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Abstract 

A,pumeworkfor learning parameterizedmodels of op- 
tical &w,fiom image sequences is presented. A class 
of motions is represented bg u set of orthogonul busis 
$owjields that are computedfrom u training set using 

principal component analysis. Many complex imuge 
motions cun be represented by a linear combination qf 
u smull number of these basis flows. The learned mo- 

tion models ma1 be usedfor opticulflow estimation and 
for model-bused recognition. For opticaljow estima- 
tion we describe a robust, multi-resolution scheme for 

directly computing the parameters of the learnedjow 

models ,from image derivatives. As examples we con- 
sider learning motion discontinuities, non-rigid mo- 
tion of humun mouths, and articulated human motion. 

1 Introduction 

Parameterized models of optical flow address the problems 
of motion estimation and motion explanation. They aid 
in estimation by enforcing strong constraints on the spatial 
variation of the image motion within a region. Because 
these methods pool hundreds or thousands of motion con- 
straints in a region to estimate a much smaller number of 

model parameters, they generally provide accurate and sta- 
ble estimates of optical flow. Likewise, the small number 

of parameters provides a concise description of the image 
motion that can be used for explanation or recognition. For 
example, parameterized flow models have been used to rec- 

ognize facial expressions from motion [7]. 

There are two main problems with parameterized motion 
models. First, many image regions contain multiple im- 
age motions because of moving occlusion boundaries, trans- 
parency, reflections, or independently moving objects. A 
great deal of work has been devoted to extending parameter- 

ized models to cope with these situations. The second prob- 
lem is that parameterized models make strong assumptions 
about the spatial variation of the image motion within a re- 
gion. Common motion models based on low-order polyno- 
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mials (e.g. affine motion) have limited applicability to com- 
plex natural scenes. 

Examples of complex motions include motion disconti- 
nuities. non-rigid motion, articulated motion, and motion 
“texture”. It may be impractical to devise and use explicit 
mathematical models of the motion in these cases. There- 

fore, here we “learn” models of optical flow from examples. 

Given a training set of flow fields (e.g. Fig. l), we use prin- 

cipal component analysis (PCA) to learn a set of basis flow 
fields that can be used to approximate the training data (e.g. 
Fig. 2). Individual flow fields are then represented as a lin- 
ear combination of the basis flows (e.g. Fig. 3). In this paper 
we apply this approach to motion boundaries, the motion of 
a human mouth. and the motion of human legs while walk- 
ing. 

To compute optical flow with a learned model we dire& 

estimate the coefficients of the linear combination of ba- 

sis flows from derivatives of image intensity. These coeffi- 

cients are estimated using a robust, coarse-to-fine, gradient- 
based algorithm. This provides a flow field that is consistent 

with the learned model and is optima1 under the assumption 
of brightness constancy. In this way one can estimate com- 
plex optical flow fields more quickly and reliably than with 
conventional techniques. Moreover. if the model provides 
a good description of the spatiotemporal variation of image 

intensity, then one can also use the estimated coefficients of 

the mode1 for subsequent recognition/interpretation of the 

image motion. 

2 Related Work 

Much of the recent work on learning parameterized mod- 
els of image deformation has occurred in the face recogni- 
tion literature to model the deformations between the faces 
of different people [3, 9, 11, 13, 181. Correspondences be- 
tween different faces were obtained either by hand or by an 
optical flow method, and were then used to learn a lower- 

dimensional model. In some cases this involved learning the 
parameters of a physically-based deformable object [13]. In 
other cases a basis set of deformation vectors was obtained 

(e.g.. see the work of Hallinan [l l] on learning “Eigen- 



Warps”). These methods have not been applied to the mod- 
eling of image motion in natural scenes. 

Related work has focused on learning the deformation of 

curves or parameterized curve models [2, 163. Sclaroff and 

Pentland [16] estimated modes of deformation for silhou- 

ettes of non-rigid objects. They interpolated a sparse set of 

correspondences between silhouette boundaries in consecu- 
tive frames to produce a basis set of flows, much like those 
learned in this paper. The basis was then used to warp the 
original images for synthesis andview interpolation. Unlike 
our approach, they did not learn the basis flows from optical 
flow data, and did not use them to estimate image motion. 

In addition to optical flow estimation, we are interested 
in the use of parameterized models for motion-based recog- 

nition. Black and Yacoob [7] modeled the motion of a hu- 
man face and facial features using parameterized flow mod- 
els (planar, affine, and affine+curvature). They showed how 

simple models could represent a rich variety of image mo- 
tions, and how the motion parameters could be used to rec- 
ognize facial expressions. However, their motion models 
were hand-coded. In this paper we show how appropriate 
models of facial feature motion can be learned. 

Another application examined below is the learning of 
motion models for the detection of motion discontinuities. 
This application is similar to modeling step edges in static 

scenes by learning a parameterized model from examples 
of edges [14]. It differs from previous attempts to detect 
motion discontinuities that applied edge detectors to optical 
flow, checked for bimodality in local flow estimates. or used 
energy-based methods [4, 15, 171. 

3 Learning Parameterized Flow Models 

Learning a parameterized model for a particular class of mo- 

tions requires that we have a “training set” of flow fields 

containing representative samples of the class. For rela- 
tively simple classes such as motion discontinuities we can 
generate this training set synthetically. For more complex 
motions of natural objects we will need to estimate the im- 
age motion for training sequences. Since training is done 
off-line, we can afford to use a computationally expensive 
robust optical flow algorithm [5]. 

Value Decomposition (SVD) of F can be written as 

F = MCVT. (1) 

In either case, the training set from which we learn a 
model of image motion is a set of p optical flow fields. For 

images with s = n, x m pixels, each flow field contains 2s 
quantities (i.e., horizontal and vertical elements of the flow 
at each pixel). For each flow field we place the 2s values into 
a vector of length 2s by scanning the horizontal elements of 
the flow, u(z. y) in standard lexicographic order, followed 
by the vertical elements, /I( J;, y). This gives us p vectors that 
become the columns of a 2s x p matrix F. 

where M = [IT~.~.&. . . . .G,] is a 2s x p matrix. The 
columns. n7.i, form an orthonormal basis for the range of F, 
C is a p x p diagonal matrix containing the singular values 
X1. Xa. . . . X, sorted in decreasing order along the diago- 
nal. and VT is a p x p orthogonal matrix. We can approx- 
imate a given flow field, f, by a linear combination of the 
first X: basis elements in M 

& = C ai??i.i. 
i=l 

(2) 

where the 0.i are the parameters of the model to be esti- 
mated. Let G(Z:Z) = (z~(z.y),z~(z.y)) denote the flow 

field that corresponds to the linear approximation, f’k, where 
Z= (z.y)anda’= (a1.a2 . . . . . ak)T. 

Principal Components Analysis (PCA) of F can then be The quality of the approximation provided by the first P: 
used to compute a low-dimensional model for the spatial columns of M is easily characterized in terms of the fraction 
structure of the flow fields. Toward this end, the Singular of the variance of the training set that is accounted for by the 

Figure 1: Discontinuity training set. Left: model for gener- 
ating synthetic flow fields. Right: samples from the training 

set. The horizontal component is shown above the vertical 
component. Black denotes pixels moving left or up or 11. and 
91 respectively. White denotes motion right or down. 

4 5 6 I 8 9. 

Figure 2: (a) The fraction of the variance in the training set 
accounted for by the first k principal components. (l-9) The 
first nine basis flows depicted as in Fig. I, along with corre- 
sponding vector fields. 
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Figure 3: A motion field discontinuity can be represented 
and detected with a linear combination of a small number 
of the basis motions (cf. [16]). 

selected components. ‘This fraction is given by 

If the singular values. X,. rapidly decrease to zero as % in- 
creases then Q(L,) rapidly increases towards 1. and a low- 
dimensional linear model provides an accurate approxima- 
tion of the flow. 

3.1 Example: Motion Discontinuities 

For illustration. we applied this approach to learn a param- 
eterized model of motion discontinuities. First. a synthetic 

training set of 900 flow fields was constructed. Each con- 

tained a motion discontinuity through the center of a 32 x 32 

pixel region (see Fig. 1). The orientation. H. and the trans- 
lational motions on either side of the boundary. ,Co and ,;I, 
were chosen randomly. 

We then computed the SVD of the training set. The frac- 
tion of the variance accounted for by the first X: components, 
namely Q(k). rapidly approaches 1 (see Fig. 2a). Despite 
the variability of the input flow fields. nine basis vectors ac- 
count for 95% of the variance in the training set. These ba- 

sis flows are shown in Fig. 2(1-9). Note that the basis set 

can also approximate translational motion since the random 

training data contains flow fields in which ,Y& is close to ,iil. 

Note the similarity between the basis vectors for a motion 
discontinuity and those learned for an intensity edge in 1141. 

4 Direct Estimation of Motion Parameters 
Given a learned set of basis flows. we now consider the 
problem of estimating the optical flow in an arbitrary im- 
age region. R. using the parameterized model. Our goal is 

to find the coefficients ii: that produce a flow field satisfying 

the brightness constancy assumption 

I(r?+ii(.Z:Z).t+ 1) = I(i7.f) V?E R. (4) 

Equation (4) states that the image. 1. at frame t + 1 is a 
warped version of the image at time t. 

To recover the parameters we formulate an objective 
function to be minimized. namely 

E(h) = )-p(I(:T+~(:i%+r;).t+I)-I(2). a). (5) 

,7ER 

Given an estimate. Z. of the motion par!meters (initially 
zero), the goal is to estimate the update. b. that minimizes 

(5). Here. fl is a scale parameter and /I( . . (7) is a robust er- 

ror norm applied to the residual error r.( a. d -I- 6) = I( .r! + 
r7( .7~ Z). t + 1) - I( ?. t ). For the experiments below we take 
p to be 

f)(r. fJ) = P/(2 + 7~2) . 

which was used successfully for flow estimation in [S]. 
To minimize (5) we first lineariz_e the warped image in (5) 

with respect to the update vector b to give the approximate 
objective function fi( 6 a) = 

c p(,~(.~:1;).~il(~+$17(.~:ii).t+l)+r,(.t.~). a). (6) 

IER 

where +1( .T: + Z( .?: (7). f + 1) = [I,. I,lT represents the 
partial derivatives of the image at time t + 1 warped by the 
current motion estimate (7(.7: ii). The search algorithm de- 

scribed below typically generates small update vectors. c. 
Note that the objective function in (6) satisfies E( 6: Z) = 

E(G Z) + O( l\r;ll”). so the approximation error vanishes as 
the update is reduced to zero. 

The particular optimization scheme is a straightforward 

extension of that used by Black and Anandan [S] for estimat- 
ing optical flow with affine and planar motion models. This 
involves a coarse-to-fine iteration strategy. where the mo- 
tion parameters ‘7,~ determined at a coarser scale are used in 

the estimation of fi( 6: Cl+ 1 ) at the next finer scale. The mo- 
tion parameters. iij. from the coarse level are used in (6) to 
warp the image at time t+ 1 towards the image at time f. The 
basis flows at a coarse scale are simply smoothed and sub- 

sampled versions of the basis flows at the next finer scale. 

These coarse-scale basis vectors may deviate slightly from 
orthogonality but this is not significant given our optimiza- 

tion scheme. 
At each _sca_le a coordinate descent procedure is used to 

minimize E( b: 5 ). To deal with the non-convexity of the 
objective function. the robust scale parameter. (T. is initially 
set to a large value and then slowly reduced. For the exper- 
iments below, CT is lower from 25 fi to 15 fi by a factor of 
0.95 at eachiteration. Upon completion of a fixednumber of 

descent steps (or when a convergence criterion is met), the 
new estimate for the flow coefficients is taken to be Z:j + 6. 

At the finest scale Zi+l = ‘l;,i + G is accepted as the solution 

for the flow parameters, otherwise r;j+l = 2( C$ + 6) is pro- 
vided to the next finer scale as the initial guess (the factor of 
2 reflects the doubling of the pixel resolution). 
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Figure 4: Moving disk example. (a) Disk moves one pixel 

down and to right over stationary background. (b) Esti- 

mated image motion. (c) Motion-discontinuity orientation 

can be computed from two orthogonal basis flows. 

Note that in (6) that the gradient term does not depend on 
G. This avoids the need to rewarp the image and recompute 
the image gradient at each descent step. In fact, the image 
gradient in (6) can be pre-multiplied by the basis flows since 
these quantities will not change during the minimization of 

fi( g: i;j ). Hager and Belhuemer [ 101 used this fact for real- 

time affine tracking. 

5 Experimental Results 

We now present experiments to illustrate the use of learned 
models in two different applications. First, the models are 
used to estimate dense optical flow. Second, learned motion 
models are applied to a specific object in a known location. 
We consider examples of human mouths and legs where it is 
assumed that regions of interest have been found by tracking 

of the face or torso (see [7, 121). 

5.1 Motion Discontinuities 

The learned motion-discontinuity model is applied to a tex- 
tured moving disk in Fig. 4. Nine basis vectors were used 
and the motion coefficients were estimated in 32 x 32-pixel 
regions centered on each pixel in the image. The motion of 
the center pixel in each region is used to produce the dense 
flow field in Fig. 4(b). The coefficients of the orthogonal ba- 

sis flows can be used to compute the orientation of the mo- 
tion boundary at every pixel. The result is illustrated by the 
gray-scale encoding of orientation in Fig. 4(c). The images 

at the bottom of the figure show the value of the coefficients 
at each pixel. 

Figure 5 shows the application of the motion discontinu- 
ity model to a natural image sequence. The camera is trans- 
lating to the right, yielding a roughly translational vector 
field. The learned model, with nine basis vectors, was ap- 
plied at every fourth pixel in the image. The estimated flow 
vectors from the 4 x 4 pixel block in the center of each patch 

are used to produce a dense flow field with a motion esti- 
mate at every pixel. The horizontal component of the flow 

a5 a6 a7 a 

Figure 5: Flower-garden sequence. (a) First image. (b) Esti- 

mated horizontal flow (darker pixels denote greater leftward 
motion). (c) Detected motion boundary (white=occlusion. 
black=disocclusion). (d) Estimated flow field. 

is shown in Fig. 5(b) and the vector field is shown in Fig. 

34. 
The detection of motion discontinuities here was straight- 

forward. To detect a vertical occlusion/disocclusion bound- 

ary. we generated a synthetic occlusion flow field and pro- 
jected it onto the basis set. The coefficients of this prototype 

occlusion boundary are then correlated with the coefficients 

estimated in each image region. A high correlation indi- 
cates the presence of a vertical occlusion boundary (shown 
as “white” in Fig. 5(c)) and a negative correlation indicates 
a disocclusion boundary (“black” in Fig. 5(c)). 

5.2 Non-Rigid Motion 

Black and Yacoob [7] described a method for recognizing 
human facial expressions from the coefficients of a param- 

eterized model. They modeled the face as a plane and used 
its motion to stabilize the image sequence. The motion of 
the eyebrows and mouth were estimated relative to this sta- 
bilized face using a seven parameter model (affine plus a 
vertical curvature term). While this hand-coded model cap- 
tures sufficient information about feature deformation to al- 
low recognition of facial expressions, it it does not capture 
the variability of human mouths observed in natural speech. 

Here we learn a parameterized model of mouth motion 

from examples. We collected four 150 image training se- 
quences of a single speaker. The sequences contain natural 
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Test Smile 

60 80 frame 
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Figure 8: Smile experiment. Coefficients aI. a2, (~3, and ar4 are plotted over 80 frames for smile expressions in one training 
sequence and in the test sequence. Selected images and the corresponding estimated flow field are shown. Numbers under the 
images and flow fields correspond to frame numbers on the graphs. 

Figure 6: Example frames from the 600 image training set. 
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Figure 7: Basis flows for non-rigid mouth motion. 

speech, smiling, and a test word which was repeated three 
times (see Fig. 6). Unlike the previous example, we did 
not have ground-tmth optical flow from which to learn a 
model of mouth motion. Instead, we used the optical flow 

method in [5] to estimate dense flow fields between con- 

secutive pairs of frames. It should be noted that the esti- 
mation of mouth motion is diflicult since the lips are not 
highly textured, they deform and move large distances be- 
tween frames, and the appearance/disappearance of teeth, 
tongue. and mouth cavity violates the brightness constancy 
assumption (see [S]). We also note that estimation of the 

dense training flow takes twice as long to compute as the di- 
rect estimation using the learned models. 

Since the image motion of the mouth is highly con- 

strained, the optical flow structure in the 600 training flow 

fields can be modeled by a small number of principal com- 

ponent flow fields. In this case, 90% of the variance in the 
training flow fields is accounted for by the first seven com- 
ponents (shown in Fig. 7). In contrast the seven-parameter 
model in [7] only accounted for G2(% of the variance. 

We evaluate the learned model with a lSO-image test se- 
quence in which the subject smiles and speaks the word 
from the training set. A sample of the images from the smile 

portion of the sequence are shown in Fig. 8. Below each 

image is the estimated flow using the learned 7-parameter 

model. The value of the first four coefficients of the model 
at each frame are plotted above the images. Notice the sim- 
ilarity between the training smile and the test smile. Similar 
plots were used for recognition in [7]. 

Figure 9 shows every second frame corresponding to the 
test utterance. Speech, unlike expression, is characterized 
by large, rapidly changing motions. Without a highly con- 
strained model such as the one learned here. it can be dif- 
ficult to estimate motions of this kind. The same word was 
uttered three times in the training set and once in the test set. 

If the model is accurately capturing the motion of the lips 

then the estimated coefficients of each utterance should be 
similar. The plots of selected coefficients (al. ~4. Q. and 
ag) are shown at the top of Fig. 9. While the plots appear to 
be highly correlated. further studies with a range of speakers 
are required to determine whether these motion coefficients 
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speech coefficient a4 speech coefficent a5 

~~~~~; 

frame 

Figure 9: Speech experiment. The plots shows four coefficients (al. ~1~. ~1,~. or o,e) against four separate utterances of the 
same word. three from the training sequences (dotted curves) and one from the test sequence (solid curve). Below are sample 
images from the test sequence with corresponding flow fields. 

walk-l walk-2 

walk-3 walk-4 

Figure 10: Articulated human motion. Top row: images 
from training sequences. Bottom row: test sequences. 

are useful for automated speech understanding. 

5.3 Articulated Motion 

Like mouths, the articulated motion of human limbs can be 

large, varied, and difficult to model. We assume that the sub- 
ject is viewed from the side (though the approach can be 

extended to cope with other views) and that the image se- 
quence has been stabilized with respect to the torso. Two 
training and two test sequences (Fig. 10) of a subject walk- 
ing on a aeadmill were acquired with slightly different light- 
ing conditions, viewing position, and speed of activity. 

SVD was performed on the 350-image training set. The 
first nine basis vectors account for 90% of variance in 
the training data and are used in our experiments (see 
Fig. 11.) Note that the first component essentially encodes 
the scissors-like expansion/contraction of the legs (cf. [2]). 

Figure 12 shows results of motion estimation using a 

5 6 7 8 

Figure 11: Basis flow fields for the walking sequences. 

nine-parameter learned model for a 200-image training se- 
quence (Walk-2) and a 200-image test sequence (Walk-4). 
Each sequence contains approximately seven complete cy- 
cles of the motion. Note the similarity of the two plots for 
the first coefficient (al). The magnitude of the parameter 0,2 
varies between the two sequences but is consistent within 
a sequence. Further experimentation with additional sub- 
jects will be necessary to determine the feasibility of activity 

recognition based on these parameters. 

6 Conclusion 

We presented a framework for learning parameterized mod- 
els of image motion. Parameterized models provide strong 
constraints on the spatial variation of the flow within an im- 
age region and provide a concise description of the motion 
in terms of a small number of parameters. The framework 
described here extends parameterized flow methods to more 
complex motions that can be approximated as a linear com- 
bination of basis flow fields. It is important to note that 
the coefficients of the motion models are estimated directly 
from the image derivatives and do not require the prior com- 
putation of dense image motion. 
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Walk-2 (Training Sequence) 

Walk4 (Test Sequence) 
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Figure 12: Plots of the first 2 motion coefficients for one 

training and one test sequence. Below: images and esti- 

mated flow for every 50th frame in the test sequence. 

The methods can be used to learn generic flow models 
that can be applied at every image location in the way that 
current affine models are employed. In particular we are 

exploring the representation and recognition of motion fea- 
tures, such motion discontinuities and moving bars. and 

their relationship to the detection of static image features 

such as edges and line. 

The approach can also be used to learn object-specific 
models (e.g. mouth motion) that are applied in specific im- 
age regions, and which may be useful for motion-based 
recognition. Alignment of these models with the image is 
important and it may be possible to refine this alignment au- 
tomatically (see [6]). 

A number of other research issues remain unanswered. 

Learned models are particularly useful in situations where 

optical flow is hard to estimate. but in these situations it is 
difficult to compute reliable training data. This problem is 

compounded by the sensitivity of PCA to outliers. PCA also 
gives more weight to large motions making it difficult to 
learn compact models of motions with important structure at 
multiple scales. Future work will explore non-linear models 
of image motion, robust and incremental learning, and mod- 
els of motion texture. 
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