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Learning Optimal Features for Polyphonic
Audio-to-Score Alignment

Cyril JODER, Slim ESSID, Gaël RICHARD

Abstract—This paper addresses the design of feature functions
for the matching of a musical recording to the symbolic rep-
resentation of the piece (the score). These feature functions are
defined as dissimilarity measures between the audio observations
and template vectors corresponding to the score. By expressing
the template construction as a linear mapping from the symbolic
to the audio representation, one can learn the feature functions by
optimizing the linear transformation. In this paper, we explore
two different learning strategies. The first one uses a best-fit
criterion (minimum divergence), while the second one exploits a
discriminative framework based on a Conditional Random Fields
model (maximum likelihood criterion).

We evaluate the influence of the feature functions in an audio-
to-score alignment task, on a large database of popular and
classical polyphonic music. The results show that with several
types of models, using different temporal constraints, the learned
mappings have the potential to outperform the classic heuristic
mappings. Several representations of the audio observations,
along with several distance functions are compared in this align-
ment task. Our experiments elect the symmetric Kullback-Leibler
divergence. Moreover, both the spectrogram and a CQT-based
representation turn out to provide very accurate alignments,
detecting more than 97% of the onsets with a precision of 100 ms
with our most complex system.

I. INTRODUCTION

In many automatic music analysis tasks, such as audio-to-
score alignment [1], automatic transcription [2], main melody
extraction [3] or chord recognition [4], one needs to match
the audio information (or a low-level representation directly
extracted from it) with a symbolic description of the music.

In this paper, we focus on the audio-to-score alignment
problem, which consists in synchronizing an audio recording
of a musical piece with symbolic score. In a real-time context,
this task is known as score following [5], which achieves the
tracking of a musician’s performance. Such a tracking allows
for the automation of some processes to be synchronized
with the performer, for example “hands-free” page turning
[6] or synthetic accompaniment [7] of a live soloist. On the
other hand, off-line audio-to-score matching is expected to be
more precise, and can be applied to multi-modal browsing of
musical pieces [8], automatic identification of musical works
[9] or even informed source separation [10], [11].
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An audio-to-score alignment system relies in particular on
a measure of the “instantaneous match” between each audio
observation and each position in the score. In many works,
this correspondence is evaluated by a template-based approach,
where observations are directly compared to template vectors
corresponding to the score [12]. Even in this framework, the
template design has seldom been addressed and most systems
resort to heuristic forms [13], [14]. İzmirli and Dannenberg
[15] study a similar construction in the case where both
the score and the audio observations are transformed into a
“chroma-like” 12-dimension space.They show that the classic
“canonical mapping” is not the most effective one for the task
of discriminating aligned and non-aligned frames. However,
their work is focused on one special type of representation,
since the dimension is fixed to 12, and the evaluation is
performed on a classification task.

In the present paper, we extend the work reported in
[16] and explore the automatic learning of the templates on
several common representations of the audio signal, as well as
several distance functions for their comparison. The obtained
low-level layers are evaluated in an audio-to-score alignment
task, by integrating them into Conditional Random Fields
(CRF) models as in [17]. The experiments, conducted on
a large database of popular and classic polyphonic music,
using two different temporal models, show that the learning
of the mapping can significantly improve the accuracy of
an alignment system. Furthermore, we propose two different
learning strategies: a best fit criterion (minimum divergence)
or a discriminative criterion, which takes advantage of the
CRF model employed (maximum likelihood). We compare the
efficiency of these approaches, and experimentally show that
the discriminative strategy has the potential to reach a finer
level of precision.

The rest of this paper is organized as follows. The global
structure of an alignment system is presented in Section II, and
Section III exposes the form of the template-based matching
measure. Heuristic mappings used in the literature are detailed
in IV, before our strategies for the learning of the templates are
proposed in the following two sections. Finally, we evaluate
the impact of these mappings on the alignment accuracy of
two state-of-the-art systems in Section VII, and conclude in
suggesting some perspectives.

II. STRUCTURE OF AN AUDIO-TO-SCORE ALIGNMENT

SYSTEM

Audio-to-score alignment systems are traditionally split into
two main layers. A low-level layer first calculates features
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Figure 1. Structure of an audio-to-score alignment system. The audio and the
score are converted into vectors of the same domain (here chroma vectors).
Features are calculated by comparing these vectors, and then combined with
temporal constraints by the high-level layer to perform the alignment.

associated to each element of the symbolic representation (i.e.
position in the score), for each audio frame observation. Note
that, following [18], the word feature denotes in this work a
value which characterizes the correspondence between a score
position and an audio observation. They distinguish from the
audio descriptors, which characterize some properties of the
audio observations alone. These local matching measures are
then used by a high-level layer, which incorporates possible
constraints or penalties on the temporal evolution of the score
position. These constraints are designed to favor a smooth
progression in the score. Finally, the output of the system
is a sequence of score positions which locally match the
audio observation and whose rhythmic structure conforms to
the indications of the score. Figure 1 summarizes the global
structure of an audio-to-score alignment system.

The alignment systems of the literature can be divided into
two main groups, depending on their high-level layers. In
the first one, the alignment is searched for by minimizing
a cumulative cost function, based on the local matching
measure, using dynamic programming techniques. This group
encompasses early works on real-time score following as well
as most off-line systems (for example [1], [19]). The Dynamic
Time Warping (DTW) algorithm is quite extensively used [13],
[20], [21], since it is efficient and computationally simple.
In these systems, the feature measuring the correspondence
between a symbolic element and an audio frame is calculated
as a distance between the audio descriptor and a template
associated to the symbolic representation.

The systems of the second group are based on probabilistic
models, in particular Hidden Markov Models (HMMs), which
consider the score positions as hidden random variables [22],
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Figure 2. Creation of a concurrency template as a mapping from the symbolic
to the audio observation domain (here a power spectrum representation).

[23]. Recently, other structures have been proposed in order
to better model the note durations by introducing additional
hidden variables representing the tempo [12], [24]. These
models are generative: the high-level layer corresponds to the
prior model, which determines the prior probability of each
symbolic sequence. Hence, the low-level layer calculates the
conditional probability of each observation, given each score
position. However, probably because of the high number of
possible note combinations in a polyphonic musical score, an
estimation of these conditional probability distributions has
been seldom considered. To our knowledge, only [25] and
[26] describe a learning of observation distributions in the
context of audio-to-score alignment, and they are limited to
monophonic music. Nevertheless, most of the systems exploit
heuristic forms for the conditional probabilities, which often
boil down to the use of some distance between the observation
and a template, as in the dynamic programming systems (for
example [24]). In a previous paper [17], we showed that
these models can be transposed into the Conditional Random
Fields (CRF) framework, which is a class of discriminative
undirected graphical models. One of the main advantages of
CRFs over HMMs is the possibility to use a more flexible
low-level layer. Indeed, in such a model, any feature can be
employed, as it does not need to have the form of a conditional
probability distribution.

The templates used in the literature are often constructed
as the superposition of elementary templates corresponding to
single notes. As we will see in Section III-A, this can be seen
as the result of a linear mapping from what we call the “pitch
vector”, containing the number of notes played at each pitch
value, to the observation domain.

As far as the template creation is concerned, two main
strategies can be followed. Some works use an audio synthesis
of the score and extract the corresponding score observations
[27]. However, it has been reported by the same authors [13]
that a direct mapping from the symbolic domain to the obser-
vation domain has little impact on the alignment results using
the chroma (or pitch class) representation, while avoiding the
computational cost of the MIDI synthesis. Figure 2 illustrates
this approach, which directly associates to each concurrency a
template vector in the same domain as the audio descriptors.
This is the strategy that we are interested in.

III. THE FEATURE FUNCTION

A. General Form

For the matching of an audio recording with a symbolic
representation, the low-level layer is intended to quantify the
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“instantaneous match” between each frame of the recording
and each element of the symbolic description. We focus here
on a comparison performed on the basis of the instantaneous
pitch content, i.e. the notes which are currently played. As
in [17], we adopt a linear representation of the score as a
sequence of concurrencies, defined as the units of constant
pitched content (sometimes also referred to as chords). Hence,

the audio observations are to be matched with the concurren-

cies, which are associated to each position in the score1.

As represented in Figure 1, the features are calculated

by first creating template vectors, which correspond to the

score concurrencies and are in the same domain as the

audio descriptors. These templates can then be compared to

the audio observations by a simple distance function. The

concurrency templates are constructed as the superposition of

elementary vectors, associated to each note of the concurrency.

As we will see, this can be expressed as a linear mapping

from what we call the “pitch vector” representation of the

concurrencies.

Let us first define this representation. Assuming that the

range of a musical piece does not exceed the range of the

grand piano (from A0 to C8), we number the possible pitches

from 1 to 88, following the chromatic scale. The pitch vector hc
of a concurrency c is defined as an 88-dimension vector whose

components are the number of notes of the corresponding

pitches in the concurrency. Fig. 3 illustrates the construction

of this pitch vector representation. In some cases where the

score also provides loudness factors for the notes (such as

MIDI files), the value of the pitch vector could also be defined

by these factors, as in [13]. However, we choose to use the

number of notes, so as to simulate the case where the midi

files result from a graphical score (as an export of a score

editor, or the output of an optical music recognition system

[28]). In order to take into account the portions of the signal

where no note is played (in the case of silence or unpitched

sounds), we introduce an additional component on the pitch

vector, which is equal to 1 if and only if all the other notes

are inactive. Thus, the dimension of a pitch vector is J = 89.

Now, let W be the matrix whose columns are the elementary

single-note templates. As mentioned earlier, the template uc
corresponding to the concurrency c is the superposition of the

elementary templates associated to the notes of c. This can be

expressed in the form of a matrix multiplication:

uc = Whc. (1)

Hence, the matrix W operates a linear mapping from the pitch

vector domain to the observation domain.

Let vn be an observation vector for frame n, representing

the short-time frequency content over this frame. The value

of the concurrency feature f(c, vn) for concurrency c and

observation vn has the form:

f(c, vn) = D (vn,Whc) , (2)

where D(·, ·) is some distance or divergence function, W is a

I×J matrix, I being the dimension of the observation vectors.

1In this works, the scores used are MIDI files, which explicitly specify the
position of each played note. Thus, ornaments like trills or mordents are not
taken into account as such, but as explicit sequences of notes.

C8

A4

A0

Figure 3. Illustration of the pitch vector representation. Left: pitch range,
in the form of a grand piano keyboard; Middle: graphical representation of a
concurrency, in western classical notation; Right: pitch vector representation
of the same concurrency. Note that the notes of the concurrency may be played
by different instruments, therefore there can be several notes of the same pitch
(A4 in this example).

B. Relation with a Generative Model

This form can also be related by the generative probabilistic

model exposed in [29]. Indeed, let us assume that an ob-

servation vector is the superposition of independent random

vectors corresponding to the active notes. Let us suppose a

Poisson distribution for each (independent) component of these

one-note random vectors and let Wi,j be the distribution

parameter for the component i of pitch j. The distribution

parameters along the observation bins, given a note of pitch

j, are then the values of the jth column of W, denoted by

W:,j . Let hj be the pitch vector corresponding to this single

note. Since its values are: hj(k) = δk,j , where δ denotes

the Kronecker delta function, the vector of parameters can be

written as:

W:,j = Whj . (3)

A sum of Poisson variables also follows a Poisson distribu-

tion, whose parameter is the sum of the individual parameters.

Thus, the observations on each bin, given a concurrency c,
follow independent Poisson distributions, and the parameters

are the sum of the one-note parameters. Let uc be the vector

of parameters corresponding to this concurrency. The value

of uc is then given by: uc = Whc, as in (1). Let V
be a random variable representing an observation vector2.

The overall probability distribution of V , given the played

concurrency, is then:

P (V |c) =

I
∏

i=1

e−uc(i)
uc(i)

V (i)

Γ(V (i)+1)

= exp
{

−DKL

(

V
∥

∥Whc
)

+ Z(V )
}

(4)

where Z(V ) is a term depending only on the observation

vector V , Γ denotes the gamma function and DKL is the

generalized Kullback-Leibler divergence. If we choose this

particular divergence as the distance function D of (2), the

conditional probability of (4) can be written as:

P (V |c) ∝ e−f(c,V ). (5)

2As a convention in this paper, capital letters denote random variables and
the corresponding lower case letters denote realizations of the variables.
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C. Distance Functions

Any dissimilarity function (which we will call distance,

even if it is not a proper metric, in the mathematical sense)

can be used as the matching measure of (2). In the present

work, we investigate different versions of the generalized

Kullback-Leibler (KL) divergence. This choice is motivated by

the generative model of Section III-B. Moreover, the results

of a previous study [30] as well as some preliminary tests

have shown that other distances, including the Itakura-Saito

divergence and the cosine distance did not outperform the KL

divergence.

The first version already presented in (4), is referred to as

“KL1”. Its expression is :

DKL (v‖u) =
I
∑

i=1

v(i) log

(

v(i)

u(i)

)

− v(i) + u(i). (6)

Note that, in order to make the concurrency feature robust

to signal level dynamics, the observation and pitch vectors

are normalized, so that the sum of the components is unity.

However, we do not constrain the columns of W to be

normalized, as this would result in a more complex (non-

convex) estimation problem in Section V. This is why we use

the generalized version of the KL divergence.

The formulation of (2) does not require the distance function

to correspond to a generative model. Hence, we test the

symmetric counterpart of the KL1 distance, referred to as

“KL2”, whose expression is

DKL (u‖v) =
I
∑

i=1

u(i) log

(

u(i)

v(i)

)

− u(i) + v(i). (7)

Finally, we test the symmetric version of the divergence,

denoted by “KLs”.

DKLs (v, u) = DKL (v‖u) +DKL (u‖v) . (8)

D. Pitch Representations Used

Three types of observations have been used in the audio

alignment literature in order to characterize the musical

content of each frame of the audio signal, namely power spec-

trum, ‘semigram’ and ‘chromagram’ representations. They are

summed up in Table I. In this work, the musical recordings

were sampled at 16-kHz. The observations used here are

computed with a 20-ms hop-size, in order to have a fine

temporal resolution.

1) Power Spectrum: The Short-Term Fourier Transform

(STFT) of the audio signal is used in many score following

works [31], [12], [24], because of the low complexity of this

transform. In this work, we exploit the power spectrum drawn

from the STFT calculated on 100-ms windows. In order to

reduce noise due to percussion in the high and low frequencies,

we only consider the frequencies between 100 Hz and 4 kHz.

2) Semigram Representation: The semigram representation

[15] is a spectrum representation with logarithmically spaced

frequency bins corresponding to the semitones of the musical

scale (12 bins per octave). Two methods for calculating this

representation are tested here. The first one, called FilterBank

Acronym Meaning

PS Power Spectrum
FBSG FilterBank Semigram

CQTSG CQT Semigram
MPCP Müller’s PCP (from filterbank)
ZPCP Zhu’s PCP (from CQT)

Table I
SUMMARY OF THE PITCH REPRESENTATIONS TESTED.

SemiGram (FBSG) consists of the short-term energy at the

output of elliptic filters as in [32].

We also use the magnitude of a constant Q transform

(CQT), with a quality factor set to one semitone. In this case,

in order to maintain a good temporal precision, the values

corresponding to the two lowest octaves are not computed.

The longest transform is then limited to about 170-ms length,

corresponding to a frequency of 100 Hz. We also limit the

highest frequency bin to 4 kHz. This representation is referred

to as CQT Semigram (CQTSG).

3) Chromagram Representations: Chromagram (also

called Pitch Class Profile) is probably the most popular

representation for offline audio-to-score and audio-to-audio

synchronization [13], [1]. It consists of a 12-component

vector corresponding to the spectral energies of the 12

musical pitch classes (A, A#,. . . ). Many methods have been

proposed to calculate such representations and two of them

are selected in this work, based on the results of our previous

study on low-level descriptors [30]. The first one, proposed

by Müller [32] is the integration of the FBSG features over

the different octaves. The second chroma representation is

calculated according to Zhu’s method [33], which performs

a peak-picking on the CQT, and then sums the amplitudes

corresponding to all the octaves. These representations are

denoted respectively by MPCP (for Müller’s Pitch Class

Profile) and ZPCP (Zhu’s).

IV. HEURISTIC TEMPLATES

In the music-to-score alignment literature, the concurrency

templates are built by following a simple heuristic. We detail

here the heuristic templates that we retain in this work, for

the three types of representation presented above.

A. Chromagram Templates

The heuristic chroma vector templates are derived from the

canonical mapping from the pitch domain to the chroma do-

main [15]. For a pitch number j (as defined in Section III-D),

let pc(j) be the pitch class of j, that is the index of the

corresponding chromatic class (C, C#, . . . , B) in the chroma

vector representation. The one-note template of pitch j is

a binary template whose only non-zero component is the

pc(j)-th. The template is superposed to a uniform distribution

accounting for noise. This uniform component can also be seen

as a smoothing filter, preventing zeros in the templates (which

would be a problem with the divergence used). The importance

of this noise term is controlled by the parameter q ∈ [0, 1).
The values of the matrix W are then:

Wi,j = (1− q)δi,pc(j) +
q

I
, . (9)
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Figure 4. Heuristic mapping matrices for three of the representations. (a):
spectrogram; (b): FBSG semigram; (c): ZPCP chromagram. The values of the
matrix coefficients are represented as gray levels.

B. Semigram Templates

In the case of the semigram representation, the mapping

used is very straightforward: the non-zero components of the

binary template for pitch j correspond to the first harmonics

of the note, as in [34]. In this work, we use two harmonics.

Hence the matrix W is defined as:

Wi,j =
(1− q)

2
(δi,j + δi,j+12) +

q

I
. (10)

C. Power Spectrum Templates

For the power spectrum representation, the templates are

constructed as in [12]. A pitch is represented as a Gaussian

mixture whose components correspond to the first K harmon-

ics. Formally, let b(j) be the fundamental frequency of the

pitch j, expressed in the scale of the STFT bins. We write:

Wi,j = (1− q)
K
∑

k=1

wkN
(

i; kb(j), σ2
j,k

)

+
q

I
, (11)

where N (·;µ, σ2) denotes the normal density function with

mean µ and variance σ2. The weight parameters wk are

proportional to 1/k2 and scaled so that
∑K

k=1 wk = 1. The

“bandwidth” parameters σ2
j,k are set to 30 cents (30% of a

semitone) and we consider K = 5 harmonics.

For all these representations, the “noise template”, corre-

sponding to the absence of pitched sound, is set to the uniform

value 1
I

.

D. Estimation of the smoothing parameter

The “learning” of these heuristic projection matrices here

only consists in a setting of the smoothing parameter q of

equations (9) to (11). This can be done by a grid search

: alignments are computed on a training database, using a

set of possible values and the value leading to the highest

performance is chosen.

V. MINIMUM DIVERGENCE (MD) LEARNING

The heuristic templates presented in the previous subsection

may seem somehow arbitrary. Indeed, since they are heuristic,

the main motivation for the chosen values of the parameters

is the fact that they give good results in an audio-to-score

alignment application. This is the reason why we now address

the problem of learning the matrix Wcontrolling the mapping

from the pitch to the observation domain, using a database of

real aligned music.

A. Formulation

For the training process, a grid search strategy would be

intractable, due to the dimensionality of the problem. There-

fore, another criterion than the alignment performance has to

be chosen for determining the optimal value of W. As already

mentioned in Section III-A, the formulation of (2) with the KL1

divergence function can be derived from a generative Poisson

model for each note. In this generative model, maximizing

the log-likelihood of the ground-truth concurrency sequence

is equivalent to minimizing the cumulative divergence between

observations and templates along this sequence.

Following this idea, we adopt the Minimum Divergence

(MD) criterion. For each musical piece s of the training set,

let Ns be the total length of the piece, in number of frames. Let

vs1:Ns
= vs1 . . . v

s
Ns

and cs1:Ns
= cs1 . . . c

s
Ns

be respectively the

pitch observations and the ground-truth concurrencies of this

sequence. For notation simplicity, we write hsn = hcs
n

for the

pitch vectors corresponding to the annotated concurrencies.

The optimal matrix Ŵ
MD is then defined by:

Ŵ
MD = argmin

W

∑

s

Ns
∑

n=1

D (vsn,Whsn) . (12)

The obtained cost function is convex if the distance function

used is convex. Hence, with the three divergences presented in

Section III-C, we have a convex minimization problem, which

can be solved by numerous strategies. The chosen iterative

algorithm is a variant of Newton’s method, based on the

trust region concept, in which the inversion of the Hessian

is approximated by the method of [35]. We exploited the

implementation of the optimization toolbox for MATLAB. The

initialization point of the algorithm was the heuristic template,

whose value of the smoothing parameter was determined by a

grid search as in Section IV-D. The optimization algorithm

stopped when the decrease of the objective-function was

smaller than 10−6, or when the absolute variation of the norm

‖W‖ was smaller than the same threshold.

The stopping conditions correspond to variations of the

objective-function or of the norm ‖W‖ being less than 10−6.

B. Training and Evaluation Database

In this work, we use two datasets. The first one contains 59

classical piano pieces (about 4 h 15 of audio data), from the

MAPS database [2]. The recordings are renditions of MIDI

files played by a Yamaha Disklavier piano. The alignment

ground-truth is given by these MIDI files. The second corpus

consists of 90 pop songs (about 6 h) from the RWC database

[36], with aligned MIDI scores. Since the percussion track of

the MIDI files often contain errors, we choose to discard the

percussion in the scores.

The training database is composed of 50 randomly selected

pieces (220 min), 20 from MAPS and 30 from the RWC corpus.
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(a) Heuristic matrix (b) Matrix learned by MD criterion
with KLs distance

Figure 5. Comparison of two mapping matrices, for the MPCP representation.
The gray scale is the same on both images.

In order to reduce overfitting to specific pitches or keys, 12

versions of each piece are used in the training process, by

jointly transposing the observations and the pitch vectors up

to −6 and +5 semitones. Thus, the number of training samples

for a pitch template is homogeneous over a whole octave.

This transposition is performed by a circular permutation for

the chromagram representation, a simple ’shift’ of the values

in the case of the semigram representation and a frequency

scaling for the spectrogram. In the latter case, the new

’scaled frequency bins’ do not always correspond to original

frequencies. Therefore, the values affected to these new bins

are estimated by a linear interpolation of the spectrogram. The

remainder of both datasets is used for the evaluation.

C. Results

1) Obtained Mapping Matrix: The learned mapping ma-

trix for the MPCP representation with the KLs distance is

displayed in Fig. 5 and compared with the corresponding

heuristic mapping. In this example, it is visible that the one-

note templates (i.e. the rows of the matrix) select not only the

fundamental frequency and the first harmonic as the heuristic

templates do, but also higher partials. Moreover, the weights

given to these partials are not uniform since they depend on

the note. One can also observe that for the lowest pitches,

higher weights are allocated to the high partials. This can be

explained by a greater energy in the higher partials of the

low notes, but also by the correlation between the notes in

the training database. Indeed, low notes often correspond to

the bass of a chord. Hence they frequently occur concurrently

with notes corresponding to their harmonic partials, resulting

in heavier weightings of these partials. These behaviors are

common to all the settings.

However, the three distance functions do not result in exactly

the same mapping matrices. The results of the minimisation

of the KL1 and KL2 distances, for the CQTSG representa-

tion are compared in Fig. 6. One can first notice that bins

corresponding to lower octaves are selected for the highest

notes. This is due to the phenomenon just described. Indeed,

high pitches often occur concurrently with the lower octave.

Thus, the presence of this lower octave is learned in the

template. Another observation is that the absolute weights of

the templates are almost always greater after learning with

the KL1 distance than with KL2. This is due to the fact that

the KL1 version (6) strongly penalizes the templates bins u(i)
whose values are small compared to the observation v(i),
as pointed out in [4]. Thus, the templates learned with KL1

tend to be overestimated. Symmetrically, KL2-learning tends

(a) KL1 distance (b) KL2 distance

Figure 6. Comparison of two mapping matrices learned by the MD criterion
with different distance functions, for the CQTSG representation. The gray
scale is the same on both images.

Distance KL1 KL2 KLs
Mapping H MD H MD H MD

PS 57.7 67.9 55.5 13.6 66.3 69.9
CQTSG 63.1 67.1 63.6 67.9 64.9 68.2
FBSG 55.8 59.7 59.2 61.5 60.4 61.7
ZPCP 56.7 58.4 56.6 58.7 56.9 58.6
MPCP 51.4 53.5 51.8 53.8 52.4 54.6

Table II
RECOGNITION RATES (IN %) OBTAINED WITH HEURISTIC (H) AND

MD-LEARNED MAPPINGS (MD) FOR THE TESTED DISTANCES AND

REPRESENTATIONS.

to underestimate the values of the mapping matrix and the

KLs version constitutes a trade-off between both behaviors.

2) Alignment Accuracy with a simple System: We evaluate

the influence of the low-level layers in an alignment task. To

this purpose, a simple strategy is chosen. Given the sequence

of observation vector v1:N (of length N ) corresponding to the

audio recording, the alignment is performed by searching for

the optimal concurrency sequence ĉ1:N , defined by:

ĉ1:N = argmin
C

1:N
∈C

N
∑

n=1

f (Cn, vn) , (13)

where C is the set of acceptable concurrency sequences, that is

the concurrency sequences following the same order as in the

score. The optimal sequence can be easily computed thanks

to a dynamic programming technique. This simple method is

not expected to provide very precise alignment, since it does

not take into account any duration information. It is rather

intended to emphasize the differences between the low-level

layers tested.

The precision of an alignment is evaluated using the align-
ment rate, defined as the fraction of onsets which are correctly

detected (i.e. onsets which are detected less than a tolerance

threshold θ away from the ground truth onset time). In this

paper, the results are presented for θ = 100ms. However, the

relative behaviors of the different systems have been observed

to be the same for values θ = 300ms and θ = 50ms: only the

absolute values of the alignment rate change.

The obtained alignment rates are displayed in Table II. The

number of onsets in the test set is approximately 120 000. It

is clear from these results that learning the mapping matrix

does improve the alignment accuracy. Indeed, for all the tested

settings except one, the alignment rates significantly increase

compared to the heuristic templates.
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The only exception is the case of the power spectrum

representation with the KL2 divergence, where the alignment

rate drops from 55.5% to 13.6%. This can be explained by

the bias of the “no-note template” learned with this distance:

as already mentioned, the KL2 divergence strongly penalizes

template values which are small compared to the observations.

Thus, as the power spectrum observations associated to the

noise template are very diverse, the learning process tends

to reduce the values of all the bins. This results in a bias

toward this template, which exhibits a relatively small distance

with virtually any observation. As a consequence, the obtained

alignments tend to be “stuck” in the initial or final noise

states. This problem does not appear with the other features,

probably because of the dimension reduction, which reduce

the discrepancy between the observations of the “noise state”

as well as the integration of the energy over relatively large

frequency bands, which generally prevents the feature values

from being too small.

As already mentioned, the KLs distance seems to operate a

good trade-off between the biases of both KL1 and KL2 di-

vergences. Hence, for each representation, it always performs

at least as well as the other distances. We will then consider

only this distance in the rest of our experiments.

We can also compare the performances of the tested rep-

resentations. The best results are obtained by the power

spectrum representation (69.9%). Then the semigram repre-

sentations induce a higher accuracy than the chromagrams.

This is due to the reduction of the dimensionality and the

fact of discarding the octave data, which entail a loss of

useful information. Nevertheless, the chroma representation

may still be useful in the case of scores which are not truly

reliable, since it has the potential for improved robustness to

octave errors, as shown in [30] where the database contains

such errors. Finally, the representations based on a CQT

(CQTSG and ZPCP) seem to outperform the filterbank-based

representations (FBSG and MPCP). This can be explained by

the smaller bandwidth of the used filters, which can overly

penalize pitch imprecisions. Another possible reason is the

noise level in the low frequencies, which can be very high when

a bass drum is present. Thus, a good solution is sometimes to

completely discard very low frequencies, which is the case in

our CQT.

VI. DISCRIMINATIVE LEARNING

In this section, we expose another strategy for the dis-

criminative learning of the mapping matrix, thanks to a

Conditional Random Fields (CRF) model [18]. In this method,

the alignment model is taken into account in the learning

process.

A. Markovian Conditional Random Fields (MCRF) Model

The alignment strategy of (13) can be derived from a special

case of a Markovian Conditional Random Fields (MCRF)

model as presented in [17]. The MCRF model is a discrimina-

tive probabilistic model which allows for the calculation of any

concurrency sequence probability c1:N , given a sequence of

observation vectors v1:N . In order to clarify the presentation,

the boundary indices 1:N will be omitted in the following when

no ambiguity is introduced. The probability of the concurrency

sequence is given by:

P (c|v) =
1

Z(v)
φ(c1, v1)

N
∏

n=2

ψ(cn, cn−1)φ(cn, vn), (14)

where Z(v) is a normalization factor and ψ and φ are non-

negative potential functions. The observation function φ is here

defined by

φ(cn, vn) = exp
{

− µf (cn, vn)
}

, (15)

where µ is a positive weight parameter. The transition function
ψ used here only constrains c to be an acceptable concur-

rencies sequence, i.e. to follow the score order3. With these

definitions, the value of µ does not influence the decoding

of the model and the most probable concurrency sequence is

given by (13).

B. Maximum Likelihood (ML) Criterion

Since the MCRF is a probabilistic model, a natural frame-

work for learning the parameters is to employ the Maximum

Likelihood (ML) criterion, i.e. to maximize the probability

of the ground truth concurrency sequences. We write Θ =
(µ,W) for the parameters of the model. The value of µ
is learned as well as W, since it has an influence on the

probabilities. The optimal parameters are then defined by:

Θ̂ML = argmax
Θ

∏

s

P
(

cs
∣

∣vs; Θ
)

(16)

where P (·|v; Θ) denotes the probability given by the model

with parameters Θ. We define:

F1(c1:N , v1:N ) = −
N
∑

n=1

f (cn, vn) . (17)

Then, the log-likelihood can be written:

L(Θ) =
∑

s

{

µF1 (c
s, vs)− logZ (vs)

}

. (18)

This function is concave with respect to µ and the correspond-

ing derivative is

∂L(Θ)

∂µ
=
∑

s

{

F1 (c
s, vs)− E

[

F1

(

Cs, vs
)

∣

∣

∣
vs; Θ

]}

, (19)

where Cs is a random variable representing the concurrency

sequence of the s-th training sample and E[·|vs; Θ] denotes

the expectation with respect to the conditional distribution

P
(

Cs
∣

∣vs; Θ
)

. The expectation term can efficiently be computed

thanks to a variant of the forward-backward algorithm [37],

making it tractable to calculate this derivative.

Unfortunately, the log-likelihood is not concave with respect

to W. Nevertheless, the gradient can be expressed in a

relatively simple form:

∂L(Θ)

∂Wi,j

=µ
∑

s

{

∂F1

∂Wi,j

(cs, vs)− E

[

∂F1

∂Wi,j

(Cs, vs)
∣

∣

∣
vs; Θ

]}

.

(20)

3The expression of ψ is: ψ(cn, cn−1) = I {cn−1 − cn ∈ {0, 1}} with I

the indicator function.
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(a) Minimum Divergence (MD)
criterion

(b) Maximum Likelihood (ML)
criterion

Figure 7. Comparison of the mapping matrices learned by our two criteria,
for the CQTSG representation with KLs distance. The gray scale is the same
on both images.

Some preliminary experiments using a Limited memory BFGS

(L-BFGS) algorithm [38] did not prove very conclusive.

Therefore, we resort to a simple algorithm where µ and W

are alternatively updated in the direction of their gradient,

with an adaptive step. Because of the complexity of the

gradient calculation, we limit the iteration number to 100. The

initialization is done with the result of the MD learning, based

on the intuition that this value is close to the optimum. We also

suppose that this initialization does not overly favor the ML

learning strategy compared with MD, since the optimization

criteria are different.

C. Results

The experiments are conducted with all the representations

presented in Section III-D. However, we only exploit here the

KLs distance, since it proves to be the most efficient whatever

the representation. The learning process is run on the same

learning database as in the previous experiment.

Figure 7 compares the mapping matrices learned with both

criteria. We can observe that the ML strategy yields a smoother

distribution of the ‘energy’ along the observation bins, with

fewer small values. This can be explained by the notion of

maximum entropy, on which CRFs are based [37]. Indeed,

the ML learning does not aim at fitting the observations, but

rather at discriminating the concurrencies. Intuitively, extreme

values are then given only to the bins which are really useful

for the discrimination of the concurrencies, and the other bins

are given ’medium’ values.

Alignment experiments using the same approach as in

Section V-C2 are also run. Since the ML learning strategy

takes into account the alignment model, one could expect

an increase of the obtained precision. However, whereas the

PS and FBSG representations are further improved compared

to the use of the MD learning, the results of the other

representations are dramatically reduced. For example, the

alignment rate of the CQTSG semigram drops from 58.2%

to 10.4% on the RWC corpus. A reason for this is the fact

that the used strategy maximizes the probability of the ground-

truth sequence, but does not limit the probability of the other

sequences, which may also benefit from the optimization.

Thus, nothing ensures that the ground-truth will be the most

probable sequence and the alignment rates are not guaranteed

to increase, even on the training set.

Mapping PS CQTSG FBSG ZPCP MPCP

H 66.3 64.9 60.4 56.9 52.4
MD 69.9 68.2 61.7 58.6 54.6
ML 70.3 71.0 63.8 57.6 52.3

Table III
RECOGNITION RATES OBTAINED WITH THE BASIC MODEL, FOR THE KLS

DISTANCE.

By a precise examination of the results, we noticed a number

of aberrant alignments, where most of the piece was decoded

as the ‘silence/noise’ state (which is present at the beginning

and the end of each score). The feature function indeed

introduces a bias toward this state. This is due to the form

of the optimized likelihood. The partial derivative of (20) can

be developed as:

∂L(Θ)

∂Wi,j

= µ
∂

∂Wi,j

(

∑

s

Ns
∑

n=1

{

E
[

f (Cn, v
s
n)
∣

∣vs; Θ′

]

−

f (csn, v
s
n)

}

)∣

∣

∣

∣

∣

Θ′=Θ

.

(21)

Hence, the ML learning strategy aims at maximizing the

difference between the feature function of the ground-truth

label and the expectation of this feature function (computed

over all the possible labels). While intuitive, this process can

lead to a specific issue. Indeed, a label probability is the sum

of the probabilities of all the sequences containing this label.

Thus, more emphasis can be put on a label enclosing many

sequences of moderate probability than on a label which is

contained in an isolated high-probability sequence. Hence, in

our alignment model, some labels ‘far’ from the ground truth

path are given little importance in the discriminative learning.

This is the case for the ‘silence’ states which receive very low

weights, resulting in an overestimation of the corresponding

feature function. These labels can then accept virtually any

observation. On the other hand, the templates of the pitched

concurrencies are trained to ‘reject’ the other probable labels.

Hence, the corresponding feature functions are much more

selective, and thus more sensitive to noise or pitch imprecision.

In order to overcome this problem, we adopt an ad hoc
strategy which modifies the feature function of the ‘silence’

labels in the decoding phase, so that it has the same order of

magnitude as for the other labels. The value is not calculated

using the corresponding template, but as the mean of the

feature function of the 10 surrounding concurrencies in the

score. The alignment results are displayed in Table III and

compared to the other learning strategies. It must be noted

that the modification of the feature function has also been

applied to the other mapping matrices, without introducing a

significant variation of the results. One can observe that the

ML criterion allows for an improvement of the alignment rates

for the spectrogram and semigram representations. The chro-

magrams, however, do not benefit from this learning approach,

probably because of a more limited ‘discriminative power’ due

to their smaller dimension. The results are nevertheless at least

as good as with the heuristic mapping.
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Mapping PS CQTSG FBSG ZPCP MPCP

H 73.9 73.6 72.0 67.5 64.5
MD 76.4 75.6 72.5 69.3 65.3
ML 76.7 77.5 73.5 68.9 64.9

Table IV
RECOGNITION RATES OBTAINED WITH THE MCRF MODEL WITH ONSET

FEATURE, FOR THE KLS DISTANCE.

VII. INFLUENCE OF THE LEARNED MAPPINGS ON

STATE-OF-THE-ART ALIGNMENT SYSTEMS

We now evaluate the influence of the projection learning on

the accuracy of two alignment systems which exploit additional

pieces of information to the pitch observation vectors. These

systems have been presented in details in [17].

A. Introduction of an Onset Feature

The first system tested is the simplest system of [17]. It

is a Markovian CRF using an additional onset feature for

discriminating between the attack and sustain phases of each

concurrency. Similar to (15), the weight given to this onset

feature is controlled by a parameter denoted by ν.

For this experiment, µ is learned by the Maximum Likeli-

hood criterion presented in Section VI-B. The same strategy

has been attempted for learning the optimal value of ν. How-

ever, as already mentioned, ML learning does not necessarily

lead to optimal parameter values, in the sense of the alignment

rate. We then resort to a coarse grid search in order to adjust

this parameter, in the same way as in Section IV-D.

The obtained results are presented in Table IV. The introduc-

tion of the onset feature allows for a significant improvement

(at least +6% absolute) in the accuracy of all the tested

systems, whereas the ranking of the representations does not

change. One can also observe the advantage of the learning

of the mapping matrix W. Indeed, for every representation,

both learning strategies outperform the heuristic mappings.

B. Alignment with the Hidden Tempo CRF Model

In a final set of experiments, we employ the Hidden Tempo

CRF (HTCRF) model exposed in [17]. The HTCRF extends the

Markovian CRF used previously by incorporating an explicit

and very precise temporal model. Hence, the potential function

ψ of (14), controlling the label transitions, depends on the

concurrency durations. Furthermore, the value of this potential

function also depends on an additional hidden variable repre-

senting the current tempo of the piece. In our experiment, we

only use the best representation of each type, namely the power

spectrum, the CQTSG semigram and the ZPCP chromagram.

The three considered mappings are tested.

The HTCRF model requires a discrete set T of possible

tempi. The values used here are, in beat per minute:

T ={28, 30, 34, 40, 48, 56, 64, 72, 80, 88, 96, 104,

112, 120, 132, 146, 160, 176, 192, 208, 224, 240}.
(22)

Due to the high complexity of the HTCRF model, a learning

of all the parameters with the ML criterion is not possible.

Thus, we use the values estimated in the previous experiment

Learning PS CQTSG ZPCP

H 96.8 96.9 95.9
MD 96.7 97.0 95.8
ML 96.9 97.7 96.0

Table V
RECOGNITION RATES OBTAINED WITH THE HTCRF MODEL WITH KLS

DISTANCE.

(Section VII-A) with the MCRF model for µ and ν, and the

other parameters have been set through a grid search strategy.

In these experiments, the modified version of the ‘silence’

feature proved slightly more effective than the original one,

for both ML and MD learning strategies. Therefore, the results

presented in Table V correspond to these settings.

As expected, the introduction of a precise temporal model

greatly improves the performance of all the tested systems.

The obtained alignments are then very accurate, since more

than 95% of the onsets are correctly recognized within a

100 ms tolerance threshold, for all the tested systems. Since the

HTCRF system adds strong constraints on the alignments, the

differences between the tested systems are smaller than with

the MCRF model. Nevertheless, the impact of the learning is

visible on the CQTSG representation, where the ML strategy

allows for a significant improvement of the alignment rate

compared to the heuristic mapping (97.7% against 96.9%).

VIII. CONCLUSION AND PERSPECTIVES

In this paper, we have described a template-based fea-

ture function for the matching of a symbolic and an audio

representation of a musical piece. We have proposed two

strategies for the learning of the mapping from the symbolic

to the observation domain, when it can be written as a

linear transformation. The evaluations, performed on a large

database of polyphonic music, indicate that this learning can

lead to a significant increase of the precision of several

CRF alignment systems. The results also show that in many

cases, the minimum divergence learning criterion leads to a

good alignment accuracy. However, with the most complex

CRF model, the highest performance is obtained using the

Maximum Likelihood (ML) criterion, indicating that this dis-

criminative learning algorithm has the potential to improve the

matching of the symbolic elements, at a fine precision level.

Furthermore, we have compared several representations of

the audio performance as well as several distance functions,

for this alignment task. Our results indicate that the symmetric

Kullback-Leibler divergence is a good choice of distance,

and that both the spectrogram and the CQT-based semigram

representations provide very accurate alignments.

Many perspectives can be imagined for the continuation

of this work. First, one can investigate the use of other

kinds of features, through other distance functions, but also

different observations, e.g. the output of a Non-negative Matrix

Factorization algorithm such as in [22]. In this work, we

have only investigated the exploitation of a single “pitch

feature function”. Nevertheless, the CRF framework allows

for any number of features. In fact, the symmetric Kullback-

Leibler divergence used here is already constructed as the
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superposition of two distance functions. In the same way,

any mixture of features can be imagined, whose respective

weights can be learned. Features related to other points than

the current frame could also be exploited, such as in [17].

Some results show that the ML learning criterion does

not always yield the best alignment accuracy. Thus, other

criteria could be investigated, both for the learning of the

features and for the decoding of the label sequence, such as

the minimum segmentation error proposed in [25]. Finally,

the use of a single template for each pitch in the construction

of all the concurrency template is a rather strong constraint.

Indeed, it disregards the possibly large variations due to

different instruments and recording conditions. Hence, one

can imagine an adaptive approach which would adjust the

projection matrix to the characteristics of each piece, and

possibly to each of the present instruments.
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