
Learning Passage Impacts for Inverted Indexes

Antonio Mallia
antonio.mallia@nyu.edu
New York University

Omar Khattab
okhattab@stanford.edu
Stanford University

Torsten Suel
torsten.suel@nyu.edu
New York University

Nicola Tonellotto
nicola.tonellotto@unipi.it

University of Pisa

ABSTRACT

Neural information retrieval systems typically use a cascading

pipeline, in which a �rst-stage model retrieves a candidate set of

documents and one or more subsequent stages re-rank this set using

contextualized language models such as BERT. In this paper, we pro-

poseDeepImpact, a new document term-weighting scheme suitable

for e�cient retrieval using a standard inverted index. Compared

to existing methods, DeepImpact improves impact-score model-

ing and tackles the vocabulary-mismatch problem. In particular,

DeepImpact leverages DocT5�ery to enrich the document collec-

tion and, using a contextualized language model, directly estimates

the semantic importance of tokens in a document, producing a

single-value representation for each token in each document. Our

experiments show that DeepImpact signi�cantly outperforms prior

�rst-stage retrieval approaches by up to 17% on e�ectiveness met-

rics w.r.t.DocT5�ery, and, when deployed in a re-ranking scenario,

can reach the same e�ectiveness of state-of-the-art approaches with

up to 5.1× speedup in e�ciency.

CCS CONCEPTS

• Information systems→ Information retrieval; Information

retrieval query processing; Retrieval models and ranking.

KEYWORDS

Query processing; Inverted index; Neural IR; Term Weighting;

ACM Reference Format:

Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto. 2021.

Learning Passage Impacts for Inverted Indexes. In Proceedings of the 44th

International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval (SIGIR ’21), July 11–15, 2021, Virtual Event, Canada. ACM,

New York, NY, USA, 5 pages. https://doi.org/10.1145/3404835.3463030

1 INTRODUCTION

Modern search engines employ complex, machine-learned rank-

ing functions to retrieve the most relevant documents for a query.

Recently, the development of pre-trained contextualized language

models such as BERT [6] has resulted in impressive bene�ts in

search e�ectiveness, at the cost of expensive query processing

times, which can make their deployment in production scenarios

challenging. Nogueira and Cho [18] and MacAvaney et al. [14]

showed the superior performance of BERT in term of e�ectiveness

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00
https://doi.org/10.1145/3404835.3463030

for passage and document re-ranking tasks, respectively, by �ne-

tuning the pre-trained transformer network to distinguish between

relevant and non-relevant query–document pairs. However, several

recent studies [7, 14] have shown that this can have very high com-

putational cost, even if re-ranking just the top 1000 results. Other

studies [9, 12, 13] proposed methods with lower computational cost

but typically some loss in retrieval quality. BERT’s Transformer

encoder is composed of many neural layers performing expensive

processing to compute the query-document relevance signals. Dif-

ferent solutions have been proposed to address this performance

bottleneck, based on the pre-computation of query-document repre-

sentations produced by BERT. EPIC [13] proposes to build on top of

BERT a new rankingmodel trained to generate query and document

representations in a given �xed-length vector space, equal to the

size of the lexicon. Document representations are pre-computed,

while query representations are computed at retrieval time, and

then used to obtain a ranking score by computing a similarity be-

tween the two representations.

PreTTR [12] and ColBERT [9] experimentally show that the

query-document interactions in most layers of BERT have little

impact on the �nal e�ectiveness. This leads them to pre-compute

document representations at indexing time, which are used at query

processing time to compute the query-document interaction only

in a �nal layer. While PreTTR still relies upon a �rst-stage candi-

date generation based on BM25, ColBERT investigates the ability

of the pre-computed document representations to identify relevant

documents among all documents in the index. Due to space/time

requirements of the document representation, ColBERT leverages

approximate nearest neighbor (ANN) search applied to dense rep-

resentations as a �rst-stage retrieval system, followed by an exact

re-ranking stage, while similar approaches using exact nearest

neighbor search [23] can perform processing in a single stage.

Following a di�erent paradigm, Dai and Callan [4] investigated

the use of the contextual word representations from BERT to gen-

erate more e�ective document term weights for bag-of-words re-

trieval.DeepCT [4], for passages, andHDCT [5], for documents, esti-

mate a term’s context-speci�c importance in each passage/document,

by projecting each word’s BERT representation into a single term

weight. These termweights are then transformed into term frequency-

like integer values that can be stored in an inverted index to be used

with classical retrieval models. A main limitation of DeepCT that

we address in this work is that it is trained as a per-token regression

task, in which a ground truth term weight for every word is needed,

and which does not permit the individual impact scores to co-adapt

for the downstream objective of identifying relevant documents.

By storing new integer values as term frequencies in the in-

verted index,DeepCT andHDCT enrich a document’s bag-of-words

representation with additional document-level context informa-

tion, to match queries more accurately. Using a di�erent approach,

Short Research Paper I SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1723

https://doi.org/10.1145/3404835.3463030
https://doi.org/10.1145/3404835.3463030

Nogueira and Lin [19] propose DocT5�ery, a document expan-

sion strategy to enrich each document with additional terms able

to improve the retrieval e�ectiveness of documents w.r.t. queries

for which they are relevant. DocT5�ery trains a sequence-to-

sequence model to predict queries potentially relevant to a given

document, and appends these queries to the documents before in-

dexing. As another way of expanding documents, the very recent

SparTerm [1] method predicts an importance score for every term

in the vocabulary and uses a gating mechanism to only keep a

sparse subset of those, using them to learn an end-to-end score for

relevant and non-relevant documents. However, this only increases

the MRR@10 of DocT5�ery from 0.277 to 0.279.

We propose DeepImpact, a more e�ective approach for learn-

ing a relevance score contribution for term-document pairs that

can also be stored in a classical inverted index. DeepImpact im-

proves impact-scoremodeling and tackles the vocabulary-mismatch

problem [25] between queries and documents. Instead of learning

independent term-level scores without taking into account the term

co-occurrences in the document, as in DeepCT, or relying on un-

changed BM25 scoring, as in DocT5�ery, DeepImpact directly

optimizes the sum of query term impacts to maximize the score dif-

ference between relevant and non-relevant passages for the query.

In other words, whileDeepCT learns the term frequency component

of existing IR models, e.g., BM25, in this work we aim at learning

the �nal term impact jointly across all query terms occurring in a

passage. In this way, our proposed model learns richer interaction

patterns among the impacts, when compared to training each im-

pact in isolation. To address vocabulary mismatch, DeepImpact

leverages DocT5�ery to enrich every document with new terms

likely to occur in queries for which the document is relevant. Using

a contextualized language model, it directly estimates the semantic

importance of tokens in a document, producing a single-value rep-

resentation for each token in each document that can be stored in

an inverted index for e�cient retrieval. Our experiments show that

DeepImpact signi�cantly outperforms prior �rst-stage retrieval ap-

proaches by up to 17% on e�ectiveness metrics w.r.t. DocT5�ery.

When deployed in a re-ranking scenario, it reaches the same e�ec-

tiveness as state-of-the-art approaches up to 5.1× faster.

In summary, this paper makes the following contributions:

• We propose DeepImpact, a more e�ective scheme for jointly

learning term impacts over expanded documents.

• We evaluate DeepImpact on the MS MARCO passage rank-

ing task. We �nd that DeepImpact can improve ranking

e�ectiveness for passage ranking versus prior �rst-stage re-

trieval approaches and is competitive when compared to

complex systems based on ANN search, while exhibiting

much lower computational costs.

• WeevaluateDeepImpact as a �rst-stagemodel in a re-ranking

pipeline, and show that this pipeline matches or outperforms

strong baseline approaches, while being highly e�cient.

2 DEEP IMPACT FRAMEWORK

Document Expansion. In our approach, we leverageDocT5�ery

document expansion to enrich the original document collection

with expansion terms. As noted by Nogueira et al. [21], document

expansion can be seen as a two-fold approach. By adding terms

Document terms Expansion terms

Impact Scores

t1 t2 t3 t1 t3 t4 t5

Contextualized Language Model Encoder

Impact Scores Encoder

s1 s4s2 s3 s5

Figure 1: Neural network architecture of DeepImpact.

that are already part of the document, it rewrites their frequen-

cies, similar to DeepCT. Furthermore, it injects into the passage

new terms, originally not part of the document, in order to address

the term mismatch problem. We refer to the two as Rewrite and

Inject, respectively. Table 1 summarizes the e�ect of DocT5�ery

when applied to the MSMARCO passage ranking collection, and iso-

lates the two contributions. While Rewrite alone achieves stronger

MRR@10 than Inject, the latter achieves higher recall. Using both

signi�cantly outperforms either one on both measures. Indeed, In-

ject is important for capturing additional results, but Rewrite is

needed to then properly weight the injected terms. However, the

comparison of Rewrite vs. DeepCT indicates that DocT5�ery is

still sub-optimal in determining the right frequencies, and resulting

impact scores, for the terms.

This motivates our approach, DeepImpact, where we �rst use

the Inject step of DocT5�ery to add new terms, and then directly

learn the right impact scores for both old and newly injected terms.

Table 1: Di�erent contributions to e�ectiveness metrics on

the MSMARCO passage ranking collection.

BM25 DeepCT
DocT5�ery

Cumulative Rewrite Inject

MRR@10 0.188 0.244 0.278 0.215 0.194
Recall 0.858 0.910 0.947 0.878 0.912

Neural Network Architecture. Figure 1 depictsDeepImpact’s ar-

chitecture. DeepImpact feeds a contextual LM encoder the original

document terms (in white) and the injected expansion terms (in

gray), separating both by a [SEP] separator token. The LM encoder

produces an embedding for each input token. The �rst occurrence

of each unique term is provided as input to the impact score encoder,

which is a two-layer MLP with ReLU activations. This produces a

single-value score for each unique term in the document, represent-

ing its impact. Given a query @, we model the score of document 3

as simply the sum of impacts for the intersection of terms in @ and 3 .

NetworkTraining.We train ourmodel using triples sampled from

the o�cial MS-MARCO training dataset, consisting of a query, a

relevant passage, and a presumed non-relevant passage per sample.

Short Research Paper I SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1724

We expand each passage using the DocT5�ery as discussed. The

model converts each document into a list of scores, correspond-

ing to the document terms matching the query. These scores are

then summed up, obtaining an accumulated query-document score.

For each triple, two scores for the corresponding two documents

are computed. The model is optimized via pairwise softmax cross-

entropy loss over the document scores. We use BERT-base as the

contextual LM. We set the maximum sequence length to 160 tokens.

Losses are back-propagated through the whole DeepImpact neural

model with a learning rate of 3 × 10
−6 with the Adam optimizer.

We used batches of 32 triples and train for 100,000 iterations.

Impact Scores Computation. Following the training phase,Deep-

Impact can leverage the learned term-weighting scheme to predict

the semantic importance of each token of the documents o�ine.

Each document is represented as a list of term-score pairs, which are

converted into an inverted index. The index can then be searched

using e�cient query processing strategies. We infer the scores

using three digits of precision, and we do not perform any scaling.

Quantization and Query Processing. We predict real-valued

document-term impact scores, but as storing a �oating point value

per posting would blow up the space requirements of the inverted

index, we decided to store impacts in a quantized form. The quan-

tized impact scores belong to the range of [1, 21 − 1], where 1 is

the number of bits used to store each value. We experimented with

1 = 8 using linear quantization, and did not notice any loss in

precision w.r.t. the original scores. Since we quantized all the scores

in the index in the same way, to compute a query-document score

at query processing we can just sum up all the quantized scores of

the document terms matching the query.

3 EXPERIMENTAL RESULTS

In this section, we analyze the performance of the proposed method

using a standard test collection and query logs.

Hardware. To evaluate the latency, we use a single core of a ma-

chine with four Intel Xeon Platinum 8268 CPUs and 369 GB of RAM,

running Linux 4.18. To run ColBERT a GPU is required, and we

used an NVIDIA RTX8000 with 48GB of memory.

Dataset and query logs.We conduct our experiments on the MS-

MARCO passage ranking [17] dataset. To evaluate query processing

e�ectiveness and e�ciency, we compare with existing methods us-

ing the MSMARCO Dev �eries,1 and we test all methods on the

TREC 2019 [3] and TREC 2020 [2] queries from the TREC Deep

Learning passage ranking track.

Baselines. We perform two di�erent sets of experiments. Our ini-

tial experiment aims at comparing the performance of DeepImpact

as a �rst-stage ranker, processing queries on inverted indexes but

without complex reranking. In this experiment we compare our pro-

posed DeepImpact with the classical BM25 relevance model over

the unmodi�ed collection, and state-of-the-art solutions dealing

with inverted indexes, namely DeepCT, and BM25 over a collection

expanded withDocT5�ery. We do not compare withDeepCT over

the collection expanded withDocT5�ery, since that would involve

training a new DeepCT model from scratch to learn how to weigh

1We have made a submission to the o�cial leaderboard and obtained an MRR@10 of
0.318 on the “eval” queries.

expanded documents. Our second set of experiments compares

DeepImpact in a re-ranking setting. First, the top 1000 documents

retrieved by DeepImpact are re-ranked by EPIC and ColBERT and

compared to ColBERT end-to-end (E2E) where the candidates are

generated using ANN search. Finally, we look at �rst-stage recall

and re-ranking-stage MRR@10 when applying ColBERT at several

�rst-stage cuto�s to di�erent candidate generation methods.

Implementations. We use Anserini [24] to generate the inverted

indexes of the collections. We then export the Anserini indexes us-

ing the CIFF common index �le format [10], and process them with

PISA [16] using the MaxScore query processing algorithm [22]. We

use the BM25 scoring method provided by Anserini. For DeepCT,

we used the source code and data2 provided by Mackenzie et al.

[15]. For DocT5�ery we use the predicted queries available on-

line,3 using 40 concatenated predictions for each passage in the

corpus, as recommended by Nogueira and Lin [19]. We use the

EPIC implementation in OpenNIR [11] and the o�cial pretrained

model4. We use the ColBERT implementation5 provided by Khat-

tab and Zaharia [9], trained for 200k iterations. Both training and

indexing tasks of DeepImpact are implemented in Python. After

the quantization step, the documents are indexed directly by PISA.

Query processing e�ciency is measured using PISA for all base-

lines. Query processing is performed using MaxScore to retrieve

the top 1000 documents. Our source code is publicly available.6

Metrics. To measure e�ectiveness, we use the o�cial metrics for

each query set, mean reciprocal rank (MRR@10) for MSMARCO

queries, and normalised discounted cumulative gain (NDCG@10)

as well as mean average precision (MAP) for TREC queries, follow-

ing [8]. We also report recall on the �rst stage and MRR@10 on the

re-ranking stage at di�erent cuto� values. Finally, we compute the

mean response time (MRT) for every query processing strategy, in

ms. We conduct Bonferroni corrected pairwise t-tests, and report

signi�cance with ? < 0.05.

Overall comparison. Our �rst experiment aims to show the early-

stage e�ectiveness improvements that DeepImpact achieves when

compared to prior work. The results are presented in Table 2, which

shows e�ectiveness and e�ciency for the three query logs on MS

MARCO. We retrieve the top 1000 documents for each query, with-

out re-ranking, and report the values of NDCG@10, MRR@10, and

MAP, as well as MRT.

DeepImpact signi�cantly outperforms all methods and is statis-

tically signi�cantly better than other strategies for all e�ectiveness

metrics on the MSMARCO Dev �eries. For the TREC 2019 and

TREC 2020 queries, DeepImpact is always better than the competi-

tors, with statistically signi�cant improvements on NDCG@10 and

MAP in some cases. Statistical signi�cance on the latter two query

traces is limited by their relatively small number of queries.

We also see that DeepImpact mean response time exceeds the

time reported for other methods. We trace this to the query pro-

cessing strategy: the distribution of scores induced by BM25, used

in BM25, DeepCT, and DocT5�ery is exploited more e�ciently by

2https://github.com/jmmackenzie/term-weighting-e�ciency
3https://github.com/castorini/docTTTTTquery
4https://github.com/Georgetown-IR-Lab/epic-neural-ir
5https://github.com/stanford-futuredata/ColBERT
6https://github.com/DI4IR/SIGIR2021

Short Research Paper I SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1725

https://github.com/jmmackenzie/term-weighting-efficiency
https://github.com/Georgetown-IR-Lab/epic-neural-ir
https://github.com/stanford-futuredata/ColBERT
https://github.com/DI4IR/SIGIR2021

the MaxScore algorithm, whereas DeepImpact learns new scores,

whose distribution is not e�ciently exploited by MaxScore. We per-

formed additional experiments using disjunctive query processing

without optimizations, omitted for space limitations. These experi-

ments show DeepImpact to be in line with the speed of the other

approaches. Optimizing the query processing speed of DeepImpact

is an interesting open problem for future research.

Table 2: E�ectivenessmetrics andmean response time (MRT,

in ms) for �rst-stage methods, on MSMARCO Dev �eries,

TREC 2019 queries, and TREC 2020 queries. The symbol ▽

denotes a signi�cant di�erence viz. DeepImpact

Strategy NDCG@10 MRR@10 MAP MRT

MSMARCO Dev �eries

BM25 0.235▽ 0.188▽ 0.196▽ 13.24
DeepCT 0.298▽ 0.244▽ 0.252▽ 10.91
DocT5�ery 0.338▽ 0.278▽ 0.286▽ 12.62
DeepImpact 0.385 0.326 0.332 58.64

TREC 2019

BM25 0.497▽ 0.683 0.290▽ 10.27
DeepCT 0.578▽ 0.714 0.329▽ 11.02
DocT5�ery 0.648 0.799 0.405 11.76
DeepImpact 0.695 0.863 0.456 51.23

TREC 2020

BM25 0.483▽ 0.659▽ 0.286▽ 14.67
DeepCT 0.550▽ 0.705 0.349▽ 12.00
DocT5�ery 0.619 0.742 0.408 15.51
DeepImpact 0.651 0.820 0.426 58.00

Table 3: E�ectivenessmetrics andmean response time (MRT,

in ms) using several re-ranking techniques on MSMARCO

Dev �eries, TREC 2019 queries, and TREC 2020 queries. ▽

denotes a signi�cant di�erence viz. ColBERT E2E

Strategy NDCG@10 MRR@10 MRT

MSMARCO Dev �eries

DeepImpact + EPIC 0.367▽ 0.303▽ 194.64
DeepImpact + ColBERT 0.425 0.362 81.00
ColBERT E2E 0.424 0.361 380.97

TREC 2019

DeepImpact + EPIC 0.711 0.880 191.23
DeepImpact + ColBERT 0.722 0.826 73.29
ColBERT E2E 0.694 0.826 370.98

TREC 2020

DeepImpact + EPIC 0.646 0.773 196.00
DeepImpact + ColBERT 0.691 0.781 79.84
ColBERT E2E 0.676 0.776 364.82

Re-ranking evaluation. Table 3 shows the e�ect of re-ranking

the top 1000 candidates produced by DeepImpact using two com-

plex re-rankers, EPIC and ColBERT. The table also shows, as a

comparison, the performance obtained by ColBERT when used

end-to-end by employing ANN search as the �rst-stage retrieval

mechanism. DeepImpact followed by a ColBERT re-ranker obtains

higher e�ectiveness values than ColBERT E2E on all query sets.

Moreover, DeepImpact + ColBERT exhibits a 4.4 × −5.1× speedup

w.r.t. ColBERT E2E.

First-stage cuto� evaluation. DeepImpact is able to achieve sta-

tistically signi�cant higher recall than all the compared methods

(with one single exception at cuto� 1000). In particular, Table 4

shows that the gap with the other methods is greater with smaller

cuto� values, which reduces the re-ranking cost and thus could

enable the use of more complex pairwise ranking models, such as

DuoBERT [20]. In re-ranking, DeepImpact outperforms all other

methods at cuto� 10. Moreover, it outperformsDeepCT on all cuto�

values except 1000, and it is comparable with DocT5�ery.

Table 4: First-stage recall and re-rank-stage MRR@10 using

ColBERT at several �rst-stage cuto�s for di�erent candi-

date generationmethodsw.r.t.MSMARCODev�eries. The

symbol ▽ denotes a signi�cant di�erence viz. DeepImpact

: BM25 DeepCT DocT5�ery DeepImpact

Recall (�rst stage)

10 0.394▽ 0.484▽ 0.542▽ 0.584
20 0.483▽ 0.577▽ 0.649▽ 0.680
200 0.739▽ 0.816▽ 0.869▽ 0.882
1000 0.858▽ 0.910▽ 0.947 0.948

MRR@10 (re-rank stage)

10 0.270▽ 0.302▽ 0.341▽ 0.350
20 0.299▽ 0.322▽ 0.355 0.357
200 0.343▽ 0.353▽ 0.361 0.361
1000 0.355▽ 0.360 0.362 0.362

4 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced DeepImpact, a new �rst-stage retrieval

method that leverages a combination of a traditional inverted in-

dexes and contextualized language models for e�cient retrieval.

By estimating semantic importance, DeepImpact produces a single-

value impact score for each tokens of a document collection. Our

results show that DeepImpact outperforms every inverted-index

based baseline, in some cases even matching the e�ectiveness of

more complex neural retrieval approaches such as ColBERT. Fur-

thermore, when ColBERT is used to re-rank candidates retrieved

by DeepImpact instead of approximate nearest neighbor, we �nd a

dramatic reduction of query processing latency, and a more modest

improvement in e�ectiveness of the whole pipeline. Future work

will focus on further enhancing the underlying model. First, we

would like to experiment with more relaxed matching conditions,

instead of exact match, between the query-document terms. Sec-

ond, we believe that we could improve further term expansion with

more sophisticated techniques. Finally, we plan to investigate how

changing the distribution of impact scores a�ects query processing

algorithms such as MaxScore, and how we can address this issue.
Acknowledgments: This research was partially supported by NSF

Grant IIS-1718680 and CAREER grant CNS-1651570, a�liate members and

other supporters of the Stanford DAWN project—Ant Financial, Facebook,

Google, Infosys, NEC, and VMware—as well as Cisco and SAP, the Italian

Ministry of Education and Research (MIUR) in the framework of the Cross-

Lab project (Departments of Excellence), and by the University of Pisa in

the framework of the AUTENS project (Sustainable Energy Autarky). We

would like to thank Matei Zaharia for insightful discussions and feedback.

Any opinions, �ndings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily re�ect the

views of the National Science Foundation.

Short Research Paper I SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1726

REFERENCES
[1] Yang Bai, Xiaoguang Li, Gang Wang, Chaoliang Zhang, Lifeng Shang, Jun

Xu, Zhaowei Wang, Fangshan Wang, and Qun Liu. 2020. SparTerm: Learn-
ing Term-based Sparse Representation for Fast Text Retrieval. arXiv preprint
arXiv:2010.00768 (2020).

[2] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2021. Overview
of the TREC 2020 deep learning track. Preprint arXiv:2102.07662 (2021).

[3] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M
Voorhees. 2020. Overview of the trec 2019 deep learning track. Preprint
arXiv:2003.07820 (2020).

[4] Zhuyun Dai and Jamie Callan. 2019. Context-aware sentence/passage term
importance estimation for �rst stage retrieval. Preprint arXiv:1910.10687 (2019).

[5] Zhuyun Dai and Jamie Callan. 2020. Context-aware document term weighting
for ad-hoc search. In Proc. WWW. 1897–1907.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of deep bidirectional transformers for language understanding.
Preprint arXiv:1810.04805 (2018).

[7] Sebastian Hofstätter and Allan Hanbury. 2019. Let’s measure run time! Ex-
tending the IR replicability infrastructure to include performance aspects. In
OSIRRC@SIGIR.

[8] Sebastian Hofstätter, Hamed Zamani, Bhaskar Mitra, Nick Craswell, and Allan
Hanbury. 2020. Local self-attention over long text for e�cient document retrieval.
In Proc. SIGIR. 2021–2024.

[9] Omar Khattab and Matei Zaharia. 2020. ColBERT: E�cient and e�ective passage
search via contextualized late interaction over BERT. In Proc. SIGIR. 39–48.

[10] Jimmy Lin, Joel Mackenzie, Chris Kamphuis, Craig Macdonald, Antonio Mallia,
Michał Siedlaczek, Andrew Trotman, and Arjen de Vries. 2020. Supporting
interoperability between open-source search engines with the common index
�le format. In Proc. SIGIR. 2149–2152.

[11] Sean MacAvaney. 2020. OpenNIR: A Complete Neural Ad-Hoc Ranking Pipeline.
In WSDM 2020.

[12] Sean MacAvaney, Franco Maria Nardini, Ra�aele Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. 2020. E�cient Document Re-Ranking for Trans-
formers by Precomputing Term Representations. In Proc. SIGIR. 49–58.

[13] Sean MacAvaney, Franco Maria Nardini, Ra�aele Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. 2020. Expansion via Prediction of Importance with
Contextualization. In Proc. SIGIR. 1573–1576.

[14] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. 2019. CEDR:
Contextualized Embeddings for Document Ranking. In Proc. SIGIR. 1101–1104.

[15] J. Mackenzie, Z. Dai, L. Gallagher, and J. Callan. 2020. E�ciency Implications of
Term Weighting for Passage Retrieval. In Proc. SIGIR. 1821–1824.

[16] Antonio Mallia, Michal Siedlaczek, Joel Mackenzie, and Torsten Suel. 2019. PISA:
performant indexes and search for academia. OSIRRC@SIGIR (2019).

[17] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. Ms Marco: A human-generated machine reading
comprehension dataset. (2016).

[18] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv:Preprint arXiv:1901.04085

[19] Rodrigo Nogueira and Jimmy Lin. 2019. From doc2query to docTTTTTquery.
Online preprint (2019).

[20] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-stage
document ranking with BERT. arXiv preprint arXiv:1910.14424 (2019).

[21] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document
expansion by query prediction. Preprint arXiv:1904.08375 (2019).

[22] Howard Turtle and James Flood. 1995. Query evaluation: strategies and optimiza-
tions. Information Processing & Management 31, 6 (1995), 831–850.

[23] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. Preprint arXiv:2007.00808
(2020).

[24] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the use of Lucene
for information retrieval research. In Proc. SIGIR. 1253–1256.

[25] Le Zhao. 2012. Modeling and solving term mismatch for full-text retrieval. Ph.D.
Dissertation. Carnegie Mellon University.

Short Research Paper I SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1727

https://arxiv.org/abs/Preprint arXiv:1901.04085

	Abstract
	1 Introduction
	2 Deep Impact Framework
	3 Experimental Results
	4 Conclusions and future work
	References

