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Abstract

Color is a powerful visual cue for many computer vision
applications such as image segmentation and object recog-
nition. However, most of the existing color models depend
on the imaging conditions affecting negatively the perfor-
mance of the task at hand. Often, a reflection model (e.g.,
Lambertian or dichromatic reflectance) is used to derive
color invariant models. However, those reflection models
might be too restricted to model real–world scenes in which
different reflectance mechanisms may hold simultaneously.
Therefore, in this paper, we aim to derive color invari-

ance by learning from color models to obtain diversified
color invariant ensembles. First, a photometrical orthog-
onal and non–redundant color model set is taken on input
composed of both color variants and invariants. Then, the
proposed method combines and weights these color models
to arrive at a diversified color ensemble yielding a proper
balance between invariance (repeatability) and discrimi-
native power (distinctiveness). To achieve this, the fusion
method uses a multi–view approach to minimize the esti-
mation error. In this way, the method is robust to data un-
certainty and produces properly diversified color invariant
ensembles.
Experiments are conducted on three different image

datasets to validate the method. From the theoretical and
experimental results, it is concluded that the method is ro-
bust against severe variations in imaging conditions. The
method is not restricted to a certain reflection model or pa-
rameter tuning. Further, the method outperforms state–of–
the–art detection techniques in the field of object, skin and
road recognition.

1. Introduction

Color is a powerful visual cue for many applications
in computer vision such as image segmentation and object
recognition. Most of the existing color models depend on

the imaging conditions under which the image is recorded
(such as illumination and camera viewpoint). Varying imag-
ing conditions may disturb the measured color model val-
ues and hence the task at hand. Although reflection models
(e.g., Lambertian or dichromatic reflectance) are used to de-
rive color invariant models [5, 18], these reflection models
may be too restricted to model real–world scenes in which
different reflectance mechanisms may hold simultaneously.
To avoid the requirement of explicit reflection models, in

this paper, a combining strategy is proposed to obtain pho-
tometric invariance. In general, combining multiple classi-
fiers (e.g., color descriptors) is a powerful technique to im-
prove the performance of single classifiers [2, 12, 14]. The
improvement may even be higher when the method uses a
learning step to adapt to the specific classification problem
(e.g., Boosting, Bagging and Random forests). To accom-
plish the learning procedure, systems use training data cor-
responding to the object to be recognized (i.e., positive ex-
amples) and for instance background (i.e., negative exam-
ples). However, systems using only positive data within the
training step are more desirable since obtaining a compre-
hensive representation of negatives or unknown universe is
often unfeasible. In addition, if negative data is not chosen
properly this may lead to lower classification accuracy [28].
Therefore, in this paper, we aim to derive color invari-

ance by learning from positive examples of color models to
obtain diversified color invariant ensembles. The training
examples should include a broad range of varying imag-
ing conditions under which the object/image is recorded.
An orthogonal and non–redundant color model set is taken
on input composed of both color variants and invariants.
Then, the proposed method combines and weights these
color models to arrive at a diversified color ensemble yield-
ing a proper balance between invariance (repeatability) and
discriminative power (distinctiveness). To achieve this, the
method uses a multi–view approach to minimize the estima-
tion error. In addition, the contribution of each observation
is estimated using a Monte Carlo simulation. In this way,
the method is robust to data uncertainty and produces prop-
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erly diversified color invariant ensembles.
The paper is organized as follows. First, in Sect. 2, re-

lated work is discussed. In Sect. 3, the multi–view fusion
scheme is introduced. Color–based region detection is out-
lined in Sect. 4. Then, in Sect. 5, experiments are pre-
sented and the results are discussed. Finally, conclusions
are drawn.

2. Related Work
Combining strategies that consider the differences be-

tween their components are promising [14]. In this pa-
per, the measure of disagreement is referred as diversity.
Some approaches consider the diversity directly in the pro-
cess of defining the ensemble. For instance, Melville et al.
[16] consider the diversity as the disagreement of an en-
semble member with the ensemble’s prediction to learn the
ensemble based on positive and negative data. Jacobs et
al. [10] proposes a minimum variance estimator where the
estimated aggregate has a variance at most as large as the
variance of any of the input features. Stokman et al. [26]
uses the Markowitz diversification criterion [15] in the pro-
cess of defining the ensemble. The method assumes that
each descriptor can be characterized by its mean and vari-
ance and computes the best combination to yield maximum
mean to variance ratio. The method provides maximal fea-
ture discrimination assuming unimodal data distributions.
However, in practice, the distribution of the training data is
often not unimodal. Hence, the uncertainty in estimating
the mean and variance may increase. Further, a quadratic
optimization technique is used to estimate the contribution
of each component for the final ensemble. This optimizer
method tends to select those components with very attrac-
tive features and tends to deselect those with the worst fea-
tures. These are the cases where estimation error is likely to
be maximal [22].

3. CombiningMethod based on Diversified En-
sembles
We aim to derive color invariance by learning from color

models to obtain diversified color invariant ensembles. To
be precise, an object (U) is modeled considering the central
value of its data distribution (μU ) and the small deviations
from the central value due to noise in the device (σU ),

U = μU ±σU , (1)

A weighted linear combination of the observations esti-
mates μU and σU ,

μU = wμT , (2)
σU = wΣwT , (3)

where w = [w1, ...,wN ] is the contribution of each feature
(observation) to the final combination, Σ is the covariance

matrix between the central values of each view and each
representation. μ = [μ1, ...,μN ] is a vector with the central
value of all the views for each observation. N corresponds
to the number of components in the ensemble.
To estimate wi, the algorithm aims to minimize σU to

obtain a minimum mean value μUmin as follows,

minimize(σU )
s.t. μU ≥ μUmin , (4)

Further, the full combination constraint is imposed. That
is, the weights must sum up to one.
To estimate the central value of each observation (μi), a

multi–view framework is proposed. This framework char-
acterizes the information from each observation using two
stages. First, the central value of the j–th view, μi j, is com-
puted and used to build a data distribution. Second, the
central value of the resulting distribution is obtained cor-
responding to the central value of the i-th observation, μi.
To obtain each central value, the algorithm uses the mode
to minimize the influence of skewed distributions. Thus,
the estimation error is minimized. The variance–covariance
matrix of the data represents the existing relations between
observations when the viewing conditions change.
What remains now is the estimation of wi. Using stan-

dard optimization techniques, a set of efficient ensembles
called the efficient frontier is obtained [22]. That is, the
efficient frontier contains different values of μU and their
associated weights which minimize the corresponding σU .
However, to deal with the estimation error and improve the
diversity of the ensemble, a resampling technique is pro-
posed using Monte Carlo simulation which yields a resam-
pled frontier [17]. Ensembles lying on the resampled fron-
tier are composed of weights vectors which are the average
of the efficient frontiers given a certain μU .
The above method can be summarized as follows:

1. Estimate the efficient frontier using the training data
and quadratic programming techniques. This frontier
is composed of ensembles varying from the minimum–
variance to the maximum expected value ensemble.
Divide the difference between the minimum and max-
imum return in m ranks.

2. Estimate the variance–covariance matrix, Σ, and mean
vector, μ , of the training data,

μi =
1
K

K

∑
j=1

μi j, (5)

Σil = cov(μi,μl), (6)

where K is the number of views.

3. Resample, using the inputs created in 2, taking T
draws for the input distribution. T , reflects the de-
gree of uncertainty in the training data. Calculate a
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new variance–covariance matrix from the sampled se-
ries. Estimation error will result in different variance–
covariance matrices and mean vector for those in
Step 2.

4. Calculate the efficient frontier for the inputs derived in
Step 3. Record the optimal ensemble weights for m
equally distributed points along the frontier.

5. Repeat Step 3 and Step 4 K times. Calculate the aver-
aged ensemble weights for each expected value point

wresampledm =
1
K

K

∑
i=1
wmi, (7)

where wmi denotes the weight vector for the m–th en-
semble along the frontier for the i–th sampling.

6. Evaluate the frontier of averaged ensembles with the
variance–covariance matrix from the original training
data to obtain the resampled frontier.

Finally, the Sharpe Ratio (SR) [4] can be used to select
the most efficient ensemble from the frontier. SR is a single
statistical performance measure of variance–adjusted return
defined as,

SRi =
μd
σd

, (8)

where SRi is the performance of each ensemble in the re-
sampled frontier, μd is the difference between the expected
value of the i–th ensemble and the expected value of a ref-
erence ensemble. σd is the variance of the differential en-
semble.

4. Application to Color–based Region Detec-
tion
In this section, the combining method is applied to color–

based region detection, i.e., the detection of object patches
in images recorded under varying imaging conditions using
a set of color models composed of both color variant and
invariant models. In this way, U is the data distribution of
the final combination of color (invariant) planes/models and
μU and σU its central value and variance respectively. μi is
the central of the i–th color plane estimated using the multi-
view procedure. Finally, wi denotes the contribution of the
i–th color plane to the final ensemble.
During training (i.e., estimating μU , σU and wi), the fol-

lowing steps are performed:

• Select a set of training images containing the object to
be detected under different views (e.g., different light-
ing conditions).

• Select a region of interest for each training image
and for each color plane/model estimate μi j using the
mode.

• Estimate the correlation matrix of these central values.
This matrix contains information regarding the rela-
tive variations of each color plane when the acquisition
conditions vary.

• Compute the weights using the Monte Carlo method
considering the central value of each color model for
all the views and the covariance matrix as input data.

Then, during classification, the following steps are per-
formed:

• Convert the image into the color models (the same as
during training) and apply the weights obtained in the
training phase to combine them. This leads to a grey–
level image.

• Estimate the signal to noise ratio, SNR, by dividing, at
each pixel, the local mean value by the local standard
deviation. The SNR is estimated using a rectangular
region (M×N pixels) at each pixel.

• Compute the error between the SNR based on the train-
ing data and the local SNR for each pixel. The lower
the error, the more similar the colors are.

• Threshold the error image e and assign pixels values
close to zero the target color:

C(x,y) =

{
1 if e(x,y) < T
0 otherwise.

(9)

The appropriate value of T can be obtained using
automatic thresholding techniques such as isodata
method [20].

Taxonomy of
color spaces

LI
change

LI
shift

LI
c.&s.

LC
change

LC
c.&s.

RGB - - - - -
O1,O2 - + - - -

O3, Intensity, L - - - - -
Saturation (S) - + + - -
Hue (H) + + + - -
r,g,a,b + - - - -

I + + + + +

Table 1. Invariance of color planes for different types of lighting
variations i.e., light intensity (LI) or light color (LC) change and/or
shift [18]. Invariance is indicated with ’+’ and lack of invariance
with ’-’.

To provide robustness against confounding imaging con-
ditions (e.g., illumination, shading, highlights, and inter-
reflections), photometric invariants have been proposed (Ta-
ble 1) derived from [18]. For instance, for the dichromatic
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Figure 1. PCA is used to reduce redundancy within the training
data. The analysis is done using the loadings plot of each color
plane. This example corresponds to the training set from the face
database.

reflection model, normalized color rgb is to a large extent
invariant to a change in camera viewpoint, object pose, and
the direction and intensity of the incident light. In addition,
the hue color space H is insensitive to highlights under the
restriction of white illumination or a white–balanced cam-
era. In addition to the models described by [18], the illumi-
nation invariant model I proposed in [5] is included.
Considering all the color models in Table 1, a set is ob-

tained of both color variants and invariants to achieve both
distinctiveness and repeatability respectively. The next step
is to obtain a non–redundant set. This subset is obtained
by computing a PCA to reduce the number of color mod-
els. Correlation between color models are computed by the
loadings of each color model, see Fig. 1. The input data
to PCA is the matrix containing the mean values for each
view of each color plane (μi j). The number of principal
components depends on the data and the amount of vari-
ation. The selection of color planes which represent each
cluster (e.g., S or b in Fig. 1) is computed by the Harti-
gan’s test for unimodality [8]. In this way, an orthogonal
(variant/invariant) and non–redundant (decorrelated) color
model set is obtained which will be used as input of the
proposed method as explained and tested in the next sec-
tion.

5. Experiments
In this section, the proposed fusion algorithm is applied

on three different databases: (1) the Amsterdam Library of
Object Images (ALOI) [7], (2) Caltech Face database [19]
and (3) a road sequence taken by an on–board camera. See
Fig. 2. The goal of the first experiment on the ALOI dataset
is to detect object regions under varying imaging condi-
tions. The second experiment consists of detecting skin to

find faces in the Caltech image dataset. The aim of the last
experiment is to detect roads under uncontrolled imaging
conditions.

5.1. Error Measures

Contingency Ground Truth
Table Non–Target Target

Detection Non–Target TN FN
Result Target FP TP

Table 2. The contingency table. Algorithms are evaluated based
on the number of pixels correctly and incorrectly classified.

Quantitative evaluations are provided using pixel–wise
measures, see Table 2, from which the following error mea-
sures are computed: quality, detection accuracy, detection
rate and effectiveness, see Table 3. Each of these measures
provides a different insight in the performance of a method.
Quality takes into account the completeness of the extracted
data as well as its correctness. Detection accuracy, also
known as precision, is the probability that the result is valid.
Detection rate, or recall, is the probability that the ground–
truth data is detected. Effectiveness is a single measure that
trades–off the detection accuracy versus detection rate. Fur-
ther, the performance of our method is compared, on each
dataset, with existing algorithms. Pair-wise comparisons
are computed by the Wilcoxon significance test [29].

Pixel–wise measure Definition
Quality (ĝ) ĝ= TP

TP+FP+FN
Detection Accuracy (DA) DA= TP

TP+FP
Detection Rate (DR) DR= TP

TP+FN
Effectiveness (F) F = 2DADR

DA+DR

Table 3. Pixel–wise measures used to evaluate the performance
of the different algorithms. These measures are defined using the
entries of the contingency table (Table 2).

5.2. Man–made Object Region Detection
Objects are taken from the Amsterdam Library of Ob-

ject Images (ALOI) [7]. The objects are captured under
varied viewing angle, illumination angle, and illumination
color. These lights were chosen to be representative of the
spread of common illuminants. The goal of this experiment
is to detect object regions and it is conducted on each im-
age (36 per object) for three different objects. Two of them
are shown in Fig. 2. All images have their corresponding
ground–truth.
Different regions from each image have been manually

selected to train the algorithm. Although these regions com-
prise the same object under different lighting conditions,
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(a) (b) (c)

Figure 2. Example images from the different image datasets.
(a) Two objects under different light conditions from the ALOI
database. (b) Different faces from the Caltech database. (c) Dif-
ferent frames from the road sequence.

each region contains pixels from an homogeneously illu-
minated patch. That is, the data distribution of each patch
is approximately unimodal. The set of photometric orthog-
onal and non–redundant color models has been computed
using the (PCA) procedure described in Sect. 4. As a re-
sult, we have obtained the weights listed in Table 4. High
weights are given to the I, B and g. As I and V do not con-
tain chromatic information, the weights of B and g reflect
the color of the objects region.
For comparison, two different weighting algorithms have

been implemented: the minimum variance [10] and the
single–view fusion scheme [26]. These two algorithms have
been trained using the same dataset as our method. The
summary of the results is reported in Table 5. From the re-
sults, it can be observed that considering only the variance
of the training data (i.e., the minimum variance method) is
not sufficient to provide a proper model. In fact, single–
view and multi–view methods not only aim at minimizing
the variance but also yield a certain mean value of the en-
semble.
Since training pixels are obtained under different imag-

ing conditions, the behavior of the different color planes can
not be captured properly. In contrast, the proposed method
is able to model this phenomenon due to the relative varia-
tions around the central value in each view and hence out-
performing the other methods.

ALOI object 1 Faces Road
I 0.595 -0.017 0.929
R 0.048 — —
G — — —
B 0.328 — —
r — — 0.157
g 0.276 0.022 0.342
O1 — — 0.266
O2 — 0.013 -0.024
L — 0.176 —
a — 0.652 -0.356
b — 0.154 -0.082
S -0.032 — -0.452
V -0.215 — 0.220

Table 4. Set of weights obtained for the experiments. ’—’ corre-
sponds to an unselected color plane by the PCA procedure.

5.3. Skin Detection

The second experiment consists of detecting skin pixels
of faces from The Frontal Face Image Database of Caltech.
This image dataset contains 450 face images taken from 27
different persons under different lighting, expressions and
backgrounds. All these images have been manually seg-
mented to generate ground–truth. The training set has been
obtained by manually selecting 100 different patches from
100 different (randomly chosen) images. Further, the uni-
modality test is used to discard unappropriate patches. Fi-
nally, 58 patches have been used for training representing
1% of facial pixel in the database. Again, the color model
set has been computed using the procedure described in
Sect. 4. The set of weights obtained are listed in Table 4.
The set of weights obtained reveals a dominance in a and b
reflecting pale reddish (i.e., skin).
The performance of the proposed method is compared

to six different existing skin detection algorithms. Three of
them use fixed boundaries in RGB [6], CbCr [3] and HS
[24] color spaces. The fourth is a statistical approach using
a mixture of Gaussians in RGB space. Note that these meth-
ods are particularly designed and fine–tuned to detect skin.
The other two methods correspond to the (more generic) fu-
sion schemes proposed by [10] and [26]. The same training
set has been used to train the fusion schemes as our method.
The summary of the results is listed in Table 6. From the re-
sults, it can be derived that our method outperforms the oth-
ers except for the RGB based method. This is because, after
the analysis of the failures, although the RGB–based method
fails in the presence of low intensity (due to illumination
and shadows) there were only a few instances of this type
i.e., only (3%) of images in the image dataset show severe
intensity and shadow changes. Moreover, the method has
been fine–tuned for skin detection. Further, the results of
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ĝ Detection Accuracy Detection Rate F
Minimum variance [10] 0.156±0.09 0.269±0.12 0.305±0.21 0.259±0.15
Single–view fusion [26] 0.478±0.11 0.627±0.13 0.789±0.06 0.694±0.14

Multi–view (without color plane selection) 0.294±0.15 0.419±0.28 0.784±0.24 0.627±0.25
Multi–view (our method) 0.639±0.13 0.909±0.03 0.687±0.15 0.778±0.11

Table 5. Performance of different detection algorithms for the first object from the ALOI database. Bold values indicate the maximum
performance.

ĝ Detection Accuracy Detection Rate F
RGB based method [6, 13] 0.640±0.19 0.694±0.20 0.884±0.17 0.761±0.17
CbCr based method [3] 0.259±0.18 0.309±0.21 0.548±0.31 0.379±0.23
HS based method [24] 0.443±0.21 0.514±0.21 0.807±0.28 0.585±0.21

RGB Statistical skin detection [11] 0.510±0.23 0.635±0.23 0.723±0.28 0.643±0.22
Minimum variance [10] 0.189±0.03 0.195±0.03 0.190±0.02 0.318±0.05
Single–view fusion [26] 0.314±0.24 0.365±0.26 0.636±0.34 0.430±0.27

Multi–view (without color plane selection) 0.410±0.23 0.703±0.18 0.497±0.20 0.550±0.15
Multi–view (our method) 0.569±0.14 0.776±0.20 0.696±0.11 0.714±0.13

Table 6. Performance of different detection algorithms on Caltech face database. Bold values indicate the maximum performance.

RGB based CbCr based HS based RGB Statistical Single–view Multi–viewa

ĝ DA DR F ĝ DA DR F ĝ DA DR F ĝ DA DR F ĝ DA DR F ĝ DA DR F

Multi–
view -1 1 -1 -1 1 1 0.9 1 1 1 -1 1 1 1 -1 1 1 1 1 1 1 1 1 1

Table 7. The Wilcoxon test for the skin detection experiment. A positive value indicates that our method outperforms the others. A negative
value indicates when our method does not perform significantly better. Minimum variance method has been excluded for space reasons.
Bold values indicate when the proposed method outperforms the others.

awithout color plane selection

the Wilcoxon test are shown in Table 7. These results show
that the proposed method outperforms all methods except
for RGB–based, and for the HS and RGB statistical method
in terms of detection rate. This is because of the high vari-
ability in both skin appearance and lighting variations. This
yields a data distribution in each view which is not unimodal
except for very small patches of skin.

5.4. Road Detection
The final experiment is conducted on a video sequence

of more than 800 images recorded using an on–board cam-
era. The aim is to detect the (not occluded) road in front
of a moving vehicle using a color camera. The images
present different backgrounds, the occurrence of occluding
and cluttered objects (vehicles) and different road appear-
ances under varying illumination changes.
The training set consists of 15 different road patches

which have been manually selected from 15 different (ran-
domly) selected images. The selection process avoids suc-
cessive image indexes. These patches contain different
illumination effects of the road (i.e., shadows and high-
lights). These regions represent less than 0.053% of the

total amount of road pixels within the sequence. The selec-
tion of the most suitable color planes has been done follow-
ing the PCA procedure described in Sect. 4. The obtained
weights for the ensemble are listed in Table 4 and shows a
dominant weight for the invariant color plane corresponding
to an achromatic (grey) surface independent of illumination
changes (e.g., sun casts and shadows) i.e., roads.
For comparison, the video sequence has been processed

using three state–of–the–art methods. The first algorithm
is the HSI road detection (RD) algorithm proposed in [25]
and used in [21]. The HSI color space has also been used to
process generic outdoor scenes under varying illumination
[9, 23]. The second algorithm is the illuminant–invariant
algorithm presented in [1]. The third algorithm is based on
2D histograms in the rg space [27]. Further, the two fusion
methods proposed in [10] and [26] are considered. Note
that the HSI and illuminant–invariant algorithms are based
on a frame–by–frame procedure. Further, these algorithms
require various parameter settings. For fair comparison, a
brute force approach has been applied. In this way, a set of
images has been processed and evaluated using all possible
values within the range of each parameter. The optimal set

570



ĝ Detection Accuracy Detection Rate F
HSI based RD [25] 0.662±0.11 0.933±0.10 0.715±0.16 0.789±0.10
Invariant RD [1] 0.784±0.13 0.904±0.14 0.863±0.10 0.872±0.09
rg model based [27] 0.257±0.25 0.778±0.28 0.409±0.39 0.352±0.30

Minimum variance [10] 0.137±0.22 0.237±0.30 0.193±0.31 0.187±0.28
Single–view fusion [26] 0.680±0.14 0.936±0.02 0.716±0.15 0.801±0.10

Multi–view (without color plane selection) 0.801±0.36 0.714±0.10 0.826±0.05 0.746±0.07
Multi–view (our method) 0.882±0.06 0.982±0.03 0.869±0.06 0.926±0.03

Table 8. Performance of different detection algorithms on road database. Bold values indicate the maximum performance.

Figure 3. Results of the proposed algorithm to detect roads.

of parameter values is the one which maximizes the aver-
age performance. All algorithms (which need training) have
been trained using the same road pixels. The performance
of all algorithms is outlined in Table 8. Various detection re-
sults of our method are shown in Fig. 3. Further, the results
of the Wilcoxon test are shown in Table 9. From the results
it can be concluded that the proposed method performs sig-
nificantly better than the others except for the detection rate
on Invariant based method and detection accuracy on the
HSI method. However, regarding the performance trade–
off between detection rate and detection accuracy, the pro-
posed method performs best. This means that the proposed
algorithm has a higher trade–off between invariance (detec-
tion rate) and discriminative power (detection accuracy).

6. Conclusions

In this paper, photometric invariance has been derived by
learning from color models to obtain diversified color in-
variant ensembles using only positive examples. A combin-
ing method is proposed to provide a multi–view approach
to minimize the estimation error. In this way, the method is
robust to data uncertainty and produces properly diversified
color invariant ensembles.
Experiments are conducted to validate the method. From

these experiments it is concluded that method is robust
against variations in imaging conditions and is not re-
stricted to a certain reflection model. Further, the method
performs similar or outperforms state–of–the–art detection
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rg model based Invariant RD HSI RD Min. Variance Single–view Multi–viewa

ĝ DA DR F ĝ DA DR F ĝ DA DR F ĝ DA DR F ĝ DA DR F ĝ DA DR F

Multi–
view 1 1 1 1 1 1 -0.8 1 1 -0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 9. Wilcoxon test for the road detection experiment. Positive values indicate that the proposed method performs significantly better.
Negative values indicate that our method does not outperform the others. Bold values indicate when our method outperforms the others.

awithout color plane selection

techniques in the field of object, skin and road recognition.
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