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Abstract

In diffusion-based saliency detection, an image is parti-

tioned into superpixels and mapped to a graph, with super-

pixels as nodes and edge strengths proportional to super-

pixel similarity. Saliency information is then propagated

over the graph using a diffusion process, whose equilibrium

state yields the object saliency map. The optimal solution

is the product of a propagation matrix and a saliency seed

vector that contains a prior saliency assessment. This is

obtained from either a bottom-up saliency detector or some

heuristics. In this work, we propose a method to learn op-

timal seeds for object saliency. Two types of features are

computed per superpixel: the bottom-up saliency of the su-

perpixel region and a set of mid-level vision features infor-

mative of how likely the superpixel is to belong to an object.

The combination of features that best discriminates between

object and background saliency is then learned, using a

large-margin formulation of the discriminant saliency prin-

ciple. The propagation of the resulting saliency seeds, using

a diffusion process, is finally shown to outperform the state

of the art on a number of salient object detection datasets.

1. Introduction

Saliency detection has been a topic of substantial re-

search in the recent vision literature. Early efforts aimed

to predict the locations of human eye fixations and intro-

duced the fundamental principles of saliency detection. [24]

equated saliency to a local center-surround operation and

proposed a biologically inspired saliency network. [16] in-

troduced discriminant saliency, implementing this center-

surround operation with discriminant measures of contrast

between feature responses at an image location and its

neighborhood. [9] proposed a global definition, which

equates saliency to uniqueness of the visual stimulus, by

setting the saliency of a location to the inverse probabil-

ity of its responses under the response distribution of the

whole image. [22] investigated the role of scale in saliency,

proposing a measure based on the frequency spectrum of the

image. [20] formulated saliency as the stationary distribu-

tion of a random walk defined over a graph based represen-

tation of the image. Many papers have since been written

by combining these principles or extending them to other

tasks [7].

While these methods were purely bottom-up (stimulus

driven) some researchers proposed models of top-down

saliency. These use high-level information to guide the

saliency computation, equating saliency to the detection of

stimuli from certain object classes [14]. While bottom-up

saliency predicts eye fixations, these methods are useful for

high-level vision tasks, such as object recognition and lo-

calization. However, they require the definition of object

classes of interest and are, thus, less generic. A compromise

is to either consider the responses of object detectors as fea-

tures for bottom-up saliency [27], or formulate saliency as a

mid-level vision task. In this area, substantial attention has

been devoted to the problem of object saliency [8]. The goal

is no longer to predict eye fixations or the locations of spe-

cific object classes, but to identify the locations of salient

objects, independently of what these may be [30].

Methods in this class are generally based on the ear-

lier principles of bottom-up saliency, e.g. local measures

of center-surround contrast [11, 30, 26] or global measures

of stimulus uniqueness [11]. They differ from the eye-

fixation models in three main aspects. First, rather than

pixels, they process image primitives informative of object

shape and segmentation, e.g. superpixels [11, 26] or im-

age patches [18, 17, 19]. Second, to overcome the propen-

sity of bottom-up saliency to respond more to edges than

(homogeneous) object interiors, they include some form of

spatial propagation of saliency information. This can be

implemented various ways, including conditional random

fields (CRFs) [30, 31], random walk models [19], energy

models [10, 19], or diffusion processes [38]. Third, beyond

the classical measures of bottom-up saliency, these models

may also account for objectness features. These are fea-

tures indicative of the likelihood of a superpixel belonging

to a generic object, e.g. based on the distribution of edges

in the image, geometric constraints, etc. These features are

included in the spatial propagation model, aiding to focus

the propagation of information on object regions.
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Figure 1: Salient object detection by graph diffusion. Images are decom-

posed into superpixel graphs. Given an initial set of saliency seeds s a

diffusion process, characterized by matrix A, is used to propagate saliency

information throughout the graph. The optimal solution y = As is an

object saliency map.

In all these approaches, the image is mapped into a graph

with image superpixels (or patches) as nodes and edge

strength proportional to superpixel similarity. The spatial

propagation model then performs inference on this graph,

as illustrated in Figure 1. Under some models this corre-

sponds to an energy minimization problem. For others, the

process can be mapped into a random walk that converges to

an equilibrium probability distribution. Finally, some mod-

els interpret the propagation as a manifold ranking problem,

where nodes are ordered by similarity to a query consisting

of a node subset. Interestingly, all these formulations have

a simple closed-form solution, which is identical.

This solution consists of the product As of a matrix A,

derived from the affinity matrix of the graph, and a vec-

tor s, which contains saliency information. While A con-

trols the propagation of information, s is the set of saliency

seeds to be propagated. Although several seed mechanisms

have been proposed in the literature, they tend to be heuris-

tic in nature, e.g. selecting the super-pixels that most dif-

fer from those along the image border [38]. In this work,

we introduce an alternative procedure, which learns opti-

mal saliency seeds for object saliency. For this, we define

s as a linear combination of feature responses and learn the

vector of feature weights that maximizes the discriminant

saliency criterion of [16]. The optimization is 1) based on

a large margin definition of the contrast between feature re-

sponses to object and background and 2) solved by gradi-

ent descent. The algorithm is applied to a combination of

bottom-up saliency and objectness features. The resulting

saliency detector can be interpreted as an object saliency

detector driven by an eye fixation model, but which also ac-

counts for mid-level vision cues that are informative of ob-

jectness. An extensive experimental evaluation shows that

the procedure obtains state-of-the-art results on various ob-

ject saliency datasets.

2. Graph-based saliency

In graph-based approaches to object saliency, an image

is mapped into a graph G = (V,E) of N nodes. Node

vi corresponds to the ith image location (which could be a

pixel, image patch, or superpixel) and edge eij links node

pair (i, j). Given a vector of N saliency observations s, e.g.

node saliencies obtained with a bottom-up saliency detector,

the goal is to determine an object saliency map y by prop-

agating information along the graph. Note that y is again a

N dimensional vector, with one entry per location.

2.1. Conditional random fields

A popular approach is to rely on a CRF [30, 31]. This is a

model of the form P (y|s) = 1
Z exp {−E(y|s)} where y ∈

{−1, 1}N is a binary vector, Z a normalization constant and

E(y|s) an energy function. The latter is of the form

E(y|s) =
∑

i

A(yi, si) +
∑

ij

1

Ni

∑

j∈Ni

I(yi, yj, si, sj).

(1)

where A(yi, si) is the unary potential at node i,
I(yi, yj, si, sj) the pairwise potential between nodes i and

j, and Ni the set of neighbors of node i according to G.

Typical energy functions for saliency have unary poten-

tials that assign low energy to locations of large si, e.g.

A(y, s) = −ys, and pairwise potentials that encourage spa-

tial smoothness, e.g. I(yi, yj , si, sj) = yiyj |si − sj |.

2.2. Quadratic energy models

The binary nature of the labels yi makes CRF learning

and inference fairly complex, typically requiring iterative

belief propagation algorithms. Binary labels are also not

strictly needed for the saliency, where a graded saliency

map is frequently preferred. A popular alternative to the

binary CRF is to minimize an energy function of the form

E(y|s) =
∑

i

ki(yi − si)
2 + λ

∑

i,j

1

2
wi,j(yi − yj)

2 (2)

where yi ∈ [0, 1], ki are weighs, usually set to the identity

(ki = 1), and wi,j entries of the affinity matrix of G, i.e.

wi,j is some measure of similarity between nodes i and j
[19]. It can be shown that this problem has closed form

solution

y∗ = (K+ λL)−1(λKs) (3)

where L = D − W is the graph Laplacian, D =
diag{d11, d22, ..., dNN} the degree matrix of the graph, i.e.

dii =
∑

j wij , and K = diag{k1, k2, ..., kN}. Quadratic

energy models have been used for object saliency in [10].

2.3. Random walks

An alternative possibility is to formulate saliency as the

equilibrium distribution of a random walk on the graph G.

In this case, y is a probability distribution over the nodes,

and a transition probability matrix is defined as

P = D−1W. (4)



Method Propagation matrix A

Quadratic energy models (K+ λ(D−W))−1K

Random walks (I− αWD−1)−1

Manifold ranking (I− αD−1/2WD−1/2)−1

Table 1: Diffusion matrices for graph based similarity propagation.

The random walk is then characterized by the iteration

yt+1 = PTyt and converges to an equilibrium distribution

y∗ which is the principal eigenvector ofP. This equilibrium

distribution can be manipulated by introducing a vector s of

probabilities of random jumps to the different nodes. In this

case, the random walk is characterized by

yt+1 = αPTyt + (1− α)s (5)

where 1 − α is the jump probability. It can be shown [12]

that the resulting the equilibrium distribution is

y∗ = (1− α)(I− αPT )−1s. (6)

Random walk models have been proposed for object

saliency detection in [19, 36].

2.4. Manifold ranking

In manifold ranking, the goal is to compute a rank yi
for each node in the graph with respect to a query s. In this

case the query is binary, si ∈ {0, 1} and the optimal ranking

minimizes an energy of the form

∑

i,j

wij

(

yi√
dii

− yi√
djj

)2

+ µ
∑

i

(yi − si)
2 (7)

whereµ balances the unary (ensuring that the predicted rank

matches the query) and pairwise (ensuring that the predic-

tions are smooth over the graph) potentials. The optimal

solution is [41]

y∗ = (I− αN)−1s (8)

where N = D−1/2WD−1/2 is the normalized Laplacian

of the graph and and α = 1/(1 + µ). This method has been

used for object saliency detection in [38].

2.5. Saliency seeds

The methods above are quite similar. In all cases, the

vector s is a set of saliency seeds, which are propagated

throughout the graph, according to the node similarities de-

fined by the affinity matrix W. High affinities wij 1) en-

courage similar saliency for yi and yj under the energy

model, 2) increase the probability of transitioning from

node i to j under the random walk model, and 3) define a

small geodesic distance between node i and j for manifold

ranking. Nodes y∗i with paths of high pairwise similarity to

salient seed nodes in s∗j receive high saliency values. In all

cases, the optimal solution has the form

y∗ = As (9)

where A is a diffusion matrix, as defined in Table 1.

It should be noted that a larger set of diffusion processes

has been studied in vision and learning. A review of these

techniques, in the context of image retrieval, is presented

in [12]. Most of these methods have the form above, us-

ing a different transition matrix P. Much less attention has

been devoted to the determination of the seed vector s. This

is not surprising, since in retrieval applications this is sim-

ply a binary vector that indicates query images. However,

for saliency, the seeds si represent a preliminary1 assess-

ment of superpixel saliency and can play a significant role

in the optimal solution. In the saliency context, they are best

thought of as the outcome of a pre-attentive, purely stimu-

lus driven, and mostly local perceptual process, which is

extended into a spatially coherent saliency percept by the

graph diffusion. This can be understood by noting that the

seeds si define the unary potentials of (1), (2) and (7) and

the probabilities of a random jump to each node in (5).

In the object saliency literature, saliency seeds have been

mostly equated to bottom-up saliency. Different propos-

als include measures of pixel contrast [30], various imple-

mentations [30, 11, 25] of the discriminant center-surround

saliency principle of [16], or variations [19] on the graph-

based saliency model of [20]. This is usually complemented

by a set of features that capture some properties of objects.

These can be though as mid-level cues for object segmen-

tation and are usually quite simple, e.g. measures of com-

pactness of image regions of similar color [30, 36, 34, 25].

While some more sophisticated objectness measurement,

such as the one proposed by [3], have been considered for

object saliency [10], the impact of such mid-level cues is

still poorly understood. In fact, there have been no attempts

in the literature to produce optimal seeds for object saliency.

3. Optimal seeds for object saliency

In this section, we propose an algorithm for learning

saliency seeds, by combining pre-attentive saliency maps

and mid-level vision cues for object perception.

3.1. Feature based saliency diffusion

An image x is first segmented into N superpixels {xi},

i = (1 . . .N), using the algorithm of [2], and represented

as a graph G = (V,E) where each node corresponds to a

1Note that this is not to be confused with the initial state y0 of the

random walk of (5), which does not have influence on the equilibrium

solution of (6).



Figure 2: From image to graph: image is first decomposed into super-

pixels. A graph is then assembled by connecting 1) superpixel pairs that

are either neighbors or “neighbors of neighbors,” according to (10), and 2)

boundary superpixels.

superpixel. Following [38], we adopt the affinity matrix

wij =

{

ν(xi,xj) if j ∈ Ni or ∃k ∈ Ni|j ∈ Nk

0 otherwise

(10)

where Ni is the set of neighbors of superpixel xi. These

are the superpixels that share an edge with xi. Furthermore,

all superpixels in the boundary of the image are considered

neighbors of each other. The construction of the graph is

illustrated in Figure 1.

The function ν(xi,xj) is a measure of visual similarity

of two superpixels. This is usually defined as a difference

between the color distributions of xi and xj . A discriminant

alternative [26, 35], which we adopt, is to rely on a classi-

fier to determine if xi and xj belong to the same object. In

our implementation, this is a boosted decision tree, which

operates on a feature space that accounts for color differ-

ence, texture difference, and geometric properties such as

distance. Given the affinity matrix W, saliency propagation

is implemented with (3). While we have not investigated

other diffusion schemes, we did perform some preliminary

experiments to determine a good weighting matrix K. The

choice K = D leads to the propagation matrix

A = (I−D−1W)−1, (11)

which produced the best results in these experiments and is

adopted in the remainder of the paper.

3.2. Seed representation

The emphasis of this work is on the seed vector s. Since

this contains a saliency value per graph node and nodes are

image dependent, it is impossible to learn a universal s. It

is possible, however, to learn a universal combination of

features informative of saliency. In this work we consider a

linear combination of the form

s = F(x)w (12)

where F is an N × K matrix, whose columns are the re-

sponses of K features to image x. The weight vector w

determines the contribution of the different features to the

seed vector. Note that, with these seeds, the saliency map

of (9) can be written as

y(x) = A(x)F(x)w (13)

=
∑

i

wiA(x)fi(x) (14)

where fi(x) is the ith column of F(x) and contains the

saliency information derived from feature i. Hence, the dif-

fusion process can be interpreted as a linear combination

of feature saliency diffusions yi(x) = A(x)fi(x), whose

weights wi encode the importance of the different features

for saliency perception. This implies that the formulation

can implement feature-based attention mechanisms, e.g. by

varying w over time. This is a topic for future research.

3.3. Learning

In this work, w is a fixed vector learned from an an-

notated corpus D = {(x(1),m(1)), . . . , (x(n),m(n))} of

images x(i) and object saliency maps m(i). Optimality is

defined in the discriminant saliency sense of [16], i.e. the

optimal w is the one that best discriminates between object

and background superpixels. This is implemented with the

large-margin structured earning optimization [37]

w∗ = argmin
w

1

2
α ‖ w ‖2 (15)

+
∑

k

∑

{ij|δk
i
=1,δk

j
=0}

max(0, 1− (yi(x
(k))− yj(x

(k)))

where y(x) is the object saliency map of (14) and δki =
mi(x

(k)) an indicator of the saliency of the ith superpixel

of the kth image. Note that the optimization maximizes the

object-background discrimination of the saliency maps at

equilibrium, i.e. after the diffusion process of (9), by learn-

ing to rank the saliency of all pairs of object-background

superpixels within each image. The optimization is carried

out by gradient descent. The feature transformation F(x)
includes both a pre-attentive bottom-up saliency map and

mid-level features for object perception.

3.4. Preattentive saliency map

The bottom-up saliency map is based on a sparse image

decomposition. Images are first decomposed into patches

{ti} of 8×8 pixels and 3 RGB color channels. A dictionary

Ψ ∈ R
192×B of B basis functions is then learned from a

collection of such patches [5]. The sparse representation is

finally obtained with the fast decomposition of [23]. This

consists of setting B = 192 and approximating the sparse

coefficients of patch t with ξ = Ψ−1t.
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Figure 3: Histograms of two ξi and MAP GGD fits.

The sparse coefficients are used as features for the com-

putation of saliency. Let ξi(l), i ∈ {1, . . . , B}, be the

sparse coefficients of t(l), the patch centered at location l of

image x. When x is a natural image, the probability distri-

bution of ξi is well approximated by a generalized Gaussian

distribution (GGD)

p(ξi;αi, βi) =
βi

2αiΓ(
1
βi
)
exp

(

−
∣

∣

∣

∣

ξi
αi

∣

∣

∣

∣

βi

)

, (16)

where αi is a scale parameter, βi a shape parameter, and

Γ(z) =
∫∞

0
e−ttz−1dt, t > 0, the Gamma function. Given

a set of n i.i.d samples, Di = {ξ(1)i , ..., ξ
(n)
i }, the maximum

a posteriori (MAP) estimate of αi, under the assumption of

a conjugate (Gamma distributed) prior, is given by [16]

α̂i,MAP =





1

ki





n
∑

j=1

|ξ(j)i |βi + ν









1/βi

, (17)

where ki =
n+η
βi

and ν, η are fixed prior parameters (ν =

η = 10−3). As in [15], βi is learned for each image, using

σ2 =
α2Γ( 3

βi
)

Γ( 1
βi
)

κ =
Γ( 1

βi
)Γ( 5

βi
)

Γ( 3
βi
)2

(18)

where σ2 and κ are the variance and kurtosis of the ith fea-

ture. Figure 3 shows typical examples of the resulting fits.

Following [9], the saliency of image location l is

s(ξi(l);αi, βi) = − log p(ξi(l);αi, βi). (19)

Using (16) and (17) leads to

s(ξi(l)) =
|ξi(l)|βi

1
k (
∑n

j=1 |ξ
(j)
i |βi + ν)

+Q (20)

where Q is a constant that does not depend on ξi(l). This

saliency measure can be computed efficiently using integral

images [16]. In our implementation, the normalizing sam-

ples ξ
(j)
i are the sparse coefficients in a neighborhood of the

patch location l. Finally, 1) the saliency maps derived from

the B feature channels are combined with

sf (l) =

B
∑

1

ais(ξi(l)) (21)

and 2) the pre-attentive saliency score of superpixel xi set

to the mean saliency score of its pixels. The weights ai
are learned. In our experiments this is based on the eye

fixation dataset of [9], from which we randomly selected

10 of the top 2% salient patches (according to the ground

truth) as positive examples and 10 out of the bottom 40% as

negative examples in each image. The associated saliency

scores (s(ξi) and ground truth) are used to learn the weights

ai using realboost [13].

3.5. Midlevel features

A number of features have been proposed to evaluate the

likelihood of a superpixel belonging to a generic object. The

following were adopted to simulate mid-level saliency cues.

Element uniqueness: measures the rarity of a superpixel

color [34] with

Ui =

N
∑

j=1

||ci − cj ||2w(l)
ij (22)

w
(l)
ij =

1

Zi
exp(− 1

2σ2
l

||li − lj ||2) (23)

where li and ci are the position and average CIELab color of

the ith superpixel, respectively. Zi is a normalization factor

to ensure that
∑N

j=1 w
(l)
ij = 1. We compute the element

uniqueness scores using three values of σl.

Element distribution measures the spatial variance of the

color of a superpixel [34], according to

Di =
N
∑

j=1

||lj − l
(µ)
i ||2w(c)

ij (24)

where w
(c)
ij = 1

Zi
exp(− 1

2σ2
c
||ci − cj ||2) and l

(µ)
i =

∑N
j=1 w

(c)
ij lj is the center of mass of color ci. Zi is a nor-

malization constant such that
∑N

j=1 w
(c)
ij = 1. Again, we

compute the element distribution scores for three different

values of σc.

Pattern distinctness [32] measures the ℓ1 mean distance of

patches in a superpixel to the mean patch, by principal com-

ponent analysis (PCA). This is defined as P(xi) = ||x̂i||1,
where x̂i contains the PCA coefficients of patch xi.

Color distinctness same as pattern distinctness but for a

PCA of the RGB color space of each patch.

Center bias distance between superpixel center and image

center, normalized to [0, 1].



Backgroundness similarity between a superpixel and the

superpixels in the four image boundaries, using the similar-

ity measure ν(xi, xj) of (10).

Local contrast measures [26] based on Chi-square dis-

tances between distributions of color and texton re-

sponse [29] and geometric attributes such as size, and posi-

tion.

4. Experiments

Several experiments were performed to evaluate the pro-

posed saliency detector. Although eye fixation prediction

is not the primary objective of this work, we first study the

effectiveness the bottom-up saliency map of Section 3.4 in

predicting eye fixations. This is followed by an evaluation

of the object saliency detector.

4.1. Eye fixation prediction

Protocol: We use four benchmark datasets of eye fix-

ations. Bruce [9] contains 120 images, mostly of indoor

and city scenes. Judd [27] consists of 1003 images, many

of which contain human faces. This dataset has a high de-

gree of photographer bias and few subjects per scene. Koot-

stra [28] contains 100 images from a wide variety of scenes.

Finally, the subset of Pascal VOC2008 of [39] (denoted

VOC2008 1000) contains 1000 images. The parameters of

the proposed model were learned on VOC2OO8 1000 and

the model tested on the remaining datasets. Performance is

measured with the shuffled AUC score of [40].

The proposed saliency detector (denoted sparse-GGD) is

compared to the image signature method of [21], the sparse

method of [23], the spectral method of [22], and the SUN

method [40]. As discussed in [6], the smoothness of the

saliency map plays an important role in the performance of

eye-fixation algorithms. We choose the optimal Gaussian

smoothing kernel for each algorithm. The performance is

summarized in Table 2. The proposed saliency model con-

sistently outperforms all other models on the four datasets.

4.2. Salient object detection

Protocol: All models are evaluated by comparing the

predicted object saliency map to the binary ground truth,

using two metrics: AUC and AP (average precision) scores.

Five datasets are used. MSRA5000 [30] contains 5000

images from the MSRA dataset, with refined manually seg-

mented ground-truth. SED1 [4] contains 100 images, each

with a single salient object. SED2 [4] contains 100 images

with two salient objects each. Both SED1 and SED2

include pixel-wise salient object segmentation ground-

truth. SOD [33] contains 300 images from the Berkeley

segmentation dataset with the salient object boundary

annotated. Since this dataset contains multiple objects per

image, it can be challenging. Finally, VOC2008 1023 is a

subset of the VOC2008 dataset, where each image contains

one or more salient objects plus segmented groundtruth.

The proposed saliency detector is compared to eight of

the best performing methods in the literature - Gof [17], CB

[25], HC [11], RC [11], GBMR [38], PCA [32], FT [1],

and SF [34]. For the proposed approach, we considered

two variants. SalseedProp has no learning, using bottom-

up saliency alone to determine seeds and (11) for propaga-

tion. OptseedProp uses the optimal seeds learned by (15)

and (11) for propagation. Table 3 summarizes the perfor-

mance of all algorithms on all datasets. Note that SOD

and VOC2008 1023 are most challenging, MSRA5000 and

SED1 easier, and SED2 has intermediate difficulty. Among

the previous methods, the recently proposed GBMR and

PCA achieved best performance. The proposed Salseed-

Prop is better than FT, Gof and HC in all datasets, and than

CB in all but the relatively easy MSRA5000 dataset. This

is likely because CB is well suited to scenes with a simple

background and a single object. SalseedProp performs on

par with RC but is inferior to GBMR and PCA. On the other

hand, OptseedProp performs consistently better than all of

Gof, CB, HC, RC, GBMR, PCA, FT, SF, in all datasets ex-

cept SED2 (where RC performs slightly better). The result

of applying the various algorithms to representative images

from VOC2008 1023 and MSRA5000 are shown in Fig-

ure 4. Note how learning optimal salient seeds can improve

saliency performance.

5. Conclusion

In this work, we presented an approach for salient ob-

ject detection. The image is represented as a graph over

the set of its superpixels. The saliency of salient seed lo-

cations is propagated through the graph via a diffusion pro-

cess. Unlike previous heuristic approaches to seed selec-

tion, an optimal set of salient seeds is learned using a large

margin formulation of the discriminant saliency principle.

An extensive experimental evaluation shows that the proce-

dure obtains state of the art results on a number of object

saliency datasets.
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