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We present a knowledge and context-based 

system for parsing and translating natu- 

ral language and evaluate it on sentences 

from the Wall Street Journal. Applying 

machine learning techniques, the system 

uses parse action examples acquired un- 

der supervision to generate a determinis- 

tic shift-reduce parser in the form of a de- 

cision structure. It relies heavily on con- 

text, as encoded in features which describe 

the morphological, syntactic, semantic and 

other aspects of a given parse state. 

1 I n t r o d u c t i o n  

The parsing of unrestricted text, with its enormous 

lexical and structural ambiguity, still poses a great 

challenge in natural language processing. The tradi- 

tional approach of trying to master  the complexity of 

parse grammars  with hand-coded rules turned out to 

be much more difficult than expected, if not impos- 

sible. Newer statistical approaches with often only 

very limited context sensitivity seem to have hit a 

performance ceiling even when trained on very large 

corpora. 

To cope with the complexity of unrestricted text, 

parse rules in any kind of formalism will have to 

consider a complex context with many different mor- 

phological, syntactic or semantic features. This can 

present a significant problem, because even linguisti- 

cally trained natural language developers have great 

difficulties writing and even more so extending ex- 

plicit parse grammars  covering a wide range of nat- 

ural language. On the other hand it is much easier 

for humans to decide how specific sentences should 

be analyzed. 

We therefore propose an approach to parsing 

based on learning from examples with a very strong 

emphasis on context, integrating morphological, 

syntactic, semantic and other aspects relevant to 

making good parse decisions, thereby also allowing 

the parsing to be deterministic. Applying machine 

learning techniques, the system uses parse action ex- 

amples acquired under supervision to generate a de- 

terministic shift-reduce type parser in the form of a 

decision structure. The generated parser transforms 

input sentences into an integrated phrase-structure 

and case-frame tree, powerful enough to be fed into 

a transfer and a generation module to complete the 

full process of machine translation. 

Balanced by rich context and some background 

knowledge, our corpus based approach relieves the 

NL-developer from the hard if not impossible task of 

writing explicit g rammar  rules and keeps grammar  

coverage increases very manageable. Compared with 

standard statistical methods, our system relies on 

deeper analysis and more supervision, but radically 

fewer examples. 

2 B a s i c  P a r s i n g  P a r a d i g m  

As the basic mechanism for parsing text into a 

shallow semantic representation, we choose a shift- 

reduce type parser (Marcus, 1980). It breaks parsing 

into an ordered sequence of small and manageable 

parse actions such as shift and reduce. This ordered 

'left-to-right'  parsing is much closer to how humans 

parse a sentence than, for example, chart oriented 

parsers; it allows a very transparent control struc- 

ture and makes the parsing process relatively intu- 

itive for humans. This is very important ,  because 

during the training phase, the system is guided by a 

human supervisor for whom the flow of control needs 

to be as transparent and intuitive as possible. 

The parsing does not have separate phases for 

part-of-speech selection and syntactic and semantic 

processing, but rather integrates all of them into a 

single parsing phase. Since the system has all mor- 

phological, syntactic and semantic context informa- 

tion available at all times, the system can make well- 
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based decisions very early, allowing a single path, i.e. 

deterministic parse, which eliminates wasting com- 

putation on 'dead end' alternatives. 

Before the parsing itself starts, the input string 

is segmented into a list of words incl. punctuation 

marks, which then are sent through a morphological 

analyzer that ,  using a lexicon 1, produces primitive 

frames for the segmented words. A word gets a prim- 

itive frame for each possible par t of speech. (Mor- 

phological ambiguity is captured within a frame.) 

parse stack 

"bought" 

synt: verb 

top of top of  

stack list 
• "<input list > 

, "today" 

synt adv 

(R 2 TO S-VP AS PRED (OBJ PAT)) 

"reduce the 2 top elements of the parse stack 
to a frame with syntax 'vp' 

and roles 'pred' and 'obj and pat'" 

1 
~ "bought a book . . . .  today" 

synt: vp synt: adv 

sub: (pred) (obj pat) 

/ 
I "bought" 

synt: verb 

Figure 1: Example of a parse action (simplified); 

boxes represent frames 

The central data structure for the parser consists 

of a parse stack and an input list. The parse stack 

and the input list contain trees of frames of words 

or phrases. Core slots of frames are surface and lexi- 

cal form, syntactic and semantic category, subframes 

with syntactic and semantic roles, and form restric- 

1The lexicon provides part-of-speech information and 
links words to concepts, as used in the KB (see next 
section). Additional information includes irregular forms 
and grammatical gender etc. (in the German lexicon). 

"John bought a new computer science book 

t o d a y . "  : 
synt/sem: S-SNT/I-EV-BUY 
forms: (3rd_person sing past_tense) 

lex : "buy" 

subs : 
(SUBJ AGENT) "John": 

synt/sem: S-NP/I-EN-JOHN 

(PRED) "John" 

synt/sem: S-NOUN/I-EN-JOHN 

(PRED) "bought": 

synt/sem: S-TR-VERB/I-EV-BUY 

(OBJ THEME) "a new computer science book": 

synt/sem: S-NP/I-EN-BOOK 

(DET) "a" 

(MOD) "new" 

(PRED) "computer science book" 

(MOD) "computer science" 

(MOD) "computer" 

(PRED) "science" 

(PRED) "book" 

(TIME) "today": 
synt/sem: S-ADV/C-AT-TIME 

(PRED) "today" 

synt/sem: S-ADV/I-EADV-TODAY 

(DUMMY) "." : 

synt : D-PERIOD 

Figure 2: Example of a parse tree (simplified). 

tions such as number, person, and tense. Optional 

slots include special information like the numerical 

value of number words. 

Initially, the parse stack is empty and the input 

list contains the primitive frames produced by the 

morphological analyzer. After initialization, the de- 

terministic parser applies a sequence of parse actions 
to the parse structure. The most frequent parse ac- 

tions are shift, which shifts a frame from the input 

list onto the parse stack or backwards, and reduce, 
which combines one or several frames on the parse 

stack into one new frame. The frames to be com- 

bined are typically, but not necessarily, next to each 

other at the top of the stack. As shown in figure 1, 

the action 

(R 2 TO VP AS PRED (0BJ PAT)) 

for example reduces the two top frames of the stack 

into a new frame that  is marked as a verb phrase 

and contains the next-to-the-top frame as its pred- 

icate (or head) and the top frame of the stack as 

its object and patient. Other parse actions include 

add-into, which adds frames arbitrarily deep into an 

existing frame tree, mark, which can mark any slot 

of any frame with any value, and operations to in- 

troduce empty categories (i.e. traces and 'PRO' ,  as 

in "Shei wanted PR.Oi to win."). Parse actions can 
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have numerous arguments, making the parse action 
language very powerful. 

The parse action sequences needed for training the 

system are acquired interactively. For each train- 

ing sentence, the system and the supervisor parse 

the sentence step by step, with the supervisor enter- 

ing the next parse action, e.g. (R 2 TO VP AS PRED 

(01aJ PAT) ), and the system executing it, repeating 

this sequence until the sentence is fully parsed. At 

least for the very first sentence, the supervisor actu- 

ally has to type in the entire parse action sequence. 

With a growing number of parse action examples 

available, the system, as described below in more de- 

tail, can be trained using those previous examples. 

In such a partially trained system, the parse actions 

are then proposed by the system using a parse deci- 

sion structure which "classifies" the current context. 

The proper classification is the specific action or se- 

quence of actions that (the system believes) should 

be performed next. During further training, the su- 

pervisor then enters parse action commands by ei- 

ther confirming what the system proposes or overrul- 

ing it by providing the proper action. As the corpus 

of parse examples grows and the system is trained 

on more and more data, the system becomes more 

refined, so that the supervisor has to overrule the 

system with decreasing frequency. The sequence of 

correct parse actions for a sentence is then recorded 

in a log file. 

3 F e a t u r e s  

To make good parse decisions, a wide range of fea- 

tures at various degrees of abstraction have to be 

considered. To express such a wide range of fea- 

tures, we defined a feature language. Parse features 

can be thought of as functions that map from par- 

tially parsed sentences to a value. Applied to the 

target parse state of figure 1, the feature (SYNT 
OF OBJ OF -1 AT S-SYNT-ELEM), for example, 

designates the general syntactic class of the object 

of the first frame of the parse stack 2, in our example 

np 3. So, features do not a priori operate on words or 

phrases, but only do so if their description references 

such words or phrases, as in our example through the 

path 'OBJ OF -1'. 

Given a particular parse state and a feature, the 

system can interpret the feature and compute its 

2S-SYNT-ELEM designates the top syntactic level; 
since -1 is negative, the feature refers to the 1st frame 
of the parse stack. Note that the top of stack is at the 
right end for the parse stack. 

3If a feature is not defined in a specific parse state, the 
feature interpreter assigns the special value unavailable. 

value for the given parse state, often using additional 

background knowledge such as 

1. A knowledge base (KB), which currently con- 

sists of a directed acyclic graph of 4356 mostly 

semantic and syntactic concepts connected by 

4518 is-a links, e.g. "book,~o~,n-eoncept is-a 

tangible - objectnoun-coneept". Most concepts 

representing words are at a fairly shallow level 

of the KB, e.g. under 'tangible object', 'ab- 

stract', 'process verb', or 'adjective', with more 

depth used only in concept areas more relevant 

for making parse and translation decisions, such 

as temporal, spatial and animate concepts. 4 

2. A subcategorization table that describes the syn- 

tactic and semantic role structures for verbs, 

with currently 242 entries. 

The following representative examples, for easier 

understanding rendered in English and not in fea- 

ture language syntax, further illustrate the expres- 

siveness of the feature language: 

• the general syntactic class of frame_3 (the 

third element of the parse stack): e.g. verb, adj, 

np, 

• whether or not the adverbial alternative of 

frame1 (the top element of the input list) is 

an adjectival degree adverb, 

• the specific finite tense of f rame_i ,  e.g. present 

tense, 

• whether or not frame_l contains an object, 

• the semantic role of frame_l  with respect to 

frame_2: e.g. agent, time; this involves pattern 

matching with corresponding entries in the verb 

subcategorization table, 

• whether or not frarne_2 and f rame_l  satisfy 

subject-verb agreement. 

Features can in principal refer to any one or sev- 

eral elements on the parse stack or input list, and 

any of their subelements, at any depth. Since the 

currently 205 features are supposed to bear some 

linguistic relevance, none of them are unjustifiably 

remote from the current focus of a parse state. 

The feature collection is basically independent 

from the supervised parse action acquisition. Before 

learning a decision structure for the first time, the 

supervisor has to provide an initial set of features 

4Supported by acquisition tools, word/concept pairs 
are typically entered into the lexicon and the KB at the 
same time, typically requiring less than a minute per 
word or group of closely related words. 
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done-operation-p tree 

START ~ . - -7-ff~" - "  "2 7 . . - - -  

do -~ - - _ ~ : J J  -art 
/ s j ~  g ¢ I 

do er - - .  - re er o re ¢ . ~" . "  shift n 'It s-verb 

red 'uCe 2 . . , ~  

reduce 1... reduce 3... 

Figure 3: Example of a hybrid decision structure 

that can be considered obviously relevant. Partic- 

ularly during the early development of our system, 

this set was increased whenever parse examples had 

identical values for all current features but neverthe- 

less demanded different parse actions. Given a spe- 

cific conflict pair of partially parsed sentences, the 

supervisor would add a new relevant feature that dis- 

criminates the two examples. We expect our feature 

set to grow to eventually about 300 features when 

scaling up further within the Wall Street Journal do- 

main, and quite possibly to a higher number when 

expanding into new domains. However, such feature 

set additions require fairly little supervisor effort. 

Given (1) a log file with the correct parse action 

sequence of training sentences as acquired under su- 

pervision and (2) a set of features, the system revis- 

its the training sentences and computes values for 

all features at each parse step. Together with the 

recorded parse actions these feature vectors form 

parse examples that serve as input to the learning 

unit. Whenever the feature set is modified, this step 

must be repeated, but this is unproblematic, because 

this process is both fully automatic and fast. 

4 Learning Decision Structures  

Traditional statistical techniques also use features, 

but often have to sharply limit their number (for 

some trigram approaches to three fairly simple fea- 

tures) to avoid the loss of statistical significance. 

In parsing, only a very small number of features 

are crucial over a wide range of examples, while 

most features are critical in only a few examples, 

being used to 'fine-tune' the decision structure for 

special cases. So in order to overcome the antago- 

nism between the importance of having a large num- 

ber of features and the need to control the num- 

ber of examples required for learning, particularly 

when acquiring parse action sequence under super- 

vision, we choose a decision-tree based learning al- 

gorithm, which recursively selects the most discrim- 

inating feature of the corresponding subset of train- 

ing examples, eventually ignoring all locally irrele- 

vant features, thereby tailoring the size of the final 

decision structure to the complexity of the training 

data. 

While parse actions might be complex for the ac- 

tion interpreter, they are atomic with respect to the 

decision structure learner; e.g. "(R 2 TO VP AS 

PFtED (OBJ PAT))" would be such an atomic clas- 

sification. A set of parse examples, as already de- 

scribed in the previous section, is then fed into an 

ID3-based learning routine that generates a deci- 

sion structure, which can then 'classify' any given 

parse state by proposing what parse action to per- 

form next. 

We extended the standard ID3 model (Quinlan, 

1986) to more general hybrid decision structures. 

In our tests, the best performing structure was a 

decision list (Rivest, 1987) of hierarchical decision 

trees, whose simplified basic structure is illustrated 

in figure 3. Note that in the 'reduce operation tree', 

the system first decides whether or not to perform 

a reduction before deciding on a specific reduction. 

Using our knowledge of similarity of parse actions 

and the exceptionality vs. generality of parse action 

groups, we can provide an overhead structure that 

helps prevent data fragmentation. 
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5 Transfer and Generat ion  

The output  tree generated by the parser can be used 

for translation. A transfer module recursively maps 

the source language parse tree to an equivalent tree 

in the target  language, reusing the methods devel- 

oped for parsing with only minor adaptations. The 

main purpose of learning here is to resolve trans- 

lation ambiguities, which arise for example when 

translating the English "to knov]' to German (wis- 

sen/kennen) or Spanish (saber/conocer). 

Besides word pair entries, the bilingual dictionary 
also contains pairs of phrases and expressions in a 

format  closely resembling traditional (paper) dictio- 

naries, e.g. "to comment on SOMETHING_l" /"s ich  

zu ETWAS_DAT_I ~iut3ern". Even if a complex 

translation pair does not bridge a structural mis- 

match,  it can make a valuable contribution to dis- 

ambiguation. Consider for example the term "inter- 

est rate". Both element nouns are highly, ambigu- 

ous with respect to German, but the English com- 

pound conclusively maps to the German compound 

"Zinssatz". We believe that  an extensive collection 

of complex translation pairs in the bilingual dictio- 

nary is critical for translation quality and we are 

confident that  its acquisition can be at least partially 

automated by using techniques like those described 

in (Smadja et al., 1996). Complex translation en- 

tries are preprocessed using the same parser as for 

normal text. During the transfer process, the result- 

ing parse tree pairs are then accessed using pattern 

matching. 

The generation module orders the components of 

phrases, adds appropriate punctuation, and propa- 

gates morphologically relevant information in order 

to compute the proper form of surface words in the 

target  language. 

6 W a l l  S t r e e t  J o u r n a l  E x p e r i m e n t s  

~Ve now present intermediate results on training 

and testing a prototype implementation of the sys- 

tem with sentences from the Wall Street Journal, a 

prominent corpus of 'real '  text, as collected on the 

ACL-CD. 

In order to limit the size of the required lexicon, 

we work on a reduced corpus of 105,356 sentences, 

a tenth of the full corpus, that  includes all those 

sentences that  are fully covered by the 3000 most 

frequently occurring words (ignoring numbers etc.) 

in the entire corpus. The first 272 sentences used in 

this experiment vary in length from 4 to 45 words, 

averaging at 17.1 words and 43.5 parse actions per 

sentence. One of these sentence is "Canadian man- 
ufacturers' new orders fell to $20.80 billion (Cana- 

Tr. snt. 16 32 64 128 256 

1 97.5% 1 98.4  I 
Cr/snt I 2.5 1 2.1j 11. . I LI_I.L I 
0 1 I 

~ %  I 93.0% [ 94.95 
1791  9 s Is9  191.7 
I  0.   6-57o 

Str~L I 55 ~ 1 0 . 3 ~ 1 8 . 8 % 1 2 6 . 8 %  
Loops 13 6 0 1 1 

Table 1: Evaluation results with varying number of 

training sentences; with all 205 features and hybrid 

decision structure; Train. = number of training sen- 

tences; pr/prec. = precision; rec. = recall; I. = la- 

beled; Tagging = tagging accuracy; Cr/snt  = cross- 

ings per sentence; Ops = correct operations; OpSeq 

= Operation Sequence 

labeled precision 
9 5 %  - 

9 0 %  - 

8 5 %  - 

8 0 %  - 

7 5 %  I t I I I I I 
1 6  3 2  6 4  1 2 8  2 5 6  5 1 2  1 0 2 4  

number of training sentences 

Figure 4: Learning curve for labeled precision in ta- 

ble 1. 

dian) in January, down 4~o from December's $21.67 

billion billion on a seasonally adjusted basis, Statis- 

tics Canada, a federal agency, said.". 
For our parsing test series, we use 17-fold cross- 

validation. The corpus of 272 sentences that  cur- 

rently have parse action logs associated with them 

is divided into 17 blocks of 16 sentences each. The 17 

blocks are then consecutively used for testing. For 

each of the 17 sub-tests, a varying number of sen- 

tences from the other blocks is used for training the 

parse decision structure, so that within a sub-test, 

none of the training sentences are ever used as a test 

sentence. The results of the 17 sub-tests of each se- 

ries are then averaged. 
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Features 6 ' 25 50 100 2 0 5  

Prec. 

Recall 

L. pr. 

L. rec. 

Tagging 

Cr/snt  

0 cr 

< l c r  

< 2 c r  

< 3c r  

< 4c r  

Ops 

OpSeq 

Str&L 

Loops 

Va zTw wrr     
I 87.3% ~ 88.7% 190.8%] 91.7% 

179.8% ~ 86.7% ] 87.2%188.6% 
I 81.6% ~ 84.1% [ 86.9% I 88.1% 
1 97.6% 1 9;.9  1 98.1% 1 98.2% 

157.4%1 59.6%170.6%172.1% 
[ 72A% [ 73.9% [ 80.5% [ 84.2% 

1 82.7% 1 84,9% [ 88.6% 1 92.3% 
1 89.6% 1 89,7% 1 93.8% 1 94.5% 

I s.8 o 1 13.6  

92--7W0 
92.8% 

89.8% 

89.6% 

98.4% 

1.0 

56.3% 

73.5% 

84.9% 

93.0% 

94.9% 

91.7% 

16.5% 

2618% 

Table 2: Evaluation results with varying number of 

features; with 256 training sentences 

Precision (pr.): 
number of correct constituents in system parse 

number of constituents in system parse 

Reca l l  (rec.): 

number of correct constituents in system parse 

number of constituents in logged parse 

C r o s s i n g  b r a c k e t s  (cr): number of constituents 

which violate constituent boundaries with a con- 

stituent in the logged parse. 

L a b e l e d  (l.) precision/recall measures not only 

structural correctness, but also the correctness of 

the syntactic label. C o r r e c t  o p e r a t i o n s  (Ops) 
measures the number of correct operations during 

a parse that  is continuously corrected based on the 

logged sequence. The correct operations ratio is im- 

portant for example acquisition, because it describes 

the percentage of parse actions that the supervisor 

can confirm by just hitting the return key. A sen- 

tence has a correct o p e r a t i n g  s equence  (OpSeq), 
if the system fully predicts the logged parse action 

sequence, and a correct s t r u c t u r e  a n d  l a b e l i n g  

(Str~L), if the structure and syntactic labeling of 

the final system parse of a sentence is 100% correct, 

regardless of the operations leading to it. 

The current set of 205 features was sufficient to 

always discriminate examples with different parse 

actions, resulting in a 100% accuracy on sentences 

already seen during training. While that percentage 

is certainly less important than the accuracy figures 

for unseen sentences, it nevertheless represents an 

important upper ceiling. 

Many of the mistakes are due to encountering con- 

Type of deci- plain hier. plain 

sion structure list list tree 

Precision 87.8% 91.0% 87.6% 

Recall 89.9% 88.2% 89.7% 

Lab. precision 28.6% 87.4% 38.5% 

Lab. recall 86.1% 84.7% 85.6% 

Tagging ace. 97.9% 96.0% 97.9% 

Crossings/snt 1.2 1.3 1.3 

0crossings 55.2% 52.9% 51.5% 

_< 1 crossings 72.8% 71.0% 65.8% 

_~ 2 crossings 82.7% 82.7% 81.6% 

< 3 crossings 89.0% 89.0% 90.1% 

_< 4 crossings 93.4% 93.4% 93.4% 

Ops 86.5% 90.3% 90.2% 

OpSeq 12.9% 11.8% 13.6% 

Str~L 22.4% 22.8% 21.7% 

Endless loops 26 23 32 

hybrid 

tree 

92.7% 

92.8% 

89.8% 

89.6% 

98.4% 

1.0 

56.3% 

73.5% 

84.9% 

93 2% 

94.9% 

91.7% 

16.5% 

26.8% 

1 

Table 3: Evaluation results with varying types of 

decision structures; with 256 training sentences and 

205 features 

structions that  just have not been seen before at all, 

typically causing several erroneous parse decisions in 

a row. This observation further supports our expec- 

tation, based on the results shown in table 1 and fig- 

ure 4, that  with more training sentences, the testing 

accuracy for unseen sentences will still rise signifi- 

cantly. 

Table 2 shows the impact of reducing the feature 

set to a set of N core features. While the loss of a few 

specialized features will not cause a major  degrada- 

tion, the relatively high number of features used in 

our system finds a clear justification when evaluating 

compound test characteristics, such as the number 

of structurally completely correct sentences. When 

25 or fewer features are used, all of them are syn- 

tactic. Therefore the 25 feature test is a relatively 

good indicator for the contribution of the semantic 

knowledge base. 

In another test, we deleted all 10 features relating 

to the subcategorization table and found that the 

only metrics with degrading values were those mea- 

suring semantic role assignment; in particular, none 

of the precision, recall and crossing bracket values 

changed significantly. This suggests that, at least in 

the presence of other semantic features, the subcat- 

egorization table does not play as critical a role in 

resolving structural ambiguity as might have been 

expected. 

Table 3 compares four different machine learning 

variants: plain decision lists, hierarchical decision 
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lists, plain decision trees and a hybrid structure, 

namely a decision list of hierarchical decision trees, 

as sketched in figure 3. The results show that  ex- 

tensions to the basic decision tree model can signif- 

icantly improve learning results. 

System 

Human translation 

CONTEX on correct parse 

CONTEX (full translation) 

Logos 

SYSTR.AN 

Globalink 

Syntax Semantics 

1.18 1.41 

2.20 2.19 

2.36 2.38 

2.57 3.24 

2.68 3.35 

3.30 3.83 

Table 4: Translation evaluation results (best possi- 

ble = 1.00, worst possible = 6.00) 

Table 4 summarizes the evaluation results of 

translating 32 randomly selected sentences from our 

Wall Street Journal corpus from English to German. 

Besides our system, CONTEX, we tested three com- 

mercial systems, Logos, SYSTR.AN, and Globalink. 

In order to better assess the contribution of the 

parser, we also added a version that let our system 

star t  with the correct parse, effectively just testing 

the transfer and generation module. The resulting 

translations, in randomized order and without iden- 

tification, were evaluated by ten bilingual graduate 

students, both native German speakers living in the 

U.S. and native English speakers teaching college 

level German. As a control, half of the evaluators 

were also given translations by a bilingual human. 

Note that  the translation results using our parser 

are fairly close to those starting with a correct parse. 

This means that  the errors made by the parser 

have had a relatively moderate impact on transla- 

tion quality. The transfer and generation modules 

were developed and trained based on only 48 sen- 

tences, so we expect a significant translation quality 

improvement by further development of those mod- 

ules. 

Our system performed better than the commercial 

systems, but this has to be interpreted with caution, 

since our system was trained and tested on sentences 

from the same lexically limited corpus (but of course 

without overlap), whereas the other systems were 

developed on and for texts from a larger variety of 

domains, making lexical choices more difficult in par- 

ticular. 

Table 5 shows the correlation between various 

parse and translation metrics. Labeled precision has 

the strongest correlation with both the syntactic and 

semantic translation evaluation grades. 

"Metric 

'Precision 

Recall 

Labeled precision 

Labeled recall 

Tagging accuracy 

Number of crossing brackets J 

Operations 

Operation sequence 

Syntax Semantics 

-0.63 -0.63 

-0.64 -0.66 

-0.75 -0.78 

-0.65 -0.65 

-0.66 -0.56 

0.58 0.54 

-0.45 -0.41 

-0.39 -0.36 

Table 5: Correlation between various parse and 

translation metrics. Values near -1.0 or 1.0 indi- 

cate very strong correlation, whereas values near 0.0 

indicate a weak or no correlation. Most correlation 

values, incl. for labeled precision are negative, be- 

cause a higher (better) labeled precision correlates 

with a numerically lower (better) translation score 

on the 1.0 (best) to 6.0 (worst) translation evalua- 

tion scale. 

7 R e l a t e d  W o r k  

Our basic parsing and interactive training paradigm 

is based on (Simmons and Yu, 1992). We have 

extended their work by significantly increasing the 

expressiveness of the parse action and feature lan- 

guages, in particular by moving far beyond the few 

simple features that  were limited to syntax only, by 

adding more background knowledge and by intro- 

ducing a sophisticated machine learning component. 

(Magerman, 1995) uses a decision tree model sim- 

ilar to ours, training his system SPATTER. with parse 

action sequences for 40,000 Wall Street Journal sen- 

tences derived from the Penn Treebank (Marcus 

et al., 1993). Questioning the traditional n-grams, 

Magerman already advocates a heavier reliance on 

contextual information. Going beyond Magerman's  

still relatively rigid set of 36 features, we propose a 

yet richer, basically unlimited feature language set. 

Our parse action sequences are too complex to be 

derived from a treebank like Penn's. Not only do 

our parse trees contain semantic annotations, roles 

and more syntactic detail, we also rely on the more 

informative parse action sequence. While this neces- 

sitates the involvement of a parsing supervisor for 

training, we are able to perform deterministic pars- 

ing and get already very good test results for only 

256 training sentences. 

(Collins, 1996) focuses on b ig ram lexical depen- 

dencies (BLD). Trained on the same 40,000 sen- 

tences as Spatter, it relies on a much more limited 

type of context than our system and needs little 

background knowledge. 
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Model 

Labeled precision 

Labeled recall 

Crossings/sentence 

Sent. with 0 cr. 

Sent. with < 2 cr. 

I SPATTER, I BLD I CONTEX 

84.9% 86.3% 89.8% 

84.6% 85.8% 89.6% 

1.26 1.14 1.02 

56.6% 59.9% 56.3% 

81.4% 83.6% 84.9% 

Table 6: Comparing our system CONTEX with 

Magerman's  SPATTER, and Collins' BLD; results for 

SPATTER, and BLD are for sentences of up to 40 

words. 

Table 6 compares our results with SPATTER, and 

BLD. The results have to be interpreted cautiously 

since they are not based on the exact same sentences 

and detail of bracketing. Due to lexical restrictions, 

our average sentence length (17.1) is below the one 

used in SPATTER and BLD (22.3), but some of our 

test sentences have more than 40 words; and while 

the Penn Treebank leaves many phrases such as "the 

New York Stock Exchange" without internal struc- 

ture, our system performs a complete bracketing, 

thereby increasing the risk of crossing brackets. 

8 C o n c l u s i o n  

We try to bridge the gap between the typically hard- 

to-scale hand-crafted approach and the typically 

large-scale but context-poor statistical approach for 

unrestricted text parsing. 

Using 

• a rich and unified context with 205 features, 

• a complex parse action language that allows in- 

tegrated part  of speech tagging and syntactic 

and semantic processing, 

• a sophisticated decision structure that general- 

izes traditional decision trees and lists, 

• a balanced use of machine learning and micro- 
modular background knowledge, i.e. very small 

pieces of highly' independent information 

• a modest number of interactively acquired ex- 

amples from the Wall Street Journal, 

our system CONTEX 

• computes parse trees and translations fast, be- 

cause it uses a deterministic single-pass parser, 

• shows good robustness when encountering novel 

constructions, 

• produces good parsing results comparable to 

those of the leading statistical methods, and 

• delivers competitive results for machine trans- 

lations. 

While many limited-context statistical approaches 

have already reached a performance ceiling, we still 

expect to significantly improve our results when in- 

creasing our training base beyond the currently 256 

sentences, because the learning curve hasn' t  flat- 

tened out yet and adding substantially more exam- 

ples is still very feasible. Even then the training 

size will compare favorably with the huge number 

of training sentences necessary for many statistical 

systems. 
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