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Abstract. In surveillance systems for monitoring people behaviours, it is im-
portant to build systems that can adapt to the signatures of people’s tasks and
movements in the environment. At the same time, it is important to cope with
noisy observations produced by a set of cameras with possibly different charac-
teristics. In previous work, we have implemented a distributed surveillance sys-
tem designed for complex indoor environments [1]. The system uses the Abstract
Hidden Markov mEmory Model (AHMEM) for modelling and specifying com-
plex human behaviours that can take place in the environment. Given a sequence
of observations from a set of cameras, the system employs approximate prob-
abilistic inference to compute the likelihood of different possible behaviours in
real-time. This paper describes the techniques that can be used to learn the dif-
ferent camera noise models and the human movement models to be used in this
system. The system is able to monitor and classify people behaviours as data is
being gathered, and we provide classification results showing the system is able
to identify behaviours of people from their movement signatures.

1 Introduction

Monitoring people behaviours in large and complex environments using multiple cam-
eras for automated surveillance is an important research area. Approaches to this prob-
lem usually divide the solution into two layers of processing: a low-level tracking com-
ponent processes low-level visual data from the cameras and produces a stream of
events which are then interpreted by a recognition module to produce high-level de-
scription of the people activities in the environment [2–5]. Oliver et al [2] propose a
Layered Hidden Markov Model (LHMM), where the classification results of the lower
layer are used as inputs to the higher layer. Ivanov and Bobick [3] proposed a two-stage
strategy to recognise the interactions of humans and vehicles. At the lowest level, the
system recognises simple events, which are used as inputs for a stochastic context-free
grammar parsing mechanism to recognise multi-object interactions at the higher level.

It is well-known that current low-level tracking techniques are not robust, and their
outputs are inherently noisy due to a variety of environmental and processing condi-
tions. Thus, it is up to the “high-level” module to deal with the imperfect output pro-
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duced by low-level processing to produce robust and accurate descriptions of the ob-
served activities. We thus argue that the high-level behaviour recognition module needs
to be based on a framework that facilitates the modelling of and reasoning with un-
certainty. Previously, we proposed the use of the Abstract Hidden Markov mEmory
Model (AHMEM) for this purpose [1, 6]. In the AHMEM, behaviours are organized
into a stochastic hierarchy. Each behaviour can be refined into a sequence of more
simple behaviours at lower levels. In addition, the rules for refinement can be made
non-deterministic or stochastic. The model is as expressive as other grammar-based
models such as the Probabilistic Context Free Grammar (PCFG) [7], and can model
state-dependent goal-directed behavours. At the same time, it supports online, and effi-
cient probabilistic inference of high-level behaviours from low-level data. Furthermore,
the hierarchical nature of the model makes it suitable for the natural hierarchy existing
in spatial regions, making it scalable to larger and more complex environments.

The AHMEM framework also provides the flexibility for integrating with a noisy
low-level tracking module via a HMM-like model at the bottom level of the behaviour
hierarchy. This acts like an interface between the AHMEM and the low-level track-
ing module. This paper addresses the problem of learning the necessary parameters for
building this interface between the high-level and low-level tracking module. We pro-
vide techniques for estimating the obsevation models of the cameras, and to estimate
the movement models of people on one floor of a building. We then describe a com-
plete distributed surveillance system combining a low-level tracking module with the
AHMEM for behaviour recognition. We provide experimental results showing that the
system is able to monitor and robustly classify complex human behaviours in an indoor
environment.

The paper is organised as follows. An overview of the surveillance system is pro-
vided in Section 2. The techniques to learn observation models and movement models
for the surveillance system are presented in Sections 3 and 4, respectively. The system
implementation is described in Section 5. Finally, Section 6 presents the experimental
results of the implemented system in a real office-like environment.

2 Overview of the Surveillance System

The surveillance system has two major components: the distributed low-level tracking
module and the high-level behaviour recognition module. The distributed tracking mod-
ule extracts people trajectories using multiple static cameras. The trajectories are inputs
for the high-level behaviour recognition module. The implementation of the surveil-
lance system is described in [1].

In the behaviour recognition module, the AHMEM and its parameters define a con-
ditional distribution over the observation sequences given a behaviour: Pr(õ|πk). In
recognising the behaviour of a person in the scene, we are given a sequence of obser-
vations from the low-level tracking module: õt−1 = (o1, . . . , ot−1) up to the current
time t, and need to compute the probability Pr(πk

t |õt−1), where πk
t represents the pol-

icy being executed at level k and time t. This provides the distribution of the possible
behaviours that might be currently executed at level k in the hierarchy. The computa-
tion needs to be done at every time instance t when a new observation ot arrives. The



Learning People Movement Model from Multiple Cameras for Behaviour Recognition 317

problem is termed policy recognition [8], and is equivalent to the on-line inference (fil-
tering) problem in the AHMEM. An efficient approximate inference algorithm based
on the Rao-Blackwellised Particle Filter (RBPF) [9] for computing the probabilities is
given in [10, 8]

The necessary parameters for building the interface between the high-level and low-
level tracking modules are the observation models of cameras and the movement models
of people on one floor of a building [1]. In the following sections, we will describe the
techniques to learn these parameters in detail.

3 Learning Observation Models

The observation model for a camera C is defined as B = Pr(o|s, C), where s is the
state of a person and o is the observation. Usually, there are a large number of states in
the field of view (FOV) of the camera C. Thus, we have difficulty in creating enough
sample video sequences to learn B. Assume that the observation o is in one of the cells
within the neighbourhood of the state s (including s), and Pr(o|s, C) is unchanged for
all states s in the FOV of camera C, i.e. the statistics are spatially invariant. We can
compress the observation model B to a compressed observation model Bc, which is a
3 × 3 matrix given as:

Bc =




Pr(onorthwest|C) Pr(onorth|C) Pr(onortheast|C)
Pr(owest|C) Pr(ocenter|C) Pr(oeast|C)
Pr(osouthwest|C) Pr(osouth|C) Pr(osoutheast|C)




where onorth, onortheast, oeast, osoutheast, osouth, osouthwest, owest, onorthwest
and ocenter are nine possible observations of a true state s (see Fig. 1). Instead of
learning the observation model B, we can learn the compressed observation model Bc

from a set of sample video sequences.

onorth

oeastocenter

osouthwest

onortheast

osoutheast

owest

osouth

onorthwest

state s

Fig. 1. The possible observations of a state s.

We learn the compressed observation model Bc for a camera C from sample video
sequences, which are created by recording people in the environment from the views
of all cameras. We run the tracking system to obtain the real world coordinates of peo-
ple in the sample video sequences. Among these coordinates, we randomly choose N
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coordinates (x1,y1),. . . ,(xN ,yN ) that are originally generated from camera C. We con-
sider these coordinates as the observations of the people. We then manually extract
the corresponding person’s true positions: (xt

1, yt
1),. . . ,(xt

N , yt
N ). These coordinates are

mapped to the cells (states) in the environment, i. e. (x1, y1),. . . ,(xN , yN ) are mapped
to o1,. . . ,oN and (xt

1, yt
1),. . . ,(xt

N , yt
N ) are mapped to s1,. . . ,sN .

We estimate the compressed observation model Bc from the N observations o1,
. . . , oN and the N corresponding states s1,. . . ,sN . Note that Bc = Pr(o|C), where
o ∈ {onorth, onortheast, oeast, osoutheast, osouth, osouthwest, owest, onorthwest,
ocenter} (see Fig. 1). To estimate Pr(onorth|C), we count the number of times that oi is
the northern neighbouring state of si from the N observations and the N corresponding
states. Pr(onorth|C) then equals the frequency that oi is the northern neighbouring state
of si. The remaining probabilities of Bc are estimated in a similar manner.

4 Learning Movement Models

For a bottom level behaviour π in a region R, we need to learn the movement model
A = Pr(s′ | s, π), which is defined for all states s in R and for all neighbouring states
s′ of s [1].

4.1 Dealing with Large Transition Models

For the case in which region R is small, we can learn A from a number of training
video sequences. However, when region R is large and has many states, the number of
training video sequences required to learn A is large due to the size of the state space.
Therefore, instead of learning the complete movement model A, which is a difficult
task, we compress A to a compressed movement model Ac and learn Ac.

In large regions, we are only interested in behaviours representing the action of a
person going to a destination such as going to a printer, going to a computer, and so on.
Thus, we can assume that each behaviour defined in a large region has a destination. The
compressed movement model Ac is defined as a 3×3 matrix specifying the probabilities
that a person moves to the next state, assuming that the direction to a destination is the
up-front vector. The compressed movement model Ac is given as:

Ac =




pnorthwest pnorth pnortheast
pwest pcenter peast
psouthwest psouth psoutheast


 (1)

Given a direction to reach the destination of π which is say East, Ac can be rotated
to apply the probabilities.

4.2 Compressing the Movement Model

The compressed movement model Ac can be computed from the movement model A.
We compute the probability psouth of Ac as:

psouth =

∑
s,s′, where s′=south(s,π) Pr(s′|s, π)∑

s,s′ Pr(s′|s, π)
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where the state south(s, π) is computed as follows: The set of directions {North,
Northeast, East, Southeast, South, Southwest, West, Northwest } is rotated such that
the up-front vector (North) becomes the direction to reach to the destination of π from
s. Then, south(s, π) is the neighbouring state of the state s in the new South. In a similar
way, we can define north(s, π), northeast(s, π) and so on. The other probabilities of Ac

are computed in a similar manner.

4.3 Expanding Compressed Movement Models

The movement model A can be computed from the compressed movement model Ac

as follows: Note that A = Pr(s′|s, π), where s′ is a neighbouring state of s (including
s), and Ac is shown in Eq. 1. We first determine the relation among s, s′ and π. If
s′ = north(s, π), then Pr(s′|s, π) = pnorth, if s′ = northeast(s, π), Pr(s′|s, π) =
pnortheast, and so on.

4.4 Learning the Compressed Transition Models

The movement model of the behaviour π, i.e. A = Pr(s′ | s, π), and the observation
of each camera C, i.e. B = Pr(o|s, C), form a Hidden Markov Model. We propose
an algorithm based on the expectation maximisation (EM) algorithm for the Hidden
Markov Model (HMM) to learn the compressed movement model Ac. We term this
algorithm the EM algorithm for the HMM with compressed parameters (Algorithm 1.1).

The inputs for Algorithm 1.1 are the compressed observation models for the cam-
eras and a set of training sequences. The compressed observation models of the cameras
are learned as in Section 3. They remain unchanged throughout the algorithm. To gener-
ate the required training data for the algorithm, we determine all cameras that can view
the execution of the behaviour π, and record a set of video sequences of people execut-
ing π using these cameras. We take each video sequence as input to the tracking system
to extract the person’s trajectory. The trajectory is converted to a sequence of cells or
observations. As a result, we have a set of observation sequences for the behaviour π.

In the beginning, the algorithm initialises the initial state probability π and the
compressed movement model Ac. It also expands the compressed observation model
Bc(Ck) to the observation model B(Ck) (k = 0, . . . , no camera − 1). In the main
loop, for each observation sequence oj

1, oj
2,. . . ,oj

mj
(j = 1, 2, . . . , no seq), the algo-

rithm finds the camera that generates this observation sequence. Assume that camera
Ck is found. The algorithm expands the compressed movement model Ac to the full
movement model A. Then, it computes the sufficient statistics, which are the expected
frequency (number of times) in a state s at time t = 1, i.e. π̄j , and the expected num-
ber of transitions from a state s to a state s′, i.e. Āj . Āj is compressed to Āc

j . After
obtaining the expected sufficient statistics for all observation sequences, we estimate
the parameters of the HMM for the next iteration as π = normalise(

∑no seq
j=1 π̄j) and

Ac = normalise(
∑no seq

j=1 Āc
j). The algorithm terminates when the likelihood score

has reached a local minimum, and we obtain the compressed movement model Ac.
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Algorithm 1.1 The EM algorithm for the HMM with compressed parameters.

input
Obs. sequences oj

1, oj
2,. . . ,oj

mj
(j = 1, . . . , no seq)

Bc(Ck), k = 0, . . . , no camera − 1)
output

Compressed movement model Ac

begin
Initialise π(1), Ac(1)

Expand Bc(Ck) → B(Ck),∀k = 0, . . . , no camera − 1
for i=1 to N

for j=1 to no seq
Get camera Ck which generates oj

1, oj
2,. . . ,oj

mj

Expand → A(i)

From π(i), A(i), B(Ck) and oj
1, oj

2,. . . ,oj
mj

, compute:

π̄
(i)
j : expected frequency in state s at time t = 1

Ā
(i)
j : expected number of transitions from s to s′

Compress Ā
(i)
j → Ā

c(i)
j

end
Compute π(i+1), Ac(i+1) as:

π(i+1) = normalise(
∑no seq

j=1 π̄
(i)
j )

Ac(i+1) = normalise(
∑no seq

j=1 Ā
c(i)
j )

end
return Ac = Ac(N+1)

end

5 System Implementation in Real Environments

The implementation of the surveillance system in an office-like environment is de-
scribed in [1]. The environment has a Corridor, a Staff room and a Vision lab. The
surveillance system has six static cameras, in which two are in the Corridor, one in the
Staff room and the last three in Vision lab.

A three-level behaviour hierarchy is defined in the system (Fig. 2). The behaviours
at the bottom level represent the movement of a person within a single region (Corridor,
Staff room or Vision lab). The behaviours at the middle level represent the movement
of a person in the whole environment. The top level behaviours represent the different
tasks that a person might perform during the entire interval that the person stays in the
environment, i.e. printing the documents, using the library or an unclassified task.

The set of parameters of the behaviour hierarchy are described in [1]. The parame-
ters of the middle level and high level behaviours are defined manually, but they can be
learned easily by observing many real scenarios. The movement models of the bottom
level behaviours and the camera observation models are specified as follows:

5.1 Specifying the Compressed Observation Models for the Cameras

We learn the compressed observation models for the six cameras C0,. . . ,C5 as in Sec-
tion 3. We let people walk in the environment and record a set of video sequences seen
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The Corridor The Staff room The Vision lab

The environment

Middle level

The environment

(level 1)
Bottom level

(level 3)

(level 2)

(6) go to paper
(7) go to library
(8) access library

(12) go to printer
(3) exit left
(4) exit right

(5) go to Comp A (11) go to Comp B(1) go to Staff rm
(2) go to Vision lab

(9) walk ard Staff rm
(10) exit Staff rm

(14) exit Vision lab
(13) walk ard Vision lab

(2) go to printer 2
(3) go to paper 2

(5) access library 2

(7) exit 2
(4) go to library 2

(6) walk ard 2
(1) go to computer 2

(3) unclassified task 3
(2) use library 3
(1) print 3

Top level

Fig. 2. The behaviour hierarchy.

from the six cameras. With each camera, we obtain 100 coordinates of the people re-
turned from the tracking system and manually get the corresponding true coordinates.
From these coordinates, we estimate the compressed observation model for the camera.

Fig. 3(a)-(f) show the compressed observation models learned for the six cameras.
Note that a coordinate of a person returned from the tracking system (the person’s ob-
servation) is the centre of the bottom edge of the person’s bounding box. Therefore,
the observation of a person is usually nearer the camera than the person’s true position.
This explains why in the compressed observation model for camera C0, probabilities
Pr(onorth|C0) and Pr(oeast|C0) are quite high (see Fig. 3(a)). The probabilities of the
compressed observation models for the other cameras show the same property.

5.2 Specifying the Movement Models for Bottom Level Behaviours

The bottom level behaviours, which translate to the full or compressed movement mod-
els are learned as described in Section 4.

We learn the compressed movement model of behaviour go to printer as follows:
Behaviour go to printer can be viewed from cameras C0, C1 and C5. We record 30
video sequences of people executing behaviour go to printer from cameras C0, C1 and
C5. Then, we use Algorithm 1.1 to obtain the compressed movement model of be-
haviour go to printer (see Fig. 4(a)).

The movement models of other bottom level behaviours are learned in a similar way.
For example, the results of the learning steps for behaviours go to Linux, exit Vision,
go to paper, go to library and exit Staff are shown in Fig. 4(b)-(f).

6 Experiments and Results

To demonstrate that the parameters specified in Sections 5.1 and 5.2 allow the surveil-
lance system to recognise and monitor people behaviour reliably, we tested the system
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Fig. 3. The observation models for the six cameras C0,. . . ,C5.
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Fig. 4. The compressed movement models of behaviours go to printer, go to Linux, exit Vision,
go to paper, go to library and exit Staff.

with 16 video sequences. In each video sequence, a person performs a task of printing,
using the library or an unclassified task. The results of recognising these behaviours
over time are shown in Fig. 5. As in the figure, with each video sequence and at each
time slice, the system can recognise the most likely behaviour being executed by the
person. The winning top level behaviour is available only at the end of the correspond-
ing video sequence.

We compare the winning top level behaviours recognised by the system in the 16
video sequences with the groundtruth. The system correctly recognises the top level
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behaviours in 15 video sequences and misclassifies the top level behaviour in video
sequence 11 (see Table 1). In video sequence 11, a person is executing behaviour
use library 3, but the system recognises unclassified task 3 as the winning behaviour
(see Fig. 5, seq 11). This is because the person changes direction suddenly just before
leaving the environment. A re-examination of the diagram in Fig. 5 (seq 11) does show
that puse library 3 is approximately 0.4, and is significantly better than pprint 3. These
results show that the system is able to robustly recognise people activities.
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Fig. 5. Querying the top level behaviour in the 16 video sequences.

7 Conclusion

We have presented the techniques that can be used to learn camera observation models
and human movement models. These techniques are used in a surveillance system for
recognising and monitoring high-level human behaviours from multi-camera surveil-
lance data. The system can query the high-level behaviours executed by a person over
time. Behaviour classification results in a real environment demonstrate the ability of
the system to provide real-time monitoring of high level behaviours in complex spatial
environments with large state spaces.
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Table 1. The results of recognising the top level behaviour in the 16 video sequences.

Seq. Winning behaviour Time periods that the winning behaviour has the
highest probability

Compared with
groundtruth

1 print 3 26-27, 42-213=END correct
2 print 3 194-253=END correct
3 print 3 38-45, 47-231=END correct
4 print 3 89-93, 145-146, 170-170, 172-172, 174-176=END correct
5 print 3 48-51, 79-194=END correct
6 print 3 30-36, 48-311=END correct
7 print 3 51-51, 53-57, 68-294=END correct
8 print 3 54-323=END correct
9 use library 3 82-136=END correct

10 use library 3 95-149=END correct
11 unclassified task 3 1-107=END wrong
12 unclassified task 3 1-106, 123-181=END correct
13 unclassified task 3 1-106, 133-181=END correct
14 unclassified task 3 1-46, 149-252=END correct
15 unclassified task 3 1-108, 158-159, 162-191, 201-203, 207-246=END correct
16 unclassified task 3 1-239=END correct
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