
Learning Optimal Commitment to Overcome Insecurity

Avrim Blum
Carnegie Mellon University

avrim@cs.cmu.edu

Nika Haghtalab
Carnegie Mellon University

nika@cmu.edu

Ariel D. Procaccia
Carnegie Mellon University
arielpro@cs.cmu.edu

Abstract

Game-theoretic algorithms for physical security have made an impressive real-
world impact. These algorithms compute an optimal strategy for the defender
to commit to in a Stackelberg game, where the attacker observes the defender’s
strategy and best-responds. In order to build the game model, though, the payoffs
of potential attackers for various outcomes must be estimated; inaccurate esti-
mates can lead to significant inefficiencies. We design an algorithm that optimizes
the defender’s strategy with no prior information, by observing the attacker’s re-
sponses to randomized deployments of resources and learning his priorities. In
contrast to previous work, our algorithm requires a number of queries that is poly-
nomial in the representation of the game.

1 Introduction

The US Coast Guard, the Federal Air Marshal Service, the Los Angeles Airport Police, and other
major security agencies are currently using game-theoretic algorithms, developed in the last decade,
to deploy their resources on a regular basis [13]. This is perhaps the biggest practical success story
of computational game theory — and it is based on a very simple idea. The interaction between
the defender and a potential attacker can be modeled as a Stackelberg game, in which the defender
commits to a (possibly randomized) deployment of his resources, and the attacker responds in a
way that maximizes his own payoff. The algorithmic challenge is to compute an optimal defender
strategy — one that would maximize the defender’s payoff under the attacker’s best response.

While the foregoing model is elegant, implementing it requires a significant amount of information.
Perhaps the most troubling assumption is that we can determine the attacker’s payoffs for different
outcomes. In deployed applications, these payoffs are estimated using expert analysis and histori-
cal data — but an inaccurate estimate can lead to significant inefficiencies. The uncertainty about
the attacker’s payoffs can be encoded into the optimization problem itself, either through robust
optimization techniques [12], or by representing payoffs as continuous distributions [5].

Letchford et al. [8] take a different, learning-theoretic approach to dealing with uncertain attacker
payoffs. Studying Stackelberg games more broadly (which are played by two players, a leader and
a follower), they show that the leader can efficiently learn the follower’s payoffs by iteratively com-
mitting to different strategies, and observing the attacker’s sequence of responses. In the context of
security games, this approach may be questionable when the attacker is a terrorist, but it is a perfectly
reasonable way to calibrate the defender’s strategy for routine security operations when the attacker
is, say, a smuggler. And the learning-theoretic approach has two major advantages over modifying
the defender’s optimization problem. First, the learning-theoretic approach requires no prior infor-
mation. Second, the optimization-based approach deals with uncertainty by inevitably degrading the
quality of the solution, as, intuitively, the algorithm has to simultaneously optimize against a range
of possible attackers; this problem is circumvented by the learning-theoretic approach.

But let us revisit what we mean by “efficiently learn”. The number of queries (i.e., observations of
follower responses to leader strategies) required by the algorithm of Letchford et al. [8] is polynomial
in the number of pure leader strategies. The main difficulty in applying their results to Stackelberg

1



security games is that even in the simplest security game, the number of pure defender strategies is
exponential in the representation of the game. For example, if each of the defender’s resources can
protect one of two potential targets, there is an exponential number of ways in which resources can
be assigned to targets. 1

Our approach and results. We design an algorithm that learns an (additively) ε-optimal strategy
for the defender with probability 1 − δ, by asking a number of queries that is polynomial in the
representation of the security game, and logarithmic in 1/ε and 1/δ. Our algorithm is completely
different from that of Letchford et al. [8]. Its novel ingredients include:

• We work in the space of feasible coverage probability vectors, i.e., we directly reason about
the probability that each potential target is protected under a randomized defender strategy.
Denoting the number of targets by n, this is an n-dimensional space. In contrast, Letchford
et al. [8] study the exponential-dimensional space of randomized defender strategies. We
observe that, in the space of feasible coverage probability vectors, the region associated
with a specific best response for the attacker (i.e., a specific target being attacked) is convex.

• To optimize within each of these convex regions, we leverage techniques — developed
by Tauman Kalai and Vempala [14] — for optimizing a linear objective function in an
unknown convex region using only membership queries. In our setting, it is straightforward
to build a membership oracle, but it is quite nontrivial to satisfy a key assumption of the
foregoing result: that the optimization process starts from an interior point of the convex
region. We do this by constructing a hierarchy of nested convex regions, and using smaller
regions to obtain interior points in larger regions.

• We develop a method for efficiently discovering new regions. In contrast, Letchford et
al. [8] find regions (in the high-dimensional space of randomized defender strategies) by
sampling uniformly at random; their approach is inefficient when some regions are small.

2 Preliminaries

A Stackelberg security game is a two-player general-sum game between a defender (or the leader)
and an attacker (or the follower). In this game, the defender commits to a randomized allocation
of his security resources to defend potential targets. The attacker, in turn, observes this randomized
allocation and attacks the target with the best expected payoff. The defender and the attacker re-
ceive payoffs that depend on the target that was attacked and whether or not it was defended. The
defender’s goal is to choose an allocation that leads to the best payoff.

More precisely, a security game is defined by a 5-tuple (T,D, R,A, U):

• T = {1, . . . , n} is a set of n targets.

• R is a set of resources.

• D ⊆ 2T is a collection of subsets of targets, each called a schedule, such that for every
schedule D ∈ D, targets in D can be simultaneously defended by one resource. It is
natural to assume that if a resource is capable of covering schedule D, then it can also
cover any subset of D. We call this property closure under the subset operation; it is also
known as “subsets of schedules are schedules (SSAS)” [7].

• A : R→ 2D, called the assignment function, takes a resource as input and returns the set of
all schedules that the resource is capable of defending. An allocation of resources is valid
if every resource r is allocated to a schedule in A(r).

• The payoffs of the players are given by functions Ud(t, pt) and Ua(t, pt), which return the
expected payoffs of the defender and the attacker, respectively, when target t is attacked and
it is covered with probability pt (as formally explained below). We make two assumptions
that are common to all papers on security games. First, these utility functions are linear.
Second, the attacker prefers it if the attacked target is not covered, and the defender prefers

1Subsequent work by Marecki et al. [9] focuses on exploiting revealed information during the learning
process — via Monte Carlo Tree Search — to optimize total leader payoff. While their method provably
converges to the optimal leader strategy, no theoretical bounds on the rate of convergence are known.

2



it if the attacked target is covered, i.e., Ud(t, pt) and Ua(t, pt) are respectively increasing
and decreasing in pt. We also assume w.l.o.g. that the utilities are normalized to have
values in [−1, 1]. If the utility functions have coefficients that are rational with denominator
at most a, then the game’s (utility) representation length is L = n log n+ n log a.

A pure strategy of the defender is a valid assignment of resources to schedules. The set of pure
strategies is determined by T , D, R, and A. Let there be m pure strategies; we use the following
n × m, zero-one matrix M to represent the set of all pure strategies. Every row in M represents
a target and every column represents a pure strategy. Mti = 1 if and only if target t is covered
using some resource in the ith pure strategy. A mixed strategy (hereinafter, called strategy) is a
distribution over the pure strategies. To represent a strategy we use a 1×m vector s, such that si is
the probability with which the ith strategy is played, and

∑m
i=1 si = 1.

Given a defender’s strategy, the coverage probability of a target is the probability with which it is
defended. Let s be a defender’s strategy, then the coverage probability vector is pT = MsT , where
pt is coverage probability of target t. We call a probability vector implementable if there exists a
strategy that imposes that coverage probability on the targets.

Let ps be the corresponding coverage probability vector of strategy s. The attacker’s best response
to s is defined by b(s) = arg maxt Ua(t, pst ). Since the attacker’s best-response is determined by the
coverage probability vector irrespective of the strategy, we slightly abuse notation by using b(ps)
to denote the best-response, as well. We say that target t is “better” than t′ for the defender if the
highest payoff he receives when t is attacked is more than the highest payoff he receives when t′ is
attacked. We assume that if multiple targets are tied for the best-response, then ties are broken in
favor of the “best” target.

The defender’s optimal strategy is defined as the strategy with highest expected payoff for the de-
fender, i.e. arg maxs Ud(b(s), p

s
b(s)). An optimal strategy p is called conservative if no other optimal

strategy has a strictly lower sum of coverage probabilities. For two coverage probability vectors we
use q � p to denote that for all t, qt ≤ pt.

3 Problem Formulation and Technical Approach

In this section, we give an overview of our approach for learning the defender’s optimal strategy
when Ua is not known. To do so, we first review how the optimal strategy is computed in the case
where Ua is known.

Computing the defender’s optimal strategy, even when Ua(·) is known, is NP-Hard [6]. In practice
the optimal strategy is computed using two formulations: Mixed Integer programming [11] and
Multiple Linear Programs [1]; the latter provides some insight for our approach. The Multiple LP
approach creates a separate LP for every t ∈ T . This LP, as shown below, solves for the optimal
defender strategy under the restriction that the strategy is valid (second and third constraints) and the
attacker best-responds by attacking t (first constraint). Among these solutions, the optimal strategy
is the one where the defender has the highest payoff.

maximize Ud(t,
∑

i:Mti=1

si)

s.t. ∀t′ 6= t, Ua(t′,
∑

i:Mt′i=1

si) ≤ Ua(t,
∑

i:Mti=1

si)

∀i, si ≥ 0
n∑
i=1

si = 1

We make two changes to the above LP in preparation for finding the optimal strategy in polynomially
many queries, when Ua is unknown. First, notice that when Ua is unknown, we do not have an
explicit definition of the first constraint. However, implicitly we can determine whether t has a better
payoff than t′ by observing the attacker’s best-response to s. Second, the above LP has exponentially

3



many variables, one for each pure strategy. However, given the coverage probabilities, the attacker’s
actions are independent of the strategy that induces that coverage probability. So, we can restate the
LP to use variables that represent the coverage probabilities and add a constraint that enforces the
coverage probabilities to be implementable.

maximize Ud(t, pt)

s.t. t is attacked
p is implementable

(1)

This formulation requires optimizing a linear function over a region of the space of coverage prob-
abilities, by using membership queries. We do so by examining some of the characteristics of the
above formulation and then leveraging an algorithm introduced by Tauman Kalai and Vempala [14]
that optimizes over a convex set, using only an initial point and a membership oracle. Here, we
restate their result in a slightly different form.

Theorem 2.1 [14, restated]. For any convex set H ⊆ Rn that is contained in a ball of radius R,
given a membership oracle, an initial point with margin r in H , and a linear function `(·), with
probability 1 − δ we can find an ε-approximate optimal solution for ` in H , using O(n4.5 log nR2

rεδ )
queries to the oracle.

4 Main Result

In this section, we design and analyze an algorithm that (ε, δ)-learns the defender’s optimal strategy
in a number of best-response queries that is polynomial in the number of targets and the representa-
tion, and logarithmic in 1

ε and 1
δ . Our main result is:

Theorem 1. Consider a security game with n targets and representation length L, such that for ev-
ery target, the set of implementable coverage probability vectors that induce an attack on that target,
if non-empty, contains a ball of radius 1/2L. For any ε, δ > 0, with probability 1 − δ, Algorithm 2
finds a defender strategy that is optimal up to an additive term of ε, using O(n6.5(log n

εδ + L))
best-response queries to the attacker.

The main assumption in Theorem 1 is that the set of implementable coverage probabilities for which
a given target is attacked is either empty or contains a ball of radius 1/2L. This implies that if it is
possible to make the attacker prefer a target, then it is possible to do so with a small margin. This
assumption is very mild in nature and its variations have appeared in many well-known algorithms.
For example, interior point methods for linear optimization require an initial feasible solution that
is within the region of optimization with a small margin [4]. Letchford et al. [8] make a similar
assumption, but their result depends linearly, instead of logarithmically, on the minimum volume of
a region (because they use uniformly random sampling to discover regions).

To informally see why such an assumption is necessary, consider a security game with n targets,
such that an attack on any target but target 1 is very harmful to the defender. The defender’s goal
is therefore to convince the attacker to attack target 1. The attacker, however, only attacks target 1
under a very specific coverage probability vector, i.e., the defender’s randomized strategy has to be
just so. In this case, the defender’s optimal strategy is impossible to approximate.

The remainder of this section is devoted to proving Theorem 1. We divide our intermediate results
into sections based on the aspect of the problem that they address. The proofs of most lemmas are
relegated to the appendix; here we mainly aim to provide the structure of the theorem’s overall proof.

4.1 Characteristics of the Optimization Region

One of the requirements of Theorem 2.1 is that the optimization region is convex. Let P denote the
space of implementable probability vectors, and let Pt = {p : p is implementable and b(p) = t}.
The next lemma shows that Pt is indeed convex.
Lemma 1. For all t ∈ T , Pt is the intersection of a finitely many half-spaces.

Proof. Pt is defined by the set of all p ∈ [0, 1]n such that there is s that satisfies the LP with the
following constraints. There are m half-spaces of the form si ≥ 0, 2 half-spaces

∑
i si ≤ 1 and

4



∑
i si ≥ 1, 2n half-spaces of the form MsT − pT ≤ 0 and MsT − pT ≥ 0, and n − 1 half-

spaces of the form Ua(t, pt) − Ua(t′, pt′) ≥ 0. Therefore, the set of (s,p) ∈ Rm+n such that p is
implemented by strategy s and causes an attack on t is the intersection of 3n+m+1 half-spaces. Pt
is the reflection of this set on n dimensions; therefore, it is also the intersection of at most 3n+m+1
half-spaces.

Lemma 1, in particular, implies that Pt is convex. The Lemma’s proof also suggests a method
for finding the minimal half-space representation of P . Indeed, the set S = {(s,p) ∈ Rm+n :
Valid strategy s implements p} is given by its half-space representation. Using the Double Descrip-
tion Method [2, 10], we can compute the vertex representation of S. Since, P is a linear transforma-
tion of S, its vertex representation is the transformation of the vertex representation of S. Using the
Double Description Method again, we can find the minimal half-space representation of P .

Next, we establish some properties of P and the half-spaces that define it. The proofs of the follow-
ing two lemmas appear in Appendices A.1 and A.2, respectively.
Lemma 2. Let p ∈ P . Then for any 0 � q � p, q ∈ P .
Lemma 3. Let A be a set of a positive volume that is the intersection of finitely many half-spaces.
Then the following two statements are equivalent.

1. For all p ∈ A, p � ε. And for all ε � q � p, q ∈ A.

2. A can be defined as the intersection of ei · p ≥ ε for all i, and a set H of half-spaces, such
that for any h · p ≥ b in H , h � 0, and b ≤ −ε.

Using Lemmas 2 and 3, we can refer to the set of half-spaces that define P by {(ei, 0) : for all i} ∪
HP , where for all (h∗, b∗) ∈ HP , h∗ � 0, and b∗ ≤ 0.

4.2 Finding Initial Points

An important requirement for many optimization algorithms, including the one developed by Tau-
man Kalai and Vempala [14], is having a “well-centered” initial feasible point in the region of
optimization. There are two challenges involved in discovering an initial feasible point in the inte-
rior of every region. First, establishing that a region is non-empty, possibly by finding a boundary
point. Second, obtaining a point that has a significant margin from the boundary. We carry out these
tasks by executing the optimization in a hierarchy of sets where at each level the optimization task
only considers a subset of the targets and the feasibility space. We then show that optimization in
one level of this hierarchy helps us find initial points in new regions that are well-centered in higher
levels of the hierarchy.

To this end, let us define restricted regions. These regions are obtained by first perturbing the
defining half-spaces of P so that they conform to a given representation length, and then trimming
the boundaries by a given width (See Figure 1).

In the remainder of this paper, we use γ = 1
(n+1)2L+1 to denote the accuracy of the representation

and the width of the trimming procedure for obtaining restricted regions. More precisely:
Definition 1 (restricted regions). The setRk ∈ Rn is defined by the intersection the following half-
spaces: For all i, (ei, kγ). For all (h∗, b∗) ∈ HP , a half-space (h, b+ kγ), such that h = γb 1γh

∗c
and b = γd 1γ b

∗e. Furthermore, for every t ∈ T , defineRkt = Rk ∩ Pt.

The next Lemma, whose proof appears in Appendix A.3, shows that the restricted regions are subsets
of the feasibility space, so, we can make best-response queries within them.
Lemma 4. For any k ≥ 0,Rk ⊆ P .

The next two lemmas, whose proofs are relegated to Appendices A.4 and A.5, show that in Rk one
can reduce each coverage probability individually down to kγ, and the optimal conservative strategy
inRk indeed reduces the coverage probabilities of all targets outside the best-response set to kγ.
Lemma 5. Let p ∈ Rk, and let q such that kγ � q � p. Then q ∈ Rk.
Lemma 6. Let s and its corresponding coverage probability p be a conservative optimal strategy
inRk. Let t∗ = b(s) and B = {t : Ua(t, pt) = Ua(t∗, pt∗)}. Then for any t /∈ B, pt = kγ.

5



Target Attacker Defender
1 0.5(1− p1) −0.5(1− p1)
2 (1− p2) −(1− p2)

(a) Utilities of the game

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

p
2

Optimal strategy

R
2

2

R
1

2

P
2

R
2

1

R
1

1

P
1

p
1  + p

2  <= 1

0.5(1−p 1
) =

 1−p 2

 

 

Attack on Target 1

Attack on Target 2

Utility Halfspace

Feasibility Halfspaces

Optimal Strategy

(b) Regions

Figure 1: A security game with one resource that
can cover one of two targets. The attacker re-
ceives utility 0.5 from attacking target 1 and util-
ity 1 from attacking target 2, when they are not
defended; he receives 0 utility from attacking a
target that is being defended. The defender’s util-
ity is the zero-sum complement.

The following Lemma, whose proof appears in
Appendix A.6 shows that if every non-empty
Pt contains a large enough ball, thenRnt 6= ∅.
Lemma 7. For any t and k ≤ n such that Pt
contains a ball of radius r > 1

2L
,Rkt 6= ∅.

The next lemma provides the main insight be-
hind our search for the region with the highest-
paying optimal strategy. It implies that we can
restrict our search to strategies that are optimal
for a subset of targets inRk, if the attacker also
agrees to play within that subset of targets. At
any point, if the attacker chooses a target out-
side the known regions, he is providing us with
a point in a new region. Crucially, Lemma 8
requires that we optimize exactly inside each
restricted region, and we show below (Algo-
rithm 1 and Lemma 11) that this is indeed pos-
sible.
Lemma 8. Assume that for every t, if Pt is
non-empty, then it contains a ball of radius 1

2L
.

Given K ⊆ T and k ≤ n, let p ∈ Rk be
the coverage probability of the strategy that has
kγ probability mass on targets in T \K and is
optimal if the attacker were to be restricted to
attacking targets in K. Let p∗ be the optimal
strategy in P . If b(p) ∈ K then b(p∗) ∈ K.

Proof. Assume on the contrary that b(p∗) =
t∗ /∈ K. Since Pt∗ 6= ∅, by Lemma 7, there
exists p′ ∈ Rkt∗ .
For ease of exposition, replace p with its cor-
responding conservative strategy in Rk. Let
B be the set of targets that are tied for
the attacker’s best-response in p, i.e. B =
arg maxt∈T Ua(t, pt). Since b(p) ∈ K and ties

are broken in favor of the “best” target, i.e. t∗, it must be that t∗ /∈ B. Then, for any t ∈ B,
Ua(t, pt) > Ua(t∗, kγ) ≥ Ua(t∗, p′t∗) ≥ Ua(t, p′t). Since Ua is decreasing in the coverage probabil-
ity, for all t ∈ B, p′t > pt. Note that there is a positive gap between the attacker’s payoff for attacking
a best-response target versus another target, i.e. ∆ = mint′∈K\B,t∈B Ua(t, pt)−Ua(t′, pt′) > 0, so
it is possible to increase pt by a small amount without changing the best response. More precisely,
since Ua is continuous and decreasing in the coverage probability, for every t ∈ B, there exists
δ < p′t − pt such that for all t′ ∈ K \B, Ua(t′, pt′) < Ua(t, p′t − δ) < Ua(t, pt).

Let q be such that for t ∈ B, qt = p′t − δ and for t /∈ B, qt = pt = kγ (by Lemma 6 and the fact
that p was replaced by its conservative equivalent). By Lemma 5, q ∈ Rk. Since for all t ∈ B
and t′ ∈ K \ B, Ua(t, qt) > Ua(t′, qt′), b(q) ∈ B. Moreover, because Ud is increasing in the
coverage probability for all t ∈ B, Ud(t, qt) > Ud(t, pt). So, q has higher payoff for the defender
when the attacker is restricted to attackingK. This contradicts the optimality of p inRk. Therefore,
b(p∗) ∈ K.

If the attacker attacks a target t outside the set of targets K whose regions we have already discov-
ered, we can use the new feasible point in Rkt to obtain a well-centered point in Rk−1t , as the next
lemma formally states.
Lemma 9. For any k and t, let p be any strategy inRkt . Define q such that qt = pt − γ

2 and for all
i 6= t, qi = pi + γ

4
√
n

. Then, q ∈ Rk−1t and q has distance γ
2n from the boundaries ofRk−1t .

The lemma’s proof is relegated to Appendix A.7.

6



4.3 An Oracle for the Convex Region

We use a three-step procedure for defining a membership oracle for P or Rkt . Given a vector p, we
first use the half-space representation of P (or Rk) described in Section 4.1 to determine whether
p ∈ P (or p ∈ Rk). We then find a strategy s that implements p by solving a linear system with
constraints MsT = pT , 0 � s, and ‖s‖1 = 1. Lastly, we make a best-response query to the attacker
for strategy s. If the attacker responds by attacking t, then p ∈ Pt (or p ∈ Rkt ), else p /∈ Pt (or
p /∈ Rkt ).

4.4 The Algorithms

In this section, we define algorithms that use the results from previous sections to prove Theorem 1.
First, we define Algorithm 1, which receives an approximately optimal strategy in Rkt as input,
and finds the optimal strategy in Rkt . As noted above, obtaining exact optimal solutions in Rkt is
required in order to apply Lemma 8, thereby ensuring that we discover new regions when lucrative
undiscovered regions still exist.

Algorithm 1 LATTICE-ROUNDING (approximately optimal strategy p)

1. For all i 6= t, make best-response queries to binary search for the smallest p′i ∈ [kγ, pi] up
to accuracy 1

25n(L+1) , such that t = b(p′), where for all j 6= i, p′j ← pj .
2. For all i, set ri and qi respectively to the smallest and second smallest rational numbers

with denominator at most 22n(L+1), that are larger than p′i − 1
25n(L+1) .

3. Define p∗ such that p∗t is the unique rational number with denominator at most 22n(L+1) in
[pt, pt + 1

24n(L+1) ). (Refer to the proof for uniqueness), and for all i 6= t, p∗i ← ri.

4. Query j ← b(p∗).
5. If j 6= t, let p∗j ← qi. Go to step 4
6. Return p∗.

The next two Lemmas, whose proofs appear in Appendices A.8 and A.9, establish the guarantees of
Algorithm 1. The first is a variation of a well-known result in linear programming [3] that is adapted
specifically for our problem setting.
Lemma 10. Let p∗ be a basic optimal strategy in Rkt , then for all i, p∗i is a rational number with
denominator at most 22n(L+1).
Lemma 11. For any k and t, let p be a 1

26n(L+1) -approximate optimal strategy in Rkt . Algorithm 1
finds the optimal strategy inRkt in O(nL) best-response queries.

At last, we are ready to prove our main result, which provides guarantees for Algorithm 2, given
below.

Theorem 1 (restated). Consider a security game with n targets and representation length L, such
that for every target, the set of implementable coverage probability vectors that induce an attack
on that target, if non-empty, contains a ball of radius 1/2L. For any ε, δ > 0, with probability
1 − δ, Algorithm 2 finds a defender strategy that is optimal up to an additive term of ε, using
O(n6.5(log n

εδ + L)) best-response queries to the attacker.

Proof Sketch. For each K ⊆ T and k, the loop at step 5 of Algorithm 2 finds the optimal strategy if
the attacker was restricted to attacking targets of K inRk.

Every time the IF clause at step 5a is satisfied, the algorithm expands the set K by a target t′ and
adds xt

′
to the set of initial points X , which is an interior point of Rk−1t′ (by Lemma 9). Then the

algorithm restarts the loop at step 5. Therefore every time the loop at step 5 is started, X is a set of
initial points in K that have margin γ

2n inRk. This loop is restarted at most n− 1 times.

We reach step 6 only when the best-response to the optimal strategy that only considers targets of K
is in K. By Lemma 8, the optimal strategy is in Pt for some t ∈ K. By applying Theorem 2.1 to K,

7



Algorithm 2 OPTIMIZE (accuracy ε, confidence δ)

1. γ ← 1
(n+1)2L+1 , δ′ ← δ

n2 , and k ← n.

2. Use R,D, and A to compute oracles (half-spaces) for P,R0, . . . ,Rn.
3. Query t← b(kγ)

4. K ← {t}, X ← {x t}, where xtt = kγ − γ/2 and for i 6= t, xti = kγ + γ
4
√
n

.

5. For t ∈ K,
(a) If during steps 5b to 5e a target t′ /∈ K is attacked as a response to some strategy p:

i. Let xt
′

t′ ← pt′ − γ/2 and for i 6= t′, xt
′

i ← pi + γ
4
√
n

.

ii. X ← X ∪ {xt′}, K ← K ∪ {t′}, and k ← k − 1.
iii. Restart the loop at step 5.

(b) Use Theorem 2.1 with set of targets K. With probability 1 − δ′ find a qt that is a
1

26n(L+1) -approximate optimal strategy restricted to set K.

(c) Use the Lattice Rounding on qt to find qt∗, that is the optimal strategy inRkt restricted
to K.

(d) For all t′ /∈ K, qt∗t′ ← kγ.
(e) Query qt∗.

6. For all t ∈ K, use Theorem 2.1 to find pt∗ that is an ε-approximate strategy with probability
1− δ′, in Pt.

7. Return pt∗ that has the highest payoff to the defender.

with an oracle for P using the initial set of point X which has γ/2n margin in R0, we can find the
ε-optimal strategy with probability 1−δ′. There are at most n2 applications of Theorem 2.1 and each
succeeds with probability 1−δ′, so our overall procedure succeeds with probability 1−n2δ′ ≥ 1−δ.

Regarding the number of queries, every time the loop at step 5 is restarted |K| increases by 1. So,
this loop is restarted at most n − 1 times. In a successful run of the loop for set K, the loop makes
|K| calls to the algorithm of Theorem 2.1 to find a 1

26n(L+1) -approximate optimal solution. In each
call, X has initial points with margin γ

2n , and furthermore, the total feasibility space is bounded
by a sphere of radius

√
n (because of probability vectors), so each call makes O(n4.5(log n

δ + L))

queries. The last call looks for an ε-approximate solution, and will take anotherO(n4.5(log n
εδ +L))

queries. In addition, our the algorithm makes n2 calls to Algorithm 1 for a total of O(n3L) queries.
In conclusion, our procedure makes a total ofO(n6.5(log n

εδ +L)) = poly(n,L, log 1
εδ ) queries.

5 Discussion

Our main result focuses on the query complexity of our problem. We believe that, indeed, best re-
sponse queries are our most scarce resource, and it is therefore encouraging that an (almost) optimal
strategy can be learned with a polynomial number of queries.

It is worth noting, though, that some steps in our algorithm are computationally inefficient. Specif-
ically, our membership oracle needs to determine whether a given coverage probability vector is
implementable. We also need to explicitly compute the feasibility half-spaces that define P . Infor-
mally speaking, (worst-case) computational inefficiency is inevitable, because computing an optimal
strategy to commit to is computationally hard even in simple security games [6].

Nevertheless, deployed security games algorithms build on integer programming techniques to
achieve satisfactory runtime performance in practice [13]. While beyond the reach of theoretical
analysis, a synthesis of these techniques with ours can yield truly practical learning algorithms for
dealing with payoff uncertainty in security games.

Acknowledgments. This material is based upon work supported by the National Science Founda-
tion under grants CCF-1116892, CCF-1101215, CCF-1215883, and IIS-1350598.

8



References

[1] V. Conitzer and T. Sandholm. Computing the optimal strategy to commit to. In Proceedings
of the 7th ACM Conference on Electronic Commerce (EC), pages 82–90, 2006.

[2] K. Fukuda and A. Prodon. Double description method revisited. In Combinatorics and com-
puter science, pages 91–111. Springer, 1996.

[3] P. Gács and L. Lovász. Khachiyan’s algorithm for linear programming. Mathematical Pro-
gramming Studies, 14:61–68, 1981.

[4] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization. Springer, 2nd edition, 1993.

[5] C. Kiekintveld, J. Marecki, and M. Tambe. Approximation methods for infinite Bayesian
Stackelberg games: Modeling distributional payoff uncertainty. In Proceedings of the 10th
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages
1005–1012, 2011.

[6] D. Korzhyk, V. Conitzer, and R. Parr. Complexity of computing optimal Stackelberg strategies
in security resource allocation games. In Proceedings of the 24th AAAI Conference on Artificial
Intelligence (AAAI), pages 805–810, 2010.

[7] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, and M. Tambe. Stackelberg vs. Nash in
security games: An extended investigation of interchangeability, equivalence, and uniqueness.
Journal of Artificial Intelligence Research, 41:297–327, 2011.

[8] J. Letchford, V. Conitzer, and K. Munagala. Learning and approximating the optimal strategy
to commit to. In Proceedings of the 2nd International Symposium on Algorithmic Game Theory
(SAGT), pages 250–262, 2009.

[9] J. Marecki, G. Tesauro, and R. Segal. Playing repeated Stackelberg games with unknown
opponents. In Proceedings of the 11th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 821–828, 2012.

[10] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method.
Annals of Mathematics Studies, 2(28):51–73, 1953.

[11] P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. F. Ordóñez, and S. Kraus. Playing games for
security: An efficient exact algorithm for solving Bayesian Stackelberg games. In Proceedings
of the 7th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 895–902, 2008.

[12] J. Pita, M. Jain, M. Tambe, F. Ordóñez, and S. Kraus. Robust solutions to Stackelberg games:
Addressing bounded rationality and limited observations in human cognition. Artificial Intel-
ligence, 174(15):1142–1171, 2010.

[13] M. Tambe. Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned.
Cambridge University Press, 2012.

[14] A. Tauman Kalai and S. Vempala. Simulated annealing for convex optimization. Mathematics
of Operations Research, 31(2):253–266, 2006.

9


