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Abstract. Assumptions of brightness constancy and spatial smoothness
underlie most optical flow estimation methods. In contrast to standard
heuristic formulations, we learn a statistical model of both brightness
constancy error and the spatial properties of optical flow using image se-
quences with associated ground truth flow fields. The result is a complete
probabilistic model of optical flow. Specifically, the ground truth enables
us to model how the assumption of brightness constancy is violated in
naturalistic sequences, resulting in a probabilistic model of “brightness
inconstancy”. We also generalize previous high-order constancy assump-
tions, such as gradient constancy, by modeling the constancy of responses
to various linear filters in a high-order random field framework. These
filters are free variables that can be learned from training data. Addition-
ally we study the spatial structure of the optical flow and how motion
boundaries are related to image intensity boundaries. Spatial smoothness
is modeled using a Steerable Random Field, where spatial derivatives of
the optical flow are steered by the image brightness structure. These
models provide a statistical motivation for previous methods and enable
the learning of all parameters from training data. All proposed models
are quantitatively compared on the Middlebury flow dataset.

1 Introduction

We address the problem of learning models of optical flow from training data.
Optical flow estimation has a long history and we argue that most methods have
explored some variation of the same theme. Particularly, most techniques exploit
two constraints: brightness constancy and spatial smoothness. The brightness
constancy constraint (data term) is derived from the observation that surfaces
usually persist over time and hence the intensity value of a small region remains
the same despite its position change [1]. The spatial smoothness constraint (spa-
tial term) comes from the observation that neighboring pixels generally belong
to the same surface and so have nearly the same image motion. Despite the long
history, there have been very few attempts to learn what these terms should be
[2]. Recent advances [3] have made sufficiently realistic image sequences with
ground truth optical flow available to finally make this practical. Here we revisit
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several classic and recent optical flow methods and show how training data and
machine learning methods can be used to train these models. We then go beyond
previous formulations to define new versions of both the data and spatial terms.

We make two primary contributions. First we exploit image intensity bound-
aries to improve the accuracy of optical flow near motion boundaries. The idea
is based on that of Nagel and Enkelmann [4], who introduced oriented smooth-
ness to prevent blurring of flow boundaries across image boundaries; this can be
regarded as an anisotropic diffusion approach. Here we go a step further and use
training data to analyze and model the statistical relationship between image
and flow boundaries. Specifically we use a Steerable Random Field (SRF) [5]
to model the conditional statistical relationship between the flow and the im-
age sequence. Typically, the spatial smoothness of optical flow is expressed in
terms of the image-axis-aligned partial derivatives of the flow field. Instead, we
use the local image edge orientation to define a steered coordinate system for
the flow derivatives and note that the flow derivatives along and across image
boundaries are highly kurtotic. We then model the flow field using a Markov
random field (MRF) and formulate the steered potentials using Gaussian scale
mixtures (GSM) [6]. All parameters of the model are learned from examples thus
providing a rigorous statistical formulation of the idea of Nagel and Enkelmann.

Our second key contribution is to learn a statistical model of the data term.
Numerous authors have addressed problems with the common brightness con-
stancy assumption. Brox et al. [7], for example, extend brightness constancy to
high-order constancy, such as gradient and Hessian constancy in order to mini-
mize the effects of illumination change. Additionally, Bruhn et al. [8] show that
integrating constraints within a local neighborhood improves the accuracy of
dense optical flow. We generalize these two ideas and model the data term as
a general high-order random field that allows the principled integration of local
information. In particular, we extend the Field-of-Experts formulation [2] to the
spatio-temporal domain to model temporal changes in image features. The data
term is formulated as the product of a number of experts, where each expert is
a non-linear function (GSM) of a linear filter response. One can view previous
methods as taking these filters to be fixed: Gaussians, first derivatives, second
derivatives, etc. Rather than assuming known filters, our framework allows us
to learn them from training data.

In summary, by using naturalistic training sequences with ground truth flow
we are able to learn a complete model of optical flow that not only captures the
spatial statistics of the flow field but also the statistics of brightness inconstancy
and how the flow boundaries relate to the image intensity structure. The model
combines and generalizes ideas from several previous methods and the result-
ing objective function is at once familiar and novel. We present a quantitative
evaluation of the different methods using the Middlebury flow database [3] and
find that the learned models outperform previous models, particularly at motion
boundaries. Our analysis uses a single, simple, optimization method throughout
to focus the comparison on the effects of different objective functions. The results
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suggest the benefit of learning standard models and open the possibility to learn
more sophisticated ones.

2 Previous Work

Horn and Schunck [9] introduced both the brightness constancy and the spa-
tial smoothness constraints for optical flow estimation, however their quadratic
formulation assumes Gaussian statistics and is not robust to outliers caused by
reflection, occlusion, motion boundaries etc. Black and Anandan [1] introduced
a robust estimation framework to deal with such outliers, but did not attempt
to model the true statistics of brightness constancy errors and flow derivatives.
Fermüller et al. [10] analyzed the effects of noise on the estimation of flow, but
did not attempt to learn flow statistics from examples. Rather than assuming a
model of brightness constancy we acknowledge that brightness can change and,
instead, attempt to explicitly model the statistics of brightness inconstancy.

Many authors have extended the brightness constancy assumption, either by
making it more physically plausible [11,12] or by linear or non-linear pre-filtering
of the images [13]. The idea of assuming constancy of first or second image
derivatives to provide some invariance to lighting changes dates back to the
early 1980’s with the Laplacian pyramid [14] and has recently gained renewed
popularity [7]. Following a related idea, Bruhn et al. [8] replaced the pixelwise
brightness constancy model with a spatially smoothed one. They found that a
Gaussian-weighted spatial integration of brightness constraints results in signif-
icant improvements in flow accuracy. If filtering the image is a good idea, then
we ask what filters should we choose? To address this question, we formulate the
problem as one of learning the filters from training examples.

Most optical flow estimation methods encounter problems at motion bound-
aries where the assumption of spatial smoothness is violated. Observing that
flow boundaries often coincide with image boundaries, Nagel and Enkelmann [4]
introduced oriented smoothness to prevent blurring of optical flow across image
boundaries. Alvarez et al. [15] modified the Nagel-Enkelmann approach so that
less smoothing is performed close to image boundaries. The amount of smoothing
along and across boundaries has been determined heuristically. Fleet et al. [16]
learned a statistical model relating image edge orientation and amplitude to flow
boundaries in the context of a patch-based motion discontinuity model. Black
[17] proposed an MRF model that coupled edges in the flow field with edges
in the brightness images. This model, however, was hand designed and tuned.
We provide a probabilistic framework within which to learn the parameters of a
model like that of Nagel and Enkelmann from examples.

Simoncelli et al. [18] formulated an early probabilistic model of optical flow
and modeled the statistics of the deviation of the estimated flow from the true
flow. Black et al. [19] learned parametric models for different classes of flow (e.g.
edges and bars). More recently, Roth and Black [2] modeled the spatial structure
of optical flow fields using a high-order MRF, called a Field of Experts (FoE), and
learned the parameters from training data. They combined their learned prior
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model with a standard data term [8] and found that the FoE model improved
the accuracy of optical flow estimates. While their work provides a learned prior
model of optical flow, it only models the spatial statistics of the optical flow and
not the data term or the relationship between flow and image brightness.

Freeman et al. [20] also learned an MRF model of image motion but their
training was restricted to simplified “blob world” scenes; here we use realistic
scenes with more complex image and flow structure. Scharstein and Pal [21]
learned a full model of stereo, formulated as a conditional random field (CRF),
from training images with ground truth disparity. This model also combines
spatial smoothness and brightness constancy in a learned model, but uses simple
models of brightness constancy and spatially-modulated Potts models for spatial
smoothness; these are likely inappropriate for optical flow.

3 Statistics of Optical Flow

3.1 Spatial Term

Roth and Black [2] studied the statistics of horizontal and vertical optical flow
derivatives and found them to be heavy-tailed, which supports the intuition that
optical flow fields are typically smooth, but have occasional motion discontinu-
ities. Figure 1 (a, b (solid)) shows the marginal log-histograms of the horizontal
and vertical derivatives of horizontal flow, computed from a set of 45 ground
truth optical flow fields. These include four from the Middlebury “other” dataset,
one from the “Yosemite” sequence, and ten of our own synthetic sequences. These
synthetic sequences were generated in the same way as, and are similar to, the
other Middlebury synthetic sequences (Urban and Grove); two examples are
shown in Fig. 2. To generate additional training data the sequences were also
flipped horizontally and vertically. The histograms are heavy-tailed with high
peaks, as characterized by their high kurtosis (κ = E[(x − µ)4]/E[(x − µ)2]2).

We go beyond previous work by also studying the steered derivatives of optical
flow where the steering is obtained from the image brightness of the reference
(first) frame. To obtain the steered derivatives, we first calculate the local image
orientation in the reference frame using the structure tensor as described in
[5]. Let (cos θ(I), sin θ(I))T and (− sin θ(I), cos θ(I))T be the eigenvectors of the
structure tensor in the reference frame I, which are respectively orthogonal to
and aligned with the local image orientation. Then the orthogonal and aligned
derivative operators ∂I

O and ∂I
A of the optical flow are given by

∂I
O = cos θ(I) · ∂x + sin θ(I) · ∂y and ∂I

A = − sin θ(I) · ∂x + cos θ(I) · ∂y, (1)

where ∂x and ∂y are the horizontal and vertical derivative operators. We approx-
imate these using the 2 × 3 and 3 × 2 filters from [5].

Figure 1 (c, d) shows the marginal log-histograms of the steered derivatives of
the horizontal flow (the vertical flow statistics are similar and are omitted here).
The log-histogram of the derivative orthogonal to the local structure orientation
has much broader tails than the aligned one, which confirms the intuition that
large flow changes occur more frequently across the image edges.
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Fig. 1. Marginal filter response statistics (log scale) of standard derivatives (left) and
derivatives steered to local image structure (right) for the horizontal flow u. The his-
tograms are shown in solid blue; the learned experts in dashed red. κ denotes kurtosis.

These findings suggest that the steered marginal statistics provide a statistical
motivation for the Nagel-Enkelmann method, which performs stronger smooth-
ing along image edges and less orthogonal to image edges. Furthermore, the non-
Gaussian nature of the histograms suggest that non-linear smoothing should be
applied orthogonal to and aligned with the image edges.

3.2 Data Term

To our knowledge, there has been no formal study of the statistics of the bright-
ness constancy error, mainly due to the lack of appropriate training data. Using
ground truth optical flow fields we compute the brightness difference between
pairs of training images by warping the second image in each pair toward the
first using bi-linear interpolation. Figure 2 shows the marginal log-histogram of
the brightness constancy error for the training set; this has heavier tails and a
tighter peak than a Gaussian of the same mean and variance. The tight peak
suggests that the value of a pixel in the first image is usually nearly the same
as the corresponding value in the second image, while the heavy tails account
for violations caused by reflection, occlusion, transparency, etc. This shows that
modeling the brightness constancy error with a Gaussian, as has often been done,
is inappropriate, and this also provides a statistical explanation for the robust
data term used by Black and Anandan [1]. The Lorentzian used there has a
similar shape as the empirical histogram in Fig. 2.
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Fig. 2. (a) Statistics of the brightness constancy error: The log-histogram (solid blue)
is fit with a GSM model (dashed red). (b)-(e) two reference (first) images and their
associated flow fields from our synthetic training set.
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We should also note that the shape of the error histogram will depend on the
type of training images. For example, if the images have significant camera noise,
this will lead to brightness changes even in the absence of any other effects. In
such a case, the error histogram will have a more rounded peak depending on
how much noise is present in the images. Future work should investigate adapting
the data term to the statistical properties of individual sequences.

4 Modeling Optical Flow

We formulate optical flow estimation as a problem of probabilistic inference and
decompose the posterior probability density of the flow field (u,v) given two
successive input images I1 and I2 as

p(u,v|I1, I2; Ω) ∝ p(I2|u,v, I1; ΩD) · p(u,v|I1; ΩS), (2)

where ΩD and ΩS are parameters of the model. Here the first (data) term de-
scribes how the second image I2 is generated from the first image I1 and the
flow field, while the second (spatial) term encodes our prior knowledge of the
flow fields given the first (reference) image. Note that this decomposition of the
posterior is slightly different from the typical one, e. g., in [18], in which the spa-
tial term takes the form p(u,v; ΩS). Standard approaches assume conditional
independence between the flow field and the image structure, which is typically
not made explicit. The advantage our formulation is that the conditional nature
of the spatial term allows for more flexible methods of flow regularization.

4.1 Spatial Term

For simplicity we assume that horizontal and vertical flow fields are independent;
Roth and Black [2] showed experimentally that this is a reasonable assumption.
The spatial model thus becomes

p(u,v|I1; ΩS) = p(u|I1; ΩSu) · p(v|I1; ΩSv). (3)

To obtain our first model of spatial smoothness, we assume that the flow fields are
independent of the reference image. Then the spatial term reduces to a classical
optical flow prior, which can, for example, be modeled using a pairwise MRF:

pPW(u; ΩPWu) =
1

Z(ΩPWu)

∏

(i,j)

φ(ui,j+1−uij; ΩPWu)·φ(ui+1,j−uij; ΩPWu), (4)

where the difference between the flow at neighboring pixels approximates the
horizontal and vertical image derivatives (see e. g., [1]). Z(ΩPWu) here is the
partition function that ensures normalization. Note that although such an MRF
model is based on products of very local potential functions, it provides a global
probabilistic model of the flow. Various parametric forms have been used to
model the potential function φ (or its negative log): Horn and Schunck [9] used
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Gaussians, the Lorentzian robust error function was used by Black and Anandan
[1], and Bruhn et al. [8] assumed the Charbonnier error function. In this paper,
we use the more expressive Gaussian scale mixture (GSM) model [6], i. e.,

φ(x; Ω) =

L
∑

l=1

ωl · N (x; 0, σ2/sl), (5)

in which Ω = {ωl|l = 1, . . . , L} are the weights of the GSM model, sl are the
scales of the mixture components, and σ2 is a global variance parameter. GSMs
can model a wide range of distributions ranging from Gaussians to heavy-tailed
ones. Here, the scales and σ2 are chosen so that the empirical marginals of the
flow derivatives can be represented well with such a GSM model and are not
trained along with the mixture weights ωl.

The particular decomposition of the posterior used here (2) allows us to model
the spatial term for the flow conditioned on the measured image. For example,
we can capture the oriented smoothness of the flow fields and generalize the
Steerable Random Field model [5] to a steerable model of optical flow, resulting
in our second model of spatial smoothness:

pSRF(u|I1; ΩSRFu) ∝
∏

(i,j)

φ
(

(∂I1
O u)ij ; ΩSRFu

)

· φ
(

(∂I1
A u)ij ; ΩSRFu

)

. (6)

The steered derivatives (orthogonal and aligned) are defined as in (1); the su-
perscript denotes that steering is determined by the reference frame I1. The
potential functions are again modeled using GSMs.

4.2 Data Term

Models of the optical flow data term typically embody the brightness constancy
assumption, or more specifically model the deviations from brightness constancy.
Assuming independence of the brightness error at the pixel sites, we can define
a standard data term as

pBC(I2|u,v, I1; ΩBC) ∝
∏

(i,j)

φ(I1(i, j) − I2(i + uij , j + vij); ΩBC). (7)

As with the spatial term, various functional forms (Gaussian, robust, etc.) have
been assumed for the potential φ or its negative log. We again employ a GSM
representation for the potential, where the scales and global variance are deter-
mined empirically before training the model (mixture weights).

Brox et al. [7] extend the brightness constancy assumption to include high-
order constancy assumptions, such as gradient constancy, which may improve
accuracy in the presence of changing scene illumination or shadows. We propose
a further generalization of these constancy assumptions and model the constancy
of responses to several general linear filters:

pFC(I2|u,v, I1; ΩFC) ∝
∏

(i,j)

∏

k

φk{(Jk1 ∗ I1)(i, j)−

(Jk2 ∗ I2)(i + uij , j + vij); ΩFC}, (8)
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where the Jk1 and Jk2 are linear filters. Practically, this equation implies that
the second image is first filtered with Jk2, after which the filter responses are
warped toward the first filtered image using the flow (u,v) 1. Note that this data
term is a generalization of the Fields-of-Experts model (FoE), which has been
used to model prior distributions of images [22] and optical flow [2]. Here, we
generalize it to a spatio-temporal model that describes brightness (in)constancy.

If we choose J11 to be the identity filter and define J12 = J11, this imple-
ments brightness constancy. Choosing the Jk1 to be derivative filters and setting
Jk2 = Jk1 allows us to model gradient constancy. Thus this model generalizes
the approach by Brox et al. [7] 2. If we choose Jk1 to be a Gaussian smoothing
filter and define Jk2 = Jk1, we essentially perform pre-filtering as, for example,
suggested by Bruhn et al. [8]. Even if we assume fixed filters using a combination
of the above, our probabilistic formulation still allows learning the parameters of
the GSM experts from data as outlined below. Consequently, we do not need to
tune the trade-off weights between the brightness and gradient constancy terms
by hand as in [7]. Beyond this, the appeal of using a model related to the FoE
is that we do not have to fix the filters ahead of time, but instead we can learn
these filters alongside the potential functions.

4.3 Learning

Our formulation enables us to train the data term and the spatial term sepa-
rately, which simplifies learning. Note though, that it is also possible to turn
the model into a conditional random field (CRF) and employ conditional likeli-
hood maximization (cf. [23]); we leave this for future work. To train the pairwise
spatial term pPW(u; ΩPWu), we can estimate the weights of the GSM model by
either simply fitting the potentials to the empirical marginals using expectation
maximization, or by using a more rigorous learning procedure, such as maximum
likelihood (ML). To find the ML parameter estimate we aim to maximize the log-
likelihood LPW(U ; ΩPWu) of the horizontal flow components U = {u(1), . . . ,u(t)}
of the training sequences w. r. t. the model parameters ΩPWu (i. e., GSM mixture
weights). Analogously, we maximize the log-likelihood of the vertical components
V = {v(1), . . . ,v(t)} w. r. t. ΩPWv. Because ML estimation in loopy graphs is gen-
erally intractable, we approximate the learning objective and use the contrastive
divergence (CD) algorithm [24] to learn the parameters.

To train the steerable flow model pSRF(u|I1; ΩSRF) we aim to maximize the
conditional log-likelihoods LSRF(U|I1; ΩSRFu) and LSRF(V|I1; ΩSRFv) of the

1 It is, in principle, also possible to formulate a similar model that warps the image
first and then applies filters to the warped image. We did not pursue this option, as
it would require the application of the filters at each iteration of the flow estimation
procedure. Filtering before warping ensures that we only have to filter the image
once before flow estimation.

2 Formally, there is a minor difference: [7] penalizes changes in the gradient magni-
tude, while the proposed model penalizes changes of the flow derivatives. These are,
however, equivalent in the case of Gaussian potentials.



Learning Optical Flow 91

training flow fields given the first (reference) images I1 = {I
(1)
1 , . . . , I

(t)
1 } from

the training image pairs w. r. t. the model parameters ΩSRFu and ΩSRFv.
To train the simple data term pD(I2|u,v, I1; ΩD) modeling brightness con-

stancy, we can simply fit the marginals of the brightness violations using ex-
pectation maximization. This is possible, because the model assumes indepen-
dence of the brightness error at the pixel sites. For the proposed generalized data
term pFC(I2|u,v, I1; ΩFC) that models filter response constancy, a more complex
training procedure is necessary, since the filter responses are not independent.
Ideally, we would maximize the conditional likelihood LFC(I2|U ,V , I1; ΩFC) of

the training set of the second images I2 = {I
(1)
2 , . . . , I

(t)
2 } given the training flow

fields and the first images. Due to the intractability of ML estimation in these
models, we use a conditional version of contrastive divergence (see e. g., [5,23])
to learn both the mixture weights of the GSM potentials as well as the filters.

5 Optical Flow Estimation

Given two input images, we estimate the optical flow between them by maxi-
mizing the posterior from (2). Equivalently, we minimize its negative log

E(u,v) = ED(u,v) + λES(u,v), (9)

where ED is the negative log (i. e., energy) of the data term, ES is the negative
log of the spatial term (the normalization constant is omitted in either case),
and λ is an optional trade-off weight (or regularization parameter).

Optimizing such energies is generally difficult, because of their non-convexity
and many local optima. The non-convexity in our approach stems from the fact
that the learned potentials are non-convex and from the warping-based data
term used here and in other competitive methods [7]. To limit the influence of
spurious local optima, we construct a series of energy functions

EC(u,v, α) = αEQ(u,v) + (1 − α)E(u,v), (10)

where EQ is a quadratic, convex, formulation of E that replaces the potential
functions of E by a quadratic form and uses a different λ. Note that EQ amounts
to a Gaussian MRF formulation. α ∈ [0, 1] is a control parameter that varies the
convexity of the compound objective. As α changes from 1 to 0, the combined
energy function in (10) changes from the quadratic formulation to the proposed
non-convex one (cf. [25]). During the process, the solution at a previous convex-
ification stage serves as the starting point for the current stage. In practice, we
find using three stages produces reasonable results.

At each stage, we perform a simple local minimization of the energy. At a
local minimum, it holds that

∇uEC(u,v, α) = 0, and ∇vEC(u,v, α) = 0. (11)

Since the energy induced by the proposed MRF formulation is spatially discrete,
it is relatively straightforward to derive the gradient expressions. Setting these
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to zero and linearizing them, we rearrange the results into a system of linear
equations, which can be solved by a standard technique. The main difficulty in
deriving the linearized gradient expressions is the linearization of the warping
step. For this we follow the approach of Brox et al. [7] while using the derivative
filters proposed in [8].

To estimate flow fields with large displacements, we adopt an incremental
multi-resolution technique (e. g., [1,8]). As is quite standard, the optical flow
estimated at a coarser level is used to warp the second image toward the first at
the next finer level and the flow increment is calculated between the first image
and the warped second image. The final result combines all the flow increments.
At the first stage where α = 1, we use a 4-level pyramid with a downsampling
factor of 0.5. At other stages, we only use a 2-level pyramid with a downsampling
factor of 0.8 to make full use of the solution at the previous convexification stage.

6 Experiments and Results

6.1 Learned Models

The spatial terms of both the pairwise model (PW) and the steerable model
(SRF) were trained using contrastive divergence on 20, 000 9 × 9 flow patches
that were randomly cropped from the training flow fields (see above). To train
the steerable model, we also supplied the corresponding 20, 000 image patches (of
size 15× 15 to allow computing the structure tensor) from the reference images.
The pairwise model used 5 GSM scales; and the steerable model 4 scales.

The simple brightness constancy data term (BC) was trained using expect-
ation-maximization. To train the data term that models the generalized filter
response constancy (FC), the CD algorithm was run on 20, 000 15 × 15 flow
patches and corresponding 25×25 image patches, which were randomly cropped
from the training data. 6-scale GSM models were used for both data terms. We
investigated two different filter constancy models. The first (FFC) used 3 fixed
3 × 3 filters: a small variance Gaussian (σ = 0.4), and horizontal and vertical
derivative filters similar to [7]. The other (LFC) used 6 3 × 3 filter pairs that
were learned automatically. Note that the GSM potentials were learned in either
case. Figure 3 shows the fixed filters from the FFC model, as well as two of the
learned filters from the LFC model. Interestingly, the learned filters do not look
like ordinary derivative filters nor do they resemble the filters learned in an FoE
model of natural images [22]. It is also noteworthy that even though the Jk2 are
not enforced to be equal to the Jk1 during learning, they typically exhibit only
subtle differences as Fig. 3 shows.

Given the non-convex nature of the learning objective, contrastive diver-
gence is prone to finding local optima, which means that the learned filters
are likely not optimal. Repeated initializations produced different-looking filters,
which however performed similarly to the ones shown here. The fact that these
“non-standard” filters perform better (see below) than standard ones suggests
that more research on better filters for formulating optical flow data terms is
warranted.
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(a) (b) (c) (d) (e)

Fig. 3. Three fixed filters from the FFC model: (a) Gaussian, (b) horizontal derivative,
and (c) vertical derivative. (d,e) Two of the six learned filter pairs of the LFC model
and the difference between each pair (left: Jk1, middle: Jk2, right: Jk1 − Jk2).

(a) Estimated flow (b) Ground truth (c) Key

Fig. 4. Results of the SRF-LFC model for the “Army” sequence

For the models for which we employed contrastive divergence, we used a hy-
brid Monte Carlo sampler with 30 leaps, l = 1 CD step, and a learning rate of
0.01 as proposed by [5]. The CD algorithm was run for 2000 to 10000 iterations,
depending on the complexity of the model, after which the model parameters did
not change significantly. Figure 1 shows the learned potential functions alongside
the empirical marginals. We should note that learned potentials and marginals
generally differ. This has, for example, been noted by Zhu et al. [26], and is
particularly the case for the SRFs, since the derivative responses are not inde-
pendent within a flow field (cf. [5]).

To estimate the flow, we proceeded as described in Section 5 and performed
3 iterations of the incremental estimation at each level of the pyramid. The
regularization parameter λ was optimized for each method using a small set of
training sequences. For this stage we added a small amount of noise to the syn-
thetic training sequences, which led to larger λ values and increased robustness
to novel test data.

6.2 Flow Estimation Results

We evaluated all 6 proposed models using the test portion of the Middlebury
optical flow benchmark [3]3. Figure 4 shows the results on one of the sequences
along with the ground truth flow. Table 1 gives the average angular error (AAE)

3 Note that the Yosemite frames used for testing as part of the benchmark are not the
same as those used for learning.
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(a) HS [9] (b) BA [1] (c) PW-BC (d) SRF-BC

(e) PW-FFC (f) SRF-FFC (g) PW-LFC (h) SRF-LFC

Fig. 5. Details of the flow results for the “Army” sequence. HS=Horn & Schunck;
BA=Black & Anandan; PW=pairwise; SRF=steered model; BC=brightness constancy;
FFC=fixed filter response constancy; LFC=learned filter response constancy.

Table 1. Average angular error (AAE) on the Middlebury optical flow benchmark for
various combinations of the proposed models

Rank Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
HS[9] 16.4 8.72 8.01 9.13 14.20 12.40 4.64 8.21 4.01 9.16
BA[1] 9.8 7.36 7.17 8.30 13.10 10.60 4.06 6.37 2.79 6.47
PW-BC 13.6 8.36 8.01 10.70 14.50 8.93 4.35 7.00 3.91 9.51
SRF-BC 10.0 7.49 6.39 10.40 14.00 8.06 4.10 6.19 3.61 7.19
PW-FFC 12.6 6.91 4.60 4.63 9.96 9.93 5.15 7.84 3.51 9.66
SRF-FFC 9.3 6.26 4.36 5.46 9.63 9.13 4.17 7.11 2.75 7.43
PW-LFC 10.9 6.06 4.61 3.92 7.56 7.77 4.76 7.50 3.90 8.43
SRF-LFC 8.6 5.81 4.26 4.81 7.87 8.02 4.24 6.57 2.71 8.02

of the models on the test sequences, as well as the results of two standard meth-
ods [1,9]. Note that the standard objectives from [1,9] were optimized using
exactly the same optimization strategy as used for the learned models. This en-
sures fair comparison and focuses the evaluation on the model rather than the
optimization method. The table also shows the average rank from the Middle-
bury flow benchmark, as well as the average AAE across all 8 test sequences.
Table 2 shows results of the same experiments, but here the AAE is only mea-
sured near motion boundaries. From these results we can see that the steerable
flow model (SRF) substantially outperforms a standard pairwise spatial term
(PW), particularly also near motion discontinuities. This holds no matter what
data term the respective spatial term is combined with. This can also be seen
visually in Fig. 5, where the SRF results exhibit the clearest motion boundaries.

Among the different data terms, the filter response constancy models (FFC
& LFC) very clearly outperform the classical brightness constancy model (BC),
particularly on the sequences with real images (“Army” through “Schefflera”),
which are especially difficult for standard techniques, because the classical
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Table 2. Average angular error (AAE) in motion boundary regions

Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
PW-BC 16.68 14.70 20.70 24.30 26.90 5.40 20.70 5.26 15.50
SRF-BC 15.71 13.40 20.30 23.30 26.10 5.07 19.00 4.64 13.90
PW-FFC 16.36 12.90 17.30 20.60 27.80 6.43 24.00 5.05 16.80
SRF-FFC 15.45 12.10 17.40 20.20 27.00 5.16 22.30 4.24 15.20
PW-LFC 15.67 12.80 16.00 18.30 27.30 6.09 22.80 5.40 16.70
SRF-LFC 15.09 11.90 16.10 18.50 27.00 5.33 21.50 4.30 16.10

brightness constancy assumption does not appear to be as appropriate as for
the synthetic sequences, for example because of stronger shadows. Moreover,
the model with learned filters (LFC) slightly outperforms the model with fixed,
standard filters (FFC), particularly in regions with strong brightness changes.
This means that learning the filters seems to be fruitful, particularly for challeng-
ing, realistic sequences. Further results, including comparisons to other recent
techniques are available at http:// vision.middlebury.edu/ flow/ .

7 Conclusions

Enabled by a database of image sequences with ground truth optical flow fields,
we studied the statistics of both optical flow and brightness constancy, and
formulated a fully learned probabilistic model for optical flow estimation. We
extended our initial formulation by modeling the steered derivatives of opti-
cal flow, and generalized the data term to model the constancy of linear filter
responses. This provided a statistical grounding for, and extension of, various
previous models of optical flow, and at the same time enabled us to learn all
model parameters automatically from training data. Quantitative experiments
showed that both the steered model of flow as well as the generalized data term
substantially improved performance.

Currently a small number of training sequences are available with ground
truth flow. A general purpose, learned, flow model will require a fully general
training set; special purpose models, of course, are also possible. While a small
training set may limit the generalization performance of a learned flow model,
we believe that training the parameters of the model is preferable to hand tuning
(particularly to individual sequences) which has been the dominant approach.

While we have focused on the objective function, the optimization method
may also play an important role [27] and some models may may admit better
optimization strategies than others. In addition to improved optimization, future
work may consider modulating the steered flow model by the strength of the
image gradient similar to [4], learning a model that adds spatial integration to the
proposed filter-response constancy constraints and thus extends [8], extending
the learned filter model beyond two frames, automatically adapting the model
to the properties of each sequence, and learning an explicit model of occlusions
and disocclusions.

http://vision.middlebury.edu/flow/
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