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ABSTRACT

Real-life control tasks involve matters of various substances—rigid or soft bodies,
liquid, gas—each with distinct physical behaviors. This poses challenges to tradi-
tional rigid-body physics engines. Particle-based simulators have been developed
to model the dynamics of these complex scenes; however, relying on approximation
techniques, their simulation often deviates from real-world physics, especially in
the long term. In this paper, we propose to learn a particle-based simulator for
complex control tasks. Combining learning with particle-based systems brings
in two major benefits: first, the learned simulator, just like other particle-based
systems, acts widely on objects of different materials; second, the particle-based
representation poses strong inductive bias for learning: particles of the same type
have the same dynamics within. This enables the model to quickly adapt to new
environments of unknown dynamics within a few observations. We demonstrate
robots achieving complex manipulation tasks using the learned simulator, such as
manipulating fluids and deformable foam, with experiments both in simulation and
in the real world. Our study helps lay the foundation for robot learning of dynamic
scenes with particle-based representations.

1 INTRODUCTION

Objects have distinct dynamics. Under the same push, a rigid box will slide, modeling clay will
deform, and a cup full of water will fall with water spilling out. The diverse behavior of different
objects poses challenges to traditional rigid-body simulators used in robotics (Todorov et al., 2012;
Tedrake & the Drake Development Team, 2019). Particle-based simulators aim to model the dynamics
of these complex scenes (Macklin et al., 2014); however, relying on approximation techniques for the
sake of perceptual realism, their simulation often deviates from real world physics, especially in the
long term. Developing generalizable and accurate forward dynamics models is of critical importance
for robot manipulation of distinct real-life objects.

We propose to learn a differentiable, particle-based simulator for complex control tasks, drawing
inspiration from recent development in differentiable physical engines (Battaglia et al., 2016; Chang
et al., 2017). In robotics, the use of differentiable simulators, together with continuous and symbolic
optimization algorithms, has enabled planning for increasingly complex whole body motions with
multi-contact and multi-object interactions (Toussaint et al., 2018). Yet these approaches have only
tackled local interactions of rigid bodies. We develop dynamic particle interaction networks (DPI-
Nets) for learning particle dynamics, focusing on capturing the dynamic, hierarchical, and long-range
interactions of particles (Figure 1a-c). DPI-Nets can then be combined with classic perception and
gradient-based control algorithms for robot manipulation of deformable objects (Figure 1d).

Learning a particle-based simulator brings in two major benefits. First, the learned simulator, just like
other particle-based systems, acts widely on objects of different states. DPI-Nets have successfully
captured the complex behaviors of deformable objects, fluids, and rigid-bodies. With learned DPI-
Nets, our robots have achieved success in manipulation tasks that involve deformable objects of
complex physical properties, such as molding plasticine to a target shape.

Our project page: http://dpi.csail.mit.edu
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Figure 1: Learning particle dynamics for control. (a) DPI-Nets learn particle interaction while
dynamically building the interaction graph over time. (b) Build hierarchical graph for multi-scale
effect propagation. (c) Multi-step message passing for handling instantaneous force propagation. (d)
Perception and control with the learned model. Our system first reconstructs the particle-based shape
from visual observation. It then uses gradient-based trajectory optimization to search for the actions
that produce the most desired output.

Second, the particle-based representation poses strong inductive bias for learning: particles of
the same type have the same dynamics within. This enables the model to quickly adapt to new
environments of unknown dynamics within a few observations. Experiments suggest that DPI-Nets
quickly learn to adapt to characterize a novel object of unknown physical parameters by doing online
system identification. The adapted model also helps the robot to successfully manipulate object in
the real world.

DPI-Nets combine three key features for effective particle-based simulation and control: multi-step
spatial propagation, hierarchical particle structure, and dynamic interaction graphs. In particular,
it employs dynamic interaction graphs, built on the fly throughout manipulation, to capture the
meaningful interactions among particles of deformable objects and fluids. The use of dynamic graphs
allows neural models to focus on learning meaningful interactions among particles, and is crucial for
obtaining good simulation accuracy and high success rates in manipulation. As objects deform when
robots interact with them, a fixed interaction graph over particles is insufficient for robot manipulating
non-rigid objects.

Experiments demonstrate that DPI-Nets significantly outperform interaction networks (Battaglia
et al., 2016), HRN (Mrowca et al., 2018), and a few other baselines. More importantly, unlike
previous paper that focused purely on forward simulation, we have applied our model to downstream
control tasks. Our DPI-Nets enable complex manipulation tasks for deformable objects and fluids,
and adapts to scenarios with unknown physical parameters that need to be identified online. We have
also performed real-world experiments to demonstrate our model’s generalization ability.

2 RELATED WORK

Differentiable physics simulators. Researchers have developed many differentiable physical sim-
ulators (Ehrhardt et al., 2017; Degrave et al., 2016; Todorov et al., 2012), among which some can also
provide analytical gradients (Tedrake & the Drake Development Team, 2019). In particular, Battaglia
et al. (2016) and Chang et al. (2017) have explored learning a simulator from data by approximating
object interactions with neural networks. Li et al. (2019) proposed learning to propagate signals along
the interaction graph and extended to partially observable scenarios. These methods mostly focus on
modeling rigid body dynamics.
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Differentiable simulators for deformable objects have been less studied. Recently, Schenck & Fox
(2018) proposed SPNets for differentiable simulation of position-based fluids (Macklin & Müller,
2013). An inspiring concurrent work from Mrowca et al. (2018) explored learning to approximate
particle dynamics of deformable shapes with the Hierarchical Relation Network (HRN). Compared
with these papers, we introduce state-specific modeling and dynamic graphs for accurate forward
prediction for different states of matter (rigid bodies, deformable shapes, fluids). We also demonstrate
how the learned dynamics model can be used for control in both simulation and real world.

Our approach is also complementary to some recent work on learning to discover the interaction
graphs (van Steenkiste et al., 2018; Kipf et al., 2018). Our model can also be naturally augmented
with a perception module to handle raw visual input, as suggested by Watters et al. (2017); Wu et al.
(2017); Fragkiadaki et al. (2016).

Model-predictive control with a differentiable simulator. Many recent papers have studied
model-predictive control with deep networks (Lenz et al., 2015; Gu et al., 2016; Nagabandi et al.,
2018; Farquhar et al., 2018; Srinivas et al., 2018). They often learn an abstract state transition
function, instead of an explicit account of the environment (Silver et al., 2017; Oh et al., 2017), and
then use the learned function to facilitate training of a policy network. A few recent papers have
employed analytical, differentiable simulators (de Avila Belbute-Peres et al., 2018; Schenck & Fox,
2018) for control problems, such as tool manipulation and tool-use planning (Toussaint et al., 2018).
Our model builds on and extends these approaches by learning a general physics simulator that takes
raw object observations (e.g., positions, velocities) of each particle as input. We then integrate it into
classic trajectory optimization algorithms for control. Compared with pure analytical simulators,
our learned simulator can better generalize to novel testing scenarios where object and environment
parameters are unknown.

A few papers have explored using interaction networks for planning and control. They often learn a
policy based on interaction networks’ rollouts (Racanière et al., 2017; Hamrick et al., 2017; Pascanu
et al., 2017). In contrast, our model learns a dynamics simulator and directly optimizes trajectories
for continuous control. Recently, Sanchez-Gonzalez et al. (2018) have applied interaction networks
for control, and Li et al. (2019) have further extended interaction nets to handle instance signal
propagation for controlling multiple rigid bodies under partial observations. Compared with them,
our dynamic particle interaction network simulate and control deformable, particle-based objects,
using dynamic graphs to tackle scenes with complex object interactions.

3 APPROACH

3.1 PRELIMINARIES

We first describe how interaction networks (Battaglia et al., 2016) represent the physical system; we
then extend them for particle-based dynamics.

The interactions within a physical system are represented as a directed graph, G = 〈O,R〉, where
vertices O = {oi} represent objects and edges R = {rk} represent relations. Specifically, oi =
〈xi, a

o
i 〉, where xi = 〈qi, q̇i〉 is the state of object i, containing its position qi and velocity q̇i. aoi

denotes its attributes (e.g., mass, radius). For relation, we have rk = 〈uk, vk, a
r
k〉, 1 ≤ uk, vk ≤

|O|, where uk is the receiver, vk is the sender, and both are integers. ark is the type and attributes of
relation k (e.g., collision, spring connection).

The goal is to build a learnable physical engine to capture the underlying physical interactions using
function approximators φ. The learned model can then be used to infer the system dynamics and
predict the future from the current interaction graph as Gt+1 = φ(Gt), where Gt denotes the scene
state at time t.

Interaction networks. Battaglia et al. (2016) proposed interaction networks (IN), a general-
purpose, learnable physics engine that performs object- and relation-centric reasoning about
physics. INs define an object function fO and a relation function fR to model objects and
their relations in a compositional way. The future state at time t + 1 is predicted as ek,t =
fR(ouk,t, ovk,t, a

r
k)k=1...|R|, ôi,t+1 = fO(oi,t,

∑
k∈Ni

ek,t)i=1...|O|, where oi,t = 〈xi,t, a
o
i 〉 denotes
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object i at time t, uk and vk are the receiver and sender of relation rk respectively, and Ni denotes
the relations where object i is the receiver.

Propagation networks. A limitation of INs is that at every time step t, it only considers local
information in the graph G and cannot handle instantaneous propagation of forces, which however is
a common phenomenon in rigid-body dynamics.

Li et al. (2019) proposed propagation networks to handle the instantaneous propagation of forces
by doing multi-step message passing. Specifically, they first employed the ideas on fast training of
RNNs (Lei & Zhang, 2017; Bradbury et al., 2017) to encode the shared information beforehand and
reuse them along the propagation steps. The encoders for objects are denoted as f enc

O and the encoder
for relations as f enc

R , where we denote coi,t = f enc
O (oi,t), c

r
k,t = f enc

R (ouk,t, ovk,t, a
r
k).

At time t, denote the propagating influence from relation k at propagation step l as elk,t, and the

propagating influence from object i as hl
i,t. For step 1 ≤ l ≤ L, propagation can be described as

Step 0: h0
i,t = 0, i = 1 . . . |O|, (1)

Step l = 1, . . . , L: elk,t = fR(c
r
k,t, h

l−1
uk,t

, hl−1
vk,t

), k = 1 . . . |R|, (2)

hl
i,t = fO(c

o
i,t,

∑

k∈Ni

elk,t, h
l−1

i,t ), i = 1 . . . |O|, (3)

Output: ôi,t+1 = f
output
O (hL

i,t), i = 1 . . . |O|, (4)

where fO denotes the object propagatorand fR denotes the relation propagator.

3.2 DYNAMIC PARTICLE INTERACTION NETWORKS

Particle-based system is widely used in physical simulation due to its flexibility in modeling various
types of objects (Macklin et al., 2014). We extend existing systems that model object-level interactions
to allow particle-level deformation. Consider object set {oi}, where each object oi = {o

k
i }k=1...|oi|

is represented as a set of particles. We now define the graph on the particles and the rules for influence
propagation.

Dynamic graph building. The vertices of the graph are the union of particles for all objects
O = {oki }i=1...|O|,k=1...|oi|. The edges R between these vertices are dynamically generated over
time to ensure efficiency and effectiveness. The construction of the relations is specific to environment
and task, which we’ll elaborate in Section 4. A common choice is to consider the neighbors within a
predefined distance.

An alternative is to build a static, complete interaction graph, but it has two major drawbacks. First, it
is not efficient. In many common physical systems, each particle is only interacting with a limited
set of other particles (e.g., those within its neighborhood). Second, a static interaction graph implies
a universal, continuous neural function approximator; however, many physical interactions involve
discontinuous functions (e.g. contact). In contrast, using dynamic graphs empowers the model to
tackle such discontinuity.

Hierarchical modeling for long-range dependence. Propagation networks Li et al. (2019) require
a large L to handle long-range dependence, which is both inefficient and hard to train. Hence, we
add one level of hierarchy to efficiently propagate the long-range influence among particles (Mrowca
et al., 2018). For each object that requires modeling of the long-range dependence (e.g. rigid-body),
we cluster the particles into several non-overlapping clusters. For each cluster, we add a new
particle as the cluster’s root. Specifically, for each object oi that requires hierarchical modeling, the
corresponding roots are denoted as õi = {õ

k
i }k=1...|õi|, and the particle set containing all the roots

is denoted as Õ = {õki }i=1...|O|,k=1...|õi|. We then construct an edge set RLeafToRoot that contains
directed edges from each particle to its root, and an edge set RRootToLeaf containing directed edges
from each root to its leaf particles. For each object that need hierarchical modeling, we add pairwise
directed edges between all its roots, and denote this edge set as RRootToRoot.

We employ a multi-stage propagation paradigm: first, propagation among leaf nodes,
φLeafToLeaf(〈O,R〉); second, propagation from leaf nodes to root nodes, φLeafToRoot(〈O ∪
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Õ, RLeafToRoot〉); third, propagation between roots, φRootToRoot(〈Õ, RRootToRoot〉); fourth, propaga-

tion from root to leaf, φRootToLeaf(〈O ∪ Õ, RRootToLeaf〉). The signals on the leaves are used to do the
final prediction.

Applying to objects of various materials. We define the interaction graph and the propagation
rules on particles for different types of objects as follows:

• Rigid bodies. All the particles in a rigid body are globally coupled; hence for each rigid
object, we define a hierarchical model to propagate the effects. After the multi-stage
propagation, we average the signals on the particles to predict a rigid transformation (rotation
and translation) for the object. The motion of each particle is calculated accordingly. For
each particle, we also include its offset to the center-of-mass to help determine the torque.

• Elastic/Plastic objects. For elastically deforming particles, only using the current position
and velocity as the state is not sufficient, as it is not clear where the particle will be
restored after the deformation. Hence, we include the particle state with the resting position
to indicate the place where the particle should be restored. When coupled with plastic
deformation, the resting position might change during an interaction. Thus, we also infer the
motion of the resting position as a part of the state prediction. We use hierarchical modeling
for this category but predict next state for each particles individually.

• Fluids. For fluid simulation, one has to enforce density and incompressibility, which can be
effectively achieved by only considering a small neighborhood for each particle (Macklin &
Müller, 2013). Therefore, we do not need hierarchical modeling for fluids. We build edges
dynamically, connecting a fluid particle to its neighboring particles. The strong inductive
bias leveraged in the fluid particles allows good performance even when tested on data
outside training distributions.

For the interaction between different materials, two directed edges are generated for any pairs of
particles that are closer than a certain distance.

3.3 CONTROL ON THE LEARNED DYNAMICS

Model-based methods offer many advantages when comparing with their model-free counterparts,
such as generalization and sample efficiency. However, for cases where an accurate model is hard
to specify or computationally prohibitive, a data-driven approach that learns to approximate the
underlying dynamics becomes useful.

Function approximators such as neural networks are naturally differentiable. We can rollout using the
learned dynamics and optimize the control inputs by minimizing a loss between the simulated results
and a target configuration. In cases where certain physical parameters are unknown, we can perform
online system identification by minimizing the difference between the model’s prediction and the
reality. An outline of our algorithm can be found in Section A.

Model predictive control using shooting methods. Let’s denote Gg as the goal and û1:T be the
control inputs, where T is the time horizon. The control inputs are part of the interaction graph,
such as the velocities or the initial positions of a particular set of particles. We denote the resulting
trajectory after applying û as G = {Gi}i=1:T . The task here is to determine the control inputs as to
minimize the distance between the actual outcome and the specified goal Lgoal(G,Gg).

Our dynamic particle interaction network does forward simulation by taking the dynamics graph at

time t as input, and produces the graph at next time step, Ĝt+1 = Φ(Gt), where Φ is implemented
as DPI-Nets as described in the previous section. Let’s denote the the history until time t as

Ḡ = {Gi}i=1...t, and the forward simulation from time step t as Ĝ = {Ĝi}i=t+1...T . The loss

Lgoal(Ḡ ∪ Ĝ,Gg) can be used to update the control inputs by doing stochastic gradient descent (SGD).
This is known as the shooting method in trajectory optimization (Tedrake, 2009).

The learned model might deviate from the reality due to accumulated prediction errors. We use
Model-Predictive Control (MPC) (Camacho & Alba, 2013) to stabilize the trajectory by doing forward
simulation and updating the control inputs at every time step to compensate the simulation error.
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Online adaptation. In many real-world cases, without actually interacting with the environment,
inherent attributes such as mass, stiffness, and viscosity are not directly observable. DPI-Nets
can estimate these attributes on the fly with SGD updates by minimizing the distance between the

predicted future states and the actual future states Lstate(Ĝt, Gt).

4 EXPERIMENTS

We evaluate our method on four different environments containing different types of objects and
interactions. We will first describe the environments and show simulation results. We then present
how the learned dynamics helps to complete control tasks in both simulation and the real world.

4.1 ENVIRONMENTS

FluidFall (Figure 2a). Two drops of fluids are falling down, colliding, and merging. We vary the
initial position and viscosity for training and evaluation.

BoxBath (Figure 2b). A block of fluids are flushing a rigid cube. In this environment, we have to
model two different materials and the interactions between them. We randomize the initial position
of the fluids and the cube to test the model’s generalization ability.

FluidShake (Figure 2c). We have a box of fluids and the box is moving horizontally, The speed of
the box is randomly selected at each time step. We vary the size of the box and volume of the fluids
to test generalization.

RiceGrip (Figure 2d). We manipulate an object with both elastic and plastic deformation (e.g., sticky
rice). We use two cuboids to mimic the fingers of a parallel gripper, where the gripper is initialized at
a random position and orientation. During the simulation of one grip, the fingers will move closer to
each other and then restore to its original positions. The model has to learn the interactions between
the gripper and the “sticky rice”, as well as the interactions within the “rice” itself.

We use all four environments in evaluating our model’s performance in simulation. We use the
rollout MSE as our metric. We further use the latter two for control, because they involve fully
actuated external shapes that can be used for object manipulation. In FluidShake, the control task
requires determining the speed of the box at each time step, in order to make the fluid match a target
configuration within a time window; in RiceGrip, the control task corresponds to select a sequence of
grip configurations (position, orientation, closing distance) to manipulate the deformable object as to
match a target shape. The metric for performance in control is the Chamfer distance between the
manipulation results and the target configuration.

4.2 PHYSICAL SIMULATION

We present implementation details for dynamics learning in the four environment and perform
ablation studies to evaluate the effectiveness of the introduced techniques.

Implementation details. For FluidFall, we dynamically build the interaction graph by connecting
each particle to its neighbors within a certain distance d. No hierarchical modeling is used.

For BoxBath, we model the rigid cube as in Section 3.2, using multi-stage hierarchical propagation.
Two directed edges will be constructed between two fluid particles if the distance between them is
smaller than d. Similarly, we also add two directed edge between rigid particles and fluid particles
when their distance is smaller than d.

For FluidShake, we model fluid as in Section 3.2. We also add five external particles to represent
the walls of the box. We add a directed edge from the wall particle to the fluid particle when they
are closer than d. The model is a single propagation network, where the edges are dynamically
constructed over time.

For RiceGrip, we build a hierarchical model for rice and use four propagation networks for multi-stage
effect propagation (Section 3.2). The edges between the “rice” particles are dynamically generated
if two particles are closer than d. Similar to FluidShake, we add two external particles to represent
the two “fingers” and add an edge from the “finger” to the “rice” particle if they are closer than the
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(d) RiceGrip
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Figure 2: Qualitative results on forward simulation. We compare the ground truth (GT) and the
rollouts from HRN (Mrowca et al., 2018) and our model (DPI-Net) in four environments (FluidFall,
BoxBath, FluidShake, and RiceGrip). The simulations from our DPI-Net are significantly better. We
provide zoom-in views for a few frames to show details. Please see our video for more empirical
results.

distance d. As “rice” can deform both elastically and plastically, we maintain a resting position that
helps the model restore a deformed particle. The output for each particle is a 6-dim vector for the
velocity of the current observed position and the resting position. More training details for each
environment can be found in Section D. Details for data generation are in Section C.
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Methods FuildFall BoxBath FluidShake RiceGrip

IN (Battaglia et al., 2016) 2.74 ± 0.56 N/A N/A N/A
HRN (Mrowca et al., 2018) 0.21 ± 0.04 3.62 ± 0.40 3.58 ± 0.77 0.17 ± 0.11
DPI-Net w/o hierarchy 0.15 ± 0.03 2.64 ± 0.69 1.89 ± 0.36 0.29 ± 0.13
DPI-Net 0.15 ± 0.03 2.03 ± 0.41 1.89 ± 0.36 0.13 ± 0.07

Table 1: Quantitative results on forward simulation. MSE (×10−2) between the ground truth and
model rollouts. The hyperparameters used in our model are fixed for all four environments. FluidFall
and FluidShake involve no hierarchy, so DPI-Net performs the same as the variant without hierarchy.
DPI-Net significantly outperforms HRN (Mrowca et al., 2018) in modeling fluids (BoxBath and
FluidShake) due to the use of dynamic graphs.
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2.03
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(b) BoxBath

Figure 3: Ablation studies. We perform ablation studies to test our model’s robustness to hyperpa-
rameters. The performance is evaluated by the mean squared distance (×10−2) between the ground
truth and model rollouts. (a) We vary the number of roots when building hierarchy, the propagation
step L during message passing, and the size of the neighborhood d. (b) In BoxBath, DPI-Nets use
separate motion predictors for fluids and rigid bodies. Here we compared with a unified motion
predictor.

Results. Qualitative and quantitative results are in Figure 2 and Table 1. We compare our method
(DPI-Net) with three baselines, Interaction Networks (Battaglia et al., 2016), HRN (Mrowca et al.,
2018), and DPI-Net without hierarchy. Note that we use the same set of hyperparameters in our
model for all four testing environments.

Specifically, Interaction Networks (IN) consider a complete graph of the particle system. Thus, it can
only operate on small environments such as FluidFall; it runs out of memory (12GB) for the other
three environments. IN does not perform well, because its use of a complete graph makes training
difficult and inefficient, and because it ignores influence propagation and long-range dependence.

Without a dynamic graph, modeling fluids becomes hard, because the neighbors of a fluid particle
changes constantly. Table 1 shows that for environments that involve fluids (BoxBath and FluidShake),
DPI-Net performs better than those with a static interaction graph. Our model also performs better in
scenarios that involve objects of multiple states (BoxBath, Figure 2b), because it uses state-specific
modeling. Models such as HRN (Mrowca et al., 2018) aim to learn a universal dynamics model for all
states of matter. It is therefore solving a harder problem and, for this particular scenario, expected to
perform not as well. When augmented with state-specific modeling, HRN’s performance is likely to
improve, too. Without hierarchy, it is hard to capture long-range dependence, leading to performance
drop in environments that involve hierarchical object modeling (BoxBath and RiceGrip).

Appendix B includes results on scenarios outside the training distribution (e.g., more particles).
DPI-Net performs well on these out-of-sample cases, successfully leveraging the inductive bias.

Ablation studies. We also test our model’s sensitivity to hyperparameters. We consider three of
them: the number of roots for building hierarchy, the number of propagation steps L, and the size of
the neighborhood d. We test them in RiceGrip. As can be seen from the results shown in Figure 3a,
DPI-Nets can better capture the motion of the “rice” by using fewer roots, on which the information
might be easier to propagate. Longer propagation steps do not necessarily lead to better performance,
as they increases training difficulty. Using larger neighborhood achieves better results, but makes
computation slower. Using one TITAN Xp, each forward step in RiceGrip takes 30ms for d = 0.04,
33ms for d = 0.08, and 40ms for d = 0.12.
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Figure 4: Qualitative results on control. (a) FluidShake - Manipulating a box of fluids to match a
target shape. The Result and Target indicate the fluid shape when viewed from the cutaway view.
(b) RiceGrip - Gripping a deformable object and molding it to a target shape. (c) RiceGrip in Real
World - Generalize the learned dynamics and the control algorithms to the real world by doing online
adaptation. The last two columns indicate the final shape viewed from the top.

We also perform experiments to justify our use of different motion predictors for objects of different
states. Figure 3b shows the results of our model vs. a unified dynamics predictor for all objects
in BoxBath. As there are only a few states of interest (solids, liquids, and soft bodies), and their
physical behaviors are drastically different, it is not surprising that DPI-Nets, with state-specific
motion predictors, perform better, and are equally efficient as the unified model (time difference
smaller than 3ms per forward step).

4.3 CONTROL

We leverage dynamic particle interaction network for control tasks in both simulation and real world.
Because trajectory optimization using shooting method can easily stuck to a local minimum, we
first randomly sample Nsample control sequences, and select the best performing one according to the
rollouts of our learned model. We then optimize it via shooting method using our model’s gradients.
We also use online system identification to further improve the model’s performance. Figure 4 and
Figure 5 show qualitative and quantitative results, respectively. More details of the control algorithm
can be found in Section E.

FluidShake. We aim to control the speed of the box to match the fluid particles to a target con-
figuration. We compare our method (RS+TO) with random search over the learned model (without
trajectory optimization - RS) and Model-free Deep Reinforcement Learning (Actor-Critic method
optimized with PPO (Schulman et al., 2017) (RL). Figure 5a suggests that our model-based control
algorithm outperforms both baselines with a large margin. Also RL is not sample-efficient, requiring
more than 10 million time steps to converge while ours requires 600K time steps.

RiceGrip. We aim to select a sequence of gripping configurations (position, orientation, and closing
distance) to mold the “sticky rice” to a target shape. We also consider cases where the stiffness of
the rice is unknown and need to be identified. Figure 5b shows that our dynamic particle interaction
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Figure 5: Quantitative results on control. We show the results on control (as evaluated by the
Chamfer distance (×10−2) between the manipulated result and the target) for (a) FluidShake and (b)
RiceGrip by comparing with four baselines. RL: Model-free deep reinforcement learning optimized
with PPO; RS: Random search the actions from the learned model and select the best one to execute;
RS + TO: Trajectory optimization augmented with model predictive control; RS + TO + ID: Online
system identification by estimating uncertain physical parameters during run time.

network with system identification performs the best, and is much more efficient than RL (150K vs.
10M time steps).

RiceGrip in the real world. We generalize the learned model and control algorithm for RiceGrip
to the real world. We first reconstruct object geometry using a depth camera mounted on our Kuka
robot using TSDF volumetric fusion (Curless & Levoy, 1996). We then randomly sampled Nfill

particles within the object mesh as the initial configuration for manipulation. Figure 4c and Figure 5b
shows that, using DPI-Nets, the robot successfully adapts to the real world environment of unknown
physical parameters and manipulates a deformable foam into various target shapes. The learned
policy in RiceGrip does not generalize to the real world due to domain discrepancy, and outputs
invalid gripping configurations.

5 CONCLUSION

We have demonstrated that a learned particle dynamics model can approximate the interaction of
diverse objects, and can help to solve complex manipulation tasks of deformable objects. Our system
requires standard open-source robotics and deep learning toolkits, and can be potentially deployed in
household and manufacturing environment. Robot learning of dynamic scenes with particle-based
representations shows profound potentials due to the generalizability and expressiveness of the
representation. Our study helps lay the foundation for it.
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A CONTROL ALGORITHM

Algorithm 1 Control on Learned Dynamics at Time Step t

Input: Learned forward dynamics model Φ

Predicted dynamics graph Ĝt

Current dynamics graph Gt

Goal Gg , current estimation of the attributes A
Current control inputs ût:T

States history Ḡ = {Gi}i=1...t

Time horizon T
Output: Controls ût:T , predicted next time step Ĝt+1

Update A by descending with the gradients∇ALstate(Ĝt, Gt)

Forward simulation using the current graph Ĝt+1 ← Φ(Gt)

Make a buffer for storing the simulation results G ← Ḡ ∪ Ĝt+1

for i = t+ 1, ..., T − 1 do

Forward simulation: Ĝj+1 ← Φ(Ĝj); G ← G ∪ Ĝj+1

end for
Update ût:T by descending with the gradients ∇ût:T

Lgoal(G,Gg)

Return ût:T and Ĝt+1 ← Φ(Gt)

B GENERALIZATION ON EXTRAPOLATION

We show our model’s performance on fluids, rigid bodies, and deformable objects with a larger
number of particles than they have in the training set. Figure 6 shows qualitative and quantitative
results. Our model scales up well to larger objects.

C DATA GENERATION

The data is generated using NVIDIA FleX. We have developed a Python interface for the ease of
generating and interacting with different environments. We will release the code upon publication.

FluidFall. We generated 3,000 rollouts over 120 time steps. The two drops of fluids contain 64
and 125 particles individually, where the initial position of one of the drop in the 3 dimensional
coordinates is uniformly sampled between (0.15, 0.55, 0.05) and (0.25, 0.7, 0.15), while the other
drop is uniformly sampled between (0.15, 0.1, 0.05) and (0.25, 0.25, 0.15).

BoxBath. We generated 3,000 rollouts over 150 time steps. There are 960 fluid particles and the
rigid cube consist particles ranging between 27 and 150. The fluid particle block is initialized at (0, 0,
0), and the initial position of the rigid cube is randomly initialized between (0.45, -0.0155, 0.02) to
(1.2, -0.0155, 0.4).

FluidShake. We generated 2,000 rollouts over 300 time steps. The height of the box is 1.0 and the
thickness of the wall is 0.025. For the initial fluid cuboid, the number of fluid particles is uniformly
sampled between 10 and 12 in the x direction, between 15 and 20 in the y direction, 3 in the z
direction. The box is fixed in the y and z direction, and is moving freely in the x direction. We
randomly place the initial x position between -0.2 to 0.2. The sampling of the speed is implemented
as v = v + rand(−0.15, 0.15)− 0.1x, in order to encourage motion smoothness and moving back to
origin, where speed v is initialized as 0.

RiceGrip. We generated 5,000 rollouts over 30 time steps. We randomize the size of the ini-
tial “rice” cuboid, where the length of the three sides is uniformly sampled between 8.0 and
10.0. The material property parameters clusterStiffness is uniformly sampled between
0.3 and 0.7, clusterPlasticThreshold is uniformly sampled between 1e-5 and 5e-4, and
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Figure 6: Extrapolate generalization on fluids, rigid bodies, and deformable objects. The perfor-
mance is evaluated by the MSE (×10−2) between the ground truth and rollouts from DPI-Nets. The
blue bars denote the range of particle numbers that have been seen during training, which indicate
interpolation performance. The red bars indicate extrapolation performance that our model can
generalize to cases containing two times more particles than cases it has been trained on.

clusterPlasticCreep is uniformly sampled between 0.1 and 0.3. The position of the gripper is
randomly sampled within a circle of radius 0.5. The orientation of the gripper is always perpendicular
to the line connecting the origin to the center of the gripper and the close distance is uniformly
sampled between 0.7 to 1.0.

Of all the generated data, 90% of the rollouts are used for training, and the rest 10% are used for
validation.

D TRAINING DETAILS

The models are implemented in PyTorch, and are trained using Adam optimizer (Kingma & Ba
(2015)) with a learning rate of 0.0001. The number of particles and relations might be different at
each time step, hence we use a batch size of 1, and we update the weights of the networks once every
2 forward rounds.

The neighborhood d is set as 0.08, and the propagation step L is set as 2 for all four environments.
For hierarchical modeling, it does not make sense to propagate more than one time between leaves
and roots as they are disjoint particle sets, and each propagation stage between them only involves
one-way edges; hence φLeafToLeaf uses L = 2. φLeafToRoot uses L = 1. φRootToRoot uses L = 2, and
φRootToLeaf uses L = 1.

For all propagation networks used below, the object encoder f enc
O is an MLP with two hidden layers

of size 200, and outputs a feature map of size 200. The relation encoder f enc
R is an MLP with three

hidden layers of size 300, and outputs a feature map of size 200. The propagator fO and fR are both
MLP with one hidden layer of size 200, in which a residual connection is used to better propagate
the effects, and outputs a feature map of size 200. The propagators are shared within each stage of

propagation. The motion predictor f
output
O is an MLP with two hidden layers of size 200, and output

the state of required dimension. ReLU is used as the activation function.

14



Published as a conference paper at ICLR 2019

FluidFall. The model is trained for 13 epochs. The output of the model is the 3 dimensional
velocity, which is multiplied by ∆t and added to the current position to do rollouts.

BoxBath. In this environment, four propagation networks are used due to the hierarchical modeling
and the number of roots for the rigid cube is set as 8. We have two separate motion predictor for
fluids and rigid body, where the fluid predictor output velocity for each fluid particle, while the
rigid predictor takes the mean of the signals over all its rigid particles as input, and output a rigid
transformation (rotation and translation). The model is trained for 5 epochs.

FluidShake. Only one propagation network is used in this environment, and the model is trained
for 5 epochs.

RiceGrip. Four propagation networks are used due to the hierarchical modeling, and the number
of roots for the “rice” is set as 30. The model is trained for 20 epochs.

E CONTROL DETAILS

Nsample is chosen as 20 for all three cases, where we sample 20 random control sequences, and choose
the best performing one as evaluated using our learned model. The evaluation is based on the Chamfer
distance between the controlling result and the target configuration.

FluidShake. In this environment, the control sequence is the speed of the box along the x axis.
The method to sample the candidate control sequence is the same as when generating training data
of this environment. After selected the best performing control sequence, we first use RMSprop
optimizer to optimize the control inputs for 10 iterations using a learning rate of 0.003. We then use
model-predictive control to apply the control sequence to the FleX physics engine using Algorithm 1.

RiceGrip. In this environment, we need to come up with a sequence of grip configurations, where
each grip contains positions, orientation, and closing distance. The method to sample the candidate
control sequence is the same as when generating training data of this environment. After selected the
best performing control sequence, we first use RMSprop optimizer to optimize the control inputs for
20 iterations using a learning rate of 0.003. We then use model-predictive control to apply the control
sequence to the FleX physics engine using Algorithm 1.

RiceGrip in Real World. In this environment, we need to come up with a sequence of grip
configurations, where each grip contains positions, orientation, and closing distance. The method to
sample the candidate control sequence is the same as when generating training data of RiceGrip, and
Nfill is chosen as 768. Different from the previous case, the physical parameters are always unknown
and has to be estimated online. After selected the best performing control sequence, we first use
RMSprop optimizer to optimize the control inputs for 20 iterations using a learning rate of 0.003. We
then use model-predictive control to apply the control sequence to the real world using Algorithm 1.
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