and the incor-
poration of the protein-protein interaction network provides
useful prior knowledge on weighting interacting genes with
similar values (Figure 1C). The cost function is defined on
three loss terms: 1) inconsistent labeling of samples that are
highly connected in the hypergraph; 2) inconsistent labeling
of training samples with known outcomes; 3) inconsistent
weighting of the hyperedges associated with the interacting
genes in the protein-protein interaction network. Our objec-
tive is to find a solution that can minimize the weighted sum
of the three loss terms.

2.1. Learning on weighted hypergraphs

A hypergraph is a special graph which contains hyper-
edges. In a simple graph, each edge connects a pair of
vertices, but in a hypergraph each edge can connect arbi-
trary number of vertices in the graph. Hypergraphs are of-
ten used with algorithms for exploring higher order corre-
lation between objects in data mining and bioinformatics
[17, 20, 21]. Let V = {v1, v2, . . . , v|V |} be a set of vertices
and E = {e1, e2, . . . , e|E|} be a set of edges defined on V :
for any hyperedge e ∈ E, e = {v(e)

1 , v
(e)
2 , . . . , v

(e)
|e| }, where

{v(e)
1 , v

(e)
2 , . . . , v

(e)
|e| } is a subset of V . A hyperedge e and

a vertex v are called incident if v ∈ e. A non-negative real
number (a weight) can be assigned to each hyperedge by a
function w (w can also be defined as a vector variable and
we will use both notations interchangeably). The vertex set
V , hyperedge set E and the weight function w fully defines
a weighted hypergraph denoted by G(V,E,w). The inci-
dence matrix H for hypergraph G(V,E,w) is a |V | × |E|
matrix with elements defined as h(v, e) = 1 when v ∈ e
and 0 otherwise. The degree of a vertex v is defined as
d(v) =

∑
e∈E h(v, e)w(e), which is the sum of the weights

of the hyperedges incident with v. The degree of a hyper-
edge e is defined as d(e) = |{v|v ∈ e}|, which is the num-
ber of vertices incident with e. Finally, we define W as the
diagonal matrix whose elements on the diagonal are weights
of hyperedges, and Dv and De as the diagonal matrices
with elements on the diagonal being the degrees of vertices
and hyperedges (the row and column sum of H). Note for
a hyperedge i, De(i, i) = d(i). However, for a vertex j,
Dv(j, j) = d(j) if and only if

∑
e∈E h(j, e)w(e) = d(j).

We use a weighted hypergraph G(V,E,w) to model the
gene expression data: each sample is denoted by a vertex
v ∈ V and each hyperedge denotes one of the two ex-
pression states (up/down-regulated) of a gene (Figure 1A).
Thus, each gene will be associated with two hyperedges in
the hypergraph. The incidences between the V and E are
decided by the gene expression values on the samples. If
the expression value of a gene i is positive for sample set V1

and negative on sample set V2, the up-state hyperedge eupi

is incident with V1 and the down-state hyperedge edowni is
incident with V2. Note that V1 ∪ V2 is a proper subset of V
if the expression levels of the gene in some of the samples
are zero (basal). After the hypergraph is constructed, we de-
fine a function y to assign initial labels to the corresponding
vertices in the hypergraph. If a vertex v is in the positive
group, y(v) = +1; If it is in the negative group, y(v) = −1
and if v is a test sample, y(v) = 0 (Figure 1B).

For cancer outcome prediction, our goal is to find the
correct labels for the unlabeled vertices of the test samples
in the hypergraph. Let f be the objective function (vector)
of labels to be learned. Intuitively, there are two criteria
for learning optimal f : 1) we want to assign the same label
to vertices that share many incidental hyperedges in com-
mon; 2) assignment of the labels should be similar to the
initial labeling y. For criteria 1), we define the following
cost function,

Ω(f, w) =
1
2

∑
e∈E

w(e)
d(e)

∑
u,v∈e

(
f(u)√
d(u)

− f(v)√
d(v)

)2 (1)

If the predicted labels on the vertices are consistent with the
incidences with the hyperedges, the value of Ω(f) should
be minimized. For criteria 2), we directly measure the 2-
norm distance between the vectors of the predicted and the
original labels as follows,

||f − y||2 =
∑
u∈V

(f(u)− y(u))2

2.2. Using interactions as constraints

To introduce protein interactions as prior knowledge into
the hypergraph-based learning, we assume that interacting
genes should receive similar weights on their associated hy-
peredges. We define a binary indicator δij to capture the
interaction between a pair of hyperedge ei and ej . The in-
dicator δij = 1 if the two genes associated with ei and ej
have the nearest distance k in the protein-protein interac-
tion network, otherwise 0. The distance k picked larger
than 1 can relax the definition of interaction between two
genes by allowing indirect interactions through neighbors.
When k = 1, it is reduced to measure the direct interac-
tion between genes. In our experiments in this paper, we set
k = 2. To assign weights to hyperedges consistent with the
prior knowledge in the protein-protein interaction network,
we define the following cost function over the hyperedge
weights,

Ψ(w) =
1
2

|E|∑
i,j=1

δi,j(
w(ei)√
σ(ei)

− w(ej)√
σ(ej)

)2, (2)

where σ(ei) =
∑|E|
j=1 δi,j , which is the number of hyper-

edges interacting with the hyperedge ei. Minimizing Ψ(w)
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ensures that hyperedges associated with interacting genes
will get similarly weighted. When there is no prior knowl-
edge, we can simply set Ψ(w) = ||w||2.

2.3. Optimization formulation

After the prior knowledge is introduced from a protein-
protein interaction network, our task is to minimize the sum
of the three cost terms defined as

Φ(f, w) = Ω(f, w) + µ||f − y||2 + ρΨ(w),

where µ and ρ are positive real numbers. This objective can
be achieved with the following optimization problem,

minimize
f,w

Φ(f, w) (3)

subject to

w(e) ≥ 0 for ∀e ∈ E∑
e∈E h(v, e)w(e) = d(v) for ∀v ∈ V.

The intuition of adding
∑
e∈E h(v, e)w(e) = d(v) as con-

straints is to maintain the hypergraph structure. The weight-
ing of the hyperedges should not be biased towards some
samples (such as training samples) and thus, the degree of
each vertex, the sum of the hyperedge weights on the vertex,
should be kept the same as in the initial graph. Mathemat-
ically, these constraints also guarantee that the covariance
matrix in Ω(f, w) is positive semi-definite with respect to f
[22], which makes our learning problem solvable.

Let ∆ = I −D−1/2
v HWD−1

e HTD
−1/2
v , where I is the

identity matrix and W is the diagonal matrix with Wii =
w(ei). We can show Ω(f, w) = fT∆f by

Ω(f, w) =
∑
e∈E

∑
u,v∈V

w(e)h(u, e)h(v, e)
δ(e)

(
f2(u)
d(u)

− f(u)f(v)√
d(u)d(v)

)

=
∑
e∈E

∑
u∈V

w(e)h(u, e)f2(u)
d(u)

∑
v∈V

h(v, e)
δ(e)

−
∑
e∈E

∑
u,v∈V

w(e)h(u, e)h(v, e)
δ(e)

f(u)f(v)√
d(u)d(v)

=
∑
u∈V

f2(u)
∑
e∈E

w(e)h(u, e)
d(u)

−
∑
e∈E

∑
u,v∈V

f(u)w(e)h(u, e)h(v, e)f(v)√
d(u)d(v)δ(e)

=
∑
u∈V

f2(u)

−
∑
e∈E

∑
u,v∈V

f(u)w(e)h(u, e)h(v, e)f(v)√
d(u)d(v)δ(e)

.

HyperGene(y,H,A, α, ρ)

1 t = 0, w0 = 1, f0 = y, c0 = +∞

2 do

3 t = t+ 1

4 Use Jacobi iteration method to find optimal ft

ft = (I − αD−1/2
v HWt−1D

−1
e HTD

−1/2
v )−1y

5 Use quadratic programming to find optimal wt

wt = argminw Ω(f = ft−1, w) + ρΨ(w)

subject to Hw = diag(Dv) and diag(W ) � 0

6 ct = Ω(ft, wt) + µ||ft − y||2 + ρΨ(wt)

7 while (ct−1 − ct > π) // if the decrease of the cost
function is smaller than a threshold π, stop iterat-
ing.

8 return (ft, wt)

Figure 2. The HyperGene algorithm.

Step three in the above derivation shows that Ω(f, w) =
fT∆f if and only if

∑
e∈E

w(e)h(u,e)
d(u) = 1. The constraints∑

e∈E h(v, e)w(e) = d(v) for ∀v ∈ V in equation 3 keep
Dv unchanged during the optimization and thus make ∆ al-
ways positive semi-definite. Finally, let A be the adjacency
matrix defined on the protein-protein interaction network
with Aij = δij , where i and j are the indexes of hyper-
edges, and D be the diagonal matrix with Dii =

∑
j Aij ,

the optimization problem in equation (3) can be written in
the following matrix form,

minimize
f,w

fT∆f + µ||f − y||2 + ρwT (I − S)w (4)

subject to

Hw = diag(Dv)
diag(W ) � 0,

where S = D−1/2AD−1/2.

3. The HyperGene Algorithm

The objective function Φ(f, w) in the optimization prob-
lem defined by equation 3 is not convex in (f , w). However,
our formulation contains two sub-optimization-problems,
both of which are convex if we independently optimize
Φ(f, w) with respect to f or w. Specifically, if we fix
w to be a specific weighting wt satisfying the constraints
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wt ≥ 0 and Hwt = diag(Dv), the objective function
Φ(f, w = wt) is convex in f ; if we fix f to be a specific la-
beling of the vertices ft, Φ(f = ft, w) is also convex in w.
Thus, a local optimal solution can be found by solving the
two optimizations alternatively by iteration. Our assump-
tion is that f andw can be independently optimized and this
assumption does not guarantee a global optimal solution to
the optimization problem.

For solving the optimization problem in the regulariza-
tion framework, the HyperGene algorithm is a two-step iter-
ative method that alternatively finds the optimal f and w in
each step. The outline of the HyperGene algorithm is given
in Figure 2. The HyperGene algorithm first initializes w
with a uniform weighting 1 over the hyperedges. Note that
w = 1 is a solution to the linear system Hw = diag(Dv)
by definition of Dv and thus, a valid solution to Equation
3. In the first step in each iteration, HyperGene fixes w and
optimizes Φ(f, w = wt) with respect to f in the following
optimization problem,

minimize
f

Ω(f, w = wt) + µ||f − y||2 (5)

The cost term Ψ(w = wt) is removed from Φ(f, w = wt)
since it is a constant in the above optimization problem. In
the cost term Ω(f, w = wt) = fT∆f (Equation 4), ∆ is
positive semi-definite given Ω(f, w = wt) ≥ 0 for any f
(Equation 1), which also implies that Ω(f, w = wt) is con-
vex in f . Therefore, we can simply take derivative with
respect to f to get the optimal solution f∗ = ((1 − α)I +
α∆)−1y, where α = µ

1+µ [22]. This is equivalent to solv-
ing the linear system ((1−α)I +α∆)f = y, which can be
efficiently computed by Jacobi Iteration method [14].

In the second step in each iteration, the HyperGene algo-
rithm fixes f = ft learned in the previous step to learn the
optimal weighting of hyperedgesw by solving the quadratic
programming problem:

minimize
w

Ω(f = ft, w) + ρΨ(w) (6)

subject to

w(e) ≥ 0 for ∀e ∈ E∑
e∈E h(v, e)w(e) = d(v) for ∀v ∈ V.

The cost µ||f − y||2 is removed from Φ(f, w = wt) since it
is a constant in the above optimization problem, and Ω(f =
ft, w) is a linear function of w (Equation 1). Since Ψ(w) =
wT (I − D−1/2AD−1/2)w ≥ 0 for any w (Equation 2),
I −D−1/2AD−1/2 is positive semi-definite, which implies
that Φ(f = ft, w) is convex in w. In both steps, the total
cost Φ(f, w) is guaranteed to be reduced until there is only
very small change. Thus, our algorithm will finally stop at a
small total cost. We implemented the HyperGene algorithm
in MATLAB and use ILOG/CPLEX package (version 11.1)
for quadratic programming.

4. Experiments

We evaluate the HyperGene algorithm on both artificial
datasets and two breast cancer gene expression datasets us-
ing as a prior a large curated protein-protein interaction net-
work constructed by [4]. This protein-protein interaction
network contains 57,235 interactions among 11,203 pro-
teins integrated from yeast two-hybrid experiments, pre-
dicted interactions from orthology and co-citatioin, and
other literature reviews [4]. We compare the classifica-
tion performance of HyperGene with three baselines, the
hypergraph-based learning algorithm [22] and SVMs with
linear kernel and RBF kernel (Matlab Bioinformatics Tool-
box (V3.0)). The classification performance of all meth-
ods are evaluated using the receiver operating characteris-
tics (ROC) score: the normalized area under a curve plot-
ting the number of true positives against the number of false
positives by varying a threshold on the decision values [9].

4.1. Simulations

To mimic the noisy nature of microarray data, we test the
HyperGene algorithm on artificial hypergraphs with many
noisy hyperedges. In all experiments, we label 50% vertices
for training and hold out the other 50% vertices in the hy-
pergraphs for testing. We randomly generate hypergraphs
with a large number of non-informative hyperedges and a
certain number of special hyperedges, each of which alone
is not very informative but in combination is highly infor-
mative. We first generate a highly discriminative hyperedge
incident with 80% of vertices in one class and 20% of ver-
tices in the other class, and the hyperedge is split into 5
weak informative hyperedges with equally number of ver-
tices. The informative hyperedges are generated to simulate
the expression behavior of cancer genes, which are often
non-informative unless combined as a module. The prior
knowledge is introduced as the interactions between the in-
formative hyperedges and some other random interactions
between non-informative hyperedges are also introduced as
noise.

The algorithms are tested on 100 randomly generated
such hypergraphs. We report the average ROC score of the
baselines and HyperGene with different percentage of in-
formative hyperedges in Figure 3A. Because the results are
similar for different choice of ρ and α parameters, we only
plot the case with (α, ρ) = (0.5, 1). It is clear in the plot
that, when the prior knowledge gives useful information
about interactions between informative hyperedges, the per-
formance of our algorithm is significantly better than SVMs
and the hypergraph-based algorithm with uniform weights.
Since in this simulation, only very high-order combination
of the hyperedges can provide good classification perfor-
mance, SVMs perform poorly in all cases. To check the
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Figure 3. Simulation on outcome prediction and marker gene discovery. (A) This plot compares
the algorithms by averaged ROC scores over 100 trials. The x-axis is the percentage of informative
hyperedges in the hypergraph. We set (α, ρ) = (0.5, 1) for the HyperGene algorithm. (B) This plot
shows the decrease of the cost function after each iteration of HyperGene. (C) There are 10 small
interacting modules among 200 informative edges and 2 larger interacting modules among non-
informative modules. (D) The x-axis is the index of the hyperedges aligned with the indexes in plot
(C). The y-axis is the weights. The 200 informative edges are assigned larger weights by HyperGene.

Table 1. Performance of cancer outcome prediction. On the van’t Veer et al dataset, the ROC score
on the 19-patient test set is reported. On the van de Vijver et al dataset, over the random 5-fold cross-
validations (100 times on the 325 genes and 50 times on the 1,495 genes), the mean and standard
deviation of the ROC scores and the pairwise comparison of classification performance between
HyperGene and the baseline algorithms in each experiment are reported.

van’t Veer et al dataset van de Vijver et al dataset
Algorithms 231 genes 500 genes 325 cancer genes 1,465 cancer genes

ROC ROC Mean (Std) Win/Tie/Loss Mean (Std) Win/Tie/Loss
versus HyperGene versus HyperGene

SVM (linear) 0.845 0.845 0.679 (0.064) 163/60/277 0.675 (0.063) 79/29/142
SVM (rbf) 0.833 0.845 0.686 (0.063) 140/75/285 0.679 (0.065) 78/22/150

Hypergraph 0.857 0.821 0.685 (0.062) 83/77/340 0.684 (0.066) 45/68/137
HyperGene 0.893 0.869 0.699 (0.061) 0/500/0 0.691 (0.064) 0/500/0
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convergence of the HyperGene algorithm, we also mea-
sure the value of the cost function in each iteration on the
two real microarray gene expression datasets with selected
1,465 genes (see section 4.2). The change of the cost func-
tion for different α and ρ parameters is shown in Figure
3B. It is clear that the HyperGene algorithm converges very
fast. We also found that the value of f and w variables stay
unchanged after the first 2 to 3 iterations.

To test if the HyperGene algorithm can select infor-
mative hyperedges, we design one additional experiment
with more diverse prior knowledge on both informative hy-
peredges and non-informative hyperedges. We generate
400 non-informative hyperedges and 200 informative hy-
peredges. The 200 informative hyperedges are grouped into
10 fully connected cliques in the interaction network. We
also group 200 random hyperedges into 2 fully connected
cliques. The adjacency matrix is shown in Figure 3C. The
2 cliques of non-informative hyperedges are on the top-left
of the matrix and the 10 cliques of informative hyperedges
are on the bottom-right of the matrix. The weights learned
by HyperGene is plotted in Figure 3D. It is evident that
informative hyperedges are assigned much larger weights,
which shows that the HyperGene algorithm is capable of
selecting true informative interaction components even un-
der the presence of abundant irrelevant interactions. This
result also suggests that the HyperGene algorithm assigns
weights to hyperedges based on both the predictability and
modularity of the hyperedges, instead of the number of in-
teractions that they have in the interaction network. Accord-
ingly, the HyperGene algorithm achieves the highest ROC
score 0.874 in this experiment, while the hypergraph-based
algorithm and SVM with linear kernel and RBF kernel only
score 0.750, 0.596 and 0.604 respectively.

4.2. Cancer outcome prediction on breast
cancer datasets

We next test the HyperGene algorithm for cancer out-
come prediction on two breast cancer gene expression
datasets, the van’t Veer et al dataset [18] and the van de
Vijver et al dataset [10]. The van’t Veer et al dataset and
the van de Vijver et al dataset contain 24,481 gene expres-
sions of 97 and 295 patients respectively. The patients are
divided into two groups based on whether the patient had
been free of disease after their diagnosis for an interval of
at least 5 years or had developed distant metastasis within
5 years after a poor prognosis. The details for quantiza-
tion and normalization of scanned microarray images are
described in [18, 10]. In the experiments on the van’t Veer
et al dataset, two subsets of gene expressions, 231 genes
suggested by [18] and the top ranked 500 genes selected
by the correlation coefficients between the gene expressions
and the cancer outcomes, are used for classification. Note

that the two subsets of genes are selected on a training set
of 78 patients and the remaining 19 patients are held out
as the test set as suggested by [18]. In the experiments on
the van de Vijver et al dataset [10], we use for classifica-
tion two subsets of hypothetical cancer susceptibility genes,
326 genes from Ingenuity1 and 1,465 genes from Cancer
Genomics tool2. We randomly run 5-fold cross-validation
multiple times on the van de Vijver et al dataset and mea-
sure the average ROC. Note that within each experiment
of a 5-fold cross-validation, another 4-fold cross-validation
is used on the training set to pick the best parameters for
HyperGene and the baseline algorithms to test the held-out
set. The classification results in Table 1 show that Hyper-
Gene performs significantly better than both SVMs and the
hypergraph-based learning algorithm in all the experiments.
Particularly, HyperGene outperforms the three baseline al-
gorithms in classifying the 19 test samples on the van’t Veer
et al dataset by around 4 to 6 percents when the 231 genes
are used, and around 2.5 to 5 percents when the 500 genes
are used. It is interesting that the optimal values of ρ for
HyperGene in the two experiments are both 1. When ρ is
large, the prior knowledge from the protein-protein interac-
tion network is emphasized, and the interacting genes will
get very similar weights in the optimizations of the Hyper-
Gene algorithm. When the interaction network contains ac-
curate and helpful information, larger ρs will be picked in
cross-validation to take advantage of the prior knowledge.
However, when the quality of the interaction network is
poor, larger ρs will lead to deteriorated classification perfor-
mance. Thus, we speculate that the protein-protein interac-
tion network plays important role in learning the better clas-
sifiers, given the relatively large value for ρ. On the van de
Vijver et al dataset, HyperGene achieves an improvement
of 1.3 to 2.4 percents on the average ROC score. Although
the improvement seems to be small, pairwise comparisons
between HyperGene and the baseline algorithms show that
in many more cases, HyperGene outperforms the other al-
gorithms.

4.3. Breast cancer biomarker identification

4.3.1 Identification of known biomarkers

To demonstrate that HyperGene is capable of identifying
true cancer susceptibility genes, we examine the weights of
genes obtained by the HyperGene algorithm. In this ex-
periment, we construct a hypergraph with the 1,465 can-
didate cancer genes and all the labeled patient vertices on
the van de Vijver et al dataset. We compare the genes
that are highly weighted by HyperGene with those known
breast cancer causative genes reported in previous litera-
tures. We collect a list of 30 breast cancer causative genes,

1http://www.ingenuity.com/
2http://cbio.mskcc.org/cancergenes/Select.action
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16 of which are presented in our data, from [18] and the
overview section of breast cancer (MIM 114480) in On-
line Mendelian Inheritance in Man (May, 2007)3. While
Correlation Coefficients give very low ranking to the 16
known breast cancer causative genes, the HyperGene algo-
rithm in two different settings (ρ = 1 and 0.001) assigns
high ranks to most of the genes, with 14 out of 16 genes
ranked in the top 300 genes (Table 2). The difference of
the ranking of known breast cancer causative genes cal-
culated in the two ρ values is small, which indicates that
the Hypergene algorithm is not sensitive to ρ parameter to
identify marker genes in this case. Notable examples of
the biomarker genes are tumor protein p53 (TP53), estro-
gen receptor 1 (ESR1), v-Ha-ras Harvey rat sarcoma viral
oncogene homolog (HRAS), and v-Ki-ras2 Kirsten rat sar-
coma viral oncogene homolog (KRAS), all of which are
not identified in [18] but are highly ranked by the Hy-
perGene algorithm. Other novel susceptibility candidates
that are not in our list of known causative genes but have
a large number of interactions with known susceptibility
genes such as CREB binding protein (CREBBP), B-cell
CLL/lymphoma 2 (BCL2), and Mdm2 p53 binding protein
homolog (MDM2) are also highly ranked by the HyperGene
algorithm.

4.3.2 Functional enrichment and pathway analysis

We also analyze the biological functions of the biomarker
genes by Gene Ontology (GO) annotations and pathway
analysis with Ingenuity (version 5.5). We investigate
whether the identified marker genes involve significantly
over-represented GO categories and biological pathways
that are related with breast cancer. With the top 100 marker
genes as input, Ingenuity identifies 17 enriched functions
scoring a p-value less than 1.0e − 9 on the van de Vijver
et al dataset. Figure 4 shows the enriched biological func-
tions from the van de Vijver datasets. All the 17 enriched
functions of top 100 marker genes shows strong consis-
tency with those identified by [5, 19], indicating that these
processes are significantly involved with the progression
of cancer. Especially, the most significant functions such
as cell cycle (p-value = 4.03e − 47), cell death (p-value
= 3.44e − 44) , gene expression (p-value = 2.43e − 43),
and cellular growth and proliferation (p-value = 2.7e− 36)
are well known to be functionally involved with metasta-
sis and development of breast cancer [15, 19, 4, 18]. Note
that among the 17 functions, 11 functions are closely or ex-
actly matched with the 21 functions discovered previously
in [19].

In Figure 5, we show the identified sub-networks among
the top 100 marker genes. The genes in the same pro-
tein complex or biochemical pathway tend to perform sim-

3http://www.ncbi.nlm.nih.gov/omim/

Table 2. The ranking of known breast can-
cer susceptibility genes. We compare the
ranking of the known cancer genes obtained
by the HyperGene algorithm with the ranking
calculated by Correlation Coefficients (CC).
We set α = 0.5 and ρ = 1 and 0.001 to test
the HyperGene algorithm.

Known Gene Ranking
Disease HyperGene HyperGene CC
Gene α=0.5, ρ=1 α=0.5, ρ=0.001

TP53 1 2 601
BRCA1 14 19 629
ESR1 17 22 208

BARD1 51 72 562
ATM 75 77 1054

HRAS 96 81 437
AKT1 99 154 1024

TGFB1 130 152 760
CASP8 142 201 1221
PTEN 157 198 725

PPM1D 182 60 266
KRAS 183 257 1267

SERPINE1 207 118 973
BRCA2 227 299 924
PIK3CA 415 363 712
STK11 632 609 773

ilar biological functions and may lead to same or simi-
lar diseases [12, 8]. As shown in Figure 5, many known
causative cancer genes play critical roles and are present
with other susceptibility candidate genes in the pathway
networks. TP53-subnetwork is involved with glucocorti-
coid receptor signaling, p53 signaling and B cell recep-
tor signaling pathways, and BRCA1-subnetwork is over-
represented with glucocorticoid receptor signaling, estrogen
receptor signaling, and RAR activation. Other networks are
also involved with glucocorticoid receptor signaling, RAR
activation, estrogen receptor signaling and other canonical
pathways. All those over-represented biological pathways
are closely linked with breast cancer 4. This observation
again supports the hypothesis that cancer genes share spe-
cific pathways involved with disease and they often inter-
act with each other in a protein-protein interaction network
[3, 19, 4, 8].

5. Conclusion

Utilizing the prior knowledge introduced from a protein-
protein interaction network, the HyperGene algorithm out-
performs SVMs and the original hypergraph-based learn-

4http://cgap.nci.nih.gov/
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Figure 4. Enriched biological functions by the top 100 marker genes on the van de Vijver et al dataset.
The enriched functions are sorted by p-values calculated using the right-tailed Fisher Exact Test. All
the enriched functions have p-value less than 1.0e− 9.

(A) TP53-subnetwork (B) BRCA1-subnetwork (C) AKT1-subnetwork (D) RB1-subnetwork

(E) STAT1-subnetwork (F) SMAD2-subnetwork (G) SOS1-subnetwork

Figure 5. Seven Interaction networks of the top 100 marker genes on van de Vijver et al dataset.
Known breast cancer causative genes such as TP53, ESR1 and BRCA1 play a central role in the
networks. Other known susceptibility genes such as v-akt murine thymoma viral oncogene homolog
1 (AKT1), retinoblastoma 1 (RB1), signal transducer and activator of transcription 1, 91kDa (STAT1),
SMAD family member 2 (SMAD2), and son of sevenless homolog 1 (SOS1) also tend to be hubs and
interact with many other susceptibility genes in the networks. Note that we remove those marker
genes that do not directly interact with other known susceptibility genes.
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ing algorithm in experiments on both artificial datasets and
two real breast cancer datasets. HyperGene is also capa-
ble of retrieving maker genes highly relevant to the cancer.
Thus, HyperGene is an effective algorithm to integrate gene
expressions and protein-protein interactions for cancer out-
come prediction and biomarker identification.

As large volume of human genomic and proteomic data
is becoming available for cancer studies, data integration for
improving cancer prognosis and treatment is turning into
one of the central problems in biomedical research. Our
results suggest that large scale protein-protein interaction
networks contain complementary information that can po-
tentially aid cancer outcome prediction and biomarker iden-
tification with microarray gene expression data. The Hy-
perGene algorithm is a powerful tool for handling this data
integration problem.

We plan to extend the HyperGene algorithm to handle
other types of prior knowledge such as Gene Ontology or
pathways for learning with microarray gene expressions.
The other prior knowledge might indicate other types of pri-
ors on the genes, which will need to be handled differently
with variants of HyperGene. We also plan to apply the Hy-
perGene algorithm to study other cancers such as lung can-
cer to improve the diagnosis and prognosis of these cancers.
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