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Abstract

Stereo image pairs can be used to improve the perfor-

mance of super-resolution (SR) since additional informa-

tion is provided from a second viewpoint. However, it is

challenging to incorporate this information for SR since

disparities between stereo images vary significantly. In

this paper, we propose a parallax-attention stereo super-

resolution network (PASSRnet) to integrate the information

from a stereo image pair for SR. Specifically, we intro-

duce a parallax-attention mechanism with a global recep-

tive field along the epipolar line to handle different stereo

images with large disparity variations. We also propose a

new and the largest dataset for stereo image SR (namely,

Flickr1024). Extensive experiments demonstrate that the

parallax-attention mechanism can capture correspondence

between stereo images to improve SR performance with a

small computational and memory cost. Comparative results

show that our PASSRnet achieves the state-of-the-art per-

formance on the Middlebury, KITTI 2012 and KITTI 2015

datasets.

1. Introduction

Super-resolution (SR) aims to reconstruct high-

resolution (HR) images from their low-resolution (LR)

counterparts. Recovering an HR image from a single shot

is a long-standing problem [1, 2, 3]. Recently, dual cameras

are becoming increasingly popular in mobile phones and

autonomous vehicles. It is already demonstrated that

subpixel shifts contained in LR stereo images can be used

to improve SR performance [4]. However, since disparities

between stereo images can vary significantly for different

baselines, focal lengths, depths and resolutions, it is highly

challenging to incorporate stereo correspondence for SR.

Traditional multi-image SR methods [7, 8] use patch re-

currence across images to obtain correspondence. However,

these methods cannot exploit sub-pixel correspondence and

their computational cost is high. Recent CNN-based frame-

works [9, 10, 11] incorporate optical flow estimation and SR

Bicubic SRCNN LapSRN

StereoSR Ours Groundtruth

Figure 1: Visual results achieved by bicubic interpolation,

SRCNN [1], LapSRN [5], StereoSR [6] and our network for

2× SR. These results are achieved on “test image 002” of

the KITTI 2015 dataset.

in unified networks to solve the video SR problem. How-

ever, these methods cannot be directly applied to stereo im-

age SR since the disparity can be much larger than their

receptive field.

Stereo matching has been investigated to obtain corre-

spondence between a stereo image pair [12, 13, 14]. Re-

cent CNN-based methods [15, 16, 17, 18] use 3D or 4D

cost volumes in their networks to model long-range depen-

dency between stereo image pairs. Intuitively, these CNN-

based stereo matching methods can be integrated with SR

to provide accurate correspondence. However, 4D cost vol-

ume based methods [15, 16] suffer from a high computa-

tional and memory burden, which is unbearable for stereo

image SR. Although the efficiency of 3D cost volume based

methods [17, 18] is improved, these methods cannot handle

stereo images with large disparity variations since a fixed

maximum disparity is used to construct a cost volume.

Recently, Jeon et al. proposed a stereo SR network

(StereoSR) [6] to provide correspondence cues for SR using

an image stack. Specifically, the image stack is obtained by

concatenating the left image and the images generated by

shifting the right image with different intervals. A direct

mapping between parallax shifts and an HR image is then

obtained. However, the flexibility of this method for differ-

ent sensors and scenes is limited since the largest allowed

disparity is fixed (i.e., 64 in [6]) in this algorithm.
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In this paper, we propose a parallax-attention stereo SR

network (PASSRnet) to incorporate stereo correspondence

for the SR task. Given a stereo image pair, a residual atrous

spatial pyramid pooling (ASPP) module is first used to gen-

erate multi-scale features. Then, these features are fed to

a parallax-attention module (PAM) to capture stereo corre-

spondence. For each pixel in the left image, its feature sim-

ilarities with all possible disparities in the right image are

computed to generate an attention map. Consequently, our

PAM can capture global correspondence while maintaining

high flexibility. Afterwards, attention-driven feature aggre-

gation is performed to update the features of the left image.

Finally, these features are used to generate the SR result.

Ablation study is performed on the KITTI 2015 dataset to

test our PASSRnet. Comparative experiments are further

conducted on the Middlebury, KITTI 2012 and KITTI 2015

datasets to demonstrate the superior performance of our net-

work (as shown in Fig. 1).

Our main contributions can be summarized as fol-

lows: 1) We propose a PASSRnet for SR by incorpo-

rating stereo correspondence; 2) We introduce a generic

parallax-attention mechanism with a global receptive field

along the epipolar line to handle different stereo images

with large disparity variations. It is demonstrated that

reliable correspondence can be efficiently generated by

the parallax-attention mechanism for the improvement of

SR performance; 3) We propose a new dataset, namely

Flickr1024, for the training of stereo image SR networks.

The Flickr1024 dataset consists of 1024 high-quality stereo

image pairs and covers diverse scenes; 4) Our PASSRnet

achieves the state-of-the-art performance as compared to re-

cent single image SR and stereo image SR methods.

2. Related Work

In this section, we briefly review several major works for

SR and long-range dependency learning.

2.1. Superresolution

Single Image SR Since the seminal work of super-

resolution convolutional neural network (SRCNN) [1],

learning-based methods have dominated the research of sin-

gle image SR. Kim et al. [19] proposed a very deep super-

resolution network (VDSR) with 20 convolutional layers.

Tai et al. [20] developed a deep recursive residual network

(DRRN) to control model parameters. Recently, Zhang et

al. [21] proposed a residual dense network (RDN) to facili-

tate effective feature learning through a contiguous memory

mechanism.

Video SR Liao et al. [22] introduced the first CNN for

video SR. They performed motion compensation to gener-

ate an ensemble of SR-drafts, and then employed a CNN to

reconstruct HR frames from the ensemble. Caballero et al.

[9] proposed an end-to-end video SR framework by incor-

porating a motion compensation module with an SR mod-

ule. Tao et al. [10] integrated an encoder-decoder network

with LSTM to fully use temporal correspondence. This ar-

chitecture further facilitates the extraction of temporal con-

text. Since correspondence between adjacent frames mainly

exists within a local region, video SR methods focus on the

exploitation of local dependency. Therefore, they cannot be

directly applied to stereo image SR due to the non-local and

long-range dependency in stereo images.

Light-field Image SR Light-filed imaging can capture ad-

ditional angular information of light at the cost of spatial

resolution. To enhance spatial resolution, Yoon et al. [23]

introduced the first light-field convolutional neural network

(LFCNN). Yuan et al. [24] proposed a CNN framework

with a single image SR module and an epipolar plane im-

age enhancement module. To model the correspondence be-

tween images of adjacent sub-apertures, Wang et al. [25]

developed a bidirectional recurrent CNN. Their network

uses an implicit multi-scale feature fusion scheme to ac-

cumulate contextual information for SR. Note that, these

methods are specifically proposed for light-field imaging

with short baselines. Since stereo imaging usually has a

much larger baseline than light-field imaging, these meth-

ods are unsuitable for stereo image SR.

Stereo Image SR Bhavsar et al. [26] argued that image

SR and HR depth estimation are intertwined under stereo

setting. Therefore, they proposed an integrated approach to

jointly estimate the SR image and HR disparity from LR

stereo images. Recently, Jeon et al. [6] proposed a Stere-

oSR to employ parallax prior. Given a stereo image pair, the

right image is shifted with different intervals and concate-

nated with the left image to generate a stereo tensor. The

tensor is then fed to a plain CNN to generate the SR result

by detecting similar patches within the disparity channel.

However, StereoSR cannot handle different stereo images

with large disparity variations since the number of shifted

right images is fixed.

2.2. Longrange Dependency Learning

To handle different stereo images with varying dispari-

ties for SR, long-range dependency in stereo images should

be captured. In this section, we review two types of meth-

ods for long-range dependency learning.

Cost Volume Cost volume is widely applied in stereo

matching [15, 16, 17] and optical flow estimation [27, 28].

For stereo matching, several methods [15, 16] use naive

concatenation to construct 4D cost volumes. These meth-

ods concatenate left feature maps with their corresponding

right feature maps across all disparities to obtain a 4D cost

volume (i.e., height×width×disparity×channel). Then, 3D

CNNs are usually used for matching cost learning. How-

ever, learning matching costs from 4D cost volumes suf-

fers from a high computational and memory burden. To
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Figure 2: An overview of our PASSRnet.

achieve higher efficiency, dot product is used to reduce fea-

ture dimension [17, 18], resulting in 3D cost volumes (i.e.,

height×width×disparity). However, due to the fixed max-

imum disparity in 3D cost volumes, these methods are un-

able to handle different stereo image pairs with large dispar-

ity variations.

Self-attention Mechanisms Attention mechanisms have

been widely used to capture long-range dependency [29,

30]. For self-attention mechanisms [31, 32, 33], a weighted

sum of all positions in spatial and/or temporal domain is

calculated as the response at a position. Through matrix

multiplication, self-attention mechanisms can capture the

interaction between any two positions. Consequently, long-

range dependency can be modeled with a small increase

in computational and memory cost. Self-attention mech-

anisms have been successfully applied in image modeling

[32] and semantic segmentation [33]. Recent non-local net-

works [34, 35] share a similar idea and can be considered

as a generalization of self-attention mechanisms. Note that,

since self-attention mechanisms model dependency across

the whole image, directly applying these mechanisms to

stereo image SR involves unnecessary calculations.

Inspired by self-attention mechanisms, we develop a

parallax-attention mechanism to model global dependency

in stereo images. Compared to cost volumes, our parallax-

attention mechanism is more flexible and efficient. Com-

pared to self-attention mechanisms, our parallax-attention

mechanism takes full use of epipolar constraints to re-

duce search space and improve efficiency. Moreover, the

parallax-attention mechanism enforces our network to focus

on the most similar feature rather than collecting all similar

features for correspondence generation. It is demonstrated

that the parallax-attention mechanism can generate reliable

correspondence to improve SR performance (Section 4.3.1).

3. Method

Our PASSRnet takes a stereo image pair as input and

super-resolves the left image. The architecture of our PASS-

Rnet is shown in Fig. 2 and Table 1.

3.1. Residual Atrous Spatial Pyramid Pooling
(ASPP) Module

Feature representation with rich context information is

important for correspondence estimation [16]. Therefore,

both large receptive filed and multi-scale feature learning

are required to obtain a discriminative representation. To

this end, we propose a residual ASPP module to enlarge the

receptive field and extract hierarchical features with dense

pixel sampling rate and scales.

As shown in Fig. 2 (a), our residual ASPP module is

constructed by alternately cascading a residual ASPP block

with a residual block. Input features are first fed to a resid-

ual ASPP block to generate multi-scale features. These re-

sulting features are then sent to a residual block for feature

fusion. This structure is repeated twice to produce final fea-

tures. Within each residual ASPP block (as shown in Fig. 2

(b)), we first combine three dilated convolutions (with dila-

tion rates of 1, 4, 8) to form an ASPP group, and then cas-

cade three ASPP groups in a residual manner. Our residual

ASPP block not only enlarges the receptive field, but also

enriches the diversity of convolutions, resulting in an en-

semble of convolutions with different receptive regions and

dilation rates. The highly discriminative feature learned by

our residual ASPP module is beneficial to the overall SR

performance, as demonstrated in Sec. 4.3.1.
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Table 1: The detailed architecture of our PASSRnet.

LReLU represents leaky ReLU with a leakage factor of 0.1,

dila stands for dilation rate, ⊗ denotes batch-wise matrix

multiplication, and s is the upscaling factor.

Name Setting Input Output

input H×W×3 H×W×3

conv0
3×3

LReLU
H×W×3 H×W×64

resblock0
[

3×3
3×3

]

H×W×64 H×W×64

Residual ASPP Module

resASPP

1 a

[ 3×3
LReLU

dila=1
,

3×3
LReLU

dila=4
,

3×3
LReLU

dila=8

1×1

]

×3 H×W×64 H×W×64

resblock

1 a

[

3×3
3×3

]

H×W×64 H×W×64

resASPP

1 b

[ 3×3
LReLU

dila=1
,

3×3
LReLU

dila=4
,

3×3
LReLU

dila=8

1×1

]

×3 H×W×64 H×W×64

resblock

1 b

[

3×3
3×3

]

H×W×64 H×W×64

Parallax-Attention Module

resblock2
[

3×3
3×3

]

H×W×64 H×W×64

conv2 a 1×1 H×W×64 H×W×64
conv2 b 1 × 1, reshape H×W×64 H×64×W

conv2 c 1×1 H×W×64 H×W×64

att map conv2 a ⊗ conv2 b
H×W×64
H×64×W

H×W×W

mult att map ⊗ conv2 c
H×W×W

H×W×64
H×W×64

fusion 1×1 H×W×129 H×W×64
CNN

resblock3

×4

[

3×3
3×3

]

H×W×64 H×W×64

sub-pixel 1×1, pixel shuffle H×W×64 sH×sW×64
conv3 b 3×3 sH×sW×64 sH×sW×3

3.2. Parallaxattention Module (PAM)

Inspired by self-attention mechanisms [32, 33], we de-

velop PAM to capture global correspondence in stereo im-

ages. Our PAM efficiently integrates the information from

a stereo image pair.

Parallax-attention Mechanism The architecture of our

PAM is illustrated in Fig. 2 (c). Given two feature maps

A,B∈R
H×W×C , they are fed to a transition residual block

to generate A0 and B0. Then, A0 is fed to a 1 × 1 convo-

lution layer to produce a query feature map Q∈R
H×W×C .

Meanwhile, B0 is fed to another 1 × 1 convolution layer

to produce S ∈ R
H×W×C , which is then reshaped to

R
H×C×W . Batch-wise matrix multiplication is then per-

formed between Q and S and a softmax layer is applied,

resulting in a parallax attention map MB→A ∈ R
H×W×W .

For more details, please refer to the supplemental mate-

rial. Next, B is fed to a 1 × 1 convolution to generate

R ∈ R
H×W×C , which is further multiplied by MB→A to

produce features O ∈ R
H×W×C . As a weighted sum of

features at all possible disparities, O is then integrated with

ours groundtruth

Figure 3: Visual comparison between parallax-attention

maps Mright→left generated by our PAM and the groundtruth.

These attention maps (100×100) correspond to the regions

(1×100) marked by blue and pink strokes in the left image.

its corresponding local features A. Since PAM can gradu-

ally focus on the features at accurate disparities using fea-

ture similarities, correspondence can then be captured. Note

that, once MB→A is ready, A and B are exchanged to pro-

duce MA→B for valid mask generation (as described below).

Finally, stacked features and a valid mask are fed to a 1× 1
convolution layer for feature fusion.

Different from self-attention mechanisms [32, 33], our

parallax-attention mechanism enforces our network to fo-

cus on the most similar feature along the epipolar line rather

than collecting all similar features, resulting in sparse atten-

tion maps. A comparison between parallax-attention maps

generated by our PAM and the groundtruth is shown in Fig.

3. Note that, Mright→left(i, j, k) represents the contribution

of position (i, k) in the right image to position (i, j) in the

left image. Consequently, the patterns in an attention map

can reflect the correspondence between stereo pairs and also

encode disparity information. For more details, please refer

to the supplemental material. It can be observed that our

PAM produces patterns similar to the groundtruth, which in-

dicates that reliable stereo correspondence can be captured

by our PAM. It should be noted that our PASSRnet can be

considered as a multi-task network to learn both stereo cor-

respondence and SR. However, using shared features for

different tasks usually suffers from training conflict [36].

Therefore, a transition block is introduced in our PAM to

alleviate this problem. The effectiveness of the transition

block is demonstrated in Sec. 4.3.1.

Left-right Consistency & Cycle Consistency Given deep

features extracted from an LR stereo image pair (ILleft

and ILright), two parallax-attention maps (Mleft→right and

Mright→left) can be generated by PAM. Ideally, the following

left-right consistency can be obtained if our PAM captures

accurate correspondence:
{

ILleft=Mright→left ⊗ ILright

ILright=Mleft→right ⊗ ILleft

, (1)

where ⊗ denotes batch-wise matrix multiplication. Based
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Figure 4: Visualization of valid masks. Two left images and

their occluded regions (i.e., yellow regions) are illustrated.

on Eq. (1), we can further derive a cycle consistency:
{

ILleft=Mleft→right→left ⊗ ILleft

ILright=Mright→left→right ⊗ ILright

, (2)

where the cycle-attention maps Mleft→right→left and

Mright→left→right can be calculated as:
{

Mleft→right→left=Mright→left ⊗ Mleft→right

Mright→left→right=Mleft→right ⊗ Mright→left

. (3)

Here, we introduce left-right consistency and cycle consis-

tency to regularize the training of our PAM for the genera-

tion of reliable and consistent correspondence.

Valid Masks Since left-right consistency and cycle consis-

tency do not hold for occluded regions, we use an occlusion

detection method to generate valid masks. We only enforce

consistency on valid regions. In the parallax-attention map

generated by our PAM (e.g., Mleft→right), it is observed that

pixels in occluded regions are usually assigned with small

weights. Therefore, a valid mask Vleft→right∈R
H×W can be

obtained by:

Vleft→right(i, j)=

{

1, if
∑

k∈[1,W ] Mleft→right(i, k, j) > τ,

0, otherwise,

(4)

where τ is a threshold (empirically set to 0.1) and W is the

width of stereo images. Two examples of valid masks are

shown in Fig. 4. According to the parallax-attention mech-

anism, Mleft→right(i, k, j) represents the contribution of po-

sition (i, j) in the left image to position (i, k) in the right

image. Since occluded pixels in the left image cannot find

their correspondences in the right image, their values (i.e.,
∑

k∈[1,W ] Mleft→right(i, k, j)) are usually low. Thus, we con-

sider these pixels as occluded ones. In practice, we use sev-

eral morphological operations to handle isolated pixels and

holes in valid masks. Note that, occluded regions in the left

image cannot obtain additional information from the right

image. Therefore, valid mask Vleft→right is further used to

guide feature fusion, as shown in Fig. 2 (c).

3.3. Losses

We design four losses for the training of our PASSRnet.

Other than an SR loss, we introduce three additional losses,

including photometric loss, smoothness loss and cycle loss,

to help the network to fully exploit the correspondence be-

tween stereo images. The overall loss function is formu-

lated as:

L = LSR + λ(Lphotometric + Lsmooth + Lcycle), (5)

where λ is empirically set to 0.005. The performance of our

network with different losses will be analyzed in Sec. 4.3.2.

SR Loss The mean square error (MSE) loss is used as the

SR loss:

LSR =
∥

∥ISRleft − IHleft

∥

∥

2

2
, (6)

where ISRleft and IHleft represent the SR result and HR

groundtruth of the left image, respectively.

Photometric Loss Since collecting a large stereo dataset

with densely labeled groundtruth disparities is highly chal-

lenging, we train our PAM in an unsupervised manner. Note

that, if the groundtruth disparities are available, we can gen-

erate the groundtruth attention maps accordingly (see the

supplemental material for more details) and train our PAM

in a supervised manner. Following [37], we introduce a

photometric loss using the mean absolute error (MAE) loss.

Note that, since the left-right consistency defined in Eq. (1)

only holds in non-occluded regions, we introduce a photo-

metric loss as:

Lphotometric=
∑

p∈Vleft→right

∥

∥ILleft(p)−(Mright→left ⊗ ILright)(p)
∥

∥

1

+
∑

p∈Vright→left

∥

∥ILright(p)−(Mleft→right ⊗ ILleft)(p)
∥

∥

1
,

(7)

where p represents a pixel with a valid mask value.

Smoothness Loss To generate accurate and consistent at-

tention in textureless regions, a smoothness loss is defined

on the attention maps Mleft→right and Mright→left:

Lsmooth=
∑

M

∑

i,j,k

( ‖M(i, j, k)−M(i+1, j, k)‖1+

‖M(i, j, k)−M(i, j+1, k+1)‖1),
(8)

where M ∈ {Mleft→right,Mright→left}. The first and second

terms in Eq. (8) are used to achieve vertical and horizontal

attention consistency, respectively.

Cycle Loss In addition to photometric loss and smoothness

loss, we further introduce a cycle loss to achieve cycle con-

sistency. Since Mleft→right→left and Mright→left→right in Eq.

(2) can be considered as identity matrices, we design a cy-

cle loss as:

Lcycle =
∑

p∈Vleft→right

‖Mleft→right→left(p)− I(p)‖1 +

∑

p∈Vright→left

‖Mright→left→right(p)− I(p)‖1 ,
(9)

where I∈R
H×W×W is a stack of H identity matrices.
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Table 2: Comparative results achieved on the KITTI 2015 dataset by PASSRnet with different settings for 4× SR.

Model Input PSNR SSIM Params. Time

PASSRnet with single input Left 25.27 0.770 1.32M 114ms

PASSRnet with replicated inputs Left-Left 25.29 0.771 1.42M 176ms

PASSRnet without residual manner Left-Right 25.40 0.774 1.42M 176ms

PASSRnet without atrous convolution Left-Right 25.38 0.773 1.42M 176ms

PASSRnet without PAM Left-Right 25.28 0.771 1.32M 135ms

PASSRnet without transition residual block Left-Right 25.36 0.773 1.34M 160ms

PASSRnet Left-Right 25.43 0.776 1.42M 176ms

4. Experimental Results

In this section, we first introduce the datasets and imple-

mentation details, and then conduct ablation experiments to

test our network. We further compare our network to recent

single image SR and stereo image SR methods.

4.1. Datasets

For training, we followed [6] and downsampled 60 Mid-

dlebury [38] images by a factor of 2 to generate HR images.

We further collected 1024 stereo images from Flickr to con-

struct a new Flickr1024 dataset. This dataset was used as the

augmented training data for our PASSRnet. Please see the

supplemental material for more details about the Flickr1024

dataset. For test, we used 5 images from the Middlebury

dataset, 20 images from the KITTI 2012 dataset [39] and

20 images from the KITTI 2015 dataset [40] as benchmark

datasets. We further collected 10 close-shot stereo images

(with disparities larger than 200) from Flickr to test the flex-

ibility of our network to large disparity variations. For vali-

dation, we selected another 20 images from the KITTI 2012

dataset.

4.2. Implementation Details

During the training phase, we first downsampled HR im-

ages using bicubic interpolation to generate LR images, and

then cropped 30× 90 patches with a stride of 20 from these

LR images. Meanwhile, their corresponding patches in HR

images were also cropped. The horizontal patch size was

increased to 90 to cover most disparities (∼96%) in our

training dataset. These patches were randomly flipped hori-

zontally and vertically for data augmentation. Note that, ro-

tation was not performed to maintain epipolar constraints.

We used peak signal-to-noise ratio (PSNR) and structural

similarity index (SSIM) to test SR performance. Similar to

[6], we cropped borders to achieve fair comparison.

Our PASSRnet was implemented in Pytorch on a PC

with an Nvidia GTX 1080Ti GPU. All models were opti-

mized using the Adam method [41] with β1 = 0.9, β2 =
0.999 and a batch size of 32. The initial learning rate was

set to 2×10−4 and reduced to half after every 30 epochs. The

training was stopped after 80 epochs since more epochs do

not provide further consistent improvement.

4.3. Ablation Study

In this section, we present ablation experiments to justify

our design choices, including the network architecture and

the losses.

4.3.1 Network Architecture

Single Input vs. Stereo Input Compared to single images,

stereo image pairs provide additional information observed

from a different viewpoint. To demonstrate the effective-

ness of stereo information for SR performance improve-

ment, we removed PAM from our PASSRnet and retrained

the network with single images (i.e., the left images). For

comparison, we also used pairs of replicated left images as

the input to the original PASSRnet. Results achieved on the

KITTI 2015 dataset are listed in Table 2.

Compared to the original PASSRnet, the network trained

with single images suffers a decrease of 0.16 dB (25.43 to

25.27) in PSNR. Further, if pairs of replicated left images

are fed to the original PASSRnet, the PSNR value is de-

creased to 25.29 dB. Without extra information introduced

by stereo images, our PASSRnet with replicated images

achieves comparable performance to the network trained

with single images. This clearly demonstrates that stereo

images can be used to improve the performance of PASSR-

net.

Residual ASPP Module Residual ASPP module is used in

our network to extract multi-scale features. To demonstrate

the effectiveness of residual ASPP, two variants were intro-

duced. First, to test the effectiveness of residual connec-

tions, we removed them to obtain a cascading ASPP mod-

ule. Then, to test the effectiveness of atrous convolutions,

we replaced them with ordinary convolutions.

From the comparative results shown in Table 2, we can

see that SR performance benefits from both residual con-

nections and atrous convolutions. If residual connections

are removed, the PSNR value is decreased from 25.43 dB to

25.40 dB. That is because, residual connections enable our

residual ASPP module to extract features at more scales,
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resulting in more robust feature representations. Further-

more, if atrous convolutions are replaced by ordinary ones,

the PSNR value is decreased from 25.43 dB to 25.38 dB.

That is because, large receptive field of atrous convolutions

facilitates our PASSRnet to employ context information in

a large area. Therefore, more accurate correspondence can

be obtained to improve SR performance.

Parallax-attention Module PAM is introduced to integrate

the information from stereo images. To demonstrate its ef-

fectiveness, we introduced a variant by removing PAM and

directly stacking the output features of the residual ASPP

module. It can be observed from Table 2 that the PSNR

value is decreased from 25.43 dB to 25.28 dB if PAM is

removed. That is because, long spatial distance between lo-

cal features in the left image and their dependency in the

right image hinders plain CNNs to integrate these features

effectively.

Transition Block in PAM Transition block in PAM is in-

troduced to alleviate the training conflict in shared layers.

To demonstrate the effectiveness of transition block, we re-

moved it from our PAM and retrained the network. It can

be observed from Table 2 that the PSNR value is decreased

from 25.43 dB to 25.36 dB if the transition block is re-

moved. That is because, the transition block enhances task-

specific feature learning in our PAM and alleviates train-

ing conflict in shared layers. Therefore, more representative

features can be learned in shared layers.

PAM vs. Cost Volume Cost volume and 3D convolu-

tions are commonly used to obtain stereo correspondence

[15, 16]. To demonstrate the efficiency of our PAM in stereo

correspondence generation, we replaced PAM with a 4D

cost volume and two 3D convolutional layers (3×3× 3).

It can be observed from Table 3 that our PAM has less than

half of the parameters in the cost volume formation. More-

over, our PAM achieves superior computational efficiency,

with FLOPs being reduced by over 150 times. With PAM,

our PASSRnet achieves better SR performance (i.e., PSNR

value is increased from 25.23 dB to 25.43 dB) and effi-

ciency (i.e., running time is decreased by 1.5 times). That

is because, two 3D convolutional layers are insufficient to

capture long-range correspondence within the cost volume.

However, adding more layers will lead to a significant in-

crease of computational cost.

4.3.2 Losses

To test the effectiveness of our losses, we retrained PASSR-

net using different losses.

It can be observed from Table 4 that the PSNR value of

our PASSRnet is decreased from 25.43 to 25.35 if PASS-

Rnet is trained with only SR loss. That is because, with

only this loss, our PAM learns to collect all similar fea-

tures along the epipolar line and cannot focus on the most

Table 3: Comparison between our PAM and the cost volume

formation for 4× SR. FLOPs are calculated on 128×128×64
input features, while Time/PSNR/SSIM values are achieved

on the KITTI 2015 dataset.

Model Params. FLOPs Time PSNR SSIM

PAM 94K 1× 1× 25.43 0.776

Cost Volume 221K 151× 1.5× 25.23 0.768

Table 4: Comparative results achieved on KITTI 2015 by

our PASSRnet trained with different losses for 4× SR.

Model LSR Lphotometric Lsmooth Lcycle PSNR SSIM

PASSRnet X 25.35 0.771

PASSRnet X X 25.38 0.773

PASSRnet X X X 25.40 0.774

PASSRnet X X X X 25.43 0.776

similar feature to provide accurate correspondence. Fur-

ther, the performance is gradually improved if photomet-

ric loss, smoothness loss and cycle loss are added. That is

because, these losses encourage our PAM to generate reli-

able and consistent correspondence. Overall, our PASSRnet

achieves the best performance (i.e., PSNR=25.43 dB and

SSIM=0.776) when it is trained with all these losses.

4.4. Comparison to Stateofthearts

We compared our PASSRnet to a number of CNN-based

SR methods on three benchmark datasets. Recent single

image SR methods under comparison include SRCNN [1],

VDSR [19], DRCN [42], LapSRN [5] and DRRN [20]. We

also compared our PASSRnet to the latest stereo image SR

method StereoSR [6]. The codes provided by the authors

of these methods were used to conduct experiments. Note

that, similar to [6, 43], EDSR [44], RDN [21] and D-DBPN

[45] are not included in our comparison since their model

sizes are larger than our PASSRnet by at least 8 times.

Quantitative Results The quantitative results are shown in

Table 5. It can be observed that our PASSRnet achieves

the best performance on the Middlebury, KITTI 2012 and

KITTI 2015 datasets. Specifically, compared to single im-

age SR methods, our PASSRnet outperforms the second

best approach (i.e., DRRN) by 1.04 dB in terms of PSNR

on the Middlebury dataset for 2× SR. Moreover, the PSNR

value achieved by our network is higher than that of Stere-

oSR by 1.00 dB. That is because, more reliable correspon-

dence can be captured by our parallax-attention mechanism.

Qualitative Results Figure 5 illustrates the qualitative re-

sults achieved on two scenarios. It can be observed from

zoom-in regions that single image SR methods cannot re-
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Table 5: Comparative PSNR/SSIM values achieved on the Middlebury, KITTI 2012 and KITTI 2015 datasets. Results

marked with * are directly copied from the corresponding paper. Note that, only 2× SR results of StereoSR are presented on

the KITTI 2012 and KITTI 2015 datasets since a 4× SR model is unavailable.

Dataset Scale
Single Image SR Stereo Image SR

SRCNN [1] VDSR [19] DRCN [42] LapSRN [5] DRRN [20] StereoSR [6] Ours

Middlebury

(5 images)

×2 32.05/0.935 32.66/0.941 32.82/0.941 32.75/0.940 32.91/0.945 33.05/0.955* 34.05/0.960

×4 27.46/0.843 27.89/0.853 27.93/0.856 27.98/0.861 27.93/0.855 26.80/0.850* 28.63/0.871

KITTI 2012

(20 images)

×2 29.75/0.901 30.17/0.906 30.19/0.906 30.10/0.905 30.16/0.908 30.13/0.908 30.65/0.916

×4 25.53/0.764 25.93/0.778 25.92/0.777 25.96/0.779 25.94/0.773 - 26.26/0.790

KITTI 2015

(20 images)

×2 28.77/0.901 28.99/0.904 29.04/0.904 28.97/0.903 29.00/0.906 29.09/0.909 29.78/0.919

×4 24.68/0.744 25.01/0.760 25.04/0.759 25.03/0.760 25.05/0.756 - 25.43/0.776

SRCNN
29.28/0.894

VDSR
29.54/0.898

LapSRN
29.52/0.897

StereoSR
29.73/0.905

Ours
30.50/0.913

Groundtruth
Bicubic

28.28/0.875
DRCN

29.66/0.898

SRCNN
30.46/0.921

VDSR
31.00/0.927

LapSRN
30.91/0.926

StereoSR
31.22/0.929

Ours
31.71/0.936

Groundtruth
Bicubic

29.07/0.904
DRCN

31.04/0.927

Figure 5: Visual comparison for 2× SR. These results are achieved on “test image 013” of the KITTI 2012 dataset and

“test image 019” of the KITTI 2015 dataset.

Table 6: Comparison between our PASSRnet and StereoSR

[6] on stereo images with different resolutions for 2× SR.

Resolution
StereoSR [6] Ours

PSNR FLOPs PSNR FLOPs

High (500× 500) 39.27 1× 41.45(↑ 2.18) 0.57×

Middle (100× 100) 34.21 1× 35.04(↑ 0.83) 0.58×

Low (20× 20) 29.48 1× 29.88(↑ 0.40) 0.36×

cover reliable details. In contrast, our PASSRnet uses stereo

correspondence to produce finer details with fewer artifacts,

such as the railings and stripe in Fig. 5. Compared to Stere-

oSR, our PASSRnet explicitly captures stereo correspon-

dence for SR. Consequently, superior visual performance

is achieved.

Flexibility We further tested the flexibility of our PASSR-

net and StereoSR [6] with respect to large disparity varia-

tions. Results achieved on images with different resolutions

are shown in Table 6. More results under different base-

lines and depths are available in the supplemental material.

It can be observed that our PASSRnet is significantly bet-

ter than StereoSR in terms of efficiency (i.e., FLOPs) on

low resolution images. Meanwhile, our PASSRnet outper-

forms StereoSR by a large margin in terms of PSNR on high

resolution images. That is because, StereoSR needs to per-

form padding for images with horizontal resolution lower

than 64 pixels, which involves unnecessary calculations.

For high resolution images, the fixed maximum disparity

hinders StereoSR to capture longer-range correspondence.

Therefore, the SR performance of StereoSR is limited.

5. Conclusion

In this paper, we propose a parallax-attention stereo

super-resolution network (PASSRnet) to incorporate stereo

correspondence for the SR task. Our PASSRnet introduces

a parallax-attention mechanism with global receptive field

to handle different stereo images with large disparity vari-

ations. We also introduce a new and the largest dataset for

stereo image SR. It is demonstrated that our PASSRnet can

effectively capture stereo correspondence for the improve-

ment of SR performance. Comparison to recent single im-

age SR and stereo image SR methods has shown that our

network achieves the state-of-the-art performance.
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