
Learning Parse and Translation Decisions
From Examples With Rich Context

U l f H e r m j a k o b a n d R a y m o n d J . M o o n e y

D e p t . of C o m p u t e r Sc iences

U n i v e r s i t y of T e x a s a t A u s t i n

A u s t i n , T X 78712, U S A

u l f @ c s . u t e x a s . e d u m o o n e y @ c s . u t e x a s . e d u

A b s t r a c t

We present a knowledge and context-based

system for parsing and translating natu-

ral language and evaluate it on sentences

from the Wall Street Journal. Applying

machine learning techniques, the system

uses parse action examples acquired un-

der supervision to generate a determinis-

tic shift-reduce parser in the form of a de-

cision structure. It relies heavily on con-

text, as encoded in features which describe

the morphological, syntactic, semantic and

other aspects of a given parse state.

1 I n t r o d u c t i o n

The parsing of unrestricted text, with its enormous

lexical and structural ambiguity, still poses a great

challenge in natural language processing. The tradi-

tional approach of trying to master the complexity of

parse grammars with hand-coded rules turned out to

be much more difficult than expected, if not impos-

sible. Newer statistical approaches with often only

very limited context sensitivity seem to have hit a

performance ceiling even when trained on very large

corpora.

To cope with the complexity of unrestricted text,

parse rules in any kind of formalism will have to

consider a complex context with many different mor-

phological, syntactic or semantic features. This can

present a significant problem, because even linguisti-

cally trained natural language developers have great

difficulties writing and even more so extending ex-

plicit parse grammars covering a wide range of nat-

ural language. On the other hand it is much easier

for humans to decide how specific sentences should

be analyzed.

We therefore propose an approach to parsing

based on learning from examples with a very strong

emphasis on context, integrating morphological,

syntactic, semantic and other aspects relevant to

making good parse decisions, thereby also allowing

the parsing to be deterministic. Applying machine

learning techniques, the system uses parse action ex-

amples acquired under supervision to generate a de-

terministic shift-reduce type parser in the form of a

decision structure. The generated parser transforms

input sentences into an integrated phrase-structure

and case-frame tree, powerful enough to be fed into

a transfer and a generation module to complete the

full process of machine translation.

Balanced by rich context and some background

knowledge, our corpus based approach relieves the

NL-developer from the hard if not impossible task of

writing explicit g rammar rules and keeps grammar

coverage increases very manageable. Compared with

standard statistical methods, our system relies on

deeper analysis and more supervision, but radically

fewer examples.

2 B a s i c P a r s i n g P a r a d i g m

As the basic mechanism for parsing text into a

shallow semantic representation, we choose a shift-

reduce type parser (Marcus, 1980). It breaks parsing

into an ordered sequence of small and manageable

parse actions such as shift and reduce. This ordered

'left-to-right' parsing is much closer to how humans

parse a sentence than, for example, chart oriented

parsers; it allows a very transparent control struc-

ture and makes the parsing process relatively intu-

itive for humans. This is very important , because

during the training phase, the system is guided by a

human supervisor for whom the flow of control needs

to be as transparent and intuitive as possible.

The parsing does not have separate phases for

part-of-speech selection and syntactic and semantic

processing, but rather integrates all of them into a

single parsing phase. Since the system has all mor-

phological, syntactic and semantic context informa-

tion available at all times, the system can make well-

482

based decisions very early, allowing a single path, i.e.

deterministic parse, which eliminates wasting com-

putation on 'dead end' alternatives.

Before the parsing itself starts, the input string

is segmented into a list of words incl. punctuation

marks, which then are sent through a morphological

analyzer that , using a lexicon 1, produces primitive

frames for the segmented words. A word gets a prim-

itive frame for each possible par t of speech. (Mor-

phological ambiguity is captured within a frame.)

parse stack

"bought"

synt: verb

top of top of

stack list
• "<input list >

, "today"

synt adv

(R 2 TO S-VP AS PRED (OBJ PAT))

"reduce the 2 top elements of the parse stack
to a frame with syntax 'vp'

and roles 'pred' and 'obj and pat'"

1
~ "bought a book today"

synt: vp synt: adv

sub: (pred) (obj pat)

/
I "bought"

synt: verb

Figure 1: Example of a parse action (simplified);

boxes represent frames

The central data structure for the parser consists

of a parse stack and an input list. The parse stack

and the input list contain trees of frames of words

or phrases. Core slots of frames are surface and lexi-

cal form, syntactic and semantic category, subframes

with syntactic and semantic roles, and form restric-

1The lexicon provides part-of-speech information and
links words to concepts, as used in the KB (see next
section). Additional information includes irregular forms
and grammatical gender etc. (in the German lexicon).

"John bought a new computer science book

t o d a y . " :
synt/sem: S-SNT/I-EV-BUY
forms: (3rd_person sing past_tense)

lex : "buy"

subs :
(SUBJ AGENT) "John":

synt/sem: S-NP/I-EN-JOHN

(PRED) "John"

synt/sem: S-NOUN/I-EN-JOHN

(PRED) "bought":

synt/sem: S-TR-VERB/I-EV-BUY

(OBJ THEME) "a new computer science book":

synt/sem: S-NP/I-EN-BOOK

(DET) "a"

(MOD) "new"

(PRED) "computer science book"

(MOD) "computer science"

(MOD) "computer"

(PRED) "science"

(PRED) "book"

(TIME) "today":
synt/sem: S-ADV/C-AT-TIME

(PRED) "today"

synt/sem: S-ADV/I-EADV-TODAY

(DUMMY) "." :

synt : D-PERIOD

Figure 2: Example of a parse tree (simplified).

tions such as number, person, and tense. Optional

slots include special information like the numerical

value of number words.

Initially, the parse stack is empty and the input

list contains the primitive frames produced by the

morphological analyzer. After initialization, the de-

terministic parser applies a sequence of parse actions
to the parse structure. The most frequent parse ac-

tions are shift, which shifts a frame from the input

list onto the parse stack or backwards, and reduce,
which combines one or several frames on the parse

stack into one new frame. The frames to be com-

bined are typically, but not necessarily, next to each

other at the top of the stack. As shown in figure 1,

the action

(R 2 TO VP AS PRED (0BJ PAT))

for example reduces the two top frames of the stack

into a new frame that is marked as a verb phrase

and contains the next-to-the-top frame as its pred-

icate (or head) and the top frame of the stack as

its object and patient. Other parse actions include

add-into, which adds frames arbitrarily deep into an

existing frame tree, mark, which can mark any slot

of any frame with any value, and operations to in-

troduce empty categories (i.e. traces and 'PRO' , as

in "Shei wanted PR.Oi to win."). Parse actions can

483

have numerous arguments, making the parse action
language very powerful.

The parse action sequences needed for training the

system are acquired interactively. For each train-

ing sentence, the system and the supervisor parse

the sentence step by step, with the supervisor enter-

ing the next parse action, e.g. (R 2 TO VP AS PRED

(01aJ PAT)), and the system executing it, repeating

this sequence until the sentence is fully parsed. At

least for the very first sentence, the supervisor actu-

ally has to type in the entire parse action sequence.

With a growing number of parse action examples

available, the system, as described below in more de-

tail, can be trained using those previous examples.

In such a partially trained system, the parse actions

are then proposed by the system using a parse deci-

sion structure which "classifies" the current context.

The proper classification is the specific action or se-

quence of actions that (the system believes) should

be performed next. During further training, the su-

pervisor then enters parse action commands by ei-

ther confirming what the system proposes or overrul-

ing it by providing the proper action. As the corpus

of parse examples grows and the system is trained

on more and more data, the system becomes more

refined, so that the supervisor has to overrule the

system with decreasing frequency. The sequence of

correct parse actions for a sentence is then recorded

in a log file.

3 F e a t u r e s

To make good parse decisions, a wide range of fea-

tures at various degrees of abstraction have to be

considered. To express such a wide range of fea-

tures, we defined a feature language. Parse features

can be thought of as functions that map from par-

tially parsed sentences to a value. Applied to the

target parse state of figure 1, the feature (SYNT
OF OBJ OF -1 AT S-SYNT-ELEM), for example,

designates the general syntactic class of the object

of the first frame of the parse stack 2, in our example

np 3. So, features do not a priori operate on words or

phrases, but only do so if their description references

such words or phrases, as in our example through the

path 'OBJ OF -1'.

Given a particular parse state and a feature, the

system can interpret the feature and compute its

2S-SYNT-ELEM designates the top syntactic level;
since -1 is negative, the feature refers to the 1st frame
of the parse stack. Note that the top of stack is at the
right end for the parse stack.

3If a feature is not defined in a specific parse state, the
feature interpreter assigns the special value unavailable.

value for the given parse state, often using additional

background knowledge such as

1. A knowledge base (KB), which currently con-

sists of a directed acyclic graph of 4356 mostly

semantic and syntactic concepts connected by

4518 is-a links, e.g. "book,~o~,n-eoncept is-a

tangible - objectnoun-coneept". Most concepts

representing words are at a fairly shallow level

of the KB, e.g. under 'tangible object', 'ab-

stract', 'process verb', or 'adjective', with more

depth used only in concept areas more relevant

for making parse and translation decisions, such

as temporal, spatial and animate concepts. 4

2. A subcategorization table that describes the syn-

tactic and semantic role structures for verbs,

with currently 242 entries.

The following representative examples, for easier

understanding rendered in English and not in fea-

ture language syntax, further illustrate the expres-

siveness of the feature language:

• the general syntactic class of frame_3 (the

third element of the parse stack): e.g. verb, adj,

np,

• whether or not the adverbial alternative of

frame1 (the top element of the input list) is

an adjectival degree adverb,

• the specific finite tense of f rame_i , e.g. present

tense,

• whether or not frame_l contains an object,

• the semantic role of frame_l with respect to

frame_2: e.g. agent, time; this involves pattern

matching with corresponding entries in the verb

subcategorization table,

• whether or not frarne_2 and f rame_l satisfy

subject-verb agreement.

Features can in principal refer to any one or sev-

eral elements on the parse stack or input list, and

any of their subelements, at any depth. Since the

currently 205 features are supposed to bear some

linguistic relevance, none of them are unjustifiably

remote from the current focus of a parse state.

The feature collection is basically independent

from the supervised parse action acquisition. Before

learning a decision structure for the first time, the

supervisor has to provide an initial set of features

4Supported by acquisition tools, word/concept pairs
are typically entered into the lexicon and the KB at the
same time, typically requiring less than a minute per
word or group of closely related words.

484

done-operation-p tree

START ~ . - -7-ff~" - " "2 7 . . - - -

do -~ - - _ ~ : J J -art
/ s j ~ g ¢ I

do er - - . - re er o re ¢ . ~" . " shift n 'It s-verb

red 'uCe 2 . . , ~

reduce 1... reduce 3...

Figure 3: Example of a hybrid decision structure

that can be considered obviously relevant. Partic-

ularly during the early development of our system,

this set was increased whenever parse examples had

identical values for all current features but neverthe-

less demanded different parse actions. Given a spe-

cific conflict pair of partially parsed sentences, the

supervisor would add a new relevant feature that dis-

criminates the two examples. We expect our feature

set to grow to eventually about 300 features when

scaling up further within the Wall Street Journal do-

main, and quite possibly to a higher number when

expanding into new domains. However, such feature

set additions require fairly little supervisor effort.

Given (1) a log file with the correct parse action

sequence of training sentences as acquired under su-

pervision and (2) a set of features, the system revis-

its the training sentences and computes values for

all features at each parse step. Together with the

recorded parse actions these feature vectors form

parse examples that serve as input to the learning

unit. Whenever the feature set is modified, this step

must be repeated, but this is unproblematic, because

this process is both fully automatic and fast.

4 Learning Decision Structures

Traditional statistical techniques also use features,

but often have to sharply limit their number (for

some trigram approaches to three fairly simple fea-

tures) to avoid the loss of statistical significance.

In parsing, only a very small number of features

are crucial over a wide range of examples, while

most features are critical in only a few examples,

being used to 'fine-tune' the decision structure for

special cases. So in order to overcome the antago-

nism between the importance of having a large num-

ber of features and the need to control the num-

ber of examples required for learning, particularly

when acquiring parse action sequence under super-

vision, we choose a decision-tree based learning al-

gorithm, which recursively selects the most discrim-

inating feature of the corresponding subset of train-

ing examples, eventually ignoring all locally irrele-

vant features, thereby tailoring the size of the final

decision structure to the complexity of the training

data.

While parse actions might be complex for the ac-

tion interpreter, they are atomic with respect to the

decision structure learner; e.g. "(R 2 TO VP AS

PFtED (OBJ PAT))" would be such an atomic clas-

sification. A set of parse examples, as already de-

scribed in the previous section, is then fed into an

ID3-based learning routine that generates a deci-

sion structure, which can then 'classify' any given

parse state by proposing what parse action to per-

form next.

We extended the standard ID3 model (Quinlan,

1986) to more general hybrid decision structures.

In our tests, the best performing structure was a

decision list (Rivest, 1987) of hierarchical decision

trees, whose simplified basic structure is illustrated

in figure 3. Note that in the 'reduce operation tree',

the system first decides whether or not to perform

a reduction before deciding on a specific reduction.

Using our knowledge of similarity of parse actions

and the exceptionality vs. generality of parse action

groups, we can provide an overhead structure that

helps prevent data fragmentation.

485

5 Transfer and Generat ion

The output tree generated by the parser can be used

for translation. A transfer module recursively maps

the source language parse tree to an equivalent tree

in the target language, reusing the methods devel-

oped for parsing with only minor adaptations. The

main purpose of learning here is to resolve trans-

lation ambiguities, which arise for example when

translating the English "to knov]' to German (wis-

sen/kennen) or Spanish (saber/conocer).

Besides word pair entries, the bilingual dictionary
also contains pairs of phrases and expressions in a

format closely resembling traditional (paper) dictio-

naries, e.g. "to comment on SOMETHING_l" /"s ich

zu ETWAS_DAT_I ~iut3ern". Even if a complex

translation pair does not bridge a structural mis-

match, it can make a valuable contribution to dis-

ambiguation. Consider for example the term "inter-

est rate". Both element nouns are highly, ambigu-

ous with respect to German, but the English com-

pound conclusively maps to the German compound

"Zinssatz". We believe that an extensive collection

of complex translation pairs in the bilingual dictio-

nary is critical for translation quality and we are

confident that its acquisition can be at least partially

automated by using techniques like those described

in (Smadja et al., 1996). Complex translation en-

tries are preprocessed using the same parser as for

normal text. During the transfer process, the result-

ing parse tree pairs are then accessed using pattern

matching.

The generation module orders the components of

phrases, adds appropriate punctuation, and propa-

gates morphologically relevant information in order

to compute the proper form of surface words in the

target language.

6 W a l l S t r e e t J o u r n a l E x p e r i m e n t s

~Ve now present intermediate results on training

and testing a prototype implementation of the sys-

tem with sentences from the Wall Street Journal, a

prominent corpus of 'real ' text, as collected on the

ACL-CD.

In order to limit the size of the required lexicon,

we work on a reduced corpus of 105,356 sentences,

a tenth of the full corpus, that includes all those

sentences that are fully covered by the 3000 most

frequently occurring words (ignoring numbers etc.)

in the entire corpus. The first 272 sentences used in

this experiment vary in length from 4 to 45 words,

averaging at 17.1 words and 43.5 parse actions per

sentence. One of these sentence is "Canadian man-
ufacturers' new orders fell to $20.80 billion (Cana-

Tr. snt. 16 32 64 128 256

1 97.5% 1 98.4 I
Cr/snt I 2.5 1 2.1j 11. . I LI_I.L I
0 1 I

~ % I 93.0% [94.95
1791 9 s Is9 191.7
I 0. 6-57o

Str~L I 55 ~ 1 0 . 3 ~ 1 8 . 8 % 1 2 6 . 8 %
Loops 13 6 0 1 1

Table 1: Evaluation results with varying number of

training sentences; with all 205 features and hybrid

decision structure; Train. = number of training sen-

tences; pr/prec. = precision; rec. = recall; I. = la-

beled; Tagging = tagging accuracy; Cr/snt = cross-

ings per sentence; Ops = correct operations; OpSeq

= Operation Sequence

labeled precision
9 5 % -

9 0 % -

8 5 % -

8 0 % -

7 5 % I t I I I I I
1 6 3 2 6 4 1 2 8 2 5 6 5 1 2 1 0 2 4

number of training sentences

Figure 4: Learning curve for labeled precision in ta-

ble 1.

dian) in January, down 4~o from December's $21.67

billion billion on a seasonally adjusted basis, Statis-

tics Canada, a federal agency, said.".
For our parsing test series, we use 17-fold cross-

validation. The corpus of 272 sentences that cur-

rently have parse action logs associated with them

is divided into 17 blocks of 16 sentences each. The 17

blocks are then consecutively used for testing. For

each of the 17 sub-tests, a varying number of sen-

tences from the other blocks is used for training the

parse decision structure, so that within a sub-test,

none of the training sentences are ever used as a test

sentence. The results of the 17 sub-tests of each se-

ries are then averaged.

486

Features 6 ' 25 50 100 2 0 5

Prec.

Recall

L. pr.

L. rec.

Tagging

Cr/snt

0 cr

< l c r

< 2 c r

< 3c r

< 4c r

Ops

OpSeq

Str&L

Loops

Va zTw wrr
I 87.3% ~ 88.7% 190.8%] 91.7%

179.8% ~ 86.7%] 87.2%188.6%
I 81.6% ~ 84.1% [86.9% I 88.1%
1 97.6% 1 9;.9 1 98.1% 1 98.2%

157.4%1 59.6%170.6%172.1%
[72A% [73.9% [80.5% [84.2%

1 82.7% 1 84,9% [88.6% 1 92.3%
1 89.6% 1 89,7% 1 93.8% 1 94.5%

I s.8 o 1 13.6

92--7W0
92.8%

89.8%

89.6%

98.4%

1.0

56.3%

73.5%

84.9%

93.0%

94.9%

91.7%

16.5%

2618%

Table 2: Evaluation results with varying number of

features; with 256 training sentences

Precision (pr.):
number of correct constituents in system parse

number of constituents in system parse

Reca l l (rec.):

number of correct constituents in system parse

number of constituents in logged parse

C r o s s i n g b r a c k e t s (cr): number of constituents

which violate constituent boundaries with a con-

stituent in the logged parse.

L a b e l e d (l.) precision/recall measures not only

structural correctness, but also the correctness of

the syntactic label. C o r r e c t o p e r a t i o n s (Ops)
measures the number of correct operations during

a parse that is continuously corrected based on the

logged sequence. The correct operations ratio is im-

portant for example acquisition, because it describes

the percentage of parse actions that the supervisor

can confirm by just hitting the return key. A sen-

tence has a correct o p e r a t i n g s equence (OpSeq),
if the system fully predicts the logged parse action

sequence, and a correct s t r u c t u r e a n d l a b e l i n g

(Str~L), if the structure and syntactic labeling of

the final system parse of a sentence is 100% correct,

regardless of the operations leading to it.

The current set of 205 features was sufficient to

always discriminate examples with different parse

actions, resulting in a 100% accuracy on sentences

already seen during training. While that percentage

is certainly less important than the accuracy figures

for unseen sentences, it nevertheless represents an

important upper ceiling.

Many of the mistakes are due to encountering con-

Type of deci- plain hier. plain

sion structure list list tree

Precision 87.8% 91.0% 87.6%

Recall 89.9% 88.2% 89.7%

Lab. precision 28.6% 87.4% 38.5%

Lab. recall 86.1% 84.7% 85.6%

Tagging ace. 97.9% 96.0% 97.9%

Crossings/snt 1.2 1.3 1.3

0crossings 55.2% 52.9% 51.5%

_< 1 crossings 72.8% 71.0% 65.8%

_~ 2 crossings 82.7% 82.7% 81.6%

< 3 crossings 89.0% 89.0% 90.1%

_< 4 crossings 93.4% 93.4% 93.4%

Ops 86.5% 90.3% 90.2%

OpSeq 12.9% 11.8% 13.6%

Str~L 22.4% 22.8% 21.7%

Endless loops 26 23 32

hybrid

tree

92.7%

92.8%

89.8%

89.6%

98.4%

1.0

56.3%

73.5%

84.9%

93 2%

94.9%

91.7%

16.5%

26.8%

1

Table 3: Evaluation results with varying types of

decision structures; with 256 training sentences and

205 features

structions that just have not been seen before at all,

typically causing several erroneous parse decisions in

a row. This observation further supports our expec-

tation, based on the results shown in table 1 and fig-

ure 4, that with more training sentences, the testing

accuracy for unseen sentences will still rise signifi-

cantly.

Table 2 shows the impact of reducing the feature

set to a set of N core features. While the loss of a few

specialized features will not cause a major degrada-

tion, the relatively high number of features used in

our system finds a clear justification when evaluating

compound test characteristics, such as the number

of structurally completely correct sentences. When

25 or fewer features are used, all of them are syn-

tactic. Therefore the 25 feature test is a relatively

good indicator for the contribution of the semantic

knowledge base.

In another test, we deleted all 10 features relating

to the subcategorization table and found that the

only metrics with degrading values were those mea-

suring semantic role assignment; in particular, none

of the precision, recall and crossing bracket values

changed significantly. This suggests that, at least in

the presence of other semantic features, the subcat-

egorization table does not play as critical a role in

resolving structural ambiguity as might have been

expected.

Table 3 compares four different machine learning

variants: plain decision lists, hierarchical decision

487

lists, plain decision trees and a hybrid structure,

namely a decision list of hierarchical decision trees,

as sketched in figure 3. The results show that ex-

tensions to the basic decision tree model can signif-

icantly improve learning results.

System

Human translation

CONTEX on correct parse

CONTEX (full translation)

Logos

SYSTR.AN

Globalink

Syntax Semantics

1.18 1.41

2.20 2.19

2.36 2.38

2.57 3.24

2.68 3.35

3.30 3.83

Table 4: Translation evaluation results (best possi-

ble = 1.00, worst possible = 6.00)

Table 4 summarizes the evaluation results of

translating 32 randomly selected sentences from our

Wall Street Journal corpus from English to German.

Besides our system, CONTEX, we tested three com-

mercial systems, Logos, SYSTR.AN, and Globalink.

In order to better assess the contribution of the

parser, we also added a version that let our system

star t with the correct parse, effectively just testing

the transfer and generation module. The resulting

translations, in randomized order and without iden-

tification, were evaluated by ten bilingual graduate

students, both native German speakers living in the

U.S. and native English speakers teaching college

level German. As a control, half of the evaluators

were also given translations by a bilingual human.

Note that the translation results using our parser

are fairly close to those starting with a correct parse.

This means that the errors made by the parser

have had a relatively moderate impact on transla-

tion quality. The transfer and generation modules

were developed and trained based on only 48 sen-

tences, so we expect a significant translation quality

improvement by further development of those mod-

ules.

Our system performed better than the commercial

systems, but this has to be interpreted with caution,

since our system was trained and tested on sentences

from the same lexically limited corpus (but of course

without overlap), whereas the other systems were

developed on and for texts from a larger variety of

domains, making lexical choices more difficult in par-

ticular.

Table 5 shows the correlation between various

parse and translation metrics. Labeled precision has

the strongest correlation with both the syntactic and

semantic translation evaluation grades.

"Metric

'Precision

Recall

Labeled precision

Labeled recall

Tagging accuracy

Number of crossing brackets J

Operations

Operation sequence

Syntax Semantics

-0.63 -0.63

-0.64 -0.66

-0.75 -0.78

-0.65 -0.65

-0.66 -0.56

0.58 0.54

-0.45 -0.41

-0.39 -0.36

Table 5: Correlation between various parse and

translation metrics. Values near -1.0 or 1.0 indi-

cate very strong correlation, whereas values near 0.0

indicate a weak or no correlation. Most correlation

values, incl. for labeled precision are negative, be-

cause a higher (better) labeled precision correlates

with a numerically lower (better) translation score

on the 1.0 (best) to 6.0 (worst) translation evalua-

tion scale.

7 R e l a t e d W o r k

Our basic parsing and interactive training paradigm

is based on (Simmons and Yu, 1992). We have

extended their work by significantly increasing the

expressiveness of the parse action and feature lan-

guages, in particular by moving far beyond the few

simple features that were limited to syntax only, by

adding more background knowledge and by intro-

ducing a sophisticated machine learning component.

(Magerman, 1995) uses a decision tree model sim-

ilar to ours, training his system SPATTER. with parse

action sequences for 40,000 Wall Street Journal sen-

tences derived from the Penn Treebank (Marcus

et al., 1993). Questioning the traditional n-grams,

Magerman already advocates a heavier reliance on

contextual information. Going beyond Magerman's

still relatively rigid set of 36 features, we propose a

yet richer, basically unlimited feature language set.

Our parse action sequences are too complex to be

derived from a treebank like Penn's. Not only do

our parse trees contain semantic annotations, roles

and more syntactic detail, we also rely on the more

informative parse action sequence. While this neces-

sitates the involvement of a parsing supervisor for

training, we are able to perform deterministic pars-

ing and get already very good test results for only

256 training sentences.

(Collins, 1996) focuses on b ig ram lexical depen-

dencies (BLD). Trained on the same 40,000 sen-

tences as Spatter, it relies on a much more limited

type of context than our system and needs little

background knowledge.

488

Model

Labeled precision

Labeled recall

Crossings/sentence

Sent. with 0 cr.

Sent. with < 2 cr.

I SPATTER, I BLD I CONTEX

84.9% 86.3% 89.8%

84.6% 85.8% 89.6%

1.26 1.14 1.02

56.6% 59.9% 56.3%

81.4% 83.6% 84.9%

Table 6: Comparing our system CONTEX with

Magerman's SPATTER, and Collins' BLD; results for

SPATTER, and BLD are for sentences of up to 40

words.

Table 6 compares our results with SPATTER, and

BLD. The results have to be interpreted cautiously

since they are not based on the exact same sentences

and detail of bracketing. Due to lexical restrictions,

our average sentence length (17.1) is below the one

used in SPATTER and BLD (22.3), but some of our

test sentences have more than 40 words; and while

the Penn Treebank leaves many phrases such as "the

New York Stock Exchange" without internal struc-

ture, our system performs a complete bracketing,

thereby increasing the risk of crossing brackets.

8 C o n c l u s i o n

We try to bridge the gap between the typically hard-

to-scale hand-crafted approach and the typically

large-scale but context-poor statistical approach for

unrestricted text parsing.

Using

• a rich and unified context with 205 features,

• a complex parse action language that allows in-

tegrated part of speech tagging and syntactic

and semantic processing,

• a sophisticated decision structure that general-

izes traditional decision trees and lists,

• a balanced use of machine learning and micro-
modular background knowledge, i.e. very small

pieces of highly' independent information

• a modest number of interactively acquired ex-

amples from the Wall Street Journal,

our system CONTEX

• computes parse trees and translations fast, be-

cause it uses a deterministic single-pass parser,

• shows good robustness when encountering novel

constructions,

• produces good parsing results comparable to

those of the leading statistical methods, and

• delivers competitive results for machine trans-

lations.

While many limited-context statistical approaches

have already reached a performance ceiling, we still

expect to significantly improve our results when in-

creasing our training base beyond the currently 256

sentences, because the learning curve hasn' t flat-

tened out yet and adding substantially more exam-

ples is still very feasible. Even then the training

size will compare favorably with the huge number

of training sentences necessary for many statistical

systems.

R e f e r e n c e s

E. Black, J. Lafferty, and S. Roukos. 1992. Devel-
opment and evaluation of a broad-coverage prob-

abilistic grammar of English-language computer
manuals. In 30th Proceedings of the A CL, pages

185-192.

M. J. Collins. 1996. A New Statistical Parser Based
on Bigram Lexical Dependencies. In 3~th Proceed-
ings of the ACL, pages 184-191.

U. Hermjakob. 1997. Learning Parse and Trans-
lation Decisions From Examples With Rich Con-
text. Ph.D. thesis, University of Texas at

Austin, Dept. of Computer Sciences TR 97-12.
file://ftp.cs.utexas.edu/pub/mooney/papers/herm
jakob-dissertation-97.ps.Z

D. M. Magerman. 1995. Statistical Decision-Tree
Models for Parsing In 33rd Proceedings of the
ACL, pages 276-283.

M. P. Marcus. 1980. A Theory of Syntactic Recog-
nition for Natural Language. MIT Press.

M. P. Marcus, B. Santorini, and M. A. Marcinkie-

wicz. 1993. Building a Large Annotated Corpus
of English: The Penn Treebank. In Computa-
tional Linguistics 19 (2), pages 184-191.

S. Nirenburg, J. Carbonell, M. Tomita, and K.
Goodman. 1992. Machine Translation: A
Knowledge-Based Approach. San Mateo, CA:
Morgan Kaufmann.

J. R. Quinlan. 1986. Induction of decision trees. In
Machine Learning I (I), pages 81-106.

R. L. Rivest. 1987. Learning Decision Lists. In

Machine Learning 2, pages 229-246.

R. F. Simmons and Yeong-Ho Yu. 1992. The Acqui-
sition and Use of Context-Dependent Grammars
for English. In Computational Linguistics 18 (4),
pages 391-418.

F. Smadja, K. R. KcKeown and V. Hatzivassiloglou.
1996. Translating Collocations for Bilingual Lex-
icons: A Statistical Approach. In Computational
Linguistics 22 (I), pages 1-38.

Globalink. ht tp: / /www.globalink.com/home.html

Oct. 1996.
Logos. ht tp: / /www.logos-ca.com/ Oct. 1996.
SYSTRAN. h t tp : / / sys t ranmt .com/ Oct. 1996.

489

