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Abstract—Robots are becoming safe and smart enough to work
alongside people not only on manufacturing production lines,
but also in spaces such as houses, museums or hospitals. This
can be significantly exploited in situations where a human needs
the help of another person to perform a task, because a robot
may take the role of the helper. In this sense, a human and the
robotic assistant may cooperatively carry out a variety of tasks,
therefore requiring the robot to communicate with the person,
understand his/her needs and behave accordingly. To achieve this,
we propose a framework for a user to teach a robot collaborative
skills from demonstrations. We mainly focus on tasks involving
physical contact with the user, where not only position, but also
force sensing and compliance become highly relevant. Specifically,
we present an approach that combines probabilistic learning,
dynamical systems and stiffness estimation, to encode the robot
behavior along the task. Our method allows a robot to learn not
only trajectory following skills, but also impedance behaviors. To
show the functionality and flexibility of our approach, two differ-
ent testbeds are used: a transportation task and a collaborative
table assembly.

Index Terms—Robot learning, programming by demonstra-
tion, physical human-robot interaction, stiffness estimation.

I. INTRODUCTION

RECENTLY, the fences in factories have started to dis-

appear as a gentler breed of robots has entered the

workplace, and new features have made even conventional

robots more user-friendly and safer to be around. This shift

will eventually alter the dynamics of labor in factories and

workshops, allowing humans and robots to work together in

efficient new ways. Some manufacturing tasks, such as the

production of small mechanical components, require a robot to

do the physical labor while a person performs quality-control

inspections after each component is made. This requires the

human and robot workers to operate side by side. For other

jobs, like lifting an engine block so that it can be worked

on, a user would want his/her robotic assistant to carry

out the heavy lifting task (see Fig. 1). In such scenarios,
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Lifting and transportation of bulky objects

Assembly of furniture or mechanical structures

Fig. 1. Illustration of human-robot cooperative tasks. In these kinds of
scenarios, the robot needs to be easily and rapidly re-programmable, so
that it can assist the user in a large variety of tasks, where different robot
behaviors are required. Physical interaction between the participants occurs,
and therefore the robot should be able to exploit the haptic information, as
well as to show different compliance levels as needed.

the collaborative work can speed up production processes,

improve manufacturing quality and reduce structural costs.

On the other hand, service robots have as main premise

to assist people in different environments such as houses,

offices, hospitals, museums, etc. Here, some of the robot duties

imply physical contact, for example, in hand-over tasks [3], or

when a robot cooperatively transports an object with a human

partner [2] (see Fig. 1). This physical interaction provokes a

rich exchange of haptic information, and involves compliant

robot movements. Additionally, the type of jobs carried out by

the robot may frequently vary. Therefore, a robotic assistant

requires to be easily and rapidly re-programmed several times

according to specific needs. In this context, programming by

demonstration (PbD) [4] emerges as a promising alternative

solution allowing the natural and intuitive transfer of human

knowledge about a task to a collaborative robot.

In this paper, we propose to use PbD to teach a robot

different roles in human-robot collaboration (HRC) scenarios.

Kinesthetic teaching1 is used for the robot to learn, from

demonstrations, an approximate model of the task along with

its corresponding constraints. Specifically, our approach de-

fines a virtual spring-damper system encapsulating the dynam-

ics and constraints of the task, and in turn governing the robot

behavior.2 Such a system can act on different reference frames,

1The term refers to the procedure where the user holds and moves the robot
along the trajectories that need to be followed to accomplish the task, while
the robot actively or passively compensates for the effect of gravity.

2We use the word virtual for clarifying that there is no real physical spring-
damper system connected to the robot.
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for instance, on coordinate systems representing the robot’s

base, a transported object, etc. We use a task-parametrized

formulation of a Gaussian mixture model that allows us not

only to encode the human demonstrations, but also to extract

automatically varying constraints acting in different coordinate

systems [5]. Moreover, by estimating the stiffness of the virtual

system through convex optimization [6], the robot is able to

interact with different compliance levels, thus extending its

capabilities to impedance-based behaviors.

The contributions of the proposed framework are three-

fold: (i) exploitation of both position and force data in HRC;

(ii) learning of compliance and position/force constraints; and

(iii) modulation of the robot’s behavior based on the user’s

actions as a result of the task-parametrized formulation. To

show the flexibility of our approach, we test it in two different

experiments. The first scenario consists of a collaborative

transportation task, where the robot needs to simultaneously

handle position and force constraints, while adapting its com-

pliance level (Section IV-A). The second experimental setting

considers the collaborative assembly of a wooden IKEA table,

where the robot learns to adapt its compliance level based on

position and haptic information (see Section IV-B).

The remainder of the paper is organized as follows: Section

II reviews the related work. The interaction model, the learning

algorithm and the stiffness estimation are described in Section

III. Section IV presents the experimental settings and results.

The pros and cons of the approach are discussed in Section

V. Conclusions and future work are presented in Section VI.

II. RELATED WORK

A. Control-based approaches

Human-robot collaboration has been investigated from the

early nineties, when purely control-based approaches were

dominant. Kosuge et al. [7], [8] proposed an admittance

control based on the apparent mechanical impedance of an

object manipulated by multiple robots and a human. The force

applied by the human was transferred to the robot controllers,

so that the human could command the motion of the object

while the robots behaved as followers. Al-Jarrah and Zheng [9]

introduced a two-level control scheme, where an admittance

controller was driven by a higher level reflex control. The latter

was triggered using a force-based threshold indicating that the

robot acted as a load for the human. Force information was

also exploited to estimate the human intention in cooperative

tasks and change the robot control law accordingly [10]. The

authors proposed to add the rate of change of the sensed force

to the robot controller [11], while varying its damping as a

function of the magnitude changes of the force.

Still based on admittance control, Bussy et al. [12] proposed

to modify the robot control action according to the equilibrium

trajectory hypothesis in a cooperative transportation setting.

The equilibrium trajectory was computed from a desired

dynamics of the object. The robot was then endowed with

a velocity-dependent proactive behavior through a finite state

machine whose states corresponded to hand-coded motion

primitives, which were sequenced according to the user’s

intention. This approach is similar to the decomposition

into non-holonomic motions represented by predefined virtual

mechanisms [13], [14]. Agravante et al. [15] used a model of

the task and visual servoing for defining the reference of an

admittance controller (analogous to the equilibrium trajectory

in [12]). The authors claimed that using exclusively force-

based control might be insufficient in HRC, hence that visual

information could improve the robot performance.

In contrast to [12], [14], our approach based on a virtual

spring-damper system computes the equilibrium trajectory

(which we also refer to as attractor) from a desired dynamics of

the robot that is learned from kinesthetic demonstrations (see

Section III-A). Here the robot motion depends not only on the

interaction forces, but also on the task parameters influencing

the collaborative behavior. It is worth noticing that the key

limitation in the works reviewed above has been the need for

a model of the task linked to an analysis of the possible robot

movements, so that both the parameters and the structure of

the controller can be designed accordingly. This significantly

decreases the flexibility of these approaches in the sense that

if a new robot skill is required or if an additional constraint

needs to be considered, the controllers have to be redesigned.

This limitation is here overcome by exploiting PbD.

B. Human performance-based approaches

Several works rely on human-human collaboration studies

to assist in the design of the robot controllers. Ikeura et al.

proposed to approximate human cooperation using variable

admittance control (with zero stiffness). From data collected

when two people jointly carried an object, the damping pa-

rameter was estimated according to the precision required by

the task, either through least squares [11], or by minimizing

a cost function that penalized high rates of change [16]. The

approach was then improved by introducing stiffness into the

controller, whose parameters were estimated from force and

position data recorded when a single human completed the

task following minimum jerk robot movements [17].

The minimum jerk model [18] has also been an inspiration

for Maeda et al. [19] and Corteville et al. [20]. Such a model

was used in [19] to estimate the human hand position in a

human-robot carrying task. This estimation was then used

as the reference for the robot controller. Similarly, in [20]

an admittance-controlled robotic assistant set its reference

based on the minimum jerk model. In order to improve the

cooperation, the robot adjusted its speed profile based on

Kalman estimations of the human motion. Human motion

estimators were also adopted in [21], where a hidden Markov

model (HMM) predicted the human intention based on haptic

data and modified the robot controller reference accordingly.

Tsumugiwa et al. [22] used an admittance controller, where

the damping varied according to the estimate of the human

arm stiffness. Their approach assumed that a low velocity co-

operative system remains stable if the robot’s damping varies

proportionally to the human stiffness. In [23] a robot controller

emulating how humans compensate for interaction forces and

instability was proposed. Composed of both feedforward and

feedback terms, the controller iteratively learned to adapt to

perturbations by minimizing motion errors and a metabolic

cost, achieving variable impedance behaviors.
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The works above suggest that both force sensory informa-

tion and variable impedance are relevant for HRC, leading

us to consider these aspects into our learning framework.

The goal in most of these approaches is to emulate the way

humans act in collaboration by shaping the parameters of a

predefined controller using motion/force patterns sensed while

a human-human pair carries out the task. The success of these

methods mostly relies on how well the parameters of the robot

controller are set to match the human collaborative behavior.

Such approach may narrow the variety of collaborative be-

haviors that a robot could acquire, because characteristics like

speed, power, precision, among others, may not be properly

exploited. We propose to handle this by exploiting learning

from demonstrations to transfer these characteristics.

C. Learning-based approaches

Evrard et al. [24] proposed the use of Gaussian mixture

models (GMM) and Gaussian mixture regression (GMR) to

respectively encode and reproduce robot collaborative behav-

iors. Leader and follower roles of a cooperative lifting task

were demonstrated by teleoperation. The GMM encapsulated

the robot motion and the sensed forces, while GMR generated

the reference force during reproduction. Medina et al. [25]

endowed a robot with a cognitive system providing segmenta-

tion, encoding and clustering capabilities for demonstrations of

collaborative behavioral primitives. These were represented by

a primitive graph and a primitive tree using HMMs that were

incrementally updated during reproduction [26]. One of the

main differences with respect to [24] was that the robot started

behaving as a follower, but its role became more proactive as

it acquired more knowledge about the task. Gribovskaya et al.

[27] proposed a hybrid structure based on PbD and adaptive

control. A model of the task was learned from demonstrations

encoded by a GMM to generate feedforward control signals.

Then, the impedance controller parameters were adapted as a

function of kinematic and force errors generated in the task.

Dynamic movement primitives (DMP) have also been suc-

cessfully used in HRC where interaction forces were con-

sidered. In [28], the learning problem was treated as that of

finding an acceleration-based predictive reaction for coupled

agents, in response to force signals indicating disagreements

due to obstacle avoidance or different paths to follow. Gams et

al. [29] argued that such adaptation should be done not only at

acceleration, but also at velocity level, allowing for smoother

interactions. Their approach learned coupled DMPs using

iterative learning control that exploited the force feedback

generated during several executions of the task. Note that our

framework shares similarities with [24], [28], [29] in the sense

that interaction forces are considered as additional variables

influencing the collaborative robot behavior. Indeed, in our

work, these forces affect not only the robot motion, but also

its time-varying impedance.

Ben Amor et al. [30] proposed a probabilistic encoding of

the DMP parameters that allowed for adaptation and correla-

tion of the robot motion based on predictions of the human

intention from partial observations. Their formulation used

dynamic time warping for shaping the future robot actions

according to the partner timing. Maeda et al. [31] extended

this idea by modeling the collaborative interaction using the

probabilistic motion primitives introduced in [32], where the

correlation between the trajectories of both the human and

the robot is exploited for carrying out coordinated tasks in

which the robot action is entirely conditioned by the user

motion. This approach has been recently applied to learning

multiple collaborative tasks [33]. Our work differs from [31],

[32] in that (i) our task-based parametrization allows the

robot to automatically adapt to a broader range of situations,

therefore augmenting its generalization capability; (ii) the

proposed stiffness estimation does not necessarily depend on

the demonstrations variability, and moreover, guarantees to

find optimal gain matrices; and (iii) interaction forces were

considered along the whole learning process.

Stiffness estimation: Variable impedance extends the robot

learning capabilities beyond trajectory following tasks, where

the robot is able to encode and reproduce more complex skills

that involve, among others, contact with the environment and

compliant bahaviors. In this context, several approaches have

been proposed to estimate from collected data the stiffness

and damping parameters to control robots. Erickson et al.

[34] compared four different methods to estimate the robot

impedance based on signal processing, adaptive control and

recursive least squares. In [35], the authors estimated the

nonlinear stiffness of robot joints with flexible transmissions

by using dynamic residual signals along with least-squares

and regressor-based techniques. From a different perspective,

[36], [37] proposed to find a stiffness matrix using variability

information extracted from human demonstrations in a PbD

framework. The estimation was obtained from the inverse

of the observed covariance encoded in a GMM [36], or

from the conditional covariance in GMR [37]. Kronander and

Billard [38] exploited the haptic information generated when

the teacher shook or firmly grasped the robot for showing

when high or low stiffness gains were required. Peternel et al.

[39] used electromyography signals to teach a robot different

compliance levels in a human-in-the-loop learning framework.

In [1] we proposed to encode an impedance-based collab-

orative behavior through a set of virtual springs that were

activated according to the robot perceptions. Both the equi-

librium point and the stiffness of the springs regulating robot

motion were learned from demonstrations. We later focused on

learning position and force constraints arising in a cooperative

transportation task [2]. A time-driven trajectory following

motion was encoded by a virtual attractor that allowed the

robot to follow a desired path and to apply the force required to

transport the load. The current paper takes inspiration from [2]

to propose an interaction model that can encapsulate the robot

dynamics for a large variety of collaborative skills. Such a

model is exploited in this paper to shape the robot compliance

by formulating the attractor’s stiffness estimation as convex

optimization, thus providing a more principled method than

in [1] to estimate the stiffness gain matrices. The proposed

task-parametrized encoding of the demonstrations permits the

modulation of the robot actions as a function of task variables.

In summary, this paper builds on the insights obtained in

[1], [2] to introduce a compact PbD model that is able: 1) to
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Fig. 2. Diagram of the proposed framework. Learning: Demonstrations of
the task are collected and then used to extract the desired attractor trajectories.
Input vectors along with attractor trajectories are used to train a TP-GMM
and to estimate stiffness matrices associated to every Gaussian component.
Reproduction: Given a set of task parameters, a temporary GMM is generated
and later used for reproducing the robot behavior by applying GMR.

learn different collaborative skills by exploiting both position

and force information; 2) to optimally estimate the required

time-varying compliance levels of the task; and 3) to modulate

the robot’s behavior based on both the user’s actions and

parameters of the task. A detailed description of the proposed

approach is provided in the next section.

III. PROPOSED APPROACH

When a robot learns a collaborative role from teacher

demonstrations, this needs a learning framework that encodes

not only the raw data generated during the teaching process,

but also an appropriate interaction model encapsulating the

dynamics of the desired behavior. Moreover, some tasks may

require the robot to manipulate objects, to pass them through

specific locations in the robot workspace, and/or to apply

specific forces to them. It is highly desirable that such task

features are integrated in a joint model, which should be

flexible enough, so that the robot can effortlessly be taught

different collaborative skills as required. This section shows

how we address these challenging aspects by proposing a

novel PbD structure that combines a simple interaction model,

probabilistic learning, and a stiffness estimation process for

learning and reproducing collaborative tasks (see Fig. 2).

A. Interaction model

Let us represent the movement of the robot’s end-effector as

a single unit mass moving in Cartesian space under the effect

of a control input fm and interaction forces fe as

ẍ = fm + fe, (1)

where ẍ is the acceleration of the mass, and the existence

of the inverse dynamic model of the robot is assumed [40].

Hence, we formulate our problem as finding the motion control

forces fm to attain the desired task dynamics. To achieve

this aim, we propose that the robot behavior during the

interaction – at each time step t – is driven by a virtual spring-

damper system. Specifically, the desired robot motion during

interaction is given by

ẍt = KP

t (yt − xt)−KV

t ẋt + fe
t , (2)

where KP

t , KV

t and yt are the full stiffness matrix, the

damping and the attractor point in the trajectory of the virtual

system, respectively. By observing the evolution of the robot

during the demonstrations of a task, with position xt, velocity

ẋt and acceleration ẍt, and also the interaction forces fe
t

obtained by a sensor on the robot’s end-effector, the evolution

of the attractor yt can be computed as

yt =
[

I, (KP

t )
−1
KV

t , (KP

t )
−1

, (KP

t )
−1

]









xt

ẋt

ẍt

fe
t









. (3)

corresponding to a simple linear transformation of the ob-

served data. Note that (2) shares similarities with the DMPs

formulation [41], where instead of encapsulating the robot

motion by the attractor trajectory, a forcing term individually

drives each variable of the robot movement.

This interaction model allows us to shape the robot behavior

by varying both the stiffness and the attractor, based on the task

requirements. Thus, we propose to tackle this problem from

a robot learning perspective. Specifically, the variables yt and

KP

t will be learned from kinesthetic demonstrations provided

by a human teacher who shows the robot its collaborative role.

In the rest of this section, we explain how to extract these

variables from examples of given tasks. Note that KV

t is not

estimated here, but its values are pre-specified according to,

for instance, a desired response of the linear system (2).

B. Learning

After having observed a set of demonstrations in some situ-

ations, we would like to generalize the skill to new situations.

For instance, consider the scenario in which a human-robot

dyad manipulates an object. The robot movements may largely

depend on the initial and goal positions of the object, poses

of obstacles populating the robot workspace, and additionally

the robot may be required to react to human actions, that

can be understood as position/orientation variations of specific

parts of the human body. These variables influencing the robot

behavior can be represented as reference frames, which we

will refer to as task parameters. For generalization purposes,

it is desirable for the robot to automatically adapt to new

configurations of these parameters (e.g., unobserved positions

and orientations of a manipulated object).

To address the aforementioned issue, we propose to

probabilistically encode the demonstrations with a task-

parametrized version of the Gaussian mixture model (TP-

GMM) [42]. This model allows us to compactly capture the

dependence of the robot motion on configuration changes

of the task parameters. Formally, these parameters are rep-

resented as P coordinate systems, defined at time step t
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by {bt,j ,At,j}
P
j=1, representing respectively the origin of

the reference frame and a set of basis vectors {e1, e2, . . .}
forming a transformation matrix A = [e1e2 · · · ]. Note that

in this paper we focus on the special case in which the task

parameters {bt,j ,At,j}
P
j=1 represent translations and rotations

in the Cartesian space, but the model can be extended to any

other affine transformation (including scaling and projections).

A demonstration ξ ∈ R
D×T is encoded in these

different reference frames, forming a third order tensor

dataset X ∈R
D×T×P , composed of P trajectory samples

X(j) ∈ R
D×T projected on P candidate frames, corre-

sponding to matrices composed of D-dimensional observa-

tions at T time steps. The model parameters are defined

by {πi, {µ
(j)
i ,Σ

(j)
i }Pj=1}

K
i=1, where πi are the mixing coef-

ficients, µ
(j)
i and Σ

(j)
i are the center and covariance matrix of

the i-th Gaussian component in frame j in a TP-GMM with

K components.

Let us emphasize that the term model parameters refers here

to the learned parameters of a model describing the movement

or skill, whereas the external parameters representing the

current situation (such as positions of objects or users) will

be denoted task parameters. The latter are used as inputs

to transform the learned model parameters in accordance to

the situation. Learning of the model parameters is achieved

by maximizing the log-likelihood under the constraint that

the data in the different reference frames are generated from

the same source, resulting in an Expectation Maximization

(EM) process to iteratively update the model parameters until

convergence.

E-step:

γt,i =

πi

P
∏

j=1

N
(

X
(j)
t | µ

(j)
i ,Σ

(j)
i

)

∑K

k=1 πk

P
∏

j=1

N
(

X
(j)
t | µ

(j)
k ,Σ

(j)
k

)

. (4)

M-step:

πi =

∑T

t=1 γt,i

T
, µ

(j)
i =

∑T

t=1 γt,i X
(j)
t

∑T

t=1 γt,i
, (5)

Σ
(j)
i =

∑T

t=1 γt,i (X
(j)
t − µ

(j)
i )(X

(j)
t − µ

(j)
i )⊤

∑T

t=1 γt,i
. (6)

The model parameters are initialized with a k-means pro-

cedure (with five consecutive random clusters initialization)

redefined through a similar process to that used for the

above EM algorithm. The model selection is carried out by

applying Bayesian Information Criterion (BIC) [43] to a set

of TP-GMMs with different number of states. Note that other

techniques such as Dirichlet processes for infinite Gaussian

mixture models [44] can be alternatively used for computing

the number of components in the model.

Notice that in a standard GMM, the role of EM is to

estimate constant Gaussian parameters µi and Σi. Here, EM

is used to estimate task-parameterized model parameters µ
(j)
i

and Σ
(j)
i by incrementally modeling the local importance of

the reference frames. In the proposed experiments, the overall

learning process typically takes 1 to 5 seconds.

The learned model can further be used to reproduce move-

ments in other situations (for new positions and orientations of

reference frames). The model first retrieves a GMM at each

time step t by computing a product of linearly transformed

Gaussians

N (µt,i,Σt,i) ∝
P
∏

j=1

N
(

At,jµ
(j)
i +bt,j , At,jΣ

(j)
i A⊤

t,j

)

. (7)

By using the product properties of multivariate normal distri-

butions, the above distribution is evaluated with

Σt,i =
(

P
∑

j=1

(At,jΣ
(j)
i A⊤

t,j)
−1)−1

, (8)

µt,i = Σt,i

P
∑

j=1

(At,jΣ
(j)
i A⊤

t,j)
−1(At,jµ

(j)
i +bt,j). (9)

C. Stiffness estimation

In our framework, we exploit the interaction model (2)

that encapsulates the desired robot dynamics extracted from

demonstrations to estimate a varying stiffness matrix. Such

estimation can be carried out in a local fashion by taking

advantage of the probabilistic encoding of the data. In other

words, after having encoded the demonstrations with TP-

GMM, we estimate local stiffness matrices KP

i associated to

each Gaussian component i of the model. Each model com-

ponent is locally encoding part of the desired robot dynamics,

and thus each KP

i should fulfill some local dynamics.

The robot motion during interaction defined by (2) can be

rewritten to express the local dynamics encoded by a Gaussian

component i as

γt,i (ẍt+KVẋt−fe
t ) = γt,iK

P

i

(

µy

t,i − xt

)

, (10)

with KP

i ∈ Sm
+ being the stiffness matrix of the component i,

where Sm
+ denotes the set of symmetric positive semi-definite

m × m matrices. The weights γt,i computed from (4) allow

us to determine a region of validity in which the estimated

stiffness matrix KP

i is optimal for the demonstrated dynamics.

Observe that µy

t,i is the subvector of the center µt,i spanning

the attractor data dimensions. We treat here stiffness matrix

estimation as a weighted norm approximation problem. In

other words, we want to minimize the Euclidean norm of the

residuals

rt (K
P

i ) = γt,i (K
P

i x̃t,i − vt) , (11)

subject to the matrix inequality constraint introduced by the

positive semidefiniteness of the stiffness matrix KP

i . Note

that x̃t,i = (µy

t,i − xt) and vt= ẍt+KVẋt−fe
t . Here the

weights γt,i define the estimation neighborhood, so that only

the datapoints belonging to the component i will be considered

to estimate the matrix KP

i . The above objective function and

the positive semi-definite constraint on the stiffness matrix can

be formulated as the convex optimization problem,

minimize
K

P
i

‖rt (K
P

i )‖2 , subject to KP

i � 0, (12)

which is a semidefinite program (SDP). As a result of the

convexity of both the objective function and the inequality
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constraint, standard techniques such as interior-point methods

[6] can be used to efficiently solve this SDP problem. In

this manner, optimal stiffness matrices are obtained to locally

satisfy the dynamics observed during the demonstrations. This

estimation process is carried out once for each Gaussian com-

ponent i. Then, the demonstrations are discarded, which means

that during reproduction, only the TP-GMM and associated

stiffness matrices are needed.

D. Skill reproduction

With the temporary GMM computed in (7), the reproduction

of a reference movement or behavior can be formalized as a

regression problem [45]. Gaussian mixture regression (GMR)

offers a simple solution to handle encoding, recognition, pre-

diction and reproduction in robot learning [46]. In contrast to

other regression methods such as Locally Weighted Projection

Regression [47], or Gaussian Process Regression [48], GMR

exploits the joint probability density function of the data

modeled by TP-GMM for deriving the regression.3

Let us define the superscripts I and O as the sets of

dimensions that span the input and output variables. At each

iteration step t, the datapoint ξt can be decomposed into two

subvectors ξI

t and ξO

t spanning the input and output variables,

respectively. With this notation, a block decomposition of the

datapoint ξt, vectors µi and matrices Σi can be written as

ξt =

[

ξI

t

ξO

t

]

, µi =

[

µI

i

µO

i

]

, Σi =

[

Σ
I

i Σ
IO

i

Σ
OI

i Σ
O

i

]

. (13)

The temporary GMM estimated in (7) encodes the joint

distribution P(ξI , ξO) ∼
∑K

i=1 πiN (µi,Σi) of the dataset

ξ. At each reproduction step t, P(ξO

t |ξ
I

t) is computed as the

conditional distribution

P(ξO

t |ξ
I

t) ∼
K
∑

i=1

hi(ξ
I

t) N
(

µ̂O

i (ξ
I

t), Σ̂
O

i

)

, (14)

with µ̂
O

i (ξ
I

t) = µO

i +Σ
OI

i Σ
I

i
−1

(ξI

t − µI

i ), (15)

Σ̂
O

i = Σ
O

i −Σ
OI

i Σ
I

i
−1

Σ
IO

i , (16)

and hi(ξ
I

t) =
πiN (ξI

t | µ
I

i ,Σ
I

i )
∑K

k πkN (ξI

t | µ
I

k,Σ
I

k)
. (17)

Note that according to our proposed interaction model, the

robot behavior is driven by a virtual attractor y (see (3)), which

corresponds to the output vector ξO of our regression model,

while the input vector ξI will depend on the characteristics of

the problem at hand, as shown in Section IV. Moreover, the

stiffness matrices previously estimated define the stiffness of

the virtual attractor as KP

t =
∑K

i=1 hi(ξ
I

t)K
P

i , at each time

step t. In the proposed experiments, the GMR computation at

each time step took less than 1 millisecond. Fig. 2 shows an

illustrative diagram of the proposed framework, while Table I

summarizes our approach and its different stages.

3Note that GPR with Gaussian kernels also exploits the conditioning
property of normal distributions, but in a different way. The input and output
variables of the joint distribution in GPR represent respectively the new and
previous observations, where a GP is used for each movement dimension.
In contrast, the input and output variables of the joint distribution in GMR
represent respectively the multivariate inputs driving the behavior and the
multivariate movement.

TABLE I
SUMMARY OF THE PROPOSED APPROACH

1. Task demonstrations
- Determine P (number of frames or task parameters).
- ∀t ∈ {1, . . . , T}, collect ξt observed from the P

different reference frames and form the third-order tensor X .
2. Model fitting (see Section III-B)

- Determine K (number of components of the model).

- Use (4)-(6) to learn {πi, {µ
(j)
i ,Σ

(j)
i }

P
j=1}

K
i=1 .

3. Stiffness estimation (see Section III-C)

- Find KP
i for each Gaussian component i through convex

optimization using (11) and (12).
4. Reproduction (see Section III-D)

- Set the input I and output O elements.
for t← 1 to T (for each reproduction time step)

- Collect/select ξI

t and {bt,j ,At,j}Pj=1.

- Use (7) to estimate temporary GMM parameters

{µt,i,Σt,i}Ki=1 modeling ξI

t and ξO

t as

ξI

t , ξ
O

t ∼
∑K

i=1 πiN (µt,i,Σt,i).
- Use (14) to retrieve ξO

t through GMR.
- Compute the attractor’s stiffness matrix as

KP
t =

∑K
i=1 hi(ξ

I

t )K
P
i .

- Compute the reference acceleration ẍt from (2).
end

It is worth highlighting that the foregoing probabilistic

formulation of the problem models not only local correlations

among outputs, but also among inputs, and between inputs-

outputs (see (13)), in contrast to standard DMPs in which a

movement is considered as a set of univariate outputs syn-

chronized by a decay term. In our application, the correlation

information held by the joint inputs-outputs is crucial, not only

to determine the relevance of the task parameters, but also to

discover and re-use local sensorimotor patterns or synergies.

IV. EXPERIMENTS

This section introduces the two experimental settings that

were used to test the performance of the proposed learning

framework and to show its flexibility and generalization capa-

bility in HRC scenarios. For each task, we show and explain

the obtained results for each module of the whole learning

approach previously described.

A. Transportation Task

1) Description: the first task consists of teaching a robot to

simultaneously handle the position and force constraints aris-

ing when an object is cooperatively manipulated or transported

(see Fig. 3). At the beginning of the transportation task, the

two participants simultaneously reach for the object. Once they

make contact with the object, they start jointly transporting it

along a given path to reach the target location. When the object

gets to the final position, the human-human pair releases it

and moves away from the object. Both the starting and goal

object position/orientation may vary across repetitions. Here,

the aim is to automatize such part of this collaborative task

by replacing one of the human participants by a robot.

For this experiment, we used a torque-controlled 7-DoF

WAM robot equipped with a 6-axis force/torque sensor. In the

demonstration phase, the gravity-compensated robot is kines-

thetically guided by the teacher while cooperatively achieving

the task with the other user, as shown in Fig. 3. The teacher
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Demonstration Reproduction

Force Sensor

Fig. 3. Experimental setting of the human-robot transportation task. The top

row shows the kinesthetic demonstration (left), and reproduction phase (right).
A snapshots sequence of a demonstrations is shown in the bottom row.

shows the robot both the path to be followed and the force

pattern it should apply while transporting the object. Hence,

the learned attractor will be directly associated to the desired

force to be applied to the transported object, as computed in

(3). In other words, the proposed formulation of the interaction

process encodes the specific position and force requirements

to be fulfilled during reproduction.

In this experiment three task parameters (P = 3) are

considered, namely, the frames representing the initial S
and target T locations of the object, and a third frame I
attached to an object that is not relevant for the task, whose

position randomly varies across demonstrations. The purpose

of introducing the frame I is to exhibit how the TP-GMM

handles task parameters that are irrelevant for the problem at

hand. The task parameters are defined as

At,1 =

[

1 01×3

03×1 RS

]

, bn,1 =

[

0
xS

o

]

,

At,2 =

[

1 01×3

03×1 RT

]

, bn,2 =

[

0
xT

o

]

, and

At,3 =

[

1 01×3

03×1 RI

]

, bn,3 =

[

0
xI

]

.

Here, xS

o and xT

o are the Cartesian positions where the

object is picked up and then released. Similarly, RS and RT

respectively represent the initial and final orientation of the

object with orientation matrices. Finally, xI and RI are the

position and orientation of the irrelevant object.4 The datapoint

ξ is defined as ξI = t and ξO = y, where t and y are time

and the attractor’s path (see (3)), respectively.

During reproduction of the task, the initial and target frames

are given to the model in order to obtain the temporary GMM

parameters using (7). Then, the robot and the user transport

the object towards the target location. Here, for each time

step t, the robot obtains a new attractor location (see (14))

along with an estimated stiffness matrix, which generate a

new desired acceleration in the operational space of the robot.

For simplicity of the experiment, the orientation of the robot

end-effector was kept constant. However, the approach also

supports tasks with variable end-effector orientations [49].

2) Results: Five examples of the collaborative behavior

are given to the robot. The demonstrations are then used for

4The pose of the objects was predefined in this experiment, but these can
alternatively be obtained using an optical tracking system.

K
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B
IC

-800
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-400

-200

Fig. 4. Transportation task: Bayesian Information Criterion (BIC) for TP-
GMMs with different number of states K.

Initial Frame
Target Frame

Fig. 5. Transportation task: Local models in the initial frame S (where
the object is picked up), and in the target frame T (where the object is
released). The gray lines depict the attractor trajectories projected on the
corresponding reference frame. The ellipsoids represent the components of
the local models. The black dots and crosses depict the beginning and the
end of the demonstrations. The small and narrow ellipsoids reflect the high
local invariance of the trajectories observed from the different frames. The big
ellipsoids represent regions where precision is not required. Units are given
in meters.

training several TP-GMMs with different number of compo-

nents. Then, we used a Bayesian Information Criterion (BIC)

[43] to automatically select the TP-GMM providing the best

trade-off between the data fitting and the number of Gaussian

components. According to the values shown in Fig. 4, the

model with five components has the lowest BIC value, thus

offering the best compromise. Fig. 5 shows the resulting

encoding of the attractor trajectories computed from (3) and

observed from the perspective of the frames S and T . Notice

that the multiple demonstrations are locally consistent when

the robot approaches the initial location of the object (frame

S), and when the manipulator moves away from it once it

reached its target position (frame T ). This is reflected by the

small and narrow ellipsoids in these parts of the task. The

attractor trajectories observed from the frame I do not show

any consistent or useful information regarding the task, and

therefore they are not shown.

Handling irrelevant task parameters: Fig. 6 shows how the

TP-GMM adapts to variations on the task parameters. The

experiments consisted of varying the position of one frame

at once while all others remain unchanged. we can see that

when the frames S and T move, the resulting (temporary)

model adapts its components accordingly. In contrast, when

the irrelevant frame I moves, the model remains unaltered.

This is explained by the fact that TP-GMM exploits the

variability of the demonstrations observed from every frame

to automatically discover which task parameters are relevant

for the task. Such characteristic permits the selection of a

common list of candidate task parameters without carrying

out a thorough analysis about their importance for the skill or
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Fig. 6. Transportation task: The first, second, and third graphs respectively
show the TP-GMM obtained when the initial frame S (red), the target frame
T (blue), and the irrelevant frame I (orange) are moved on the plane x2x3.
The model automatically discovers that the frame I is irrelevant for the task,
and thus remains unchanged when this moves. Units are given in meters.

behavior to be learned.

Reproduction of the task: After learning, the obtained

model was used to test the reproduction and generalization

of the task on the real platform. Three types of tests were

carried out to evaluate the performance. First, the human and

robot cooperatively transported the load for new configurations

of the task parameters while the force applied to the load

was similar to those observed during the demonstrations.

Fig. 7 (top) displays three successful reproductions under

the aforementioned conditions where both the starting and

target locations varied, and the robot adapted to the change

of situation accordingly. Fig. 7 (middle) shows one of these

reproduction attempts where the sensed force profile remains

nearly constant throughout the whole reproduction. It is worth

highlighting that the observed offset between the end-effector

position and the attractor path allows the robot to apply the

desired force to the object while transporting it. Fig. 8 shows

the corresponding TP-GMM for the same reproduction, along

with the stiffness profiles and the activation weights. Note that,

in this case, time is the variable governing the influence of the

model components on the stiffness estimation. Regarding the

compliance level of the robot, notice that the robot behaves

compliantly along x1, while being stiffer along the axes x2

and x3. This behavior is reproduced both at the beginning and

at the end of the execution of the task, when the robot does

not allow high variations on the plane x2x3, guaranteeing that

the object is picked up and released by following trajectories

consistent with the demonstrations. As expected, the retrieved

behavior is the opposite when the robot is cooperatively

transporting the load in the middle of the path. In this part

of the task, the robot behaves stiffly along x1, while allowing

deviations on the plane x2x3.

The second test consisted of applying a varying force

to evaluate how the robot reacted to force variations not

observed during learning. The human operator started the

task pushing the object with a force higher than those taught

during the demonstrations. Then, the applied force was sig-

nificantly reduced, and finally it reached values similar to the

demonstrations, as shown in Fig. 7 (bottom). As it can be

observed, the robot could successfully adapt to these force

variations. When the force along the x1 axis was high, the

robot allowed small deviations from the path, still ensuring

that the position constraint remained within a feasible range

determined by the observed variability in the demonstrations

Reproductions with various start and target locations

Nearly constant force applied to the object
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Fig. 7. Transportation task: The robot performs the task for new task-
parameters configurations, as well as successfully adapts to variations on
the force applied to the object. The black and light gray lines respectively
represent the robot’s trajectory and the attractor y. The light brown arrows
display the sensed force at the end-effector. The dots and crosses respectively
display the start and end of the reproduction. Units are given in meters.
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Fig. 8. Transportation task: (left) The top plot shows the influence of the
learning model components along the reproduction, where the color matches
that of the ellipsoids. The bottom plot displays the stiffness profile (Newton
per meter) along the main axes of motion. (right) The resulting TP-GMM
for the set of task parameters given at the beginning of the reproduction. The
trajectory followed by the robot (in meters) is shown in solid gray line. Note
that the model components determine the varying stiffness matrix used by the
robot during reproduction.

and the impedance parameters. In contrast, when the force

was very low (i.e., the human nearly losing contact with the

object), the robot moved to try to compensate for the reduced

force and prevent the object from being dropped. Note that

despite the force variations, the robot was able to transport the

object along a similar path in the other dimensions, by showing

a collaborative behavior that is an appropriate compromise

between force and position constraints, automatically extracted

from the statistical representation of the demonstrations and

the interaction model. A video of the experiment is available

at http://programming-by-demonstration.org/TRO2016/
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(b) With perturbations

Fig. 9. Transportation task: Comparison of collaborative behavior reproductions where the stiffness matrix of the virtual attractor was learned with the
proposed approach (blue line), or manually set to high and low constant stiffness (green and red lines, respectively). The equilibrium trajectory of the attractor
is depicted by the black dashed line. The top row shows the trajectories followed by the end-effector for the foregoing cases. The bottom graphs display the
desired accelerations computed from (2). Gray areas represent periods of time when a perturbation was applied to the robot. Units are given in meters.

Comparison with baseline executions: Notice that the afore-

mentioned impedance adaptation capabilities are crucial for

both successfully tracking the desired trajectories and inter-

acting with the human user safely. In order to show this,

we compared the robot reproduction using our approach with

baseline executions. Specifically, for a given set of task param-

eters, we carried out the reproduction of the transportation task

with (i) stiffness matrices computed as described in Section

III-C, (ii) high stiffness (i.e., KP

t =2000I3×3), and (iii) high

compliance (i.e, KP

t =100I3×1). Fig. 9 shows the results for

these cases under two different conditions, namely when the

human interacts with the robot similarly to the demonstrations,

and when the robot faces perturbations during the execution of

the task. Observe that when the robot uses a high compliance,

it is not able to follow the desired trajectory once the user

is in contact with the object (around 0.2 in the time axis).

This means the robot does not compensate for the forces

applied by the user, as required to satisfactorily transport the

object. Moreover, when a perturbation occurs, the robot is

significantly moved away from the desired trajectory, unable to

respond accordingly even in the parts where a high precision

trajectory tracking is required (see gray areas in Fig. 9b).

The use of high constant stiffness also showed some impor-

tant drawbacks in this experiment. Firstly, despite the robot

was able to precisely follow the attractor trajectory, it did

not respond to interaction force variations during reproduction,

because the high stiffness is only used to compensate position

errors. Secondly, the desired end-effector accelerations are

considerably higher than those computed from the proposed

adaptive stiffness approach, as observed in Fig. 9. This may

lead the controller to apply very high torque commands, thus

inducing an unsafe human-robot interaction.

B. Table Assembly Task

1) Description: We consider a human-robot collaborative

task where the robot’s role is to hold a wooden table while

the human screws the four legs to it, similarly as two persons

would collaborate to carry out the same task (as illustratively

shown in Fig. 10, middle row). Fig. 10 (top) presents an

example of assembly instructions that can be found in “do

it yourself” furniture catalogs. Here, two small tables require

specific sequences of force and movement to get assembled.

Fig. 10. Top: Examples of table assemblies characterized by different se-
quences, positions and orientations of components, with haptic and movement
patterns that are specific for each item. Middle: Illustration of a table assembly
task carried out by two persons. Bottom: demonstration (left) and reproduction
(right) of the table assembly task in the experimental setup.

Learning such specificities is required for an efficient col-

laborative assembly. Instead of manually programming those

specificities for each item, we would like the robot to extract

them automatically from demonstrations provided by two

persons collaborating to assemble the different parts of the

table (see Fig. 10, bottom row). After learning, the task can

be reproduced by a single user, with the robot interacting

appropriately with respect to the preferences of the user and

the specificities of the item being assembled. We thus do

not need to provide the robot with information about the

points of assembly, the different options, orientation of table

legs, etc. The robot instead learns these specificities from

demonstrations.

In the learning phase two persons perform the task, where

one is kinesthetically guiding the robot to demonstrate the

robot’s role. The compliance behavior of the person holding

the table changes to allow the other person to perform the

corresponding sub-task more easily (see Fig. 10, bottom row).

During reproduction, the robot replaces the person holding
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Fig. 11. Table assembly task: resulting TP-GMM in the leg’s reference frame
L. The ellipsoids represent the Gaussian components of the learning model
while the gray dots depict the trajectory followed by the attractor. The stiff
phase of the four assembled legs was automatically encoded by the four small
ellipsoids. The compliant behavior was encapsulated in the yellow component.
Units are given in meters.

the table by automatically estimating the attractor point and

stiffness matrix to fulfill the required dynamics during the

interaction. The collaborative scenario consists of screwing the

legs at the four threads on the table. The user first requires

the robot to behave compliantly, allowing him/her to move

the table freely (compliant phase) until a comfortable pose

is found for the work to be performed next. When the user

grasps a leg and starts inserting it into the thread of the table,

the robot adopts a stiff posture, holding the table to facilitate

its partner’s part of the task (stiff phase).

In this setting, we used a 7-DoF KUKA lightweight robot

(LWR) [50], that is equipped with a six-axis force-torque sen-

sor (ATI Mini45) attached between its wrist and the wooden

table, measuring the interaction forces generated while moving

the table and screwing the legs.

The position and orientation of the table legs are tracked

with a marker-based NaturalPoint OptiTrack motion capture

system, composed of 12 cameras working at a rate of 30 fps.

The datapoint ξ is defined as ξI =fe and ξO =y, where fe

and y are the sensed forces/torques at the robot’s end-effector,

and the attractor path (see (3)), respectively. A transformation

matrix and offset vector are computed to represent the first

task parameter as

At,1 =





RL

t 03×3 03×3

03×3 RL

t 03×3

03×3 03×3 RL

t



 , bt,1 =

[

06×1

xL

t

]

,

namely the leg configuration in the fixed robot frame, where

xL

t and RL

t respectively stand for the Cartesian position as

a vector and the orientation of the leg as a rotation matrix.

The other task parameters {bt,2,At,2} define the robot’s fixed

frame of reference. Thus, two reference frames (P = 2) are

used to describe the task parameters in this experiment.

It is worth highlighting that the combination of position

and haptic information is fundamental for this task. If only

position trajectories were used, the robot could not distinguish

the phase during which the user aligns the screw with the

thread. Here, the robot must regulate its stiffness in accordance

with the sensed force pattern. If its behavior was based only on

forces, the collaboration could fail because the robot could not

distinguish which forces correspond to interactions with the

user and which are produced by the assembly of the table. This

can be problematic because these patterns might be similar in

−3 0.5 4
−2

1.5

5

Fig. 12. Table assembly task: resulting TP-GMM projected onto the torques
subspace of the leg’s reference frame L. The torques uniquely represent the
four different assembly processes and the compliant behavior. Units are given
in Newton meter.
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Fig. 13. Table assembly task: the first row shows the influence of the model
components during reproduction, where the color matches that of the ellipsoids
in Fig. 11 and Fig. 12. The second row displays the corresponding stiffness
profile (in Newton per meter) of the attractor along the main axes of motion.

some situations. Both perception channels are thus needed to

properly learn how the impedance behavior should be shaped.

2) Results: A model of five components (K = 5) was

trained with twelve demonstrations (i.e., each leg was as-

sembled three times to its corresponding thread with specific

position and force patterns). The number of components K

was found by choosing the TP-GMM with the lowest BIC

value out of a set of models with different number of Gaus-

sians. The resulting model automatically discovered four stiff

components corresponding to the four screwing phases, with

the remaining component representing the compliant phase.

Each “stiff component” is characterized by the force-torque

pattern and the relative position of the leg with respect to

the robot’s tool frame, which are different for each leg (see

Fig. 11 and Fig. 12). The “compliant component” encodes the

remaining points in the data space, i.e., the interaction forces-

torques and the varying robot end-effector and leg positions.

Stiffness estimation: Once the model was learned, the stiff-

ness was estimated as described in Section III-C. The proposed

approach successfully estimated high stiffness matrices for

the four Gaussian components representing the stiff phase of

the task, and a stiffness matrix with very low values for the

component encoding the compliant behavior. Fig. 13 shows

both the components influence and stiffness profiles for a

couple of reproductions. Notice that our approach allows the

system to learn different stiffness values along the main axes

of motion according to the task dynamics observed during the

demonstrations. Specifically, in this experiment, the stiffness

value along the x3 axis is the highest. We attribute this to

the fact that, during the stiff phase of some demonstrations,
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(a) 1st leg assembly

Compliant

Stiff

(b) 2nd leg assembly

Fig. 14. Table assembly task: reproductions for two different legs. The robot trajectory (in meters) is shown in the first row, where x3 is the vertical axis
in the robot frame (see Fig. 10). The sensed vertical force (Newtons) and torques (Newton meters) around x1 and x2 are shown in the second row. At the
beginning of the reproductions, the robot can be freely moved by the user. However, when the robot senses a force/torque pattern associated with the assembly
of one of the legs, its stiffness significantly increases and the robot behaves stiffly (gray areas in the plots), maintaining a nearly constant position to help the
user during the screwing phase. Each leg generates a different force/torque pattern during the screwing, which determines the model component(s) driving
the robot motion and compliance. The corresponding stiffness profiles are shown in Fig. 13.

the table was placed parallel to the x1x2 plane of the robot

reference frame, and sometimes it was slightly moved along

this plane. Not surprisingly, the teacher concentrated on keep-

ing a stable pose along the vertical axis, which coincides with

the direction of the force applied by the other person while

screwing the legs into the table.

Reproduction of the task: We tested the reproduction and

generalization capabilities of the system by carrying out the

assembly process for all the legs. Fig. 14 shows the move-

ment followed by the robot end-effector according to the

force/torque profile sensed at its wrist. The stiffness of the

robot is depicted in Fig. 13. At the beginning of the repro-

ductions, the robot can be freely moved by the user. However,

when the robot senses a force/torque pattern associated with

the assembly of one of the legs (as supported by the relative

position of table threads with respect to the end-effector), its

stiffness significantly increases and the robot behaves stiffly, so

that its partner can assemble the leg easily. Fig. 15 shows how

the learning model varies as a function of the task parameters,

where the distribution of the components in the dataspace

changes according to both the leg position and orientation (see

(7)), and the sensed force/torque pattern. Therefore, the model

components and sensed forces governing the robot motion will

also define the attractor stiffness.

We can observe in Fig. 13 that the compliant component

(yellow dashed line) is influential during the first part of the

reproduction, dominating the other components. After this,

the robot becomes stiff, with specific patterns depending on

which leg is being screwed. This means that not all the

components influence the robot’s impedance during the stiff

phase, but mostly the Gaussian encoding the stiff behavior

for the corresponding leg (as observed from the different

colors representing the different stiff components), while the

remaining activation weights stay close to zero. The proposed

approach does not only learn when to change the compli-

ance in a binary fashion, but also the manner in which to

switch between the two behaviors. In this experiment, the

sharp stiff/compliant switch is a specific characteristic of this

collaborative task (fast but with continuous transitions between

the two compliance levels), which is correctly learned and

retrieved by the proposed approach.

Additionally, two situations that did not appear in the

demonstrations were presented to the robot. First, the user

0

1000

2000

3000

4000

tr(KP)

−0.45 0.1
−0.3

0.25

0.8

x2

x
3

−0.5 0.05 0.6
−0.3

0.25

0.8

x2

x
3

0

1000

2000

3000

4000

tr(KP)

Fig. 15. Table assembly task: Assembly of the 2nd leg at different phases
of the interaction. The first two graphs show an instant of the compliant
phase, while the other two depict the time when the robot behaves stiffly.
The projection of the Gaussian components in the tool’s frame (as ellipses)
is shown in the first and third graphs, while the bars show the trace of the
resulting stiffness matrix (in Newton per meter). The centers and covariances
in the TP-GMM vary as the leg is moved around the robot workspace. The
gray dashed line represents the leg’s trajectory (in meters). Both the table
(with its 4 threads) and the legs are depicted in brown color, where the cross
marks the current position of the leg.

tried to screw the leg at the center of the table, which

means that the leg was placed at an incorrect position. In the

second situation, the user positioned the leg in one of the

table threads but the leg was wrongly oriented, making the

screwing process unfeasible. In both cases, the robot behaved

compliantly as expected, because neither corresponded to a

correct screwing phase. A video of the experiment is available

at http://programming-by-demonstration.org/TRO2016/.

Comparison with baseline executions: Automatic

impedance adaptation is crucial in this task. Indeed,

this collaborative assembly behavior cannot be performed by

manually setting a specific stiffness gain matrix in advance.

In the case of predefining a high stiffness behavior, the robot

would simply stay at a fixed initial position, hence impeding

the human partner from moving the table around and finding

comfortable poses to screw each of the legs. On the contrary,

if a very low stiffness matrix was given, the user could

effortlessly move the table, but the screwing process would

become infeasible.

V. DISCUSSION

Interaction model

Our approach to represent the robot motion through a virtual

attractor shares similarities with [12], [14], [15], where equi-

librium points or reference trajectories of the controllers are

set according to desired motion primitives. In this context, we
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would like to highlight two aspects. First, our attractor depends

not only on the given input vector during the reproduction

phase (see (14)), but also on the resulting TP-GMM for

the given set of task parameters. If one or more of these

parameters are related to the human partner actions, and are

time-dependent, the attractor’s trajectory will vary accordingly.

This fact can be understood as the attractor depends on the user

preferences or actions, which is highly relevant in scenarios

where a robot interacts with a human. Second, the proposed

definition of robot attractor (see (3)) requires a crude initial

estimate of the stiffness matrix KP , which is then refined

through the estimation process presented in Section III-C.

Despite such first estimate might affect the robot execution of

the task, this allows us to predefine a specific response of the

dynamical system, for instance, a critically damped behavior.

Selection of input variables and task parameters

The TP-GMM structure can handle a set of several candidate

task parameters (or candidate projections), which will have a

higher/lower influence on the robot behavior according to the

variability of the task observed from each of them, as described

in Section IV-A. In this sense, the teacher can specify the set

of candidate frames that could potentially be relevant for the

task, without an evaluation of their importance, since this will

be automatically discovered by the algorithm. Note that the

number of frames can be over-specified by the experimenter

(e.g., by providing an exhaustive list), but it comes at the

expense of requiring more demonstrations to obtain sufficient

statistics to discard the frames that have no role in the task. In

practice, the experimenter selects objects or locations in the

robot kinematic chain that might be relevant for the task, and

that remain valid for a wide range of manipulation tasks.

Regarding the input variable in the regression process, the

selection procedure can be achieved in two ways. On the

one hand, similar to the task parameters selection, a set of

candidate input variables can be chosen, and after an automatic

selection process based on how each candidate input affects

the outputs, the most relevant inputs can be selected as those

driving the regression [51] (this issue has strong links with

the well-known what to imitate? problem). Alternatively, the

teacher can take advantage of the his/her prior knowledge to

tell the robot which inputs it needs to use for the task.

Stiffness estimation

The differences between the proposed stiffness estimation

method and others used in PbD are worth emphasizing. Meth-

ods like [36], [37] estimate the stiffness of the robot by di-

rectly exploiting the variability observed in the demonstrations.

These approaches have the disadvantage that they take only

into account the positional information from the data, whose

variability can sometimes be too weak if only a few number of

demonstrations are considered. In these experiments, the users

covered various portions of the workspace. In a more realistic

scenario, the users might not be aware of this scaffolding

teaching procedure, and a smaller number of less spread

datapoints might be acquired. In such a situation, the kine-

matic variability information may not be sufficient to estimate

the stiffness. In a similar context, the stochastic feedback

controller obtained in [32] also depends on the trajectories

variability, hence being prone to the aforementioned situation.

In contrast, we proposed in [1] a method that took into

consideration haptic inputs in a two-step estimation process.

A first estimate was obtained from weighted least squares

(WLS) applied to the interaction model of the task. After,

the algorithm found the nearest positive semi-definite matrix

to such estimate. The estimation technique proposed in this

paper is based both on a complete interaction model that

considers the interaction forces (see (2) and (11)), and on the

learning model that allows us to obtain local stiffness. The

proposed formulation permits taking into account the positive

semi-definite constraint directly into a convex optimization

problem, which can be reliably and efficiently solved with

widely available techniques to provide optimal estimates. As

a drawback, the proposed estimation method requires several

iterations to converge, while the other techniques provide alge-

braic closed-form solutions. Nevertheless, the first estimation

obtained from WLS in [1] did not consider the positive semi-

definite constraint, and therefore the resulting approximation

may lie in Sm
+ away from the optimal matrix minimizing (11),

leading to suboptimal reproductions.

Handling more than one skill with TP-GMM

The proposed approach did not consider the problem of han-

dling more than one collaborative behavior at the same time.

The current formulation learns a different TP-GMM for each

collaborative skill. Nevertheless, the probabilistic nature of the

model can be exploited in further work to merge or sequence

different skills with certain degree of similarity. Moreover,

a higher level encoding may also be possible by training a

mixture of task-parametrized models, similarly to [33]. All

experiments reported in this paper were characterized by

frames of reference constructed from translation and rotation

operators. However, the affine transformation formulated in (7)

does not impose specific restrictions on the task parameters,

therefore allowing for a larger variety of relationships among

the local models to be further explored, such as joint space

and task space constraints, nullspace projections or force-based

parameters conditioning collaborative behaviors with contact.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a learning framework for HRC tasks

in which the partners physically interact with a manipulated

object. The framework exploits both position and force data,

estimates time-varying compliance levels, encodes position

and force constraints, and modulates the robot’s behavior

based on the user actions as a result of the task-parametrized

formulation of the learning model. The flexibility and per-

formance of the proposed methods were evaluated in two

experiments with different robotic platforms, where the robot

was able to learn either time-dependent or time-independent

behaviors.

The experimental results showed that the approach success-

fully encoded the task dynamics while handling the different

constraints observed in the demonstrations. Moreover, the
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resulting stiffness profiles obtained along the reproductions

allowed the robot to fulfill the required dynamics of the

different tasks. In this context, the local encoding of the

data in the TP-GMM is crucial when different compliance

levels are needed to successfully perform the task. This aspect

becomes crucial when the robot physically interacts with a

human, where safety requirements might also be included into

the stiffness learning process. Generalization capabilities were

evaluated for both new configurations of the task parameters

and unobserved situations.

We plan to extend the estimation of the impedance param-

eters to the estimation of the damping matrix. We will also

explore in which manner the variability of the demonstrations

encapsulated in the covariance matrices of the model could

be exploited to detect if the robot reaches an unexpected

situation that is too far from the demonstrations (e.g., in case

of failures). This could be exploited as a signal for the user to

provide new demonstrations, possible refinements or correc-

tions, which will require us to extend the current approach to

incremental learning and estimation techniques. Additionally,

we will study how interaction forces can be exploited to re-

shape the robot collaborative behaviors in an online manner.

Further work will also investigate the automatic detection

of redundant or irrelevant frames, in order to automatically

determine in which manner the frames are coordinated with

each other and locally contribute to the achievement of the

task.
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[49] J. Silvério, L. Rozo, S. Calinon, and D. G. Caldwell, “Learning bimanual
end-effector poses from demonstrations using task-parameterized dy-
namical systems,” in IEEE/RSJ IROS, 2015, pp. 464–470.
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