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This article addresses the inference of physics models from data, from the perspect-

ives of inverse problems and model reduction. These fields develop formulations

that integrate data into physics-based models while exploiting the fact that many

mathematical models of natural and engineered systems exhibit an intrinsically low-

dimensional solution manifold. In inverse problems, we seek to infer uncertain

components of the inputs from observations of the outputs, while in model reduction

we seek low-dimensional models that explicitly capture the salient features of the

input–output map through approximation in a low-dimensional subspace. In both

cases, the result is a predictive model that reflects data-driven learning yet deeply

embeds the underlying physics, and thus can be used for design, control and decision-

making, often with quantified uncertainties. We highlight recent developments in

scalable and efficient algorithms for inverse problems and model reduction governed

by large-scale models in the form of partial differential equations. Several illustrative

applications to large-scale complex problems across different domains of science and

engineering are provided.

© The Author(s), 2021. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution,

and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0962492921000064 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000064


446 O. Ghattas and K. Willcox

CONTENTS

PART 1: Learning physics-based models from data 446

1 Introduction 446

PART 2: Large-scale inverse problems 448

2 Ill-posedness of inverse problems 449
3 Regularization framework and inexact Newton-CG 461
4 Bayesian framework and Laplace approximation 470
5 Computing the Hessian action 479
6 Case study: an inverse problem for the Antarctic

ice sheet 498

PART 3: Model reduction 506

7 Projection-based model reduction 507
8 Non-intrusive model reduction 517
9 Non-linear model reduction 523

References 538

PART ONE

Learning physics-based models from data

1. Introduction

Computational science and engineering – the combination of mathematical mod-
elling of physical phenomena with numerical analysis and scientific computing –
historically has largely focused on the so-called forward problem. That is, given
the inputs (e.g. initial conditions, boundary conditions, sources, geometry, system
properties) to a model of a physical system, solve the forward problem to determine
the system state and associated output quantities of interest. Significant progress
has been made over the past century on solving the forward problem, resulting in
powerful and sophisticated numerical discretizations and solvers tailored to a wide
spectrum of models representing complex applications across science, engineering,
medicine and beyond.

With the maturation of numerical methods for the forward problem – and with
the explosion of observational, experimental and simulation data – interest in learn-
ing physics models from data has intensified in recent years. This interest has been
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fuelled by rapid advances in machine learning representations and algorithms.
Often lost amidst the excitement of machine learning approaches is the fact that
inference of physics-based models from data has long been a subject of ‘classical’
applied mathematics. In particular, decades of research in the distinct but com-
plementary fields of inverse problems and model reduction have led to rigorous,
efficient and scalable methods for inferring uncertain components of complex mod-
els – or reduced models in their entirety – from complex and large-scale data. These
methods integrate data into physics-based models (conservation laws, constitutive
relations, closures, subgrid-scale models, etc.) to reduce their uncertainties and
yield predictive outputs that can be used for design, control and more general
decision-making, often with quantified uncertainties. It is unlikely that extracting
generic models solely from data – the province of traditional machine learning –
will be reliable and predictive outside the regime in which the data were acquired.
Instead, we must learn from data through the lens of physics models.

The purpose of this article is to highlight recent developments in learning physics
models from data, focusing on scalable and efficient algorithms for large-scale
inverse problems (Part 2) and model reduction (Part 3). In this article we focus
on systems governed by partial differential equations (PDEs), although the theory
and methods (with appropriate modifications) apply broadly to other types of
mathematical models, such as integral equations, ordinary differential equations
and N-body problems. Large-scale inverse problems and model reduction are two
ostensibly disparate approaches to inference of models, yet the two approaches are
inherently connected: in both cases, we exploit the fact that many PDE models of
natural and engineered systems exhibit an intrinsically low-dimensional solution
manifold. That is, the map from inputs to outputs often admits a low-dimensional
representation. This low-dimensionality stems from the common situation in which
both the inputs and outputs are infinite-dimensional fields (high-dimensional after
discretization), and the map from inputs to outputs is often smoothing or otherwise
results in loss of information.

This fundamental property of the map is exploited in different ways. In in-
verse problems, in which we seek to infer uncertain components of the inputs
from observations of the outputs, the intrinsic low-dimensionality is exploited
to design fast preconditioned Newton–Krylov methods for solving deterministic
inverse problems, and to construct Laplace approximations of Bayesian inverse
solutions, both with dimension-independent complexity. In model reduction, we
seek low-dimensional models that explicitly capture the salient features of the
input–output map through approximation in a low-dimensional subspace. In both
cases, we infer a model that reflects data-driven learning yet deeply embeds the
underlying physics model and its associated mathematical properties. Indeed, we
argue that for complex physical systems, it is only through the mathematical per-
spectives of inverse theory and model reduction that we can address the crucial
challenges of ill-posedness, uncertainty quantification and under-sampling.
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Notation

Throughout, we will use lower-case italic letters to denote scalar functions in R2 or
R

3, such as the state u, the parameter field m, the observed data d and the quantity
of interest q. We denote the discretized versions of these quantities in Rn (with n

as the discretization dimension) with lower-case upright boldface: u, m, d and q.
Vector functions in R2 or R3, such as the velocity field v, are denoted by lower-case
italic boldface. We use a calligraphic typeface to indicate both infinite-dimensional
operators (e.g. the forward operator A) and function spaces (e.g. the state space U ).
The standard Sobolev spaces are an exception to this, and are denoted by upper-
case italic letters such as H1 or its vector counterpart H1. Discretized operators are
denoted by upper-case upright boldface (e.g. the discretized forward operator A).
Finally, Greek letters denote scalars, except when convention dictates otherwise.
Any exceptions to the above will be clear from the context. When we discuss
specific PDE examples, we may unavoidably overload notation locally (e.g. p to
denote pressure in the Euler equations versus p the adjoint state variable), but we
will ensure that there is no ambiguity.

PART TWO

Large-scale inverse problems

Many PDE models of natural and engineered systems exhibit an intrinsically low-
dimensional solution manifold. That is, the map from inputs to outputs often admits
a low-dimensional representation. The inputs can represent distributed sources,
initial conditions, boundary conditions, coefficients or geometry, and the outputs
are some function of the state variables obtained by solving the PDEs governing the
system – the forward problem. The low-dimensionality stems from the common
situation in which both the inputs and outputs are often infinite-dimensional fields
(high-dimensional after discretizations), and the map from inputs to outputs is often
smoothing or otherwise results in loss of information. In the inverse problem, we
attempt to infer the inputs – i.e. the parameters – from possibly noisy observations
of the outputs – i.e. the data. This intrinsic low-dimensionality of the map implies
that inference of the parameters from the data is unstable in the presence of noise
in those parameter field components that are annihilated by the parameter-to-
observable map: the inverse problem is ill-posed. The noise can stem from the
observation process, or from the model uncertainty itself, and ill-posedness can be
further amplified by sparse or incomplete data.

To address the challenges of learning models from data in the large-scale setting
of PDEs, we must exploit the low-dimensional structure of the map from inputs
to outputs. One way to do this is to construct a reduced model of the forward
problem that parsimoniously exploits the low-dimensional solution manifold; this
is discussed in Part 3. Alternatively, here in Part 2 we pose the learning-from-data
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problem as an inverse problem governed by the forward (PDE) problem, and then
exploit the low-dimensionality of the parameter-to-observable map to efficiently
and scalably recover the informed components of the model at a cost – measured in
forward model solutions – that scales independent of the parameter or data dimen-
sions. Our singular focus is on scalable algorithms for large-scale inverse problems
stemming from discretizations of PDEs with infinite-dimensional parameter fields
(high-dimensional after discretization). For background and further information,
the reader is directed to a number of monographs on inverse problems, including
those by Banks and Kunisch (1989), Engl, Hanke and Neubauer (1996), Hansen
(1998), Vogel (2002), Kaipio and Somersalo (2005), Tarantola (2005), Kirsch
(2011), Mueller and Siltanen (2012), Smith (2013), Aster, Borchers and Thurbur
(2013), Sullivan (2015), Asch, Bocquet and Nodet (2016), Hanke (2017), Tenorio
(2017) and Bardsley (2018).

Section 3 addresses the deterministic inverse problem in the regularization frame-
work; dimension-independence is provided by the inexact Newton–conjugate gradi-
ent method. The statistical inverse problem is addressed in the Bayesian framework
in Section 4; low-rank approximation of the Hessian of the log likelihood exploits
the low-dimensionality, also resulting in dimension-independence. In both cases,
efficient computation of the action of the Hessian in an arbitrary direction is critical;
the adjoint method for doing so is described in Section 5. We begin Part 2 with
a discussion of ill-posedness, and several model elliptic, parabolic and hyperbolic
inverse problems intended to illustrate the underlying concepts.

2. Ill-posedness of inverse problems

We begin with a general discussion of ill-posedness in inverse problems, and then
give illustrations in the form of elliptic, parabolic and hyperbolic model problems
that illustrate different manifestations of ill-posedness. These problems are simple
enough to admit explicit characterization of the eigenfunctions and eigenvalues
of the parameter-to-observable map, which provides intuition about the limited
manner in which the model parameters influence the data, and thus the limited
manner in which the model can be inferred from the data. The former property
motivates the development of reduced-order models (Part 3) to represent the system
behaviour, while the latter motivates the regularization and Bayesian inversion
methods of Part 2.

We address the inverse problem of inferring the model parameter m ∈ X from ob-

served data d ∈ Y , where typically X and Y are normed spaces, and the relationship
between the parameter and the data is represented by

F(m) = d. (2.1)

Here the mapping F : X → Y is the parameter-to-observable map representing
the process that predicts the data for a given parameter. For our purposes, this
mapping is given by a (possibly non-linear) observation operator B(u) : U → Y
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that extracts the observables from the state u ∈ U, where u depends on m via
solution of a PDE system known as the forward problem or the state equation,
abstractly represented as

r(u,m) = 0, r : U × X → Z . (2.2)

The state equation residual r is assumed to be continuously Fréchet-differentiable.
Its Jacobian is assumed to be a continuous linear operator with continuous inverse.
The implicit function theorem then implies that u = u(m) depends continuously on
m. Thus, to compute F for a given m, we solve the forward problem to obtain the
state, and then apply the observation operator to obtain the predicted observables.

The observation operator can involve localization in space and time (e.g. from
sensors), imaging of a surface or along a path (e.g. from satellites), differentiating to
obtain a flux, etc. We wish to find the parameter m such that the observables F(m)

fit the observed data d. We focus on parameters that represent infinite-dimensional
fields such as a distributed source, initial condition, boundary condition, PDE coef-
ficients or geometry. The PDEs model any physical phenomenon of interest, such
as heat conduction, wave propagation, elasticity, viscous flow, electromagnetics,
transport or couplings thereof, and the observed state can represent the temperat-
ure, pressure, displacement, velocity, stress, electric field, species concentration
and so on.

We assume that there exists additive noise η that represents the discrepancy
between the data and the model output for the ‘true’ parameter mtrue:

F(mtrue) + η = d. (2.3)

This noise can be due to noise in the instrument or its environment, model error,
or numerical error in approximating F on the computer. The precise form of η is
typically not known; however, its statistical properties (e.g. mean, covariance) are
often available. The fundamental difficulty of solving (2.1) is that in the typical
case of F governed by PDEs with infinite-dimensional parameters, the inverse
problem is ill-posed.

Hadamard (1923) postulated three conditions for a problem of the form (2.1) to
be well-posed.

(i) Existence. For all d ∈ Y , there exists at least one m ∈ X such that F(m) = d.

(ii) Uniqueness. For all d ∈ Y , there is at most one m ∈ X such that F(m) = d.

(iii) Stability. The parameter m depends on d continuously.

If any of these three conditions is violated, the inverse problem is said to be ill-
posed. Condition (i) can be violated when d fails to belong to the range space of F ,
for example when the system is over-determined and noise is present. Condition (ii)
may not be satisfied when d is finite-dimensional. In this case many different m

may fit the data due to a non-trivial null space of F . (For the discretized inverse
problem, this condition amounts to fewer non-redundant data than parameters.)
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Finally, F−1, if it exists, may be unbounded, which leads to instability and a
violation of condition (iii). Noise in the data may be amplified and pollute the
solution. Below we illustrate these forms of ill-posedness via model elliptic,
parabolic and hyperbolic inverse problems.

2.1. Inference of the source term in a Poisson equation

We begin with the most basic model problem: inference of the source term m(x)

of a Poisson equation with constant coefficient k > 0,

−k
∂2u

∂x2
= m(x), 0 < x < L, (2.4)

u(0) = u(L) = 0, (2.5)

from an observation d(x) of the state u(x) everywhere in the domain (0, L). The
parameter-to-observable map F maps the source m(x) to the observable u(x), and
is defined by

F( f ) := u(x),

where u(x) satisfies (2.4)–(2.5) for a given m(x). It can be verified easily that F is
self-adjoint and its eigenfunctions vj(x), j = 1, 2, . . . ,∞, are given by

vj(x) =

√
2

L
sin

(

jπx

L

)

,

with corresponding eigenvalues

λj(F) =
1

k

(

L

jπ

)2

.

We see that λj → 0 as j →∞, with increasingly oscillatory eigenfunctions vj(x).
Thus F is a compact operator. It acts to damp highly oscillatory modes: it is a
smoothing operator.

Let us attempt to solve for the source m(x) given d(x), the observation of u(x).
Then

F(m) = d =⇒ m = F−1d.

Making use of the spectral decomposition of F ,

m = F−1d =

∞∑

j=1

〈vj, d〉

λj
vj,

where the inner product 〈vj, d〉 =
∫ L

0
vj d dx. In order for a solution m to exist, we

see that the Fourier coefficients of the data, 〈vj, d〉, must decay to zero faster than
the eigenvalues λj . This is known as the Picard criterion.
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What is the relationship between the resulting m(x) and the true source mtrue(x)?
Recalling the noise model (2.3), we can write

m = F−1d,

= F−1(Fmtrue + η),

= mtrue +

∞∑

j=1

〈vj, η〉

λj
vj . (2.6)

Or, defining the Fourier components of the noise, ηj = 〈vj, η〉,

‖m − mtrue‖
2
=

∞∑

j=1

η2
j

λ2
j

. (2.7)

We see that the error in inferring the source, m − mtrue, can be written as a linear
combination of eigenfunctions of F , with weights that depend on the Fourier
coefficients of the noise and on the inverse of the corresponding eigenvalues. Since
λ−1
j
= O( j2), the error grows like O( j2) in the mode number. The inference of

m(x) is thus unstable to small perturbations in the data: a perturbation η in a
high-frequency direction vj(x) will be amplified by a large factor j2. Modes vj

for which the Fourier coefficients of the noise are larger than λj cannot be reliably
reconstructed. The inverse problem is thus ill-posed in the sense of Hadamard’s
instability condition.

For example (with kπ2/L2
= 1), a component of the noise of magnitude 10−4 in

the 100th eigenfunction direction contributes an O(1) error in the inference of m

in that mode. This also implies that two observations that differ by O(10−4) in the
direction of the 100th eigenfunction cannot be used to differentiate between two
parameters that differ to O(1). This is important, since in practice noise usually
contains high-frequency components. So, in the presence of noise, we effectively
lose uniqueness.

These properties carry over to the discretized problem as well. Let F denote
the discrete form of F based on discretizing the Laplacian by a standard central
difference three-point stencil on a uniform mesh with spacing h, and then inverting
it. The eigenvalues λj(F), j = 1, 2, . . . , L/h, of F are then given by

λj(F) =
h2

4k
csc2

(

jπh

2L

)

.

The corresponding eigenvectors v j of F are just interpolants of the continuous
eigenvectors vj(x), that is, the ith component of the jth eigenvector is given by

(v j)i =

√
2

L
sin

(

i jπh

L

)

.
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Figure 2.1. Spectrum of the continuous parameter-to-observable operatorF (green)
versus that of the discretized operator F for 100 (blue) and 200 (orange) mesh
points, indicating four orders of magnitude decay over the first 100 eigenvalues.

In the discrete case, the error in the inference is now

m − mtrue =

L/h∑

j=1

λ−1
j (vTj η)v j .

We see that, similar to the continuous case, inference of rough components (i.e.

those for which λj is small) is unstable: the error in the jth eigenvector direction
is amplified by its Fourier coefficient divided by λj . When the mesh size h

is sufficiently small relative to the frequency j, we can invoke a small angle
approximation for cosecant to give the asymptotic expression

λj(F)) ≈
1

k

(

L

jπ

)2

for jh ≪
π

2L
,

which for fixed frequency shows that the discrete eigenvalues converge to those of
the continuous operator:

λj(F)→ λj(F) as h→ 0.

Figure 2.1 plots the first 100 eigenvalues of the continuous operator F as well as
those of the discrete operator for two discretizations (100 and 200 mesh points). As
can be seen, the discrete eigenvalues converge from above. Thus discretization has
a regularizing effect, and for a sufficiently coarse mesh we might be able to stably
infer m(x), especially if the noise level is low. However, as the mesh is refined,
the discrete eigenvalues approach their continuous counterparts, and the inference
becomes unstable. This is true even for observations that are free of instrument
noise: round-off errors alone are sufficient to trigger instabilities.
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This example demonstrates that attempting to infer rough components of the
source of a Poisson equation from observations of the state is unstable. The data –
even when infinite-dimensional and possessing small-amplitude noise – inform just
a low-dimensional subspace of modes of the source. This is evidenced by the four-
orders-of-magnitude eigenvalue reduction over the first 100 eigenvalues. Since the
inferable components are smooth, they do not depend on the discretization (beyond
a sufficiently fine mesh), and thus the data inform the model in an effectively
finite-dimensional subspace, which remains independent of the parameter and data
dimensions as they increase with mesh refinement.

While this is perhaps the simplest PDE-based inverse problem one can imagine,
it does illustrate the futility of fully learning parameter fields (let alone entire
models) from data, a property that characterizes many large-scale inverse problems
that are governed by more complex forward models and more complex observation
operators. Instead, we must be content to learn just the data-informed modes, which
are low-dimensional. What constitutes the low-dimensionality and the informed
modes will depend on the character of the parameter-to-observable map and the
associated noise model. For the Poisson source inversion problem, the eigenvalues
decay like j−2 for the one-dimensional problem. More generally, for a Poisson
operator in ω space dimensions, the eigenvalues decay like j−2/ω. This algebraic
decay rate is characteristic of other inverse problems governed by elliptic forward
problems as well; these problems are referred to as mildly or moderately ill-posed.
In the next section we will obtain a significantly worse decay rate for a parabolic
inverse problem.

2.2. Inference of initial condition in a heat equation

Here we consider the problem of inferring the initial condition in the one-dimen-
sional heat equation from observations of the temperature field at time T . Let
u(x, t) denote the temperature field and u(x, 0) = m(x) the initial temperature.
Given the length of the rod L, the thermal diffusivity k > 0, the final time T

and homogeneous Dirichlet boundary conditions, the parameter-to-observable map
F(m) can be written as

F(m) := u(x,T),

where for a given m(x), the observable u(x,T) is given by the solution at observation
time T of the heat equation

∂u

∂t
− k

∂2u

∂x2
= 0, 0 < x < L, 0 < t ≤ T, (2.8)

u(x, 0) = m(x), 0 < x < L, (2.9)

u(0, t) = u(L, t) = 0, 0 < t ≤ T . (2.10)
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As with the Poisson source inversion problem, F is self-adjoint and compact
with eigenfunctions vj , j = 1, . . . ,∞, given by

vj(x) =

√
2

L
sin

(

jπx

L

)

.

However, the eigenvalues are now given by

λj = e−kT (π j/L)2,

which decay exponentially. The rapid decay of the eigenvalues is a consequence
of the information lost in diffusion of the initial temperature field. The more
oscillatory modes of the initial temperature field decay more rapidly – the smaller
eigenvalues correspond to more oscillatory eigenfunctions. Thus F is again a
smoothing operator. In contrast with the Poisson source inversion problem, here
we see nearly four orders of magnitude drop in the eigenvalues over just the first
three eigenvalues (for kTπ2/L2

= 1). Thus the noise in the third mode is amplified
by a factor of O(104). In fact, assuming exact observational data, rounding errors
alone (of order 10−16 for double precision) will already corrupt the sixth mode.
As a result, we can hope to reliably recover only a handful of modes. A larger
diffusion coefficient or a later observation time will result in even more rapid decay
in the eigenvalues and thus further deterioration in the ability to infer the initial
condition. Inverse problems exhibiting exponential decay such as we see here for
the inverse heat equation are termed severely ill-posed. This is typical of parabolic
problems.

2.3. Inference of initial condition in a wave equation

Now we study the stability of the inverse problem governed by the one-dimensional
wave equation. The forward problem is to find the transverse displacement u(x, t)

of a cable of length L, tension k and mass density ρ, and fixed at both ends. The
cable is initially at rest and is plucked with an initial displacement of u(x, 0) = m(x).
The forward problem is then: Given m(x), solve

∂u2

∂t2
− c2 ∂

2u

∂x2
= 0, 0 < x < L, 0 < t ≤ T,

u(x, 0) = m(x), 0 < x < L,

∂u

∂t
(x, 0) = 0, 0 < x < L,

u(0, t) = u(L, t) = 0, 0 < t ≤ T,

for the displacement field u(x, t), where c :=
√

k/ρ is the wave propagation speed.
The inverse problem is to infer the initial displacement m(x) from observation of
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the cable’s position at a later time t = T . Thus the parameter-to-observable map is
given by F(m) := u(x,T).

Once again, the eigenfunctions vj, j = 1, . . . ,∞, of F are given by

vj(x) =

√
2

L
sin

(

jπx

L

)

.

However, the eigenvalues are now

λj = cos

(

jπcT

L

)

,

which do not decay but instead oscillate. In fact, if we choose the observation time
to be 2L/c, i.e. the time taken for the cable to return to its initial position, we see
that the λj = 1 for j = 1, . . . ,∞. This results in a perfect reconstruction of the
initial displacement, and the inverse problem is well-posed.

However, this one-dimensional model problem fails to capture the ill-posedness
characteristic of realistic inverse wave propagation problems (Colton and Kress
2019). For example, an important class of problems is seismic inversion (Symes
2009), in which one seeks to infer mechanical properties of Earth’s interior (such
as wave speeds) from reflected waves produced by seismic sources and measured at
receiver locations on its surface. (This is a coefficient inverse problem, an example
of which we will see in the next section.) In such cases, ill-posedness can arise
for multiple reasons. First, the wavefield is observed at distinct receiver locations,
not everywhere. Second, real Earth media are dissipative: wave amplitudes are
attenuated, resulting in a loss of information. Third, the Earth is a semi-infinite
medium, and geometric spreading of waves results in amplitude decay and again
loss of information. Fourth, the subsurface typically contains multiple interfaces
between distinct rock types, and primary reflections are often buried within multiple
reflected signals, making it difficult for the inversion to disentangle the information
contained within them. Fifth, features beneath high-contrast interfaces will be
difficult to recover due to the limited ability of waves to reach them. And sixth,
seismic waves are typically band-limited; feature sizes can be reconstructed at best
to within an order of a wavelength, and thus sub-wavelength length scales belong
to the null space of the parameter-to-observable map.

While ultimately most realistic inverse wave propagation problems are ill-posed,
the model problem considered in this section at least highlights one important
feature of hyperbolic inverse problems: preservation – or at least not significant
loss – of information. This typically manifests as slowly decaying eigenvalues or
singular values. In the context of seismic inversion, the rate of decay weakens
as the numbers of sources and receivers increase, and as the source frequencies
increase. This presents difficulties for the low-rank-based algorithms discussed in
the next two sections. We will return to this point at the conclusion of Section 3.
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2.4. Inference of coefficient of a Poisson equation

The final model problem is to infer the coefficient of a Poisson equation (a non-
linear inverse problem) from observations of the entire solution as well as at points
in the domain. The results in this section are from Flath (2013). We reparametrize
the coefficient in terms of its logarithm m(x) (to maintain its positivity). The
forward problem is: Given m(x), find the state u(x) by solving

−
d

dx

(

em
du

dx

)

= 0 for x ∈ (0, L),

u(0) = u0,

u(L) = uL .

The inverse problem is to infer the log coefficient m(x) from observations of u(x).
We will consider two types of observations: (i) full observations, i.e. u(x), x ∈

(0, L)), and (ii) point observations at nd equally spaced points xk = L/nd(k −1/2),
k = 1, . . . , nd. Although the forward problem is linear, the inverse problem is non-
linear, since the parameter appears as a (log) coefficient in the forward problem. So
we linearize the parameter-to-observable map around a constant log coefficient m0

and study its spectral properties. The linearized mapF is no longer self-adjoint, but
we can derive expressions for its singular values and functions from the eigenvalues
and eigenfunctions of F∗F , which is known as the Gauss–Newton Hessian (more
on this in Section 3). Here F∗ is the adjoint of F .

In the full observation case, the singular values and right singular functions
(σj, vj) of F are given for j = 1, . . . ,∞ by

σfull
j =

uL − u0

jπ
,

v
full
j (x) =

√
2

L
cos

(

jπx

L

)

.

The singular values decay algebraically as for the Poisson source inversion problem,
but at a reduced rate, O( j−1). As with the previous elliptic and parabolic model
problems, F damps more oscillatory modes more strongly, and is thus a smoothing
operator.

In the case of point observations, the singular values of F are given by

σ
point
j
=





uL − u0

2nd sin( jπ/2nd)
j = 1, . . . , nd,

0 j = nd + 1, . . . ,∞.

The singular values σpoint
j

are seen to decay with j, though only nd of them are non-
zero. This makes sense, since there are only nd point observations, and thus at most
just nd modes can be informed by the data. Thus F has a finite-dimensional range
space. Since the parameter is infinite-dimensional, this introduces severe non-
uniqueness to the inverse problem. Small angle approximation of the sine shows
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Figure 2.2. (a) First 25 singular values of F for full observations (orange) versus
those for 10 point observations (blue). (b) First 500 singular values of F for full
observations (orange) versus those for 250 point observations (blue).

that the point observation singular values for which j ≪ nd approximate those of
the full observations. As the number of observations increases, the former converge
to the latter, i.e. σ

point
j
→ σfull

j
as nd →∞. (The difference in the squared singular

values decays like n−2
d

.) The right singular functions turn out to be piecewise

constant interpolants of the full-observation right singular functions, vfull
j

, where
the interpolation points are the midpoints between successive observation points
xj , and jump discontinuities occur at the xj . Thus the singular functions converge
as well.

It may be tempting to assume that in the case of nd finite observations, we are
entitled to infer nd modes of the parameter, since the range space dimension of F
is nd. Certainly for small enough nd this is true. However, increasing numbers of
observations bring diminishing returns: less and less information is contained in
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the data, and we are back to the fundamental difficulty underlying the first three
model problems, i.e. eigenvalues/singular values decaying to zero and leading to
instability in the inference of the more oscillatory modes. Thus, for sufficiently
large values of nd, the smallest non-zero σj will amplify the noise (by a factor σ−1

j
)

leading to an unstable reconstruction. So the number of inferrable modes may be
just a fraction of nd. To illustrate these points, Figure 2.2 plots the singular values of
F for three cases: 10 point observations (plot (a)), 250 point observations (plot (b)),
and full observations (both). The convergence of the σpoint

j
to σfull

j
with increasing

nd can be seen. With 10 observations, the singular values (blue curve in (a))
remain sufficiently large that the inference will avoid pollution from observational
noise of order 0.05. However, plot (b) shows that with 250 point observations,
high-frequency noise of order 0.002 can lead to unstable reconstructions.

Thus, restricting the observations to a finite collection of points introduces
severe ill-posedness in the now under-determined inverse problem, even when the
full-observation case is only moderately ( j−1) ill-posed. Moreover, increasing
the number of observations leads to diminishing returns, as the point observation
singular values converge to their full observation counterparts and instability ensues
for small singular values. This discussion of point observations is of course
applicable to many other inverse problems.

2.5. Summary

The model elliptic, parabolic and hyperbolic inverse problems discussed above
illustrate ill-posedness due to lack of existence, uniqueness or stability. (The
unrealistically formulated hyperbolic inverse problem was in fact well-posed, but
we discussed a number of features that make more realistic variants of the problem
ill-posed.) Lack of existence (due to inconsistent data) and uniqueness (due to
sparse data) can be addressed by solving (2.1) using the Moore–Penrose generalized
inverse F† (Engl et al. 1996). The stability condition is more pernicious, and is
the central cause of numerical difficulties in solving inverse problems. The lack of
stability stems from the collapse of the spectrum of F , the dominant eigenvalues
of which correspond to modes of m that can be reliably inferred from the data. (In
Section 4 we will make an information-theoretic connection between the spectrum
of F and the information contained in the data.)

As (2.6) and (2.7) make evident, (inverses of) small eigenvalues amplify noise
components in directions of the corresponding eigenfunctions, leading to unstable
inference of these modes (for non-self-adjoint F , the singular value decomposition
replaces the spectral decomposition). The more rapid the decay of the spectrum of
F , and the higher the noise level, the fewer eigenvalues will be above the noise level,
and the fewer modes of m that can be reliably inferred from the data. The model
problems exhibit algebraic (in the elliptic case) or exponential (in the parabolic
case) decay of the spectrum, accumulating at zero, reflecting different degrees of
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severity of ill-posedness. Moreover, even for a finite number of observations nd –
meaning that the range space ofF is finite-dimensional – if nd is large enough, there
can be significant decay of the spectrum (due to near-redundancy in information
contained within the data) such that small eigenvalues can trigger instability.

The loss of information in F(m), the map from parameters to observables –
and the resulting inability to recover the lost information via the inverse map – is a
fundamental property of the inverse problem. No amount of mathematical wizardry
can recover the lost information. The best we can hope to do is recover components
of m lying in the ‘effective’ range space of F , that is, those eigenfunction modes
corresponding to eigenvalues that are large enough to dominate the noise. How
to do this efficiently and scalably for problems characterized by high-dimensional
parameters (resulting from discretization of m) and for expensive forward problems
(involving solutions of PDEs) will be the subject of the next two sections, in the
context of both regularization and Bayesian frameworks. The essential idea is to
design algorithms that exploit the intrinsic low-dimensionality of the information
contained within the data by requiring an amount of work (measured in PDE solves)
that scales with the intrinsic ‘information dimension’, not the apparent dimension.

As we will see, these algorithms depend fundamentally on the rapid spectral de-
cay (of F∗F). Rapid spectral decay has been demonstrated, not just for the model
problems of this section, but for a broad set of inverse problems arising in science
and engineering, either explicitly through low-rank approximation of the Hessian
of the data misfit (Section 4) or implicitly through rapid convergence of conjugate
gradients for the Hessian system (Section 3). These include ice sheet dynamics

(Petra et al. 2012, Petra, Martin, Stadler and Ghattas 2014, Isaac, Petra, Stadler
and Ghattas 2015, Zhu et al. 2016b, Babaniyi, Nicholson, Villa and Petra 2021),
shape and medium acoustic and electromagnetic scattering (Akçelik, Biros and
Ghattas 2002, Bui-Thanh and Ghattas 2012a,b, 2013, Chaillat and Biros 2012, Am-
bartsumyan et al. 2020, O’Leary-Roseberry, Villa, Chen and Ghattas 2020, Chen,
Haberman and Ghattas 2021), seismic wave propagation (Akçelik et al. 2003a,
Epanomeritakis, Akçelik, Ghattas and Bielak 2008, Martin, Wilcox, Burstedde
and Ghattas 2012, Bui-Thanh et al. 2012a, Bui-Thanh, Ghattas, Martin and Stadler
2013, Zhu et al. 2016a), mantle convection (Worthen et al. 2014), viscous incom-

pressible flow (Biros and Ghattas 1999, 2005a,b, Yang, Stadler, Moser and Ghattas
2011), atmospheric transport (Akçelik et al. 2003b, 2005, Bashir et al. 2008, Flath
et al. 2011, Alexanderian, Petra, Stadler and Ghattas 2014, Wu, Chen and Ghattas
2020, Villa, Petra and Ghattas 2021), ocean dynamics (Kalmikov and Heimbach
2014), turbulent combustion (Chen, Villa and Ghattas 2019a), poroelasticity (Hesse
and Stadler 2014, Alghamdi, Hesse, Chen and Ghattas 2020, Alghamdi et al. 2021),
infectious disease spread (Chen and Ghattas 2020a,b), tumour growth modelling

(Subramanian, Scheufele, Mehl and Biros 2020), tsunami extreme events (Tong,
Vanden-Eijnden and Stadler 2020), joint inversion (Crestel, Stadler and Ghattas
2018) and subsurface flow (Alexanderian, Petra, Stadler and Ghattas 2016, 2017,
Chen, Villa and Ghattas 2017, Chen and Ghattas 2019, 2020c).
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3. Regularization framework and inexact Newton-CG

3.1. Regularization framework

We return to the task of solving the inverse problem (2.1), that is, attempting to
infer the parameter m ∈ X from given data d ∈ Y from

F(m) = d.

We saw in Section 2 that a fundamental feature of many ill-posed inverse problems
is the decay of the spectrum of F to zero. As we saw in (2.6) and (2.7), small
eigenvalues of F (smaller than the Fourier coefficients of the noise) amplify the
noise in the data, rendering the inversion unstable for small enough eigenvalues and
large enough noise. Since these eigenvalues correspond to eigenfunction modes that
do not influence the data (above the noise threshold) – and are thus unrecoverable –
a reasonable strategy is to annihilate them. When F is a linear operator, this can be
accomplished by a truncated singular value decomposition (TSVD), in which the
eigenvalues of F below a certain threshold are truncated, so that TSVD acts like
a filter. A preferable alternative is Tikhonov regularization, which most strongly
attenuates the smallest eigenvalues, with the amount of attenuation falling off with
larger eigenvalues. Thus Tikhonov regularization acts like a ‘softer’ version of
TSVD. Rather than apply the regularization as a filter (with varying filter factor),
an equivalent formulation is to solve the optimization problem

min
m∈X

φ(m) :=
1

2
‖F(m) − d‖2 +

β

2
‖m‖2, (3.1)

where the observable F(m) ∈ Y depends on the parameter m via solution of the
governing PDE (2.2), yielding u ∈ U and application of an observation operator,
that is,

F(m) := B(u(m)), where u(m) solves r(u,m) = 0 for given m.

The regularization term (β/2)‖m‖2 imposes a penalty on the norm of m, with
the regularization parameter β controlling the strength of the penalty. Solution of
the regularized least-squares problem (3.1) has several advantages over the filter
formulation: (i) it avoids computation of the spectral decomposition or SVD of
F , (ii) it extends easily to non-linear parameter-to-observable maps, (iii) it allows
for more general norms and regularization operators, (iv) it permits additional
equality or inequality constraints (such as bounds) on m, and (v) it admits different
norms besides L2 in the data misfit term ‖F(m) − d‖, such as the more robust (to
outliers) L1.

The most popular regularization is the H1 seminorm
∫
∇m · ∇m dx, which

amounts to an increasing penalty on the more oscillatory modes of m. Its specific
action for the model problems described in Section 2 is to damp the components of m

in the eigenfunction directions vj(x) with increasing weights j2 (the eigenvalues of
the one-dimensional Laplacian underlying the H1 seminorm), thereby stabilizing
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the inference of those components. Many other choices of regularization terms
have been employed, including other Hilbert space norms expressing different
smoothness preferences, total variation (which expresses a preference for piecewise
constant m), total generalized variation (piecewise smooth), sparsity-promoting
and directional sparsity-promoting functionals, and a variety of statistical and data-
driven regularizers. See the comprehensive accounts in Arridge, Maass, Öktem
and Schönlieb (2019) and Benning and Burger (2018).

The regularization parameter β is chosen to balance the error due to instability
caused by noise amplification and the error due to bias caused by the regularization.
The tension is between too large a β, in which case modes that are well informed
by the data are damped, and too small a β, in which case modes that are poorly
informed by the data become unstable in the reconstruction. If δ = ‖η‖ represents
the magnitude of the noise, it can be shown (e.g. Vogel 2002) that the choice
β = O(δp), 0 < p < 2 guarantees that both sources of error vanish as δ → 0.
However, this a priori estimate does not provide a constructive formula for choosing
β. Instead, we appeal to an a posteriori formula. The Morozov discrepancy
principle is a popular choice: Find the largest value of β that satisfies

‖F(mβ) − d‖ ≤ δ, (3.2)

where

mβ := arg min
m∈X

{
1

2
‖F(m) − d‖2 +

β

2
‖m‖2

}
.

Thus we seek the smallest regularization penalty ‖m‖2 that results in an m that fits
the data to within the noise. The resulting choice of β∗ can also be derived from
the following optimization problem:

min
m∈X

1

2
‖m‖2,

subject to ‖F(m) − d‖2 = δ2.

The value of the Lagrange multiplier µ∗ for the constraint at optimality is then
related to Morozov’s choice of β by β∗ = 1/(2µ∗).

3.2. Inexact Newton–conjugate gradient methods

We now turn to the main topic of this section, which is efficient and scalable
Newton algorithms for the optimization problem (3.1). This problem belongs to
the class of PDE-constrained optimization problems; for discussion of the under-
lying theoretical, as well as other computational methods, see e.g. Biegler, Ghattas,
Heinkenschloss and van Bloemen Waanders (2003), Gunzburger (2003), Biegler
et al. (2007), Ito and Kunisch (2008), Hinze, Pinnau, Ulbrich and Ulbrich (2009),
Tröltzsch (2010), Ulbrich (2011), Borzì and Schulz (2012), Leugering et al. (2012),
De los Reyes (2015) and Antil, Kouri, Lacasse and Ridzal (2018). By virtue of the
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implicit function theorem, we will consider the state u to be an implicit function of
m via solution of the PDE r(u,m) = 0, resulting in the unconstrained optimization
problem (3.1). While this greatly simplifies the optimization problem, this implicit
dependence complicates the computation of the gradient and Hessian of the ob-
jective functional Φ(m), which are required for the Newton iterations. (A detailed
concrete example of how to compute them is provided in Section 5.) For stationary
and highly non-linear problems, significantly greater efficiency may be obtained by
solving the inverse problem as a constrained optimization problem, which relaxes
the PDE solution by imposing the PDEs as constraints, iterating toward both feas-
ibility (satisfying the PDEs) and optimality (minimizing the objective) (e.g. Biros
and Ghattas 2005a,b).

We assume (3.1) has been suitably discretized (see Section 5 for a discussion of
discretization issues), resulting in the finite-dimensional optimization problem

min
m∈Rnm

Φ(m) :=
1

2
‖f(m) − d‖2 +

β

2
‖m‖2Hreg, (3.3)

where m ∈ Rnm and d ∈ Rnd are the finite-dimensional representations of the
parameter and data, f : Rnm → Rnd is the discrete parameter-to-observable map,Φ
is the discrete regularized least-squares function, Hreg is a regularization operator
(for simplicity, we assume quadratic regularization) and f depends implicitly on m

via solution of a discretized forward PDE problem.
In this section we will describe the inexact Newton–conjugate gradient method

for solving (3.3) with specialization to large-scale inverse problems governed by
PDEs. We describe the components of the method that are salient for the targeted
problem class. See Kelley (1999) and Nocedal and Wright (2006) for further details
and analysis. Newton’s method is the gold standard for fast solution of discretized
infinite-dimensional optimization problems such as (3.3). For a wide variety
of problems, it converges in a mesh-independent (or nearly mesh-independent)
number of iterations (Allgower, Böhmer, Potra and Rheinboldt 1986, Kelley and
Sachs 1991, Heinkenschloss 1993). Our experience is that this is generally the
most effective method for this class of problems, converging with far fewer forward
PDE solves than methods that rely only on gradient information. Define g(m) as
the gradient vector of Φ(m) and H(m) as its Hessian matrix, that is,

g(m) ∈ Rnm :=
DΦ(m)

Dm
,

H(m) ∈ Rnm×nm :=
D2
Φ(m)

Dm2
,

where D/Dm denotes total derivative (taking into account implicit dependence of
f on m via solution of the PDE). The kth Newton iteration solves the linear system

Hkpk = −gk (3.4)
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for the search direction pk , followed by the parameter update

mk+1 = mk + αkpk .

Here αk is a step length chosen according to an appropriate line search strategy,
and gk := g(mk) and Hk := H(mk). Assuming Φ is twice Lipschitz continuously
differentiable, then near a local minimizer m∗ the Newton iteration (3.4) converges
q-quadratically. Global convergence (i.e. from any starting point) to at least a
stationary point (g(m) = 0) can be established under reasonable assumptions
(which are frequently satisfied in practice) by:

(i) ensuring that pk is a descent direction, i.e. pT

k
gk < 0,

(ii) taking a step length αk that ensures sufficient decrease of Φ(mk+1) and suffi-
ciently large steps αkpk .

Condition (i) can be satisfied by maintaining a positive definite approximation to
the Hessian. Condition (ii) can be satisfied by an Armijo backtracking line search.

1 Start with a trial step of α0
k
= 1.

2 Check for sufficient descent:

Φ(mk + α
i
k
pk) − Φ(mk)

αi
k
pT

k
gk

≥ c.

3 (a) If step 2 is satisfied, mk+1 = mk + α
i
k
pk .

(b) Else, backtrack using αi+1
k
= γαi

k
and repeat from 2.

Typical choices of constants are c = 10−4 and γ = 1/2. Initializing the backtracking
with α = 1 asymptotically ensures the correct initial choice of step length, since
Newton’s quadratic approximation of Φ becomes increasingly accurate near a
minimizer.

Several difficulties are encountered in specializing the globalized Newton op-
timization framework outlined above to large-scale inverse problems governed by
PDEs.

• The major challenge faced by Newton methods for the targeted class of in-
verse problems is that explicit construction of the Hessian H(m) is typically
intractable. Each column of the Hessian requires the solution of a pair of
linearized forward/adjoint PDEs (see Section 5); these PDE solution costs
overwhelmingly dominate all other costs of solving the optimization problem
(such as linear algebra). For example, in the ice sheet flow inverse problem
discussed in Section 6, solving a single linearized forward problem requires
about one minute on 1024 processor cores. Thus constructing a single Hessian
for the one million parameters that characterize this problem would require
about two years of supercomputing time! How can we enjoy the benefits of
Newton’s asymptotic quadratic convergence without explicitly forming this
Hessian?
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• Unless the inverse problem is linear, the usual situation is that Φ(m) is non-
convex. As a result, the Hessian can be indefinite away from a local minimizer.
To ensure a descent direction far from a local minimizer, we must maintain
a positive definite approximation to the Hessian, H̃. How can this be done
when the Hessian itself cannot even be formed? Moreover, how can we avoid
modifying the Hessian in the vicinity of a local minimizer so as not to interfere
with the asymptotic convergence rate?

• Since manipulating the Hessian is so expensive (in terms of PDE solves), can
we lessen our reliance on Newton steps far from a minimizer (when Newton
is only linearly converging)?

• The Hessian can be decomposed into the Hessian of the data misfit functional
and the Hessian of the regularization functional:

H = Hdata
+ βHreg.

As we saw in the model problems in Section 2, typically for ill-posed inverse
problems, Hdata is a (discretized) compact operator. On the other hand,
typically it is the highly oscillatory modes of m that are poorly determined
by the data and require regularization, and as a result the regularization is
typically smoothing. Thus the regularization operator Hreg is often chosen
as a elliptic differential operator. Can we take advantage of this ‘compact +
differential’ structure in addressing the two challenges listed above?

The inexact Newton–conjugate gradient (Newton-CG) method addresses all of
these issues. The basic idea is to solve (3.4) with the (linear) CG method in a
matrix-free manner, terminating early to enforce positive definiteness and avoid
over-solving (Dembo, Eisenstat and Steihaug 1982, Eisenstat and Walker 1996).

1 Solve Hkpk = −gk iteratively using preconditioned CG.

(a) At each CG iteration where di is the ith CG search direction, form the
product of Hk with di in a matrix-free manner via a pair of ‘incremental’
forward/adjoint PDE solves (see Section 5).

(b) Terminate CG iteration when a direction of negative curvature is en-
countered, i.e. when

diTHkdi ≤ 0,

and use the current CG solution pi
k

as the Newton search direction (unless
it is the first CG iteration, in which case use the steepest descent direction).

(c) Also terminate the CG iterations when the Newton system is solved
‘accurately enough’, i.e. when

‖Hkpi
k + gk ‖ ≤ ηk ‖gk ‖,

where the tolerance with which this system is solved tightens as the
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minimizer is approached (‖gk ‖ → 0 as k → ∞). The choice of the
forcing term ηk affects the Newton convergence rate:

ηk =




0.5 linear,

min(0.5,
√
‖gk ‖) superlinear,

min(0.5, ‖gk ‖) quadratic.

(d) Precondition the CG iterations with regularization operator Hreg.

2 Perform Armijo backtracking line search with pi
k

as Newton search direction.

3 Update mk+1 = mk + αkpi
k

and repeat from step 1 until convergence.

In step 1(a), the Hessian-vector product is carried out without explicitly forming
the Hessian, forming only its action on a vector (CG is a matrix-free algorithm,
and requires only the matrix action on a given vector). This can be done at the
cost of solving a pair of linearized PDEs, one forward and one adjoint. Section 5
illustrates how this can done in the context of a specific non-linear, non-self-adjoint,
time-dependent PDE. (In the time-dependent case, several additional PDE solves
will be required in the memory-bound setting due to the necessity of checkpointing;
this will be explained in Section 5). This avoids the need to store Hk , which is
(formally) dense and would require O(n2

m) storage. More important, it avoids the
prohibitive cost of explicitly forming Hk column by column. To be successful, of
course, few Hessian actions – i.e. few CG iterations – should be required. We will
return to this shortly.

By terminating CG when negative curvature is encountered, step 1(b) ensures
that a descent direction is maintained. This is because each CG iterate pi

k
is a linear

combination of the negative gradient and the previous iterate pi−1
k

, back to the first
iterate, which itself is taken as the negative gradient. Thus the Newton-CG method
is globally convergent (with appropriate line search). (The CG termination criteria
can be easily extended to allow for a trust region globalization.)

Step 1(c) is intended to avoid ‘over-solving’. Since Newton’s method entails
minimization of a quadratic approximation of Φ, and this quadratic approximation
may be a poor predictor of the actual change in Φ for large steps far from a local
minimizer, there is no point in solving Hkpk = −gk accurately early in the iterations.
The linear system is solved more accurately as the iterations progress by choosing
ηk < 1. Quadratic convergence can be preserved by taking ηk to be of the order of
the norm of the gradient. On the other hand, a constant ηk results in a reduction
to linear convergence. A more rapidly shrinking ηk will lead to faster Newton
convergence, at the expense of increased CG iterations, while the converse is true
with a more slowly shrinking η. A good compromise is often ηk = O(‖gk ‖

1/2),
which tends to result in the fewest overall CG iterations and thus Hessian actions.

As remarked above, it is crucial that CG take few iterations, since each iteration
entails a pair of linearized forward/adjoint PDE solves (see Section 5). Can we
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be assured that this is indeed the case? CG has the property that it minimizes the
energy norm of the error at the ith iteration with respect to a polynomial of degree i.
The energy norm of the error ei can be written as (Shewchuk 1994, Nocedal and
Wright 2006)

‖ei ‖2H =

nm∑

j=1

λj[P
i(λj)]

2ξ2
j , (3.5)

where

• ei = p∗
k
− pi

k
, with p∗

k
as the exact solution to (3.4),

• ξj is the participation factor of the jth eigenvector vj in the initial error, i.e.

e0
=

∑nm
j=1

vjξj , and

• Pi(λ) is an ith-order polynomial in λ, with the property that P0(λ) = 1 and
the constraint Pi(0) = 1.

Since CG minimizes the left-hand side of (3.5) with respect to Pi, it also minimizes
the right-hand side with respect to Pi, that is,

Pi∗(λ) = arg min
Pi (λ)

nm∑

j=1

λj[P
i(λj)]

2ξ2
j . (3.6)

From this expression, we see that at the ith iteration, CG finds the ith degree
polynomial that best fits the eigenvalues on the positive real axis, in a weighted
least-squares sense. It minimizes the squared misfit at each eigenvalue, [Pi(λj)]

2,
weighted by the magnitude of the eigenvalue λj , and by the squared component of
the initial error in the direction of the corresponding eigenvalue, ξ2

j
. We see that

CG favours the elimination of error components associated with eigenvectors that
(i) correspond to large eigenvalues, (ii) correspond to clustered eigenvalues (since
Pi(λ) is small in their vicinity), and (iii) are most aligned with the initial error.

As illustrated in the examples of Section 2, the spectrum of a typical data misfit
Hessian Hdata collapses, with smaller eigenvalues corresponding to more oscillatory
eigenvectors. What happens when CG is applied to such an operator? Initially it
eliminates error components associated with the large eigenvalues (thus behaving
as a smoother), and then begins to attack the smaller eigenvalues that accumulate at
zero. In fact, as an alternative to Tikhonov regularization, early termination of CG
iterations can be used as a regularization (Hanke 1995): initially, error components
of the solution in smooth (data-informed) eigenfunction directions are eliminated,
and the CG iteration is then terminated (e.g. by the Morozov criterion (3.2)) as
noise-amplified unstable modes begin to be picked up.

However, here we are interested in the use of CG for solving the Newton system
with the regularized Hessian, H := Hdata

+βHreg, since often we want to incorporate
additional prior information on m via the regularization term. Toward this end, we
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recognize that the regularization operator Hreg is typically an elliptic differential
operator (possibly heterogeneous and anisotropic). This suggests preconditioning

by Hreg, so that the preconditioned Hessian operator is H
reg−1

k
Hk , and the Newton

system becomes
(

H
reg−1

k
Hdata

k + βI
)

pk = −H
reg−1

k
gk . (3.7)

In the common case where Hreg is an elliptic differential operator, its inverse
is compact, and thus the product of its inverse with Hdata, the regularization-

preconditioned data misfit Hessian, is also compact. Then the operator

(H
reg−1

k
Hdata

k + βI)

has the form of a (discretized) Fredholm second-kind integral operator. For such
problems, the conjugate gradient method (as well as other Krylov methods) is
known to converge superlinearly; moreover, for nm sufficiently large, the number
of iterations required to solve (3.7) to a given accuracy is constant, independent of
the parameter dimension nm (Fortuna 1979, Flores 1993, Campbell, Ipsen, Kelley
and Meyer 1994, Atkinson 1997, Axelsson and Karatson 2007, Herzog and Sachs
2015).

This mesh-independence of the (inner) CG iterations when using regularization
preconditioning can be understood to be a consequence of the effectively finite-
dimensional and mesh-independent range space of both the Hessian of F∗F as
well as the inverse regularization operator. CG takes O(r) iterations to eliminate
error components associated with the r dominant eigenvalues (i.e. those for which

λi > β) of H
reg−1

k
Hdata

k
, and then very quickly dispenses with the remaining error

components associated with eigenvalues that cluster around β. Since the dominant
cost of the CG iterations is the PDE solves associated with the Hessian action at each
iteration, fully solving (3.7) requires about r forward/adjoint PDE solves, where
usually r ≪ nm. Moreover, the inexactness of the method (i.e. early termination of
CG when far from a local minimum) means that CG converges in just a handful of
iterations in the early Newton iterations.

This combination of mesh-independence of (outer) Newton iterations, mesh-
independence of (inner) CG iterations and inexactness to prevent oversolving results
in a method for solving PDE-based inverse problems that requires a parameter-
dimension-independent number of PDE solves. Thus the method is scalable.
When the eigenvalues of the regularization-preconditioned data misfit Hessian
decay sufficiently rapidly, r is small, and the method is then also efficient, in the
sense that the required number of PDE solves is small. To understand how rapidly
the eigenvalues decay, consider the model problems of Section 2. For the parabolic
inverse problem, the exponential decay of the eigenvalues of the parameter-to-
observable map F renders r very small, on the order of a handful of modes. For the
elliptic inverse problem, the eigenvalues of F decay only algebraically, O( j−2) for
the specific problem considered. However, the spectrum of the data misfit Hessian
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squares this to O( j−4). Moreover, the common choice of H1 regularization leads
to preconditioning by −∆−1, which in this case has the same eigenfunctions as
F∗F , and eigenvalues that decay (in one dimension) like j−2. Thus, overall,

the eigenvalues of H
reg−1

k
Hdata

k
decay like j−6, which is very rapid decay indeed.

Thus, while this operator’s effective range space dimension r for elliptic inverse
problems is typically large relative to those of parabolic problems, one often still
has sufficiently rapid spectral decay that the average number of CG iterations per
Newton iteration is in the 10s–100s, even for inverse problems with millions of
parameters. Combined with a typically modest number of Newton iterations, this
often means solution of large-scale inverse problems at a cost of 100s–1000s of
linearized PDE solves. Section 6 presents a case study that illustrates this behaviour
for inexact Newton-CG solution of a large-scale regularized inverse problem for
the flow of the Antarctic ice sheet with O(106) parameters.

To conclude this section, we note an important class of inverse problems for
which r , the number of dominant eigenvalues of the regularization-preconditioned
data misfit Hessian, is large in absolute terms, even if it is small or moderate relative
to the parameter dimension nm. In such problems, the required number of PDE
solves using regularization preconditioning may be unacceptably large. This can
result from a low data noise level, which reduces the regularization parameter β,
allowing us to extract more information from the data (up to a point of course:
ultimately instability takes over). By exposing additional smaller eigenvalues
above the β threshold, CG is forced to iterate longer to resolve the associated
modes. Another source of large r is more informative data, which results in
a spectrum of Hdata that decays more slowly. As suggested by the hyperbolic
inverse problem of Section 2, this can stem from inverse problems in which the
loss of information in the parameter-to-observable map is more muted. Examples
include flows that are increasingly advection-dominated, wave propagation with
higher frequencies and more sources, and more generally problems with large
numbers of informative observations and/or informative experiments. For these and
other problems, finding effective Hessian preconditioners beyond the regularization
operator remains an active area of research; see Battermann and Heinkenschloss
(1998), Arian and Ta’asan (1999), Gunzburger, Heinkenschloss and Lee (2000),
Dreyer, Maar and Schulz (2000), Haber and Ascher (2001), Battermann and Sachs
(2001), Akçelik et al. (2002), Borzì (2003), Ascher and Haber (2003), Akçelik
et al. (2005), Borzì and Griesse (2005), Heinkenschloss (2005), Biros and Ghattas
(2005a), Akçelik et al. (2006), Heinkenschloss and Nguyen (2006), Heinkenschloss
and Herty (2007), Schöberl and Zulehner (2007), Drăgănescu and Dupont (2008),
Herrmann, Moghaddam and Stolk (2008), Biros and Doǧan (2008), Adavani and
Biros (2008), Borzì and Schulz (2009), Adavani and Biros (2010), Herzog and
Sachs (2010), Rees, Dollar and Wathen (2010a), Nielsen and Mardal (2010), Rees,
Stoll and Wathen (2010b), Benzi, Haber and Taralli (2011), Takacs and Zulehner
(2011), Rees and Wathen (2011), Chaillat and Biros (2012), Pearson, Stoll and
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Wathen (2012), Pearson and Wathen (2012), Borzì and Schulz (2012), Demanet
et al. (2012), Nielsen and Mardal (2012), Pearson, Stoll and Wathen (2014), Schiela
and Ulbrich (2014), Benner, Onwunta and Stoll (2016), Barker, Rees and Stoll
(2016), Gholami, Mang and Biros (2016), Zhu et al. (2016a), Alger, Villa, Bui-
Thanh and Ghattas (2017), Mardal, Nielsen and Nordaas (2017), Ambartsumyan
et al. (2020) and Alger et al. (2019).

4. Bayesian framework and Laplace approximation

The regularization framework of Section 3 – while admitting scalable and efficient
inverse solvers – provides just a point estimate of the inverse solution, and is not
capable of quantifying the uncertainty in the inferred parameters. For a well-posed
problem, this may be acceptable. But for an ill-posed problem, particularly one with
non-negligible noise, where many parameter choices are consistent with the data
to within the noise, this point estimate is not very useful. The Bayesian framework,
on the other hand, states the inverse problem as one of statistical inference over the
space of uncertain parameters (Tarantola 2005, Kaipio and Somersalo 2005, Stuart
2010, Dashti and Stuart 2017). The resulting solution to this statistical inverse
problem is a posterior probability distribution that describes the probability of
the parameter conditioned on the data. It combines a prior distribution, which
encodes any prior knowledge or assumptions about the parameters before data
are collected, with a likelihood, which explicitly represents the probability that a
given set of parameters might give rise to the observed data. The central task of
Bayesian solution then is to characterize or explore the posterior: drawing samples,
estimating the mean, covariance or higher moments, determining credible intervals,
or evaluating the posterior probabilities of particular events.

Unfortunately, Bayesian solution of inverse problems – i.e. fully characterizing
the posterior – is often intractable for expensive PDE forward models and in high
parameter dimensions, as results from discretization of infinite-dimensional para-
meter fields. This stems from the need to sample a posterior distribution in high
dimensions, where each sample requires (at least) evaluation of the posterior, and
thus solution of the forward problem. Markov chain Monte Carlo (MCMC) meth-
ods are usually the method of choice for sampling complex distributions, but in their
black-box forms will often require many millions of evaluations of the posterior to
produce reliable statistical estimates, making their use prohibitive for PDE-based
inverse problems. In recent years, a number of methods for Bayesian inverse prob-
lems governed by PDEs have emerged that exploit structure of parameter space in-
cluding geometry (locally approximated by the Hessian and higher derivatives) and
intrinsic low-dimensionality (dictated by the compactness of the data-misfit Hes-
sian), mirroring the structure-exploiting properties of inexact Newton-CG methods
(Section 3) for deterministic inverse problems. These range from Hessian-aware
Gaussian process approximation of the parameter-to-observable map (Bui-Thanh,
Ghattas and Higdon 2012b), to projection-type forward model reduction (Galbally,
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Fidkowski, Willcox and Ghattas 2010, Lieberman, Willcox and Ghattas 2010, Cui,
Marzouk and Willcox 2015), to polynomial chaos approximations of the stochastic
forward problem (Badri Narayanan and Zabaras 2004, Ghanem and Doostan 2006,
Marzouk and Najm 2009), to Markov chain Monte Carlo (MCMC) proposals ex-
ploiting log-likelihood Hessian approximations (Girolami and Calderhead 2011,
Flath et al. 2011, Martin et al. 2012, Bui-Thanh et al. 2012a, 2013, Bui-Thanh
and Girolami 2014, Petra et al. 2014, Cui et al. 2014, Cui, Law and Marzouk
2016, Beskos et al. 2017), to randomize-then-optimize sampling methods (Oliver,
He and Reynolds 1996, Bardsley, Solonen, Haario and Laine 2014, Wang et al.

2017, Oliver 2017, Wang, Bui-Thanh and Ghattas 2018, Bardsley, Cui, Marzouk
and Wang 2020, Ba, de Wiljes, Oliver and Reich 2021), to adaptive sparse quad-
rature combined with reduced basis approximations (Schillings and Schwab 2013,
Chen and Schwab 2015, 2016a,b, Chen et al. 2017), to optimal transport-based
variational methods using parametric and non-parametric transport maps (Moselhy
and Marzouk 2012, Liu and Wang 2016, Marzouk, Moselhy, Parno and Spantini
2016, Detommaso et al. 2018, Chen et al. 2019b, Chen and Ghattas 2021, 2020a).

These methods have shown considerable promise by tackling certain PDE-
governed Bayesian inverse problems with exploitable structure. Further devel-
opments in such structure-exploiting methods – in conjunction with the model
reduction methods described in Part 3 – offer hope that full Bayesian solution
of complex PDE-governed high-dimensional inverse problems will become more
common over the coming decade. These methods are undergoing rapid develop-
ment today and we will not discuss them further. However, we will describe in
detail the Laplace approximation of the posterior, which becomes tractable to com-
pute – and even scalable and efficient – when one exploits the same properties that
made inexact Newton-CG so powerful for the regularization formulation. Thus the
methods of this section are intimately connected to those of the previous one and
the properties of the model inverse problems highlighted in Section 2. Moreover,
the Laplace approximation and related tools often play an important role in the
sampling, variational and transport methods mentioned above.

The discussion below is based on the finite-dimensional form of the Bayesian
inverse problem, i.e. after parameter space has been discretized. Conditions
on the prior and the parameter-to-observable map that result in a well-defined
and well-posed Bayesian inverse problem in infinite dimensions are presented in
Stuart (2010) and Dashti and Stuart (2017), and summarized in Arridge et al.

(2019). Infinite-dimension-consistent discretizations are discussed in Bui-Thanh
et al. (2013) and Petra et al. (2014).

4.1. Bayesian formulation

Denote by πpr(m) the prior probability density of the model parameters m ∈ Rnm ,
πlike(d|m) the likelihood of the data d ∈ Rnd given the parameters, and πpost(m) :=

π(m|d) the posterior density reflecting the probability of the parameters conditioned
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on the data. Then Bayes’ rule can be written as

πpost(m) =
1

Z
πlike(d|m) πpr(m), (4.1)

where the normalizing constant Z is given by

Z =

∫
πlike(d|m) πpr(m) dm,

and is often called the evidence.
We restrict our discussion to a Gaussian prior m ∼ N (mpr, Γpr), that is,

πpr(m) ∝ exp

{
−

1

2
‖m −mpr‖

2

Γ
−1
pr

}
, (4.2)

where mpr ∈ R
nm and Γpr ∈ R

nm×nm are respectively the mean and covariance
of the prior distribution. Here, Γpr must be chosen to be sufficiently smoothing
in order to ensure a well-posed Bayesian inverse problem; this is the Bayesian
equivalent of regularization. One attractive choice is for Γpr to be taken as the
discretization of the inverse of the νth power of an elliptic differential operator:

Γpr = (−γ∆h + δIh)−ν, (4.3)

where γ > 0 and δ > 0 are positive constants and h indicates discretization. For
well-posedness, ν > ω/2, where ω is the spatial dimension (Stuart 2010). So in
one dimension ω = 1 is sufficient, whereas in two and three dimensions we often
take ω = 2 to avoid solving a fractional PDE. The parameters γ and δ are chosen
to impose prior knowledge of the correlation length ρ (distance for which the
two-point correlation coefficient is 0.1) and the pointwise variance σ2 of the prior
operator; specifically ρ ∝

√
γ/δ and σ2 ∝ δ−νρ−ω. This form of prior is equivalent

to a subset of the Matérn covariance family (Lindgren, Rue and Lindström 2011).
To incorporate anisotropy in correlation lengths, the Laplacian in (4.3) can be
replaced by an anisotropic Poisson operator. These choices ensure that the prior
covariance (−γ∆ + δI)−ν is a trace-class operator, leading to bounded pointwise
variance and a well-posed infinite-dimensional Bayesian inverse problem (Stuart
2010). Appropriate boundary conditions can be chosen to mitigate the influence
of the boundary (Daon and Stadler 2018).

To construct the likelihood, we consider the discretized form of the additive
noise model (2.3),

d = f(m) + η, η ∼ N (0, Γnoise),

with the noise η ∈ Rnd taken to be a normally distributed random variable with
mean zero and covariance Γnoise ∈ R

nd×nd , and as before f(m) is the discretized
parameter-to-observable map. The likelihood then becomes

πlike(d|m) ∝ exp

{
−

1

2
‖f(m) − d‖2

Γ
−1
noise

}
.
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(See Dunlop 2019 for extensions to other noise models.)
With this choice of Gaussian prior and Gaussian additive noise, we arrive at the

expression for the posterior,

πpost(m) ∝ exp

{
−

1

2
‖f(m) − d‖2

Γ
−1
noise
−

1

2
‖m −mpr‖

2

Γ
−1
pr

}
. (4.4)

After discretization, the posterior (4.4) is a probability density in nm dimensions,
which can be in the millions (or much higher) for complex PDE models, such as the
example in Section 6. Moreover, evaluating πpost(m) at any point in parameter space
requires solution of the forward PDE problem embedded within the parameter-to-
observable map f(m). As such, exploring the posterior to, for example, compute
statistics of quantities of interest (mean, variance, quantiles) is typically prohibit-
ive, due to the high-dimensionality of the parameters and the expense of solving
the forward PDE problems. We will restrict ourselves here to the Laplace approx-
imation, which is a Gaussian centred on the maximum a posteriori (MAP) point,
with covariance equal to the inverse of the Hessian of the negative logarithm of the
posterior evaluated at the MAP point. The Laplace approximation is exact when
the parameter-to-observable map f(m) is linear, and often provides a reasonable
approximation to the posterior, since the error is of the order of the departure
from linearity of the parameter-to-observable map (Helin and Kretschmann 2020).
Moreover, in the limit of small noise or large data, the Laplace approximation
converges to the posterior (Schillings, Sprungk and Wacker 2020).

4.2. Finding the MAP point

The maximum a posteriori point mmap is the point that maximizes the posterior
density with respect to m,

mmap := arg max
m∈Rnm

1

Z
πpost(m)

= arg min
m∈Rnm

− log πpost(m)

= arg min
m∈Rnm

1

2
‖f(m) − d‖2

Γ
−1
noise
+

1

2
‖m −mpr‖

2

Γ
−1
pr
.

︸                                          ︷︷                                          ︸
Φ(m)

(4.5)

Notice the equivalence between finding the MAP point and solving the regular-
ized inverse problem (3.3) by minimizing Φ(m). The prior term is analogous to
a regularization (with regularization operator taken as Γ−1

pr ), and the data misfit is

weighted by the noise covariance Γ−1
noise, but otherwise the two are equivalent. This

means the MAP point can be found efficiently and scalably using the machinery
introduced for the regularized inverse problem in Section 3: inexact Newton-CG
with early termination, regularization preconditioning, and adjoint-based gradient
and matrix-free Hessian actions.
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4.3. The Laplace approximation

The MAP point, while useful, is still a point estimate and does not provide us
with any estimate of uncertainty in the inverse solution. We define the Laplace
approximation πLpost(m) of the posterior as

πpost(m) ≃ πLpost(m) ∝ exp

{
−

1

2
‖m −mmap‖

2
H(mmap)

}
.

The Laplace approximation is a Gaussian, centred at the MAP point mmap, with
covariance equal to the inverse of the Hessian of the negative log posterior,
− log πpost(m), i.e. the Hessian of Φ(m). This can be seen by expanding Φ(m)

in a Taylor series to second order, around the MAP point:

Φ(m) ≃ ΦQ(m) := Φ(mmap) + g(mmap)T(m −mmap)

+

1

2
(m −mmap)TH(mmap)(m −mmap),

where as before g(m) is the gradient of Φ(m) with respect to m, and H(m) is its
Hessian. Since g(mmap) = 0 (i.e. mmap minimizes Φ(m)), and defining Hmap :=

H(mmap), we obtain

Φ
Q(m) = Φ(mmap) +

1

2
‖m −mmap‖

2
Hmap

.

With this approximation,

πLpost(m) ∝ exp{−ΦQ(m)}

∝ exp{−Φ(mmap)}
︸              ︷︷              ︸

constant that
can be absorbed

into normalization

exp

{
−

1

2
‖m −mmap‖

2
Hmap

}
,

∝ exp

{
−

1

2
‖m −mmap‖

2
Hmap

}
.

Thus we obtain a Gaussian N (mmap,H
−1
map). Since this is a Gaussian, we can

compute its normalizing constant to give

πLpost(m) :=
det(H

1/2
map)

(2π)nm/2
exp

{
−

1

2
‖m −mmap‖

2
Hmap

}
. (4.6)

Here nm is the dimension of m. The covariance H−1
map should be positive definite,

which is assured since the Hessian is evaluated at mmap (making it at least positive
semidefinite), and assuming the prior covariance has been chosen appropriately to
annihilate zero eigenvalues of H, i.e. to provide prior information (or regularization)
in directions in parameter space that are not informed by the data.

As stated above, when the parameter-to-observable map f(m) is linear – i.e.

we have a linear inverse problem – then Φ(m) is quadratic, and so the quadratic
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Taylor approximation is exact. Thus the Laplace approximation is exact for a linear
inverse problem. For non-linear but unimodal posteriors, it may still provide useful
information, since − log πLpost and − log πpost agree to two derivatives at mmap.
Finally, the Laplace approximation is accurate not only in poorly data-informed
directions (since the posterior reverts to the Gaussian prior in those directions) but
also in highly data-informed directions, since the small posterior variance in those
directions implies that linearization of the parameter-to-observable map over the
support of the posterior is viable.

The expression above for πLpost(m) is easy to write, but it becomes clear that there
are significant challenges to computing it. In particular, we are interested in the
following operations on the Laplace approximation of the posterior.

1 Compute posterior covariance Γpost(m) := H−1
map.

2 Compute normalizing constant, requiring det(H
1/2
map).

3 Sample from the posterior, i.e. compute H
−1/2
map x, x ∼ N (0, I).

4 Compute pointwise variance field, diag(H−1
map).

Recall that we cannot even construct the Hessian H (which would require as many
linearized forward model solves as we have parameters, i.e. millions). So how are
we going to compute H−1

map, diag(H−1
map), H

−1/2
map , and det(H

1/2
map)?

The key is to recognize that H has special structure – the same structure that
allows conjugate gradients to converge in a small and dimension-independent num-
ber of iterations. Namely, the Hessian is composed of a compact operator (with
eigenvalues that collapse to zero) and a differential operator (when Γpr is taken as
the inverse of an elliptic differential operator):

Hmap = Hdata
map + Γ

−1
pr ,

where as before

Hdata(m) :=
D2

Dm2

1

2
‖f(m) − d‖2

Γ
−1
noise

is the Hessian of the data misfit. We have seen that for ill-posed inverse problems,
Hdata often has eigenvalues that decay rapidly to zero. In this case we can make a
low-rank approximation of Hdata

map by solving the generalized eigenvalue problem

Hdata
mapvj = λjΓ

−1
pr vj (4.7)

for the first r eigenvalues and eigenvectors, r ≪ N . Define

Vr ∈ R
nm×r := [v1, v2, . . . , vr ],

Λr ∈ R
r×r := diag(λj),

where Vr is Γ−1
pr -orthogonal, i.e. VT

r Γ
−1
pr Vr = Ir . With this truncated spectral

decomposition, and using the Sherman–Morrison–Woodbury formula, it can be
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shown that (Isaac et al. 2015)

Γ
L
post := H−1

map

= (Hdata
map + Γ

−1
pr )−1

= Γpr − VrDrV
T

r +O

( nm∑

j=r+1

λj

1 + λj

)

,

where Dr = diag(λj/λj+1). The error term, which depends on the discarded
eigenvalues λj , j = r +1, . . . , nm, suggests that when the eigenvalues decay rapidly
(as is typical of ill-posed inverse problems), truncating the spectrum when λj is
small relative to 1 incurs small and controllable error. Thus we can approximate
(with arbitrary accuracy) the posterior covariance of the Laplace approximation by

Γ
L
post := H−1

map ≃ Γpr − VrDrV
T

r . (4.8)

The posterior covariance can be compactly represented by a low-rank perturbation
(the data-informed modes) of the inverse of an elliptic operator (the prior). The
availability of the low-rank decomposition VrDrV

T

r permits us to compute or com-

pactly represent H−1
map, diag(H−1

map), H
−1/2
map and det(H

1/2
map). See Villa et al. (2021),

which describes algorithms provided by the hIPPYlib software framework to com-
pute these and other quantities relevant to exploring the Laplace approximation
posterior for PDEs.

All of this assumes we can solve the generalized eigenvalue problem (4.7) for the
dominant eigenpairs. How can this be done when we cannot even compute Hdata

map?
The answer is a randomized eigensolver (see e.g. Halko, Martinsson and Tropp
2011, Villa et al. 2021). This family of algorithms has the following properties.

(i) The matrix Hdata is not needed explicitly; only its action in a random direction
is needed. This requires solution of a linearized forward problem and a
linearized adjoint problem, i.e. two linearized PDE solves per Hessian action.
This will be illustrated in Section 5.

(ii) The prior inverse Γ−1
pr is not needed; only the ability to solve systems involving

Γ
−1
pr is required, and this is efficiently done with the choice of prior covariance

(4.3), since this involves solving elliptic PDEs with operators given by powers
of −γ∆ + δI, which can be done in O(nm) work using a multigrid method (at
least when the power is an even integer).

(iii) The number of necessary products of Hdata
map with a vector is just O(r) (in fact

it is r plus a few additional oversampling Hessian-vector products to control
error). Recall that in the usual case of ill-posed inverse problems, r ≪ N .

(iv) As illustrated in Section 2, for many ill-posed inverse problems, the dominant
eigenvalues (λi, i = 1, . . . , r) correspond to smooth eigenfunctions (i.e. the
data are informative about smooth components of the parameter field). Thus,
once these eigenfunctions are well-resolved on a given grid (which is usually

https://doi.org/10.1017/S0962492921000064 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000064


Learning physics-based models from data 477

coarse, since they are smooth), further grid refinement does not affect them.
Thus the effective rank r is independent of mesh size. So we can construct an
accurate approximation of the posterior covariance (of the Laplace approxim-
ation) at a cost, measured in the number of (linearized) forward/adjoint PDE
solves (r), that is independent of the parameter dimension, as well as the data
dimension, and depends only on the information dimension.

Thus, once the MAP point has been found, we can compactly represent the posterior
covariance via (4.8), sample from the posterior distribution, and compute the pos-
terior variance field, all at a cost of r pairs of linearized forward/adjoint PDEs and
r prior elliptic PDE solves, where r is typically small and dimension-independent.
There are several randomized generalized eigensolver variants depending on de-
sired accuracy and work; see Villa et al. (2021).

4.4. Optimal experimental design

One of the attractions of the Bayesian framework for inverse problems is the ability
to pose the following meta-question: How do we optimally acquire the data in
the first place? In other words, what, where, when and under which conditions
should we observe in order to minimize the uncertainty in the inferred parameters,
or in some predictive goal depending on the parameters? This is the optimal
experimental design (OED) problem. The Bayesian solution – in particular the
Laplace approximation – allows us to pose the OED problem as a minimization
problem involving the posterior covariance, reflecting uncertainty in the parameters.

Given experimental design variables z ∈ Rnz (e.g. locations of sensors), we
can pose the OED problem as minimizing with respect to z some invariant of the
posterior covariance Γpost, which is approximated by the inverse of the Hessian
at the MAP point. Two popular choices are minimizing the trace of the inverse
Hessian, i.e. A-optimal design,

min
z∈Rnz

tr(H(mmap(z), z)−1), (4.9)

and minimizing its determinant, i.e. D-optimal design,

min
z∈Rnz

det(H(mmap(z), z)−1). (4.10)

For linear inverse problems, the D-optimal design is equivalent to maximizing the
expected information gain (EIG) from the data – that is, the expectation over the
data of the Kullback–Leibler divergence of prior to posterior. The availability of
the low-rank-based approximation of the posterior covariance (4.8) facilitates not
only the direct computation of the trace in (4.9) (Alexanderian et al. 2016),

tr(H−1
map) ≃

r∑

j=1

λj

1 + λj
,

but also the computation of the EIG for linear inverse problems (Alexanderian,
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Gloor and Ghattas 2015),

EIG := Ed[DKL(πpost(m|d)‖πpr(m))] ≃

r∑

j=1

log(1 + λj).

Here the λj are the dominant eigenvalues of the generalized eigenvalue problem
(4.7). For non-linear inverse problems under the Laplace approximation, similar
easily computable approximations of the EIG are available once (4.7) has been
solved (Wu et al. 2020).

Note from (4.9) and (4.10) that the Hessian’s dependence on the experimental
design variables z is complicated. For example, if z represents the sensor locations,
then the observation operator and hence the Hessian depend on z explicitly. But the
MAP point mmap also depends on the sensor locations, so the Hessian depends on
z implicitly via solution of the optimization problem (4.5). Thus (4.9) and (4.10)
are bilevel optimization problems, where the inner optimization problem finds the
MAP point and expresses the eigenvalue problem (4.7) at this point, and the outer
optimization problem maximizes the EIG or minimizes the trace or determinant of
the posterior covariance.

Moreover, unless the inverse problem is linear, the Hessian depends on the ac-
tual data d, which are not yet available when designing the experiment or data
acquisition strategy. This problem is typically addressed by synthesizing predicted
data from a prior parameter model (which could stem from an existing observa-
tion network in a sequential design strategy). The resulting optimization problem
is fantastically difficult to solve. It is bad enough that traces or determinants of
inverses of Hessians are required at each optimization iteration; worse, efficient
solution requires gradients of (4.9) and (4.10) with respect to z, which means dif-
ferentiating through these traces/determinants, Hessian inverses and inner inverse
problems to find the MAP point. Because of these difficulties, OED for large-scale
inverse problems governed by PDE forward models with large numbers of design
variables remained out of reach. In the last several years, a number of advances
have made the solution of such OED problems tractable, at least for simpler PDE
systems (the OED problem is still several orders of magnitude more expensive than
the inverse problem, which in turn is several orders of magnitude more expensive
than the forward problem). The critical ingredients often end up being the tools
described in this section and the previous one: regularization-preconditioned in-
exact Newton-CG with adjoint-based Hessian actions for finding the MAP point;
Laplace approximation for characterizing the posterior along with a randomized
eigensolver to reveal the dominant spectrum and induce a low-rank approximation,
facilitating computation of traces or determinants and their derivatives.

While the resulting algorithms for OED can require a dimension-independent
number of PDE solves, the absolute number can be very large – several orders
of magnitude greater than required for the ‘inner’ inverse problem. Thus OED
remains a frontier problem for large-scale inverse problems governed by PDEs.
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Despite the computational challenges, the promise of designing optimal data ac-
quisition systems and campaigns for complex inverse problems governed by PDEs
in a rigorous and systematic way is motivating much current research (Huan and
Marzouk 2013, 2014, Attia, Alexanderian and Saibaba 2018, Alexanderian and
Saibaba 2018, Feng and Marzouk 2019, Koval, Alexanderian and Stadler 2020,
Wu et al. 2020, Alexanderian 2020, Herman, Alexanderian and Saibaba 2020,
Jagalur-Mohan and Marzouk 2020, Wu, Chen and Ghattas 2021, Alexanderian,
Petra, Stadler and Sunseri 2021).

5. Computing the Hessian action

As we have seen, the linchpin of the Newton-CG and randomized eigensolver
algorithms of the previous sections is the Hessian action. This is the operator that
enables scalable and efficient solution of inverse problems in the regularized or
Bayesian frameworks. Scalability implies that the number of forward/adjoint PDE
solves remains independent of the parameter or data dimensions; efficiency means
that this number is small relative to the parameter dimension nd.

Unfortunately, explicit construction of the discretized Hessian requires nd lin-
earized PDE solves (one per column), which is intractable for anything other than
the simplest problems. Fortunately the Newton-CG and randomized eigensolver
algorithms are matrix-free: what is needed is not the Hessian itself, but its action in
an arbitrary direction. Adjoint methods along with the Lagrangian formalism can
be used to efficiently form the Hessian action, at the cost of just a pair of linearized
forward/adjoint PDE solves. In this section we will illustrate the derivation of the
Hessian action in the context of a specific problem, described in Section 5.1. The
gradient – needed for the Newton algorithm as well as to find the MAP point for the
Laplace approximation – is derived in Section 5.2. Finally, the Hessian action is
derived in Section 5.3. Checkpointing and discretization issues are also discussed.

5.1. An advection–diffusion–reaction inverse problem

To illustrate the derivation of the gradient and the Hessian action, we consider
an inverse problem governed by a time-dependent advection–diffusion–reaction
(ADR) model with a simple cubic reaction term. This forward problem is chosen
since it elaborates the roles of time-dependence, non-self-adjoint operators and
non-linearity. To contrast the structure of the gradient and Hessian action for
coefficient (parameter) estimation with those of state estimation, we will jointly
infer the unknown diffusion coefficient field mκ , and the unknown initial condition
field m0. Tikhonov H1 regularization is employed for both. The inverse problem
is stated as

min
(mκ,m0)∈H1(Ω)

φ(mκ,m0) (5.1)

:=
1

2

∫ T

0

∫

Ω

(Bu − d)2 dx dt +
βκ

2

∫

Ω

∇mκ · ∇mκ dx +
β0

2

∫

Ω

∇m0 · ∇m0 dx,
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where the state u(t, x) implicitly depends on the parameters (mκ ,m0) through the
solution of the forward advection–diffusion–reaction initial-boundary value prob-
lem

∂u

∂t
+ v · ∇u − ∇ · (mκ∇u) + cu3

= f in Ω × (0,T) (PDE), (5.2)

u = 0 on ∂Ω × (0,T) (BC), (5.3)

u|t=0 = m0 in Ω (IC), (5.4)

where (5.2) represents the ADR PDE, (5.3) the (homogeneous Dirichlet) boundary
condition and (5.4) the initial condition. Here

• φ(mκ,m0) : H1(Ω) × H1(Ω)→ R is the regularized data misfit functional,

• B : L2((0,T); H1
0
(Ω)) → D is the space-time observation operator, which

prescribes locations in space and instants in time at which observations are
made,

• d ∈ D is the corresponding observed data at these locations/instants and D is
the corresponding data space,

• (0,T) is the observation time window,

• u(t, x) ∈ L2((0,T); H1
0
(Ω)) is the state concentration field,

• mκ(x) ∈ H1(Ω) is the diffusion coefficient inversion parameter field,

• m0(x) ∈ H1(Ω) is the initial condition inversion parameter field,

• βκ is the regularization parameter for mκ ,

• β0 is the regularization parameter for m0,

• v(t, x) ∈ L2((0,T); H1(Ω)) is the advection velocity field,

• c(x) ∈ L2(Ω) is the reaction coefficient,

• f (t, x) ∈ L2((0,T); H−1(Ω)) is the source term, and

• Ω is a bounded domain in R2 or R3, and ∂Ω is its boundary.

Here we have employed standard Sobolev spaces: L2(Ω) is the space of square-
integrable functions over Ω, H1(Ω) is the space of functions whose derivatives
belong to L2(Ω), H1(Ω) is the space of vector-valued functions whose components
belong to H1(Ω), and H1

0
(Ω) is the space of functions in H1(Ω) that vanish on ∂Ω.

We shall sometimes omitΩ if no ambiguity results. We shall remain agnostic to the
particular form of the observation operatorB, which depends on the data acquisition
system; typically it will involve local or path integrals, including mollified Dirac
deltas, of the state or its flux, or more general functions of the state.
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Let us define the spaces

U = {u ∈ L2((0,T); H1
0 (Ω))},

P = {p ∈ L2((0,T); H1(Ω))}.

To derive the gradient via the Lagrangian, we require the space–time weak form
of the forward ADR problem. Multiplying the residual of the PDE (5.2) by a
test function p(t, x) ∈ P , integrating the diffusion term by parts, and weakly
incorporating the initial condition (5.4) via another test function q(x) ∈ L2(Ω), we
obtain the space–time weak form of the forward ADR problem: Find u ∈ U such
that

∫ T

0

∫

Ω

[
p
∂u

∂t
+ pv · ∇u + mκ∇u · ∇p + cpu3 − p f

]
dx dt

−

∫ T

0

∫

∂Ω

p mκ∇u · n ds dt +

∫

Ω

q [u(0, x) − m0] dx for all p ∈ P . (5.5)

It is important to enforce the initial condition weakly, since we wish to ‘expose’
the initial condition inversion parameter m0 to the Lagrangian (and hence the
gradient and Hessian), rather than build it into the admissible space for u. In the
derivation of the gradient and Hessian action, p will play the role of the adjoint
state variable (adjoint from now on), and thus for now we do not assume it vanishes
on the boundary and instead take it to be arbitrary on ∂Ω. In the next section, the
boundary condition for the adjoint ADR problem will emerge from stationarity of
the Lagrangian. Notice that this weak form is different from the usual weak forms
used in (spatial) finite element methods for time-dependent problems, in which the
test function p is defined in space only.

5.2. The gradient

Here we derive expressions for the gradient of φ with respect to mκ and m0, using
the formal Lagrange method. We begin by forming the Lagrangian functional Lg

that combines the regularized data misfit φ(mκ,m0) in (5.1) with the weak form of
the ADR problem (5.5),

Lg(u, p, q,mκ,m0) :=
1

2

∫ T

0

∫

Ω

(Bu − d)2 dx dt

+

βκ

2

∫

Ω

∇mκ · ∇mκ dx +
β0

2

∫

Ω

∇m0 · ∇m0 dx

+

∫ T

0

∫

Ω

[
p
∂u

∂t
+ pv · ∇u + mκ∇u · ∇p + cpu3 − p f

]
dx dt

−

∫ T

0

∫

∂Ω

p mκ∇u · n ds dt +

∫

Ω

q [u(0, x) − m0] dx (5.6)
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for functions (u, p,mκ,m0, q) ∈ U ×P × H1(Ω) × H1(Ω) × L2(Ω). The superscript
g in Lg indicates that this is the Lagrangian used to derive the gradient (a different
Lagrangian will be employed for the Hessian in the next section).

To derive an expression for the gradient of φ with respect to (mκ,m0), we seek
conditions that make the Lagrangian Lg stationary with respect to its arguments
(u, p,mκ,m0, q). Taking variations of Lg with respect to p ∈ P and q ∈ L2(Ω)

and requiring them to vanish for all admissible variations simply recovers the weak
forms of the forward ADR equation and its initial condition,

δpL
g
= 0 for all p̂ ∈ P =⇒ weak form of PDE,

δqL
g
= 0 for all q̂ ∈ L2(Ω) =⇒ weak form of IC,

where p̂ is the variation of p, and q̂ is the variation of q. Restating this weak form

of the forward ADR problem, now in the context of the inverse problem: Given
(mκ,m0) ∈ H1(Ω) × H1(Ω), find (u, q) ∈ U × L2(Ω) such that
∫ T

0

∫

Ω

[
p̂
∂u

∂t
+ p̂v · ∇u + mκ∇u · ∇p̂ + cp̂u3 − p̂ f

]
dx dt (5.7)

−

∫ T

0

∫

∂Ω

p̂ mκ∇u · n ds dt +

∫

Ω

q̂ [u(0, x) − m0] dx for all (p̂, q̂) ∈ P × L2(Ω).

Next we require that variations of Lg with respect to u vanish for all admissible
variations û ∈ U ,

δuL
g
= 0 for all û ∈ U =⇒ weak form of adjoint PDE.

This condition yields the weak form of the adjoint advection–diffusion–reaction

problem: Given (mκ,m0) ∈ H1(Ω) × H1(Ω) and (u, q) ∈ U × L2(Ω), find p ∈ P

such that
∫ T

0

∫

Ω

[
p
∂û

∂t
+ pv · ∇û + mκ∇û · ∇p + 3cpu2û + (Bu − d)Bû

]
dx dt

−

∫ T

0

∫

∂Ω

p mκ∇û · n ds dt +

∫

Ω

q û(0, x) dx for all û ∈ U . (5.8)

To recover the strong form of the adjoint problem (5.8), we integrate the time
derivative term p(∂û/∂t) by parts in time, and the advection and diffusion terms
pv ·∇û and mκ∇û ·∇p by parts in space, to remove derivatives of û; then, combining
terms, we obtain

∫ T

0

∫

Ω

û

[
−
∂p

∂t
− ∇ · (pv) − ∇ · (mκ · ∇p) + 3cpu2

+ B∗(Bu − d)

︸                                                                   ︷︷                                                                   ︸
A

]
dx dt

+

∫

Ω

û(T, x) p(T, x)
︸ ︷︷ ︸

B

dx +

∫

Ω

û(0, x) [q − p(0, x)
︸       ︷︷       ︸

C

] dx
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−

∫ T

0

∫

∂Ω

(

mκ∇û · n
)

p
︸︷︷︸

D

ds dt

+

∫ T

0

∫

∂Ω

û (pv · n + mκ∇p · n) ds dt = 0 for all û ∈ U, (5.9)

where B∗ : D → U∗ is the adjoint of the observation operator. Since û ∈ U , û

vanishes on ∂Ω × (0,T), and the last term in (5.9) vanishes. Now we proceed to
make arguments about the arbitrariness of û on different portions of the space–
time cylinder Ω × (0,T) to recover the adjoint ADR equation and its boundary and
terminal conditions (TC):

û is arbitrary in Ω × (0,T) =⇒ A = 0 in Ω × (0,T) (PDE),

û is arbitrary on Ω × {t = T} =⇒ B = 0 on Ω × {t = T} (TC),

mκ∇û · n is arbitrary on ∂Ω × (0,T) =⇒ D = 0 on ∂Ω × (0,T) (BC).

This leads to the strong form of the adjoint advection–diffusion–reaction terminal-

boundary value problem:

−
∂p

∂t
− ∇ · (pv) − ∇ · (mκ∇p) + 3cu2p = −B∗(Bu − d) in Ω × (0,T), (5.10)

p = 0 on ∂Ω × (0,T), (5.11)

p|t=T = 0 in Ω. (5.12)

Note the following properties of the adjoint problem (5.10)–(5.12), which are
shared more generally with many other systems.

• The condition (5.12) is a terminal condition (it holds at t = T), which means
the adjoint problem (5.10)–(5.12) is solved backward in time for p(t, x) from
t = T to t = 0.

• The sign of the time derivative and of the advective velocity are reversed.
The equation remains stable, since the time reversal and sign change make
the adjoint equation’s operator equivalent to that of the forward problem
(modulo the non-linear term, and for a divergence-free velocity).

• The adjoint problem is linear in the adjoint variable p, and depends non-
linearly on the state u. Thus the forward-in-time computed state is required
to backward-in-time compute the adjoint. Typically main memories of com-
puters are not sized to store the entire space–time state, and remote memories
are too slow to retrieve it at each time step. Rather than store the entire state,
one can periodically store checkpoints of the state, and then recompute the
state forward over each time interval, starting from each checkpoint, while
integrating the adjoint equation backward in time. This is the simplest of a
family of checkpointing methods; it avoids storage of the entire space–time
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state at the cost of an additional solve of the forward problem. More soph-
isticated schemes that trade off additional forward solves for reduced storage
are also possible (Griewank 1992, Griewank and Walther 2008).

• The adjoint problem inherits a homogeneous form of the forward problem’s
Dirichlet boundary condition.

• The source term for the adjoint PDE is given by B∗(Bu − d), i.e. the data
misfit mapped back to the PDE residual space. This is the only source term
for the adjoint problem. Thus, when the predicted observables fit the data,
the adjoint variable p(t, x) is identically zero.

Finally, there is one more term we have not used in (5.9), and that is the one involving
expression C. Since the initial condition was imposed weakly, û is arbitrary on
Ω × {t = 0}, which implies that C = 0 on Ω × {t = 0}. This provides an identity
for q ∈ L2(Ω), the Lagrange multiplier for the initial condition:

q(x) = p(0, x) in Ω × {t = 0}.

This identity plays no role in the adjoint problem, but we will need it in the
expression for the gradient.

At last we are in a position to derive expressions for the gradient, or rather the
Fréchet derivative of φ, which we denoteDφ, with respect to both mκ and m0. This
is given by variations of the Lagrangian Lg with respect to the diffusion coefficient
mκ ∈ H1 and the initial condition m0 ∈ H1:

δmκ
Lg
= Dmk

φ := Fréchet derivative of φ at mκ in direction m̂κ for all m̂κ ∈ H1,

δm0
Lg
= Dm0

φ := Fréchet derivative of φ at m0 in direction m̂0 for all m̂0 ∈ H1,

where m̂κ is the variation of mκ , and m̂0 is the variation of m0.
Thus, given (mκ,m0) ∈ H1×H1, the Fréchet derivative of φ(mκ,m0) with respect

to mκ in an arbitrary direction m̂κ evaluated at (mκ,m0) is given by δmκ
Lg, namely

Dmk
φ(mk,m0, m̂k)

:= βκ

∫

Ω

∇m̂κ · ∇mκ dx +

∫ T

0

∫

Ω

m̂κ∇u · ∇p dx dt for all m̂κ ∈ H1, (5.13)

where u ∈ U satisfies the forward ADR problem (5.7) and p ∈ U satisfies the adjoint
ADR problem (5.8) for given (mκ,m0). Note that in δmκ

Lg we have discarded the
term

−

∫ T

0

∫

∂Ω

m̂κ∇u · n p ds dt

due to the adjoint Dirichlet boundary condition p = 0 on ∂Ω × (0,T).
The gradient G with respect to mk is defined as the Riesz representer of the

Fréchet derivative of φ in (5.13) with respect to a chosen inner product:

(Gκ(mκ,m0), m̂κ) := Dmk
φ(mk,m0, m̂k).
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For the L2 inner product, Gκ can be extracted from the Fréchet derivative by
integrating the regularization term by parts to remove the derivative off of m̂κ ,
which yields

(Gκ(mκ,m0), m̂κ) :=

∫

Ω

m̂κ

[
−βκ ∆mκ +

∫ T

0

∇u · ∇p dt

]
dx

+

∫

∂Ω

m̂κ βκ∇mκ · n ds for all m̂κ ∈ H1.

Arguing that m̂κ is arbitrary in Ω and on ∂Ω leads to

Gκ(mκ,m0) :=




−βκ∆mκ +

∫ T

0

∇u · ∇p dt in Ω,

βκ∇mκ · n on ∂Ω.

(5.14)

The Neumann boundary term for mκ is tied to the choice of the regularization: we
assume that either mκ is known on the boundary, in which case the gradient of φ
is defined as zero on ∂Ω, or else the normal derivative of mκ vanishes. We have
made the latter choice.

Similarly (mκ,m0) ∈ H1×H1, the Fréchet derivative of φ(mκ,m0) with respect to

m0 in an arbitrary direction m̂0 evaluated at (mκ,m0), is given by δm0
Lg, namely

Dm0
φ(mk,m0, m̂0) := β0

∫

Ω

∇m̂0 · ∇m0 dx +

∫

Ω

m̂0 p(0, x) dx for all m̂0 ∈ H1,

(5.15)

where again u ∈ U satisfies the forward ADR problem (5.7) and p ∈ U satisfies the
adjoint ADR problem (5.8), for given (mκ,m0). Note that in δmκ

Lg we have made
use of the identity for the Lagrange multiplier for the initial condition, q = p(0, x).

The gradient G0 with respect to m0 is again defined as the Riesz representer of
the Fréchet derivative in (5.15). It can be extracted by integrating the regularization
term by parts and arguing that m0 is arbitrary in Ω and on ∂Ω, to obtain

G0(mκ,m0) :=

{
−βκ∆mκ + p(0, x) in Ω,

βκ∇mκ · n on ∂Ω.
(5.16)

In summary, to compute the gradients Gκ and G0 at (mκ,m0), we do the following.

1 Solve the forward ADR problem (5.7) for u, given (mκ,m0).

2 Solve the adjoint ADR problem (5.8) for p, given (mκ,m0) and u.

3 Evaluate Fréchet derivatives (5.13) and (5.15) given u, p and (mκ,m0).

A number of observations can be made about the structure of the Fréchet derivatives
(5.13) and (5.15) or their gradient counterparts (5.14) and (5.16) (to which we refer
below as the ‘gradient’, accepting some abuse of terminology in exchange for
simplicity of presentation).
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• As can be seen from the gradient expressions, the cost of computing the
gradient (beyond solving the forward problem as required by the objective)
is just solution of the adjoint ADR problem. When the forward problem is
non-linear, the additional cost of solving the (linear) adjoint problem, and
thus evaluating the gradient, may be negligible. (Here our unit of cost is
the PDE solve, since all remaining linear algebra is negligible for large-
scale problems.) What makes the adjoint ADR solve even cheaper is the
fact that the adjoint operator is just the adjoint of the forward operator, and
thus preconditioner construction or factorization are done just once for the
forward problem and are available for free in the adjoint problem. (More
discussion about amortizing forward problem computations will follow after
the Hessian discussion in Section 5.3.) So adjoint-based gradient computation
can essentially come for free in the case of a highly non-linear forward solve,
but is at most twice the cost of the forward solve when the forward problem
is linear and explicitly integrated (but see the discussion on checkpointing
below). This situation is far superior to the direct method for computing
gradients (using sensitivity equations, e.g. Gunzburger 2003), which costs as
many linearized forward PDE solves as there are parameters, nm. Moreover,
finite difference approximation of the gradient would require at least nm
non-linear forward solves, and would likely produce unreliable gradients for
a sufficiently complex forward problem. Automatic differentiation of the
computer code provides another route to the gradient; see the discussion
below after the Hessian derivation.

• As can be seen in the expressions for the gradient (5.13) or (5.14), the terms
that come from the data misfit (the ones involving the adjoint p) vanish when
p = 0, i.e. when the data misfit is zero. However, the terms in the gradient
stemming from the regularization functional (the ones involving βκ and β0)
prevent the gradients Gκ and G0 from vanishing with p = 0 for βκ, β0 > 0.
The regularization parameters act to avoid overfitting (i.e. fitting the noise)
by balancing the data misfit with the smoothing of mκ and m0.

• The gradient of the data misfit term with respect to the initial condition m0 is
given simply by the value of the adjoint variable p at time t = 0. Of course
one needs to integrate the adjoint ADR equation backward in time to arrive at
this value, which in turn requires solving the forward ADR equation, forward
in time. Were it not for the non-linear reaction term cu3, one could avoid
storage of the full space–time state u and record only the state at observation
locations, which are then used to drive the adjoint ADR equation backward in
time. This is in contrast to the gradient with respect to the diffusion coefficient
mκ , in which the state u and adjoint p are accumulated over time to form the
gradient, and thus both are required to be available at each time instant.
As mentioned above, checkpointing circumvents the storage difficulties this
causes, at the cost of an additional forward solve.
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• In the state estimation case, m0 appears linearly in the forward ADR problem
(5.2). Thus, if the forward problem is linear (c = 0), then the state u depends
linearly on m0, the adjoint p depends linearly on u and thus m0, and the gradient
(5.15), which is linear in p, depends linearly on m0. Since in this case the
gradient is linear in m0, the inverse problem (Gd

0
= 0) is linear. (Linearity

of the inverse problem is of course lost when the forward ADR problem is
non-linear.) The same cannot be said about the coefficient estimation case:
even when the forward problem is linear, the diffusion term is bilinear in u and
mκ , u thus depends on mκ non-linearly, and the inverse problem is non-linear.

• With the gradient now determined, we could solve the joint inverse problem
in the regularization framework (5.1) using the steepest descent method, by
searching in a direction (m̃i

κ, m̃
i
0
) ∈ H1 × H1 such that

{
(m̃i

κ, m̂κ)

(m̃i
0
, m̂0)

}
= −

{
(Gκ(m

i
κ,m

i
0
), m̂κ)

(G0(mi
κ,m

i
0
), m̂0)

}
for all (m̂κ, m̂0) ∈ H1 × H1, (5.17)

and then updating the parameter fields by
{
mi+1
κ

mi+1
0

}
= −

{
mi
κ + α

im̃i
κ

mi
0
+ αim̃i

0

}

for anαi obtained by a suitable line search. However, steepest descent is a poor
choice for solving inverse problems governed by PDEs, typically requiring
a discretization-dependent and very large number of iterations. Instead, the
Newton-CG method typically converges in a discretization-independent and
small number of iterations. In addition to the gradient, it requires the action
of the Hessian in a given direction. How to obtain this Hessian action for the
inverse problem (5.1) is discussed next. Of course, as explained in Section 4,
efficient methods for Laplace approximation of the Bayesian inverse solution
require the Hessian action as well.

5.3. The Hessian action

Explicit construction of the (discrete) Hessian itself is prohibitive, since it requires
as many linearized forward solves as there are parameters. Instead, as we will show
in this section, the action of the Hessian of φ in an arbitrary direction (m̃κ, m̃0) can
be computed at the cost of a pair of linearized forward/adjoint solves.

We will follow a path similar to that used for the gradient, except now the Fréchet
derivatives (5.13) and (5.15) themselves are the functions we seek to differentiate in
order to form the Hessian actions. That is, we construct a Lagrangian functionalLh

that consists of the Fréchet derivatives of φ with respect to mκ and m0 in directions
m̃κ ∈ H1 and m̃0 ∈ H1, respectively (so we replace m̂κ and m̂0 in (5.13) and (5.15)
with m̃κ and m̃0), along with residuals of the PDEs that must be satisfied to evaluate
the Fréchet derivatives. These include not only the forward ADR problem but also
the adjoint ADR problem. The forward ADR problem (5.7) is enforced in Lh via
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the Lagrange multiplier p̃ ∈ P , which replaces p in (5.7). Similarly, the adjoint
ADR problem (5.8) is enforced in Lh via the Lagrange multiplier ũ ∈ U , which
replaces û in (5.8). (We wish to retain the notation û and p̂ for variations of u and p,
respectively.) We will refer to the Lagrange multipliers ũ and p̃ as the incremental

state and the incremental adjoint variables, respectively, and below we will derive
PDEs that govern their behaviour. This superscript h in Lh denotes the role of this
Lagrangian in deriving the Hessian.

The Lagrangian for the Hessian then reads

Lh(u, p,mκ,m0, ũ, p̃, m̃κ, m̃0)

:= βκ

∫

Ω

∇m̃κ · ∇mκ dx +

∫ T

0

∫

Ω

m̃κ∇u · ∇p dx dt

︸                                                        ︷︷                                                        ︸
Fréchet derivative with respect to mκ in direction m̃κ

+ β0

∫

Ω

∇m̃0 · ∇m0 dx +

∫

Ω

m̃0 p(0, x) dx

︸                                              ︷︷                                              ︸
Fréchet derivative with respect to m0 in direction m̃0

+

∫ T

0

∫

Ω

[
p̃
∂u

∂t
+ p̃v · ∇u + mκ∇u · ∇p̃ + cp̃u3 − p̃ f

]
dx dt

︸                                                                     ︷︷                                                                     ︸
weak form of forward ADR equation

(5.18)

+

∫ T

0

∫

Ω

[
p
∂ũ

∂t
+ pv · ∇ũ + mκ∇ũ · ∇p + 3cpu2ũ + (Bu − d)Bũ

]
dx dt

︸                                                                                     ︷︷                                                                                     ︸
weak form of adjoint ADR equation

+

∫

Ω

p̃(0, x)[u(0, x) − m0] dx

︸                             ︷︷                             ︸
weak forward initial condition

+

∫

Ω

p(0, x) ũ(0, x) dx,

︸                    ︷︷                    ︸
forward initial condition from adjoint equation

where (u, p,mκ,m0, ũ, p̃, m̃κ, m̃0) ∈ U ×U ×H1 ×H1 ×U ×P ×H1 ×H1. Note that
in the expression for Lh above, we have not included the boundary terms

−

∫ T

0

∫

∂Ω

p mκ∇u · n ds dt

from the forward ADR problem (5.7) and

−

∫ T

0

∫

∂Ω

p mκ∇û · n ds dt

from the adjoint ADR problem (5.8), since we deduced that p satisfies the homo-
geneous adjoint Dirichlet boundary condition p(t, x) = 0 on ∂Ω × (0,T) while
deriving the adjoint ADR problem. As a consequence, we have updated our know-
ledge of the admissible space for p, and have written p ∈ U . Notice also that
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we have replaced q, the Lagrange multiplier for the initial condition in (5.7), with
p(0, x), as deduced in the derivation of the adjoint ADR equation.

To derive an expression for the action of the Hessian of φ with respect to mκ,m0

in a direction m̃κ, m̃0, we take variations of the Lagrangian Lh (5.18) with respect
to its arguments (u, p,mκ,m0). First, requiring variations of Lh with respect to
the adjoint p to vanish for all admissible variations p̂ ∈ P yields the so-called
incremental forward problem,

δpL
h
= 0 for all p̂ ∈ P =⇒ weak form of incremental forward problem.

The weak form of the incremental forward advection–diffusion–reaction problem

then takes the form: Given (mκ,m0) ∈ H1 × H1, (m̃κ , m̃0) ∈ H1 × H1 and u ∈ U ,
find the incremental state ũ ∈ U such that

∫ T

0

∫

Ω

[
p̂
∂ũ

∂t
+ p̂v · ∇ũ + mκ∇p̂ · ∇ũ + 3cp̂u2ũ + m̃κ∇p̂ · ∇u

]
dx dt

+

∫

Ω

p̂(0, x)[ũ(0, x) + m̃0] dx = 0 for all p̂ ∈ P . (5.19)

Integrating by parts the two diffusion terms to remove the derivatives from p̂,
invoking the condition p̂ = 0 in ∂Ω × (0,T) and arguing that p̂ is arbitrary in
Ω × (0,T) and on Ω × {t = 0}, yields the strong form of the incremental forward

advection–diffusion–reaction problem:

∂ũ

∂t
+ v · ∇ũ − ∇ · (mκ∇ũ) + 3cu2ũ = ∇ · (m̃κ∇u) in Ω × (0,T),

ũ = 0 on ∂Ω × (0,T), (5.20)

ũ|t=0 = −m̃0 in Ω.

Similarly, taking variations of Lh with respect to u ∈ U and requiring them to
vanish for all admissible variations yields the incremental adjoint problem,

δuL
h
= 0 for all û ∈ U =⇒ weak form of incremental adjoint problem.

The weak form of the incremental adjoint advection–diffusion–reaction problem

then takes the form: Given (mκ,m0) ∈ H1×H1, (m̃κ , m̃0) ∈ H1×H1, u ∈ U , p ∈ P

and ũ ∈ U , find the incremental adjoint p̃ ∈ P such that
∫ T

0

∫

Ω

[
p̃
∂û

∂t
+ p̃ v · ∇û + mκ∇û · ∇p̃ + 3cu2 p̃û + 6cpuũû

+ BûBũ + m̃κ∇û · ∇p

]
dx dt +

∫

Ω

p̃(0, x) û(0, x) = 0 for all û ∈ U . (5.21)

Integrating by parts the time derivative, advection and two diffusion terms to
remove the derivatives from û, invoking the condition û = 0 in ∂Ω × (0,T) and
arguing that û is arbitrary in Ω × (0,T) and on Ω × {t = T} yields the strong form
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of the incremental adjoint advection–diffusion–reaction problem:

−
∂ p̃

∂t
− ∇ · (p̃v) − ∇ · (mκ∇p̃) + 3cu2 p̃

= −B∗Bũ − 6cpuũ + ∇ · (m̃κ∇p) in Ω × (0,T),

p̃ = 0 on ∂Ω × (0,T),

p̃|t=T = 0 in Ω. (5.22)

We make the following observations about the incremental forward ADR prob-
lem (5.19) or (5.20), and the incremental adjoint ADR problem (5.21) or (5.22),
both defined for a given direction (m̃κ, m̃0) in which we wish to compute the Hessian
action.

• The incremental forward problem (5.20) is a linearization of the forward prob-
lem (5.2)–(5.4) with respect to both the state u and the parameters (mκ,m0),
with ũ and (m̃κ, m̃0) playing the role of the infinitesimals. Its operator is
thus the linearized forward operator or the adjoint of the adjoint operator. It
inherits the homogeneous Dirichlet condition from the forward problem, and
its source term is the (negative of the) variation of the residual of the forward
problem in the direction (m̃κ, m̃0). Even if the inverse problem is non-linear
(because the inversion parameter enters non-linearly into the forward prob-
lem), if the forward problem is linear in the state, then the incremental forward
problem has the same operator as the forward problem.

• The incremental adjoint problem (5.22) is a linearization of the adjoint prob-
lem (5.10)–(5.12) with respect to u, p and (mκ,m0), with ũ, p̃ and (m̃κ, m̃0)

as infinitesimals. Its operator is thus identical to that of the adjoint prob-
lem, since that problem is already linear in the adjoint p. The incremental
adjoint problem inherits the homogeneous Dirichlet condition from the ad-
joint problem, along with the adjoint problem’s terminal condition, leading to
p̃|t=T = 0. Its source term is given by the (negative of the) linearization of the
adjoint equation residual with respect to u and (mκ,m0). In the incremental
adjoint ADR problem (5.22), the observation operatorB appears in the source
term (as it does for the adjoint equation), as a consequence of our assumption
that the observations are acquired in Ω × (0,T). Had they been acquired on
the boundary ∂Ω or at final time t = T , the observation operator would have
shown up respectively as a source term for the Dirichlet boundary condition
or the terminal condition on p̃,

• The incremental forward problem requires the state u, while the incremental
adjoint problem requires the state u, the adjoint p and the incremental state
ũ. Since u and ũ are solved forward in time and p is solved backward in time,
a more involved checkpointing strategy will be required to solve backward-
in-time for p̃. We defer this discussion of checkpointing until after we have
derived the form of the Hessian action below.
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Finally D2φ, the second Fréchet derivative of φ, i.e. the action of the Hessian of φ
with respect to (mκ,m0) in a direction (m̃κ, m̃0) ∈ H1×H1, for all (m̂κ, m̂0) ∈ H1×H1,
can be determined from variations of the Lagrangian Lh with respect to (mκ,m0).
Since we are simultaneously inverting for the two parameter fields, the Hessian is
a block operator, that is,

H(mκ,m0) :=

[
Hκκ Hκ0

H0κ H00

]
.

Thus, given (mκ,m0), the action of the first block row ofH in the direction (m̃κ, m̃0),
evaluated at (mκ,m0), for all m̂κ , is given by variations of Lh with respect to mκ ,
yielding

δmκ
Lh := (m̂κ,Hκκ m̃κ) + (m̂κ,Hκ0 m̃0) := βκ

∫

Ω

∇m̂κ · ∇m̃κ dx

+

∫ T

0

∫

Ω

[m̂κ∇u · ∇p̃ + m̂κ∇ũ · ∇p] dx dt for all m̂κ ∈ H1. (5.23)

Similarly, the action of the second block row of H in the direction (m̃κ, m̃0),
evaluated at (mκ,m0), for all m0, is given by variations of Lh with respect to m0,
yielding

δm0
Lh := (m̂0,H0κ m̃κ) + (m̂0,H00 m̃0)

:= β0

∫

Ω

∇m̂0 · ∇m̃0 dx −

∫

Ω

m̂0 p̃(0, x) dx for all m̂0 ∈ H1. (5.24)

In the Hessian action expression (5.23) (corresponding to mκ), u satisfies the
forward ADR problem (5.5), p satisfies the adjoint ADR problem (5.8), ũ satisfies
the incremental forward ADR problem (5.19) and p̃ satisfies the incremental adjoint
problem (5.21). On the other hand, the Hessian action (5.24) (corresponding to m0)
depends only on p̃, though this variable in turn depends on the u, p and ũ through
the solution of the incremental adjoint ADR problem.

As with the gradients, ‘strong’ forms of the Hessian action in the direction
(m̃κ, m̃0) can be extracted from the second Fréchet derivatives (5.23) and (5.24),
leading to the strong form of the action of the first block row,

Hκκm̃κ +Hκ0m̃0 :=




−βκ∆m̃κ +

∫ T

0

[∇u · ∇p̃ + ∇ũ · ∇p] dt in Ω,

βκ∇m̃κ · n on ∂Ω,

(5.25)

and the strong form of the action of the second block row,

H0κm̃κ +H00m̃0 :=

{
−β0∆m̃0 + p̃(0, x) in Ω,

β0∇m̃0 · n on ∂Ω.
(5.26)

In summary, to compute the Hessian action at a point in parameter space (mκ,m0)

in the direction (m̃κ, m̃0), we do the following.
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1 Solve the forward ADR problem (5.7) for u, given (mκ,m0).

2 Solve the adjoint ADR problem (5.8) for p, given (mκ,m0) and u.

3 Solve the incremental forward ADR problem (5.19) for ũ, given (mκ,m0),
(m̃κ, m̃0) and u.

4 Solve the incremental adjoint ADR problem (5.21) for p̃, given (mκ,m0),
(m̃κ, m̃0), u, p and ũ.

5 Evaluate the Hessian actions (5.23) and (5.24), given (mκ,m0), (m̃κ, m̃0), u, p,
ũ and p̃.

In contrast with the steepest descent iteration (5.17) and with the Hessian actions
(5.23) and (5.24) now elaborated, we can now can state a Newton method for solving

the joint inverse problem (5.1): Search in a direction (m̃i
κ, m̃

i
0
) ∈ H1 ×H1 such that

{
(m̂κ,Hκκ m̃κ) + (m̂κ,Hκ0 m̃0)

(m̂0,H0κ m̃κ) + (m̂0,H00 m̃0)

}
= −

{
(Gκ(m

i
κ,m

i
0
), m̂κ)

(G0(mi
κ,m

i
0
), m̂0)

}
(5.27)

for all (m̂κ, m̂0) ∈ H1 × H1, and then update the parameter fields by
{
mi+1
κ

mi+1
0

}
= −

{
mi
κ + α

im̃i
κ

mi
0
+ αim̃i

0

}

for an αi obtained by a suitable line search.
A number of observations can be made about the Hessian action Hm̃ (5.23) and

(5.24) or its strong form counterpart (5.25) and (5.26), both in the context of the
advection–diffusion–reaction problem and for more general PDEs.

Structure of the Hessian action. The action of the first block row ((5.23) or (5.25)),
which represents a linearization of the gradient Gκ ((5.13) or (5.14)) in the direc-
tion m̃κ , resembles Gκ but with a linearized ∇u · ∇p term (integrated over time).
Similarly, the action of the second block row ((5.24) or (5.26)), which represents
a linearization of the gradient G0 in the direction m̃0 ((5.15) or (5.16)), resembles
G0. No linearization is needed in this case, since the initial condition parameter m0

appears linearly in the gradient, and the data misfit portion of the Hessian action
involves just the evaluation of p̃ at t = 0 (after integrating backward from t = T).

The compute-bound case. As mentioned above, both Hessian action expressions
depend on all four fields u, p, ũ and p̃ (explicitly for the first block row, and
implicitly through the dependence of p̃ on u, p and ũ for the second block row). If
sufficient (fast) memory is available, the simplest and most computationally efficient
approach is to store all four fields when solving the corresponding state, adjoint,
incremental state and incremental adjoint equations, and then evaluate the Hessian
actions using these fields. The forward and adjoint problems would be solved just
once to compute the gradient, and then their solution incorporated into solutions of
the incremental forward and incremental adjoint problems for each Hessian action
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required in the algorithms of Sections 3 and 4. Since the incremental problems
are linear, the cost of the two linearized PDE solves comprising the Hessian action
may be substantially less than that of the gradient, depending on the non-linearity
of the forward problem. When the forward problem is linear, all four systems have
the same operator or its adjoint, and thus the costs of the gradient and the Hessian
action are comparable (modulo the possibly more complex source terms of the
incremental problems, which involve variations of the forward PDE residual with
respect to the parameters).

The memory-bound case. However, as mentioned in the discussion of the gradient,
main memories of computers are typically not sized to store entire space–time
fields. Instead we must resort to checkpointing schemes. The most straightforward
strategy is as follows. Solve the forward (5.2)–(5.4) and incremental forward (5.20)
(which depends on u) problems simultaneously forward in time to yield u and ũ,
checkpointing them at regular intervals based on available memory. Then solve the
adjoint (5.10)–(5.12) (which depends on u) and incremental adjoint (5.22) (which
depends on u, p and ũ) problems backward in time, re-solving the forward and
incremental forward problems forward in time from their checkpoints over each
interval to supply the adjoint and incremental adjoint equations with the needed
fields u and ũ within that interval. The four fields at each time step are accumulated

over time to compute the
∫ T

0
[∇u ·∇p̃+∇ũ ·∇p] dt term in the Hessian action. On the

other hand, the term p(0, x) is directly extracted at the end of the backward-in-time
incremental adjoint solution. Storage of u and ũ over a typical time interval must
be taken into account when deciding on the frequency of checkpoints. Altogether,
two (non-linear) forward problems, two (linear) incremental forward problems,
one (linear) adjoint problem and one (linear) incremental adjoint problem must
be solved for each Hessian action. For highly non-linear forward problems, the
Hessian action will be close to twice the cost of a gradient evaluation when the
non-linear forward PDE solve dominates. For linear forward problems, it is three
times the cost (these are all asymptotic costs, measured in units of PDE solves).

The Gauss–Newton approximation. Motivated by the fact that the only source term
in the adjoint problem (5.10)–(5.12) is the data misfit B∗(Bu − d), and this adjoint
problem determines the adjoint variable p, the Gauss–Newton approximation of
the Hessian is obtained by setting p = 0 in the incremental adjoint problem and
in the Hessian action expression. When the model fits the data exactly at the
inverse solution or MAP point (as is the case for a sufficiently well-parametrized
model in the absence of data noise and model error), then quadratic convergence
to the solution can be expected (Kelley 1999). With real data, a zero data misfit is
unrealistic; instead, if the data misfit is small, we can expect fast linear convergence.
One benefit of this approximation is that the resulting Gauss–Newton Hessian is
guaranteed, with appropriate regularization, to be positive definite everywhere
(while the full Hessian is positive definite only in the vicinity of a local minimum)
(Kelley 1999, Nocedal and Wright 2006). This guarantees a descent direction, and
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global convergence with a suitable globalization strategy. However, as discussed
in Section 3, the inexact Newton-CG method terminates the inner CG iteration
early when it detects a negative curvature direction, and this allows it to maintain a
descent direction. So the Gauss–Newton approximation does not offer an advantage
in this sense. On the other hand, an advantage of the Gauss–Newton approximation
is that it avoids having to solve the adjoint problem when solving the incremental
adjoint problem (since p = 0), thereby reducing to five the number of PDE solves
required in the basic checkpointing scheme described above. Moreover, when the
forward problem is linear (in the state u), the incremental adjoint problem no longer
depends on u, and since its dependence on p is suppressed, we no longer have to
re-solve the forward problem from its checkpoints when solving the incremental
adjoint problem. This reduces the number of PDE solves per Hessian action to just
four with the Gauss–Newton approximation. Whether the trade-off of fewer PDE
solves per Hessian action is worth the reduction to linear convergence (and what
the convergence constant will be) will depend on the particular problem. Finally,
a special case is when the forward problem is both linear in the state and in the
parameter (and thus the inverse problem is linear). For example, this is the case
for the example problem (5.1)–(5.4) when the reaction term vanishes (c = 0) and
when we invert for the initial condition m0 (i.e. m̃κ = 0). In this case the Gauss–
Newton approximation is exact, since p no longer appears in the incremental adjoint
problem (5.22). However, this does not change the required number of PDE solves
in the checkpointing scheme.

Summary of PDE solves for each Hessian action. Summarizing the above, we can
distinguish the number of non-linear PDE solves (for the forward problem) and
linear PDE solves (for the adjoint, incremental forward and incremental adjoint
problem) for each Hessian action, based on the Hessian approximation and the
non-linearity of the forward problem as follows, assuming the basic checkpointing
scheme described above is employed.

• Full Hessian, non-linear time-dependent forward problem. Here, two non-

linear and four linear PDEs must be solved: two forward, two incremental
forward, one adjoint and one incremental adjoint.

• Full Hessian, linear time-dependent forward problem. In this case the forward
problem is linear, so six linear PDEs must be solved, distributed as for the
non-linear forward case above.

• Gauss–Newton Hessian, non-linear time-dependent forward problem. The
Gauss–Newton approximation eliminates the adjoint solve, so two non-linear

and three linear PDEs must be solved: two forward, two incremental forward
and one incremental adjoint.

• Gauss–Newton Hessian, linear time-dependent forward problem. In the linear
forward problem case, the incremental adjoint problem does not depend on
u, further eliminating a (non-linear) forward solve. Thus four linear PDEs
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must be solved: one forward, two incremental forward and one incremental
adjoint.

• Time-independent forward problem. In this case no checkpointing is required,
all four fields can be stored, and the Hessian action simply requires two linear

PDE solves for the forward and adjoint pair of incremental problems.

Amortizing the cost of incremental PDE solves over multiple Hessian actions. The
discussion above counts each PDE solve required across Hessian actions (for a
single Newton step) as an independent solve. However, all of these PDE solves
share the same operator or its adjoint, which is evaluated at the same point in
parameter space. (In the case of a non-linear forward problem, the linearized
forward operator at the solution is identical to the incremental forward operator,
and its adjoint identical to the adjoint and incremental adjoint operators.) Moreover,
these operators are also independent of the direction (m̃κ, m̃0) in which the Hessian
action is sought, which appears in the source terms of the forward and adjoint
incremental PDE problems. Thus there is an opportunity to exploit the commonality
of the PDE operator to greatly reduce the cost of solving the PDEs across the r

Hessian actions required by CG in Section 3 and randomized eigensolvers in
Section 4. This can be achieved in several ways. The most effective is when a
direct linear solver is viable; in this case the triangular factorization of the forward
operator can be carried out once, and the factors re-used across the multiple right-
hand sides during the triangular solves. With iterative solvers, the opportunity for
amortizing the offline computations is not as great as with triangular factorization,
but opportunities still do exist in re-using the preconditioner construction. For
domain decomposition preconditioners, the local subdomain factorizations, as well
as coarse grid factorization, can be amortized across the right-hand sides. For
multigrid preconditioners, the set-up of the coarse grid hierarchy can be re-used
(e.g. prolongation/restriction operators, coarse grid factorization, AMG hierarchy).
The opportunities for solver re-use, ranging from none to full, are distinguished by
the following problem classes.

• Explicitly integrated time-dependent forward problems. No linear solves are
executed in explicit integration, so no solver re-use is possible. There still
exist opportunities to exploit simultaneous multiple right-hand sides in the
randomized eigensolver algorithm, by blocking together a batch of right-hand
sides, which increases the ratio of flops to memory accesses and thus improves
locality and cache performance. So speed-ups can be obtained, but not at the
scale of those described below.

• Implicitly integrated time-dependent forward problems. In this case solver
re-use is possible. However, the operators of the adjoint and two incremental
PDEs, although they are linear, do depend on the state u, which varies from
time step to time step. It would be prohibitive to store the factors (or precon-
ditioner) of the time-stepping operator at each time step (we usually cannot
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store even the state at all time steps). In the special case of a linear for-

ward problem, the adjoint and two incremental operators are independent of
u, so there is just a single time-stepping operator. Thus storing its factors
or preconditioner and re-using them within the related PDE solves during
a Hessian action, and across all r Hessian actions, becomes attractive. For
a direct solver, the entire Newton step within Newton-CG, or the truncated
spectral decomposition for randomized eigensolver, comes nearly for free,
since triangular solves are asymptotically negligible relative to the factoriza-
tion. The savings are not as dramatic for iterative PDE solution, depending
on how much is invested in the preconditioner construction, but can still be
substantial for a sophisticated preconditioner.

• Time-independent forward problem. Regardless of whether the forward prob-
lem is linear or non-linear, in the time-independent case, the problem of
storing factors or preconditioners at each time step is avoided, and the single
operator factorization or preconditioner construction can be amortized over r

Hessian actions. Thus again, depending on the offline versus online cost, the
cost of the Hessian system solve or spectral decomposition can be negligible
once the gradient has been computed (which is where the factorization or
preconditioner is constructed).

Discretize-then-optimize versus optimize-then-discretize. Ultimately the expres-
sions for the gradient and Hessian presented above must be discretized for com-
puter implementation. The most natural choice is to directly discretize them using
suitably chosen bases for the field variables (u, p, mκ , m0, ũ, p̃, m̃κ , m̃0) and their
associated variations/test functions (û, p̂, m̂κ , m̂0). This transforms the infinite-
dimensional Newton iteration (5.27) into the finite-dimensional method discussed
in Section 3. However, another approach could be taken: first discretize the optim-
ization problem (5.1) and its governing initial-boundary value problem (5.2)–(5.4),
and then derive the corresponding finite-dimensional gradient and Hessian expres-
sions, employing a finite-dimensional Lagrangian approach analogous to the one
described in this section. The resulting finite-dimensional gradient and Hessian
expressions then lead to a finite-dimensional Newton iteration as in Section 3. The
former approach is often referred to as optimize-then-discretize (OTD), and the
latter as discretize-then-optimize (DTO). Unfortunately the two approaches are not
generally guaranteed to yield the same gradient and Hessian. Whether differenti-
ation and discretization commute depends on the discretization method used. For
example, use of a Galerkin or least-squares method in space and a Crank–Nicolson
or four-stage fourth-order Runge–Kutta method in time are commutative, but dis-
continuous Galerkin or SUPG in space, or backward Euler or certain Runge–Kutta
methods in time, may not be. Since a particular discretization method such as
Galerkin may not be appropriate for a given problem (e.g. one prefers a stablilized
method or discontinuous Galerkin for a convection-dominated problem), what
should one do? DTO has the advantage that it leads to a consistent gradient (and
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Hessian), that is, the gradient that is computed is the gradient of the discretized
objective function. Lack of consistency in the gradient, as can happen with OTD
in the pre-asymptotic regime, may lead to a search direction that is not a descent
direction with respect to the discretized objective, and thus lack of convergence of
the optimization solver (Gunzburger 2003, Wilcox, Stadler, Bui-Thanh and Ghattas
2015). This would seem to favour DTO. However, deriving the gradient and Hes-
sian with DTO can be tedious and error-prone, since one is differentiating through
all of the components of the discretization (e.g. for finite element methods this
includes element shape functions, numerical quadrature, imposition of boundary
conditions, assembly, etc.). In contrast, the variationally based infinite-dimensional
derivations illustrated in this section are more compact and ‘clean’ due to their dif-
ferentiating the underlying PDEs. Indeed, there exist variationally based finite
element frameworks such as FEniCS and Firedrake and inversion libraries built on
top of them such as hIPPYlib that provide the functionality for automating the vari-
ational calculus needed to derive OTD-based gradients and Hessians, making the
process even faster and less error-prone. More importantly, use of an inconsistent
discretization may lead to deterioration in rates of convergence of the DTO-based
discrete gradient to the infinite-dimensional gradient, or even non-convergence
(Collis and Heinkenschloss 2002, Heinkenschloss and Leykekhman 2010). Since
this gradient characterizes the first-order necessary condition for an optimum, this
is problematic. This would seem to favour OTD. But, as mentioned above, one
often prefers certain discretization methods that are well suited to the problem at
hand, for example stabilized methods for hyperbolic systems. This has led to a
search for discretization methods that are both ‘optimal’ for the PDE at hand as
well as gradient-consistent (e.g. in the context of stabilization methods (Becker
and Vexler 2007, Braack 2009, Leykekhman 2012, Yücel, Heinkenschloss and
Karasözen 2013) or time integration of the semi-discrete system (Hager 2000)), or
else aim to recover the lost convergence rate through such devices as regularization
(Liu and Wang 2019).

Automatic differentiation. While a large body of work on automatic differentiation
(AD) theory and tools is available to automate the DTO process (Griewank 2003,
Griewank and Walther 2008, Naumann 2012), ultimately AD differentiates the
code, as opposed to the model, meaning that it will differentiate through precon-
ditioner and solver construction and non-linear iterations. This is not necessary
for the adjoint, incremental state and incremental adjoint solves, which are linear
problems and share the same coefficient matrix or its transpose with each other
and with the linearized forward problem. Thus, while AD does deliver exact de-
rivatives, it does so at a significant increase in cost. Moreover, the development of
automatic differentiation tools for parallel distributed memory code remains chal-
lenging (Heimbach, Hill and Giering 2002, Utke et al. 2009). Nevertheless, AD
may be the only realistic option for legacy codes or those with complex internal
representations (such as look-up tables or subgrid-scale models).
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6. Case study: an inverse problem for the Antarctic ice sheet

In this section we illustrate the application of the large-scale inversion methods of
Section 3 (regularization-based) and Section 4 (Bayesian) to an inverse problem
for the flow of the Antarctic ice sheet. A brief description of this problem and
illustrative results are provided below; a more detailed presentation can be found
in Isaac et al. (2015). The mass flux of ice from the Antarctic and Greenland ice
sheets to the polar oceans is expected to be the dominant contributor to sea level rise
this century. There is great uncertainty in the projections of land ice contributions
to sea level rise from ice sheet models (Meehl et al. 2007). Satellite observational
data can be used to reduce uncertainties in the ice sheet parameters via solution of
an inverse problem. The greatest uncertainty in ice sheet models lies in the basal
friction parameter, a heterogeneous field at the base of the ice sheet representing the
resistance to sliding due to various difficult-to-model phenomena such as frictional
behaviour of the ice, roughness of the bedrock and presence of water. We seek
to infer this field from interferometric synthetic aperture radar (InSAR) satellite
observations of the ice flow velocity on the top surface of the ice sheet, along with
an ice flow model.

6.1. Forward and inverse ice flow

The ice is modelled as a creeping, viscous, incompressible, non-Newtonian fluid
with strain-rate- and temperature-dependent viscosity (Hutter 1983). For an ice
sheet occupying a three-dimensional volume Ω, with top surface Γt and basal
surface Γb, the forward problem can be stated as a non-linear Stokes problem:

−∇ · [µeff(u)(∇u + ∇uT) − Ip] = ρg in Ω, (6.1)

∇ · u = 0 in Ω, (6.2)

σn = 0 on Γt , (6.3)

u · n = 0, Tσn + exp(m)Tu = 0 on Γb, (6.4)

where u, p, ρ and µeff are the velocity, pressure, mass density and effective viscosity
of the ice, respectively, g is the gravitational acceleration, n is the outward unit
normal, T := I − n ⊗ n is the projection operator onto the tangent plane on the
boundary, and m is the log basal friction parameter. The ice rheology is shear-
thinning with stress tensor σ related to the strain rate tensor Ûε := 1

2
(∇u +∇uT) via

the constitutive law

σ := 2µeff(u) Ûε − Ip, with µeff(u) :=
1

2
A−1/n

(

1

2
tr( Ûε2)

)(1−n)/(2n)

,

where n ≥ 1 is the Glen’s flow law exponent, typically taken as 3, and A is a
flow rate factor accounting for temperature-dependence of the ice viscosity, here
represented by the Paterson–Budd relationship (Paterson and Budd 1982); µeff is
regularized to prevent the vanishing of the viscosity when Ûε = 0. In this model,
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(6.1) represents the balance of linear momentum, (6.2) the balance of mass, (6.3) the
traction-free condition on the top surface and (6.4) the basal boundary conditions.
On the basal boundary, we assume zero normal velocity, and a Robin condition in
the tangential direction. This Robin condition is a phenomenological relationship
that mediates between no-slip (exp(m) ≈ ∞) and free-slip (exp(m) ≈ 0) boundary
conditions. Thus the distribution of exp(m) along the basal surface can represent
any intermediate point between these two extremes. The challenge is that this
boundary is not directly observable; instead we must infer the basal friction from
satellite observations of the surface velocity.

To solve the inverse problem, we express the negative log posterior as

φ(m) :=
1

2
‖C
−1/2
noise(Bu(m) − d)‖2

L2(Γt )
+

1

2
‖A(m − mpr)‖

2
L2(Γb )

, (6.5)

where u is a solution of the non-linear Stokes forward problem (6.1)–(6.4) for
a given log basal friction m, Cnoise is the noise covariance operator, B is the
observation operator that restricts the velocity to the top surface of the ice sheet, d
is the InSAR-image-based top surface velocity, Cpr := A−2 is the prior covariance
operator and mpr is the prior mean of the log basal friction. The differential operator
A is defined by

A(m) :=

{
−γ∆Γm + δm in Γb,

(γ∇Γm) · ν on ∂Γb,

where∆Γ is the Laplace–Beltrami operator on the basal boundary, the roles of γ > 0

and δ > 0 are described just below (4.3), ∇Γ is the tangential gradient and ν is the
outward unit normal on ∂Γb, the boundary of Γb. This choice of prior is sufficiently
smoothing to ensure that Cpr is trace-class, leading to bounded pointwise variance
and a well-posed infinite-dimensional Bayesian inverse problem (Stuart 2010).

Expressions for the adjoint-based gradient, and incremental forward/adjoint-
based Hessian action, can be found in Isaac et al. (2015). To solve this inverse
problem numerically, all field quantities and operators are discretized by Galerkin
finite elements, resulting in 3 785 889 unknowns for each state-like field (state,
adjoint, incremental state, incremental adjoint) and 409 545 uncertain basal friction
parameters. A prior mean of zero and covariance parameters γ = 10, δ = 10−5

are chosen. A diagonal noise covariance matrix with noise given by 10% of the
observed signal is prescribed. This results in the finite-dimensional posterior

πpost(m) ∝ exp(−Φ(m)). (6.6)

6.2. The MAP point

Our first task is to find the maximum a posteriori (MAP) point,

mmap := arg min
m∈Rnm

Φ(m). (6.7)
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Table 6.1. Performance and scalability of inexact Newton-CG for Pine Island Gla-
cier inverse problem. The columns report the number of state variable unknowns
(#sdof), basal friction parameter unknowns (#pdof), Newton iterations (#N), total
and average (per Newton iteration) number of CG iterations (#CG, avgCG) and
total number of linear(ized) Stokes solves (from forward, adjoint and incremental
forward and adjoint problems) (#Stokes). The iterations are terminated when the
norm of the gradient is decreased by a factor of 105. The superlinear choice of the
forcing term is made, i.e. ηk = ‖gk ‖

0.5.

#sdof #pdof #N #CG avgCG #Stokes

95 796 10 371 42 2718 65 7031
233 834 25 295 39 2342 60 6440
848 850 91 787 39 2577 66 6856

3 372 707 364 649 39 2211 57 6193
22 570 303 1 456 225 40 1923 48 5376

We employ the inexact Newton-CG method of Section 3 to solve the optimization
problem (6.7), which is equivalent to solving a regularized inverse problem. We
begin by studying the scalability of this method for an inverse problem posed on
a portion of the Antarctic ice sheet, the region around the Pine Island Glacier.
This scalability test is run for synthetic data (contaminated by 10% additive noise).
Table 6.1 reports the computational effort as the parameter mesh is refined (along
with the mesh representing the state-like quantities). The numbers of Newton
iterations, total CG iterations and average CG iterations per Newton iteration are
shown in the table. As can be seen by the essentially constant number of iterations
as the parameter dimension increases from 10K to 1.5M, the inexact Newton-
CG method results in dimension-independent convergence. Since the top surface
mesh is refined along with the volume and parameter meshes, the InSAR image is
represented on successively finer meshes as well. Thus the results indicate scaling
independent of the data dimension, in addition to the parameter dimension.

Note that despite the extrinsic dimension of the problem (up to 1.5 million
parameters), on average just ∼ 60 CG iterations are required per Newton iteration.
This is a consequence of the relatively small intrinsic ‘information’ dimension of
the problem, i.e. the number of modes in parameter space that are informed by the
data, filtered through the prior. This is also a consequence of the inexactness of
the method that provides early termination of CG in the pre-asymptotic phase (the
superlinear choice of the forcing term, ηk = O(‖gk ‖

1/2), is taken).
Having demonstrated scalability, we next proceed to scaling up the inversion

to the full Antarctic ice sheet with its 410K basal friction parameters, using real
InSAR data from 900 satellite tracks over the period 2007–2009 (Rignot, Mouginot
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(a) (b)

(c) (d)

Figure 6.1. Inference of basal friction in Antarctic ice sheet. (a) InSAR observed
velocity field on top surface, ranging from several m/yr (dark blue) to several km/yr
(bright red). (b) MAP point of inferred basal friction field, ranging from an essen-
tially no-slip (dark blue) to an essentially free slip (dark red) boundary condition,
representing nine orders of magnitude variation in basal friction. (c) Reconstruc-
ted surface velocity. (d) Laplace approximation-based standard deviation of basal
friction, with two orders of magnitude variation from grey (low) to blue (high).
(Adapted from Isaac et al. 2015, with permission. Copyright © 2015 Elsevier.)
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and Scheuchl 2011). To find the MAP point, we minimize Φ(m) in (6.7). We
terminate after a 1000-fold reduction in the norm of the gradient of Φ, which
requires 213 Newton iterations – a reflection of the strong non-linearity of the
inverse problem. Each Newton iteration required an average of 239 CG iterations.
We shall see below (in Figure 6.2) that the prior-preconditioned data misfit Hessian
has ∼5000 data-informed eigenmodes. So 239 CG iterations is about as few as
one can hope for with regularization preconditioning. Nevertheless, finding the
MAP point entails a total of 107 578 linear(ized) Stokes solves (executed while
solving the non-linear forward problem at each Newton iteration and during the
line search, as well during adjoint, incremental forward and incremental adjoint
solves). This is quite substantial. Since a typical (non-linear Stokes) forward solve
might require ∼10 Stokes solves, the inverse problem is about 104 times as costly
as the forward problem. This is the price of inversion. Only through the use of a
parallel computer for the Stokes solves (in this case 1024 processor cores), could
the MAP point be computed in acceptable time (and even then the regularization
parameter was chosen based on the smaller Pine Island problem). So, while the
inexact Newton-CG method is observed to scale in an ideal manner, and the number
of CG iterations per Newton iteration is relatively small (239 ≪ 5000 ≪ 409 545),
improving on the regularization preconditioning described in Section 3 is an active
area of research (see the discussion at the end of Section 3).

Figure 6.1 depicts the results of inversion. Figure 6.1(a) is the InSAR observed
velocity field on the top surface of the Antarctic ice sheet, which ranges from a few
metres per year in the interior of the ice sheet (dark blue) to several kilometres per
year in the fast-flowing ice streams (dark red). Figure 6.1(b) shows the distribution
of the basal friction at the MAP point, ranging from near no-slip in the dark blue
regions to near free-slip in the dark red, which implies essentially no resistance to
basal sliding. Figure 6.1(c) depicts the reconstructed ice surface velocity (computed
by forward-propagating the inferred basal friction to the surface velocity via solution
of the forward problem), showing excellent fits to the data in ice stream regions,
which play a critical role in the sea level rise, with somewhat lower fidelity to the
data in the interior (though still within the range of the InSAR noise level). While
the MAP solution allows us to find a basal friction field that results in a good fit to
the data, it does not characterize uncertainty in the inversion, which is the subject
of the next section.

6.3. Computing the Laplace approximation of the posterior

In this section we construct the Laplace approximation of the posterior, made
tractable by the low-rank-based representation (4.8). We begin by computing the
dominant eigenvalues of the generalized eigenvalue problem (4.7), which identify
the data-informed modes of the basal friction field. A randomized generalized
eigensolver is used (Villa et al. 2021, Isaac et al. 2015). Figure 6.2 plots the dom-
inant spectrum of this eigenvalue problem for two meshes: the baseline, with 410K
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Figure 6.2. Spectrum of the generalized eigenvalue problem (4.7) on successively
refined meshes with 410K and 1.19M basal friction parameters, capturing 5000
dominant data-informed modes. Spectrum decays like j−3. (Adapted from Isaac
et al. 2015, with permission. Copyright © 2015 Elsevier.)

basal friction parameters, and a refined mesh, with 1.19M parameters. The two
spectra lie on top of each other, suggesting dimension-independence of the data-
informed modes. The eigenvalues are observed to decay like j−3. We truncate the
eigensolver at ∼5000 modes, at which point the eigenvalues have decayed by nine
orders of magnitude. Thus we retain just 0.42%–1.2% of the modes, depending
on the parameter dimension. This corresponds to an expected information gain in
the 5000th mode that is ∼0.5% of that in the first mode (ln(λ1 + 1)/ln(λ5000 + 1)).
The number of required Hessian actions is ∼5000, which corresponds to ∼10 000

linear(ized) Stokes solves in the incremental forward and incremental adjoint prob-
lems. Thus finding the MAP point (107 578 Stokes solves) is an order of magnitude
more costly than constructing the low-rank, Laplace-based approximation of the
posterior covariance matrix (10 000 Stokes solves). A parameter-to-observable
map with a lower degree of non-linearity combined with more informative data
might yield the opposite result.

Figure 6.3 displays select eigenfunctions (namely 1, 7, 10, 100, 1000, 4000)
corresponding to dominant eigenvalues of Figure 6.2. As can be seen, these
dominant eigenfunctions start off very smooth, and become more oscillatory as
the eigenvalues decrease in magnitude, and as a result the information gain in
the eigenfunctions decreases. The decreasing length scales in the eigenfunctions
corresponding to smaller eigenvalues reflect the smaller feature sizes that can be
inferred from the data in that eigenfunction direction in parameter space. But there
are diminishing returns: by the 5000th eigenfunction, the information provided by
the (noisy) data is dominated by the prior information, and so the inference of these
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3. Eigenfunctions 1 (a), 7 (b), 10 (c), 100 (d), 1000 (e) and 4000 (f) of
the generalized eigenvalue problem (4.7). (Adapted from Isaac et al. 2015, with
permission. Copyright © 2015 Elsevier.)
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smallest scales becomes unreliable and the spectrum is truncated in favour of the
prior.

Note that the dominant eigenfunctions are (relatively) smooth, and thus once
the mesh is sufficiently fine to resolve them, further mesh refinement (and thus
a higher-dimensional parameter space) does not permit the extraction of addi-
tional information from the data. Hence the inverse problem is effectively finite-
dimensional, despite the infinite-dimensional parameter space, and the effectively
infinite-dimensional data space (the satellite images are represented on a much finer
grid than the velocity field).

The eigenfunctions in Figure 6.3 are seen to be highly heterogeneous and loc-
alized; the smallest basal friction length scales occur beneath the fast-flowing ice
streams nearer to the coast, with intermediate length scales in the catchments of
these ice streams, and the largest length scales in the interior of the continent. The
eigenfunctions can also be seen to be highly anisotropic: zooming into the ice
stream regions in the electronic version of the figure, one can see oscillations in
the basal friction developing in the streamwise directions of the ice streams in the
higher modes, while the spanwise directions remain smooth. In contrast, the eigen-
functions are essentially flat in the interior for most of the dominant eigenvalues,
and only in the highest of the dominant modes does one begin to see their support
penetrating into the interior of the ice sheet. Thus most of the information gained
from the data about the basal friction, as indicated by the dominant eigenfunctions,
is restricted to the coastal regions, and particularly along the base of fast-flowing
ice streams.

These highly heterogeneous, localized and anisotropic dominant eigenfunctions
suggest that a Karhunen–Loève approximation – which retains the smoothest eigen-
functions of the prior covariance Cpr – would be a poor choice for a parameter
reduction strategy, since these modes amount to the smoothest modes of the (homo-
geneous, isotropic) Laplacian in the usual case of constant γ and δ. In contrast, the
dominant eigenfunctions of the generalized eigenvalue problem (4.7) are informed
not just by prior information but importantly also by the parameter-to-observable
map. They are the modes that are both observable and consistent with prior know-
ledge, with the balance between the two mediated by the noise in the data, the
strength of the prior knowledge, and the decay rate of the singular values of the
linearized map (which in turn depends on the observation operator, how the para-
meter field enters into the forward PDE, and the smoothing nature of the forward
problem). The generalized eigenvalue problem (4.7) combines all of these factors
together, and its dominant eigenfunctions describe the intrinsic low-dimensional
subspace in which we learn from the data.

Finally, Figure 6.1(d) displays the posterior standard deviation of the basal fric-
tion field, which is taken as the diagonal of the posterior covariance based on
the Laplace approximation. Fully exploring the O(105–106)-dimensional posterior
using state-of-the-art MCMC methods is prohibitive for this problem: the non-
linear Stokes forward problem alone requires ∼1 minute on 1024 cores, and many
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millions of forward solves would be required. Instead, the Laplace approximation
is constructed here at the cost of ∼104 forward solves. Experience with a model
two-dimensional ice sheet inverse problem suggests that this approximation may
be a reasonable one (Petra et al. 2014). The standard deviation field in Figure 6.1
indicates two orders of magnitude variation in σ, ranging from high values in
the interior of the ice sheet (blue) to the lowest values in ice streams (grey) and
intermediate values in their catchments (white). Thus, while the inference of the
basal friction in the interior is unreliable, significantly higher credibility can be
assigned to the inference of the basal friction in the fast-flowing ice streams and
their catchment regions nearer to the coast – which are the regions in which the
basal friction has the greatest influence on ice mass flux into the ocean, and thus
potential sea level rise (Joughin, Alley and Holland 2012).

In summary, this case study of a large-scale, complex ice sheet flow inverse
problem has demonstrated that the combination of an inexact Newton-CG method
for finding the MAP point – providing dimension-independent Newton iterations –
with an effectively low-dimensional manifold in which the data inform the model
parameters – providing dimension-independence of both CG iterations and pos-
terior covariance construction – leads to a scalable method that can tractably infer
the O(105–106)-dimensional basal friction field and quantify its uncertainty under
the Laplace approximation. Nevertheless, despite the resulting ability to solve
the inverse problem at a cost, measured in forward problem solves, that scales
independent of the parameter and data dimensions, the number of (equivalent)
non-linear Stokes forward solves, ∼104, remains large. This is due to both the
non-linearity of the inverse problem and the fact that the number of data-informed
modes in parameter space, while just a fraction of the overall parameter dimension
(∼1%), remains large (5000) in absolute terms. This motivates research in methods
that can tame the non-linearities, such as non-linear preconditioning (e.g. Cai and
Keyes 2002) and full space PDE-constrained optimization methods (e.g. Biros and
Ghattas 2005a,b), as well as methods that can better tame the Hessian in the data-
informed regime, such as more effective preconditioners for, and more compact
representations of, the Hessian (see the references at the end of Section 3).

PART THREE

Model reduction

In Part 3 we approach the task of exploitation of system structure from a comple-
mentary viewpoint and consider the task of deriving a computationally efficient
surrogate model. Many different surrogate modelling methods exist. For dec-
ades the engineering and science communities have used surrogate models – also
called metamodels and emulators – to reduce computational burden in applications
such as design, control, optimization and uncertainty quantification. Examples
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include polynomial response surfaces (Kaufman et al. 1996, Giunta et al. 1997,
Venter, Haftka and Starnes 1998, Eldred, Giunta and Collis 2004), radial basis
functions (Wild, Regis and Shoemaker 2008), Gaussian process models (Kennedy
and O’Hagan 2001, Rasmussen and Williams 2006), Kriging models (Simpson,
Mauery, Korte and Mistree 2001) and stochastic spectral approximations (Ghanem
and Spanos 1991, Xiu and Karniadakis 2002, Marzouk, Najm and Rahn 2007).
Surrogate models are receiving increased attention with the growing popularity of
machine learning.

Here we focus on reduced-order models as one specific class of surrogate models.
Reduced-order modelling differs from other surrogate modelling approaches in that
it explicitly appeals to the structure of the physical problem being modelled. Just as
in the inverse problem formulations of Part 2, this structure manifests through the
governing equations and the mathematical properties of their operators. Reduced-
order modelling embeds this structure in the constructed surrogate models.

We begin Part 3 by presenting the projection framework of model reduction
in Section 7. We discuss its mathematical properties as a general framework
for deriving surrogate models and present reduced models derived using proper
orthogonal decomposition combined with Galerkin projection for time-dependent
and parametrized systems. Then in Section 8 we show how this classical projection
viewpoint paves the way for a class of structure-preserving non-intrusive surrogate
modelling approaches, and we present Operator Inference – where the task of
deriving a reduced model is viewed as an inverse problem in which we infer the
reduced operators – as a bridge between model reduction and machine learning.
We close Part 3 with a discussion of the state of the art and open challenges in
non-linear model reduction in Section 9.

7. Projection-based model reduction

This section presents the general mathematical framework for low-dimensional
approximation of continuous and semi-discrete systems via projection onto a low-
dimensional subspace. As a concrete example, we present computation of the low-
dimensional subspace using the proper orthogonal decomposition (POD) method.
We discuss approaches for embedding parametric dependence into projection-based
reduced models, which is essential for applications in inverse problems, optimiza-
tion and uncertainty quantification where the reduced model will be invoked over
a range of parameter values. We close this section by reminding the reader that the
availability of error estimates for a large class of problems is one of the advantages
of projection-based reduced models over other data-driven surrogate models.

7.1. Low-dimensional approximation via projection

Projection is broadly applicable to linear and non-linear systems, but in order
to highlight its structure-exploiting properties, let us begin with a linear system.
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Consider the linear PDE defined on the domain Ω and time horizon (0, t f ),

∂u

∂t
= A(u) in Ω × (0, t f ), (7.1)

with appropriate boundary and initial conditions, and where u(x, t) ∈ U is the state
at spatial location x and time t, and A : U → U∗ is the linear PDE operator with U∗

the dual of U . The projection-based reduced model of (7.1) is defined by restricting
the state to lie in a rank r subspace Ur ⊂ U . Define r basis vectors v1(x), . . . , vr (x)

that span Ur and that form an orthonormal set, i.e. 〈vi, vj〉 = δi j , where δi j denotes
the Kronecker delta and 〈·〉 the appropriate inner product or duality pairing. Then

u(x, t) ≈

r∑

j=1

vj(x)û j(t), (7.2)

where û j , j = 1, . . . , r are the reduced model’s coefficients of expansion in the basis
vj . Substituting the approximation (7.2) into the governing equation (7.1) yields
the residual

r(x, t) =

r∑

j=1

vj

dû j

dt
−

r∑

j=1

A(vj)û j . (7.3)

We will use a Galerkin projection to define the reduced model (noting that Petrov–
Galerkin projection is also possible and is desirable in some settings), meaning that
we impose the condition 〈r, vi〉 = 0, i = 1, . . . , r . This yields the reduced model

dûi

dt
=

r∑

j=1

Âi j û j, i = 1, . . . , r, (7.4)

where Âi j = 〈vi,A(vj)〉 is the reduced linear operator, which can be precomputed
once the basis is defined.

The preservation of linear structure in the reduced model can be seen by compar-
ing (7.1) and (7.4). This structure preservation is not just limited to linear systems.
Consider the linear-quadratic PDE

∂u

∂t
= A(u) +H(u, u) in Ω × (0, t f ), (7.5)

where we now introduce the bilinear operator H : U × U → U∗ which represents
quadratic terms in the PDE such as u2 and u(∂u/∂x). As in the linear case, we
restrict the state to lie in a rank r subspace Ur ⊂ U and employ Galerkin projection.
This leads to the reduced model

dûi

dt
=

r∑

j=1

Âi j û j +

r∑

j=1

r∑

k=1

Ĥi jk û j ûk, i = 1, . . . , r, (7.6)

where Ĥi jk = 〈vi,H(vj, vk)〉 is the reduced quadratic operator. Comparing (7.5)
and (7.6), again we see the preservation of the linear-quadratic structure in the
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reduced model. Furthermore, the reduced linear and quadratic operators can be
precomputed, which will lead to efficient solution of the reduced model. Following
similar steps for systems with higher-order polynomial terms shows that structure
preservation holds similarly for cubic and higher-order polynomial terms.

This preservation of polynomial structure has been well known for decades in
the projection-based model reduction community. Indeed, many of the earliest
reduced-order modelling papers exploited this property. For example, Graham,
Peraire and Tang (1999) exploited the quadratic structure of the incompressible
Navier–Stokes equations to derive a POD reduced model. Even though well known,
the projection’s preservation of polynomial structure has arguably become under-
appreciated in the face of more recent work for handling general non-linear terms.
Yet the preservation of structure is fundamental, because this structure directly
reflects the underlying physics – such as the linear form of a diffusion term or the
quadratic form of the convective transport of momentum. And so while general-
purpose non-linear approximations are needed, and have been developed as we
discuss in Section 9, the structure of the underlying governing physics equations
should not be overlooked when seeking a physics-informed approximation. We
return to this discussion in Section 9.3.

7.2. General projection framework for semi-discrete systems

We now present the general projection framework in the ODE setting, which directly
parallels the PDE setting just presented. Consider the linear system of ODEs

du

dt
= Au, u(0) = u0, (7.7)

and the linear-quadratic system of ODEs

du

dt
= Au +H(u ⊗ u), u(0) = u0, (7.8)

where u(t) ∈ Rn is the state at time t, with dimension n, and u0 ∈ R
n is the

specified initial condition. A ∈ Rn×n is the linear ODE operator and H ∈ Rn
2×n

is the quadratic ODE operator. Here ⊗ denotes the Kronecker product (following
the notation in Kolda and Bader 2009), which for an n-dimensional column vector
u = [u1, u2, . . . , un]

T is given by

u ⊗ u = [u2
1, u1u2, . . . , u1un, u2u1, u

2
2, . . . , u2un, . . . , u

2
n] ∈ R

n2

.

In some applications, the governing equations manifest directly as systems of
ODEs. In many cases of interest, the systems (7.7) and (7.8) result from spatial
discretization of PDEs of the general form (7.1) and (7.5), respectively. In such
cases, the state dimension is large, typically ranging from n ∼ 103 to n ∼ 109.
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To form reduced models of (7.7) and (7.8), the state is approximated in an
r-dimensional orthonormal basis,

u(t) ≈

r∑

j=1

vj û j(t) = Vû(t), (7.9)

where vj ∈ R
n is the jth basis vector and V ∈ Rn×r is the basis matrix that has

vj as its jth column. The column space of V defines an r-dimensional subspace
of the full state space Rn. The reduced state û(t) ∈ Rr represents the coefficients
of expansion in the basis V. Using a Galerkin projection, we obtain the reduced
model of (7.7) as

dû

dt
= Âû, û(0) = VTu0, (7.10)

and the reduced model of (7.8) as

dû

dt
= Âû + Ĥ(û ⊗ û), û(0) = VTu0, (7.11)

where Â ∈ Rr×r and Ĥ ∈ Rr×r
2

are the reduced-order operators, defined by
projection of the full-order operators onto the subspace defined by V:

Â = VTAV, (7.12)

Ĥ = VTH(V ⊙ V). (7.13)

Here ⊙ denotes the Khatri–Rao product of two matrices (which is also known as the
column-wise Kronecker product; see Kolda and Bader 2009), which for a matrix
V = [v1 v2 · · · vr ] ∈ R

n×r is given by

V ⊙ V = [v1 ⊗ v1 v2 ⊗ v2 · · · vr ⊗ vr ] ∈ R
n2×k .

The reduced-order operators (7.12) and (7.13) can be precomputed, so that solu-
tion of the reduced models (7.10) and (7.11) does not scale with the full-order
dimension n.

The ODE setting clearly shows the preservation of linear structure in the reduced
model (7.10) of (7.7) and quadratic structure in the reduced model (7.11) of (7.8).
The parallel definition of the reduced models between continuous and semi-discrete
setting can also be seen, for example, in the analogous definitions of Âi j in (7.4) and
Â in (7.12), and of Ĥi jk in (7.6) and Ĥ in (7.13). For the methods and algorithms
presented in the remainder of Part 3, we will work with the semi-discrete ODE form
because its linear algebraic form lends a more compact presentation. However, it is
important to note that the approaches apply to systems arising from PDEs; indeed,
large-scale simulations of PDEs are the most common target for model reduction.

7.3. Proper orthogonal decomposition

Proper orthogonal decomposition (POD) (Lumley 1967, Sirovich 1987, Berkooz,
Holmes and Lumley 1993), which also goes by the names Karhunen–Loève
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expansions in stochastic process modelling (Loève 1955, Kosambi 1943), principal
component analysis (PCA) in statistical analysis (Hotelling 1933, Jolliffe 2005) and
empirical orthogonal eigenfunctions in atmospheric modelling (North, Bell, Ca-
halan and Moeng 1982), is one method to define the basis matrix V. The POD basis
is computed empirically from training data in the form of system solutions, and
thus applies to both linear and non-linear systems. POD can be applied over both
time-varying and parametrically varying conditions. To compute the POD basis,
consider a set of ns snapshots, u1, u2, . . . , uns , which are state solutions computed
at different instants in time and/or different parameter values, with uj ∈ R

n denot-
ing the jth snapshot. Define the snapshot matrix U ∈ Rn×ns whose jth column is
the snapshot uj . The singular values of U are denoted σ1 ≥ σ2 ≥ · · · ≥ σns ≥ 0.
The POD basis vectors are the left singular vectors of U corresponding to the r

largest singular values. This yields an orthonormal basis, i.e. VTV = I.
The POD basis minimizes the least-squares error of snapshot reconstruction.

That is, over all r-dimensional orthonormal basis choices Ṽ, the POD basis is
given by

V = arg min
Ṽ∈Rn×r

ṼTṼ=I

‖U − ṼṼTU‖2F = arg min
Ṽ∈Rn×r

ṼTṼ=I

ns∑

i=1

‖ui − ṼṼTui ‖
2
2 . (7.14)

The familiar singular value decomposition result yields the snapshot reconstruction
error as being the sum of the squares of the singular values corresponding to those
left singular vectors not included in the POD basis,

‖U − VVTU‖2F =

ns∑

i=1

‖ui − VVTui ‖
2
2 =

ns∑

i=r+1

σ2
i . (7.15)

The size of the POD basis is thus typically chosen using the singular values as a
guide. A typical approach is to choose r so that

∑r
i=1 σ

2
i∑ns

i=1
σ2
i

> κ, (7.16)

where κ is a user-specified tolerance, often taken to be 99.9% or greater (see e.g.

Algorithm 1). The left-hand side of (7.16) is often referred to as the ‘relative
cumulative energy’ captured by the r POD modes.

The performance of POD reduced models depends heavily on the choice of
the snapshots. In any given setting, the snapshots should be representative of the
conditions over which the reduced model is expected to issue predictions. For time-
dependent systems, the snapshots are typically generated by sampling trajectories
generated by different initial conditions and/or different forcing scenarios. In
the case of a parametrized system (discussed further in Section 7.4), the snapshots
must be generated over different parameter values. For problems where the varying
condition (parameter, initial condition, forcing) is represented with low dimension
and the variation in dynamics is relatively benign, it is typically tractable to use
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Algorithm 1 Computing the POD basis.

Inputs: snapshots U ∈ Rn×ns , POD cumulative energy threshold κ

1: Centre and/or scale snapshots {Especially important if each snapshot contains
multiple physical quantities}

2: Compute the SVD of U

3: r ← choose r such that (
∑r

i=1 σ
2
i
)/(

∑ns
i=1

σ2
i
) > κ {Determine the dimension

of the POD basis}
4: V← the r leading left singular vectors of U {Compute the POD basis}
5: return V, r

brute-force sampling (e.g. grid sampling) over the desired range of conditions. For
higher-dimensional and/or more complex problems, it is essential to use a tailored
snapshot selection strategy. For parametrized problems, the common approach is
adaptive greedy sampling, discussed in Section 7.4. Kunisch and Volkwein (2010)
considered optimal snapshot selection for non-parametric POD, where the time
locations of snapshots are chosen to minimize the error between the POD solution
and the trajectory of the original dynamical system. For initial condition problems,
Bashir et al. (2008) showed that the eigenvectors of the Hessian yield an optimal
POD sampling strategy.

Another practical consideration is that of scaling. In practice, one must pay
close attention to the scaling of the snapshots in order to obtain an adequate basis.
Typically the snapshot set is centred (i.e. shifted to have zero mean). This cen-
tering may be combined with particular solutions to account for inhomogeneous
boundary conditions and other imposed conditions (Swischuk, Mainini, Peher-
storfer and Willcox 2019). Preprocessing of the snapshot set to address scaling
and to extract particular solutions is often overlooked, but is an essential element
of achieving accurate and efficient POD representations. Scaling is particularly
important when the snapshots contain multiple physical variables (e.g. velocity,
pressure, temperature, concentration).

Extended versions of POD expand the snapshot set to include adjoint solutions
(Lall, Marsden and Glavaski 2002, Willcox and Peraire 2002), sensitivity inform-
ation (Hinze and Volkwein 2008, Hay, Borggaard and Pelletier 2009) and time
derivatives of the states (Kunisch and Volkwein 2001). Iliescu and Wang (2014)
showed that including snapshots of the time derivatives when computing the POD
basis (as proposed in Kunisch and Volkwein 2001) is needed in order to achieve
an optimal convergence rate of the error of the reduced model with respect to
the number of POD basis functions. The gappy POD is another variant of POD
that deals with so-called gappy (incomplete/missing) data. The gappy POD was
introduced by Everson and Sirovich (1995) for facial image reconstruction and
was first applied to PDEs in the aerodynamic modelling examples of Bui-Thanh,
Damodaran and Willcox (2004).

https://doi.org/10.1017/S0962492921000064 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000064


Learning physics-based models from data 513

Other methods exist to compute the basis V (see Benner, Gugercin and Willcox
2015 for a review), most notably the reduced basis method (which is similar to
POD but with a prescribed adaptive approach for generating snapshots), rational
interpolation methods and balanced truncation. We summarize here only POD,
because it is the most common, flexible and easily applied of the methods, but note
that in some settings there may be advantages to using the other basis computation
methods. In particular, Antoulas, Beattie and Gugercin (2020) provided an in-depth
presentation of the state of the art in rational interpolation methods, a powerful set
of approaches with deep connections to system-theoretic approximation methods.

7.4. General projection framework for parametrized systems

Parametric model reduction considers the dependence of the governing equations
on one or more parameters and reflects this dependence explicitly in the reduced
model. This is important for design, uncertainty quantification, control and in-
version applications, where the reduced model will be invoked over a range of
parameter values. Benner et al. (2015) surveyed parametric model reduction meth-
ods in depth; here we discuss the two main challenges in creating a parametrized
reduced model. The first challenge is to expose the parametric dependence in the
reduced model in a way that leads to efficient computations. The second chal-
lenge is to ensure that the reduced-order representation is sufficiently rich to yield
accurate predictions over the desired range of parameter values.

To see how the first challenge manifests, consider first the linear system with
dependence on nm parameters m ∈ Rnm ,

du

dt
= A(m) u, u(0) = u0. (7.17)

This system might arise, for example, from semi-discretization of the paramet-
rized PDE ∂u/∂t = A(u; m), where m could be a spatial field, m(x), or a finite-
dimensional vector containing multiple parameters. The state u(t; m) is now a
function of both time t and discretized parameters m. Following the same steps as
in Section 7.2, the Galerkin-reduced model of (7.17) is

dû

dt
= VTA(m)V û, û(0) = VTu0. (7.18)

Equation (7.18) reveals the first challenge of parametric model reduction: in the
non-parametric case, the reduced operator Â = VTAV could be precomputed,
avoiding O(n) computations in the solution of the reduced model; however, this
is not true for the parametric case without additional treatment because of the
dependence on m.

As discussed in Benner et al. (2015), there are several strategies to address this
challenge. In many cases, the governing equations admit an affine representation
of the system’s dependence on the parameters m. In such cases, the parametrized
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linear system (7.17) may be written as

du

dt
=

na∑

i=1

ϑi(m)Ai u (7.19)

and a parametrized quadratic system as

du

dt
=

na∑

i=1

ϑi(m)Ai u +

nh∑

i=1

̟i(m)Hi(u ⊗ u), (7.20)

where there are na terms in the affine representation of A(m) and nh terms in
the affine representation of H(m). The scalar functions ϑi(m), i = 1, . . . , na

and ̟i(m), i = 1, . . . , nh capture the parametric dependence, and the operators
Ai ∈ R

n×n, i = 1, . . . , na and Hi ∈ R
n2×n, i = 1, . . . , nh are parameter-independent.

The reduced models of (7.19) and (7.20) are respectively

dû

dt
=

na∑

i=1

ϑi(m)Âi û (7.21)

and

dû

dt
=

na∑

i=1

ϑi(m)Âi û +

nh∑

i=1

̟i(m)Ĥi(û ⊗ û), (7.22)

where the reduced operators Âi = VTAiV ∈ R
r×r and Ĥi = VTHi(V ⊙V) ∈ Rr×r

2

can be precomputed, meaning that efficient solution of the parametric reduced
model is recovered.

If the operators of the governing equations do not directly admit an affine para-
metric representation, it can be introduced approximately as in Drohmann, Haas-
donk and Ohlberger (2012) for PDE operators using the empirical interpolation
method (EIM) of Barrault, Maday, Nguyen and Patera (2004) or as in Benner et al.

(2015) for ODE operators using the discrete empirical interpolation method (DEIM)
of Chaturantabut and Sorensen (2010). An alternative strategy is to precompute
multiple reduced models at selected parameter points and then interpolate these
reduced models to issue predictions at a new parameter point (Amsallem, Cortial,
Carlberg and Farhat 2009, Degroote, Vierendeels and Willcox 2010, Lohmann and
Eid 2009, Panzer, Mohring, Eid and Lohmann 2010, Amsallem and Farhat 2011).

The second main challenge to be addressed in parametric model reduction is
ensuring that the reduced-order basis is sufficiently rich so that its span allows the
projected model to yield accurate predictions over the desired range of parameter
values. One approach is to compute a global basis with span encompassing the
desired range of dynamics. This can be achieved, for example, using a POD basis
where the snapshots input to Algorithm 1 are sampled in both time and parameter
space. For systems with just one or two parameters, it may be feasible to generate
these snapshots in a single pass by dense sampling over the entire parameter space.
For higher-dimensional parameters, it is essential to use some kind of intelligent
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Algorithm 2 Greedy sampling for a linear system with affine parametric depen-
dence.
Inputs: Initial snapshot set U ∈ Rn×ns , POD cumulative energy threshold κ, desired
reduced model accuracy level ε̄, full-order model matrices {Ai ∈ R

n×n}i=1,...,na

(or function computing action of Ai on a vector)

1: V← compute the POD basis using Algorithm 1 {Initialize the POD basis}
2: Âi ← VTAiV, i = 1, . . . , na {Initialize the reduced model (7.21)}
3: m∗ ← the parameter value for which the reduced model has maximum in-

dicated error {Worst-case prediction of the current reduced model using an
error indicator or error estimator, found using grid search (low-dimensional
parameters) or scalable optimization (nm > 3)}

4: ε ← reduced model error evaluated at m∗

5: while ε > ε̄ do

6: U← augment U with new snapshots evaluated at m∗

7: V ← compute the POD basis using Algorithm 1 {Update the POD basis
(can be done with incremental updates)}

8: Âi ← VTAiV, i = 1, . . . , na {Update the reduced model}
9: m∗ ← the parameter value for which the reduced model has maximum

indicated error
10: ε ← reduced model error evaluated at m∗

11: end while

12: return V, {Âi}i=1,...,na

and/or adaptive sampling strategy. For example, greedy sampling (Prud’homme
et al. 2002, Rozza, Huynh and Patera 2008) is a common method for adaptive
selection of snapshots using an error estimator or error indicator to identify the
next sample location in parameter space. As the number of parameters increases, it
becomes essential to combine greedy sampling with a scalable optimization search
method as in Bui-Thanh, Willcox and Ghattas (2008a).

Algorithm 2 summarizes the adaptive greedy parameter sampling approach for a
linear system with affine parametric dependence, which has full-order model (7.19)
and reduced model (7.21). Figure 7.1 shows model reduction results for a system
of this form from Bui-Thanh, Willcox and Ghattas (2008b) for forced response of a
subsonic rotor blade undergoing rigid body motions. The problem is characterized
by nm = 10 parameters representing blade geometric variations that arise from
manufacturing variability. The parametric reduced model is derived using greedy
parameter sampling via the scalable optimization formulation of Bui-Thanh et al.

(2008a). The histograms show representative results of the work per cycle for
5000 randomly sampled geometries computed using a linearized discontinuous
Galerkin computational fluid dynamics (CFD) analysis (n = 103 008 dof (degrees
of freedom)) and a parametric POD reduced model (r = 307 dof).
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(a)

(b)

(c)

Figure 7.1. Model reduction results for compressor blade example of Bui-Thanh
et al. (2008b). (a) Representative CFD pressure fields. (b) Histograms of work
per cycle computed over 5000 different blade geometries using linearized CFD
(n = 103 008 dof) and a parametric POD reduced model (r = 307 dof). (c) Close-
up of one sampled blade geometry compared to the nominal blade.

An alternative to a global basis is to employ multiple local bases throughout
the parameter space. The localized strategy may be particularly appropriate as
the number of parameters increases, since a single global basis may require the
reduced dimension r to be large, which compromises the computational efficiency
of the reduced model. As discussed in detail in Benner et al. (2015), there are
a number of strategies to achieve localized reduced models. These strategies
include interpolation of localized bases (Amsallem and Farhat 2008), interpolation
of localized reduced model operators (Amsallem et al. 2009, Degroote et al. 2010,
Lohmann and Eid 2009, Panzer et al. 2010, Amsallem and Farhat 2011), adaptive
parameter domain partitioning (Haasdonk, Dihlmann and Ohlberger 2011, Eftang
and Stamm 2012), partitioning into multiple reduced models by clustering and
classification (Amsallem, Zahr and Farhat 2012, Peherstorfer, Butnaru, Willcox
and Bungartz 2014) and adaptive updating of the reduced model through trust
region model management (Arian, Fahl and Sachs 2002, Qian, Grepl, Veroy and
Willcox 2017). We do not attempt to describe all these approaches here, but rather
point the reader to Section 4 of Benner et al. (2015) for a comparative discussion.
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7.5. Model generalization, error estimates, stability guarantees and other metrics

of success

Surrogate modelling, whether achieved through projection-based model reduc-
tion, machine learning or response surface fitting, typically leads to models that
provide significant computational savings. But how good are the surrogate mod-
els? Can they be used with confidence, especially in settings where predictions
inform high-consequence decisions? In machine learning this notion is referred
to as generalization: the ability of the model to issue predictions for previously
unseen data. In computational science this notion is often referred to as predict-

ive modelling or predictive computational science, defined in Oden, Babuška and
Faghihi (2017) as ‘the scientific discipline concerned with assessing the predictab-
ility of mathematical and computational models of physical events in the presence
of uncertainties’.

The availability of rigorous error bounds or error estimates for a large class
of systems is one advantage of projection-based reduced models over other sur-
rogate modelling approaches. These bounds/estimators depend on exploiting the
properties of the underlying system being approximated (e.g. the properties of the
operatorsA(u) and A) combined with the properties of the projection-based approx-
imation. The reduced basis methodology in particular has had a strong emphasis
on the derivation of a posteriori error estimates, including for elliptic (Patera and
Rozza 2006, Rozza et al. 2008, Veroy and Patera 2005, Veroy, Prud’homme, Rovas
and Patera 2003), parabolic (Grepl and Patera 2005) and hyperbolic (Haasdonk
and Ohlberger 2008) parametrized PDEs. These approaches have paved the way to
error estimation for a broader class of problems, including general linear dynam-
ical systems (Haasdonk and Ohlberger 2011), parametrized saddle point problems
(Gerner and Veroy 2012), variational inequalities (Zhang, Bader and Veroy 2016)
and 4D-Var data assimilation (Kaercher, Boyaval, Grepl and Veroy 2018). Key
in all of these works is that the error estimates are computed without recourse to
the full model – that is, they can be computed cheaply so that the reduced model
can rapidly issue both predictions and a rigorous estimate of the quality of those
predictions.

8. Non-intrusive model reduction

The vast majority of model reduction methods are intrusive, but there is grow-
ing recognition of the importance of non-intrusive methods. This section first
defines the properties of intrusive, non-intrusive and black-box methods. We then
present Operator Inference (OpInf), a non-intrusive projection-based model reduc-
tion method. We close this section with a discussion of the relationship between
model reduction and machine learning.
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8.1. Non-intrusive versus black-box methods

Consider the task of deriving a reduced model of a particular high-fidelity model.
The high-fidelity model comprises a problem definition that includes the domain,
governing equations, parameters, boundary conditions, initial conditions, etc. and
a numerical implementation that solves the specified problem. The numerical
implementation of the high-fidelity model is sometimes referred to as the full-order
model.

In the context of model reduction, we put forward the following definitions.

• An intrusive method computes the reduced model by applying the basis
expansions and projections to the operators implemented in the full-order
model. For example, computing the reduced operators Â and Ĥ in (7.12) and
(7.13) requires access to the full-order operators A and H (or access to their
actions on a vector). This typically requires intrusive access to the source
code that implements the full-order model.

• A black-box method computes the reduced model without using a priori or
explicit knowledge of the form of the high-fidelity problem definition or its
numerical implementation. A black-box method operates on outputs of the
full-order model, but does not require access to the full-order operators and
does not use knowledge of their particular structure. For example, one black-
box formulation is to fit a generic surrogate model (e.g. a polynomial response
surface or a neural network) to the POD coefficients of sampled snapshot data
(Ly and Tran 2001, Mainini and Willcox 2015, Swischuk et al. 2019, Wang,
Hesthaven and Ray 2019).

• A non-intrusive method computes the reduced model using outputs of the
full-order model but without access to the full-order operators (or to their
action on a vector). Black-box methods are non-intrusive, but not all non-
intrusive methods are necessarily black-box: a non-intrusive method can
exploit knowledge of the high-fidelity problem definition and the full-order
model structure, even though it does not access the full-order operators them-
selves. McQuarrie, Huang and Willcox (2021) refer to this as a ‘glass-box
method’: one in which the form of the governing equations is known (e.g.

the partial differential equations that define the problem of interest) but we do
not have internal access to the code that produces the simulation data. The
OpInf method of Peherstorfer and Willcox (2016), described in more detail
in Section 8.2, is an example of a non-intrusive model reduction approach
that is not black-box. Another example is the dynamic mode decomposition
DMD (Schmid 2010, Kutz, Brunton, Brunton and Proctor 2016).

The distinction between non-intrusive and black-box methods is particularly im-
portant in the model reduction setting, where the goal is to obtain an approximation
of a known high-fidelity model. Black-box methods are appealing because they are
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easy to apply, but they offer little in the way of scalability or mathematical guaran-
tees of quality: the best one can do is hope that the training snapshots have been
sufficiently rich and that the approximate representation is sufficiently expressive.
Intrusive projection approaches are more difficult to apply, especially when the
full-order model involves an industrial or legacy code, but have the advantage of
error estimates for a large class of parametrized PDEs (Veroy et al. 2003, Veroy and
Patera 2005, Grepl and Patera 2005, Rozza et al. 2008). Non-intrusive approaches
offer a viable middle ground – providing ease of implementation in situations
where an intrusive reduced model is not possible, but exploiting knowledge of the
underlying problem to retain some form of mathematical accuracy guarantees.

8.2. Non-intrusive model reduction via Operator Inference

The OpInf approach proposed in Peherstorfer and Willcox (2016) uses the structure-
preserving projection lens of Section 7 but infers the reduced model directly from
snapshot data rather than computing the reduced operators via intrusive projection
as in (7.12) and (7.13). More specifically, OpInf solves a regression problem to
find the reduced operators that yield the reduced model that best matches projected
snapshot data in a minimum residual sense.

Consider the task of determining a reduced model of (7.8). We first present
OpInf in this quadratic setting and then discuss the more general non-linear setting.
As before, we compute the POD basis by collecting the snapshots u1, . . . , uns

and computing the dominant r left singular vectors of the snapshot matrix U

(Algorithm 1). The next step in OpInf is to compute the representation of each
snapshot in the POD coordinates, ûj = VTuj , j = 1, . . . , ns. In addition, we collect
the time derivative of each snapshot and compute its representation in the POD
coordinates, Û̂uj = VT Ûuj , j = 1, . . . , ns. Defining Û as the matrix of projected

snapshots, with ûj as its jth column, and Û̂U as the matrix of projected snapshot
time derivatives, with Û̂uj as its jth column, OpInf solves the least-squares problem

min
Â∈Rr×r ,Ĥ∈Rr×r

2

ns∑

j=1

‖Âûj + Ĥ(ûj ⊗ ûj) − Û̂uj ‖
2
2 . (8.1)

This regression problem seeks the reduced operators Â and Ĥ that minimize the
residual of the snapshot data evaluated in the form of the reduced model defined
by (7.11). In other words, if the high-fidelity model to be approximated has the
form (7.5) or (7.8), a projection-based reduced model has the form (7.6) or (7.11),
and thus (8.1) seeks a model of that quadratic form that minimizes the residual
of projected snapshot data. Another way to view this is that we are defining the
functional form of the system input–output map and then inferring from data the
representation of the map in the POD coordinate system.

As shown in Peherstorfer and Willcox (2016), the residual formulation employed
in (8.1) can be separated into r independent least-squares problems that solve for
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each row of Â and Ĥ independently. We write the full OpInf regression problem
in matrix form as

min
O
‖DOT − RT‖2F, (8.2)

where

O =
[
Â Ĥ

]
∈ Rr×d(r) (unknown operators),

D =
[
ÛT (Û ⊙ Û)

T

]
∈ Rns×d(r) (snapshot training data),

Û =
[
û1 û2 · · · ûns

]
∈ Rr×ns (projected snapshots),

R =
[
Û̂u1
Û̂u2 · · · Û̂uns

]
∈ Rr×ns (snapshot time derivatives).

The r independent least-squares problems are then given by

min
oi ∈Rd(r )

‖Doi − ri ‖2, i = 1, . . . , r, (8.3)

where oi is a column of OT and ri is a column of RT. Each least-squares problem
in (8.3) has d(r) reduced operator coefficients to be inferred. Enforcing symmetry
of Ĥ, we have d(r) = r + r(r + 1)/2.1

The forms of (8.2) and (8.3) show clearly that the OpInf least-squares problem
is linear in the coefficients of the unknown reduced operators. Equation (8.3) has a
unique solution if the data matrix D has full rank (noting again that the redundant
terms in (Û ⊙ Û) are eliminated). This implies that the number of snapshots must
satisfy ns ≥ d(r). Even when the data matrix has full rank, for some problems
the OpInf problem may require regularization to avoid overfitting. There are three
sources of noise that affect the solution of (8.3): numerical error in the estimates of
the time derivatives Û̂uj , closure error from the neglected POD modes, and model
misspecification error (i.e. if the full-order model used to generate the snapshots
does not have the exact quadratic form of (7.8)). Tikhonov regularization has been
shown to be effective (Swischuk, Kramer, Huang and Willcox 2020, McQuarrie
et al. 2021), yielding a regularized OpInf problem of the form

min
Â∈Rr×r ,Ĥ∈Rr×r

2

ns∑

j=1

‖Âûj + Ĥ(ûj ⊗ ûj) − Û̂uj ‖
2
2 + λ1‖Â‖

2
F + λ2‖Ĥ‖

2
F, (8.4)

where λ1 and λ2 are regularization parameters, here chosen to weight Â and Ĥ

differently (because they typically have different scales).
Algorithm 3 presents the steps of the regularized OpInf approach. A key point

to emphasize is that the reduced model operators Â and Ĥ are computed without
needing explicit access to the original high-dimensional operators A and H. All

1 To keep the notation simple, we write O = [Â Ĥ], which suggests a dimension of r + r2, but note
that in implementation we do not solve for the redundant terms in Ĥ. Similarly we eliminate the
redundant terms in the Khatri–Rao product defining the data matrix D.
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Algorithm 3 Non-intrusive regularized OpInf approach for a quadratic system
(Peherstorfer and Willcox 2016, McQuarrie et al. 2021).

Inputs: snapshots U ∈ Rn×ns , snapshot time derivatives ÛU ∈ Rn×ns , POD cumu-
lative energy threshold κ

1: Compute the SVD of U

2: r ← choose r such that (
∑r

i=1 σ
2
i
)/(

∑ns
i=1

σ2
i
) > κ {Determine the reduced

model dimension}
3: V ← the r leading left singular vectors of U {Compute the POD basis from

the snapshots}
4: Û← VTU {Project snapshots onto the r-dimensional POD subspace}
5: R← VT ÛU {Time derivatives of the projected snapshots}
6: λ1, λ2 ← Set regularization parameters by hyper-parameter optimization
7: Â, Ĥ ← solve regularized OpInf regression (8.4) via r independent least-

squares problems
8: return Â, Ĥ

steps of Algorithm 3 can be computed non-intrusively, that is, by operating only on
snapshots output by the full-order model. However, Algorithm 3 uses knowledge
of the equations being solved by the full-order model to postulate the form of the
reduced model. Thus Algorithm 3 is non-intrusive but it is not black-box.

Algorithm 3 presents the regularized OpInf approach of McQuarrie et al. (2021)
for the quadratic system (7.8). It is straightforward to see how the approach
extends to systems with forcing terms, and cubic and higher-order polynomial
state-dependence. In these cases, the least-squares optimization problems remain
linear, but the number of coefficients to be inferred in each least-squares problem,
d(r), grows. For a cubic system, d(r) ∼ O(r3) and it becomes increasingly difficult
to maintain a well-conditioned least-squares problem. Benner et al. (2020) have
developed an extension of OpInf to systems with spatially local non-polynomial
non-linear terms. We also note that the OpInf approach is presented here using the
POD basis, but any low-dimensional coordinate system can be used as long as the
corresponding projected snapshot data can be computed.

What can we say about the properties of an OpInf reduced model, particularly
its accuracy in issuing predictions beyond the training data? The OpInf method,
while non-intrusive itself, is set up to mimic the approximations employed in
intrusive projection-based model reduction. The original OpInf paper (Peherstorfer
and Willcox 2016) shows that, subject to having sufficient snapshot data, the
intrusive POD reduced models can be recovered asymptotically. Of more practical
significance, Peherstorfer (2020) shows that if the snapshot data have Markovian
dynamics in the reduced space, OpInf achieves exact recovery of the intrusive
reduced model pre-asymptotically. Peherstorfer (2020) derives a data generation
scheme that achieves this pre-asympotic recovery. These recovery results are
important because they guarantee that the non-intrusive OpInf reduced models
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inherit the properties of intrusive projection-based models, which are well studied
for a large class of systems as discussed in Section 7.5. Furthermore, the polynomial
structure of an OpInf reduced model makes it more amenable to stability analysis.
For example, Benner and Breiten (2015) and Kramer (2020) analyse the stability
of quadratic-bilinear reduced models.

8.3. Model reduction and its relationship to machine learning

What is the connection between model reduction and machine learning? Model
reduction methods have grown from the computational science community, with a
focus on reducing high-dimensional models that arise from physics-based model-
ling, whereas machine learning has grown from the computer science community,
with a focus on learning models from black-box data streams. The perspectives
are traditionally different, yet there are clear connections between the two fields.
These connections are becoming particularly pertinent with the growing interest in
applying machine learning to problems in science and engineering, where there is
a need to embed physics constraints within the machine learning method.

Broadly speaking, the three main algorithmic steps of projection-based model
reduction are as follows.

1 Training data generation. Solve the full-order model to generate training
data. These training data are typically in the form of snapshots.

2 Identify structure. Define a low-dimensional representation based on the
training data and, in some cases, based also on the properties of the full-order
model. Many, but not all, methods define the reduced-order representation
through a low-dimensional basis that defines a linear subspace of the full-order
state space.

3 Reduction. Derive the reduced model as a projection of the full-order model
onto the reduced space.

These three steps manifest in different ways for different model reduction methods.
In step 1, POD and reduced basis model reduction methods compute the basis
entirely from snapshot training data, while rational interpolation methods employ
full-order solves at system-specific optimal interpolation points (Gugercin, Ant-
oulas and Beattie 2008, Antoulas et al. 2020). In step 2 there are many different
ways to compute the low-dimensional representation, with POD discussed in this
paper being the most widely applied. Step 3 has classically been implemented by
explicit projection of the full-order operators onto the reduced space, but emerging
data-driven methods such as OpInf instead cast step 3 as an inference task. It is
also important to note that in many cases these steps are performed iteratively. This
is the case, for example, in adaptive snapshot generation with greedy sampling
(Prud’homme et al. 2002) and in the iterative rational Krylov algorithm (IRKA)
(Gugercin et al. 2008). In both cases the three steps are repeated iteratively until
the desired accuracy levels are achieved.
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Casting model reduction in this way reveals both the commonalities and the
differences with machine learning. The first two steps – training data generation and
identification of structure – are shared. Not only are they common in philosophy but
they are also common at a deeper algorithmic level. For example, the workhorses
of structure identification via linear subspaces – POD and PCA – are equivalent
methods, both based on singular value decomposition. Step 3 – reduction – is where
machine learning and model reduction methods differ. This point of departure is
due to their respective origins in computer science and computational science,
as discussed above. However, as increasing attention is given to the areas of
scientific machine learning and physics-informed machine learning, which seek
to embed physics constraints within machine learning methods, it is important
not to overlook the relevance of model reduction theory and methods. Indeed,
viewing the reduction step as an inference problem, as in the OpInf method,
brings model reduction much closer to the perspectives of machine learning: the
chosen representation is informed by the physics (projected operators of a PDE
or a state-space system, rather than a generic neural network representation) and
the loss function is the residual of the governing equations represented in the
low-dimensional space.

9. Non-linear model reduction

We discuss the challenges of model reduction for non-linear systems and then
discuss different strategies to address these challenges. We first discuss the use of
hyper-reduction methods such as DEIM to approximate non-linear terms. We then
discuss alternative strategies based on variable transformations and present the Lift
& Learn approach, which is based on the OpInf method of Section 8.2.

9.1. Challenges of model reduction for non-linear systems

Let us now return to the general projection framework, but consider a non-linear
system. Consider the non-linear system of ODEs

du

dt
= f(u), u(0) = u0, (9.1)

where as before u(t) ∈ Rn is the state at time t, with dimension n, and the non-linear
function f : Rn → Rn maps the state u(t) to its derivative du/dt. A typical case of
interest is where the system (9.1) results from the spatial discretization of a system
of non-linear PDEs. A general non-linear PDE defined on the domain Ω and time
horizon (0, t f ) may be written

∂u

∂t
= F(u) in Ω × (0, t f ), (9.2)

with appropriate boundary and initial conditions, where F : U → U∗ is the non-
linear PDE operator.
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Working with the ODE representation (9.1), we approximate the state in an r-
dimensional orthonormal basis as in Section 7, u(t) ≈

∑r
j=1 vj û j(t) = Vû(t). Using

a Galerkin projection, we obtain the reduced model of (9.1) as

dû

dt
= VTf(Vû), û(0) = VTu0. (9.3)

While (9.3) is of reduced dimension, its solution still requires computations that
scale with the full-order dimension n, because of the non-linear term f(·) on the
right-hand side of the state equation. Therefore an extra layer of approximation is
required to achieve a reduced model that is efficient to solve.

One approach is to approximate the non-linear system by a set of piecewise
linear models (Rewienski and White 2003). Each linear model can then be re-
duced by straightforward projection as in Section 7, and the resulting piecewise
linear reduced model is computationally efficient. A second class of methods re-
tain the form of the non-linear reduced model (9.3) but introduce an extra layer of
approximation to make the right-hand side computationally efficient. This extra
layer of approximation is sometimes referred to as ‘hyper-reduction’. The em-
pirical interpolation method (EIM) (Barrault et al. 2004) and its discrete variant,
the discrete empirical interpolation method (DEIM) (Chaturantabut and Sorensen
2010), achieve hyper-reduction by interpolation on a low-dimensional basis for
the non-linear term. Other hyper-reduction methods include the missing point
estimation (MPE) (Astrid, Weiland, Willcox and Backx 2008), the masked projec-
tion formulation of Galbally et al. (2010) and Gauss–Newton with approximated
tensors (GNAT) (Carlberg, Farhat, Cortial and Amsallem 2013), which all employ
the gappy POD method of Everson and Sirovich (1995).

9.2. Discrete empirical interpolation method

As one example of a non-linear model reduction method that includes hyper-
reduction, we describe the widely used POD-DEIM approach (Chaturantabut and
Sorensen 2010). This requires the following additional steps over the POD model
reduction described in Section 7. First, during the snapshot generation phase, we
collect snapshots of the non-linear term f(u), in addition to snapshots of the states.
This leads to the non-linear term snapshots f(u1), . . . , f(uns ). Define the non-linear
term snapshot matrix F ∈ Rn×ns whose jth column is the non-linear term snapshot
f(uj). Note that we have written these non-linear term snapshots as being evaluated
at the state snapshots; this does not necessarily need to be the case. That is, one
could in principle generate the state snapshots and non-linear term snapshots at
different conditions, but doing so would be computationally inefficient because it
would require additional runs of the expensive full-order model.

The second step in the POD-DEIM approach is to apply POD to the non-linear
term snapshot set to compute the DEIM basis. That is, we compute rd DEIM basis
vectors as the left singular vectors of F. This leads to the DEIM basis vectors, which
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Algorithm 4 Computing the POD-DEIM reduced model.

Inputs: POD basis V ∈ Rn×r computed using Algorithm 1, non-linear term snap-
shots F ∈ Rn×ns , DEIM basis cumulative energy threshold κd

1: Compute the SVD of F

2: rd ← choose rd such that (
∑rd

i=1
σ2
i
)/(

∑ns
i=1

σ2
i
) > κd {Determine the dimension

of the DEIM basis}
3: W← the r leading left singular vectors of F {Compute the DEIM basis}
4: {p1, . . . , prd } ← choose rd interpolation points p1, . . . , prd ∈ {1, . . . , n}

{Choose DEIM interpolation points, e.g. using the point selection approach in
Chaturantabut and Sorensen (2010)}

5: P← [ep1
, . . . , eprd ] {Define the DEIM points selection matrix}

6: POD-DEIM reduced model← dû/dt = VTW(PTW)−1PTf(Vû)

7: return W,P, rd

we denote w1, . . . ,wrd . We define the DEIM basis matrix W ∈ Rn×rd , which has
wj as its jth column. The number of DEIM basis vectors rd is typically chosen
according to the decay of the singular values of W, using a condition analogous to
(7.16).

The third step is to select a set of rd DEIM interpolation points. These are the
elements of f(·) at which the full-order model’s non-linear function must be evalu-
ated in order to construct the hyper-reduction approximation. Consider rd pairwise
distinct interpolation points p1, . . . , prd ∈ {1, . . . , n}. The DEIM interpolation
points matrix is then defined as P = [ep1

, . . . , eprd ] ∈ R
n×rd , where ei ∈ {0, 1}

n is
the ith canonical unit vector. This interpolation point selection can be done using a
greedy selection as in Chaturantabut and Sorensen (2010) or via QR decomposition
as in Drmac and Gugercin (2016).

The DEIM approximation of the non-linear function f evaluated at the state
vector u is then

f(u) ≈W(PTW)−1PTf(u), (9.4)

where PTf(u) samples the non-linear function at rd components only, and thus
requires rd < n function evaluations. The DEIM interpolation points matrix P and
the DEIM basis W are selected such that the matrix (PTW)−1 ∈ Rrd×rd has full
rank. Employing the approximation (9.4) in the Galerkin-reduced model (9.3), we
obtain the POD-DEIM reduced model as

dû

dt
= VTW(PTW)−1PTf(Vû). (9.5)

Algorithm 4 summarizes the derivation of a POD-DEIM reduced model.
For systems where the non-linear term has a local dependence on the state, i.e.

where the ith element of f depends only on the ith element of u, we can write the
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POD-DEIM reduced model as

dû

dt
= VTW(PTW)−1PTf(PTVû). (9.6)

In this case all terms involving the full-order dimension n can be computed offline,
and the cost of evaluating terms online in the POD-DEIM model scales with the
number of POD basis vectors, r , and the number of DEIM basis vectors, rd, but
not with n.

Peherstorfer, Drmac and Gugercin (2020) showed the potential numerical ad-
vantages of oversampling with DEIM, that is, choosing more than rd points, which
leads to hyper-reduction via regression rather than interpolation.

POD-DEIM and the other hyper-reduction methods have been successfully ap-
plied across a broad range of problems with different forms of non-linear structure.
An incomplete list of compelling examples includes data assimilation for geophys-
ical flows (Ştefănescu, Sandu and Navon 2015), viscoplasticity in solid mechanics
(Ghavamian, Tiso and Simone 2017), electrocardiology (Yang and Veneziani 2017)
and rocket combustion (Huang, Duraisamy and Merkle 2019). However, it remains
a challenge to achieve efficient model reduction for highly non-linear systems, espe-
cially those that exhibit behaviour across a range of time scales. In such cases, the
complexity of the hyper-reduction term (e.g. the dimension of the DEIM basis rd)
can become so large that the reduced models are not computationally efficient. For
example, Huang, Xu, Duraisamy and Merkle (2018) demonstrated the difficulties
of reducing the complex dynamics in rocket combustion applications.

9.3. Exploiting variable transformations in non-linear model reduction

POD-DEIM and other hyper-reduction methods target generic non-linear systems
of the form (9.1) and achieve efficiency through selective sampling of f(u) but
without otherwise exploiting known structure of f(·). An alternative approach is to
instead employ variable transformations to manipulate the form of (9.1), thereby
exposing structure that is amenable to projection-based approximation without the
need for hyper-reduction.

The idea of variable transformations to promote system structure has a long
history in many different fields. For example, McCormick (1976) used variable
substitutions to solve non-convex optimization problems. In operations research,
the reformulation of a problem in higher dimensions is referred to as an ‘extended
formulation’ or ‘lifting’ (Balas 2005). Hughes, Franca and Mallet (1986) used
the entropy variables to derive finite element methods for solving the Euler and
Navier–Stokes equations that automatically satisfy the second law of thermody-
namics and thus guarantee stability of the discrete solution. Kerner (1981) showed
how general non-linear ODEs can be written as ‘polynomial ordinary differential
systems (PODS)’ through the introduction of additional variables. In biology, vari-
able transformations called ‘recasting’ are used to transform non-linear ODEs to
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the so-called S-system form, a polynomial form that is faster to solve numerically
(Savageau and Voit 1987). Approaches based on the Koopman operator lift a non-
linear dynamical system to an infinite-dimensional space in which the dynamics
are linear (Mezić 2013, Korda and Mezić 2018). It is important to emphasize that
extended formulations, lifting and recasting employ problem reformulation, not

problem approximation.
Gu (2011) introduced the idea of reformulating non-linear dynamical systems

in quadratic form for model reduction and showed that the number of auxiliary
variables needed to lift a system to quadratic-bilinear form is linear in the number
of elementary non-linear functions in the original state equations. The work in
(Gu 2011) shows that a large class of non-linear terms that appear in engineering
systems (including monomial, sinusoidal and exponential terms) may be lifted to
quadratic form. Benner and Breiten (2015), Kramer and Willcox (2019, 2021) and
Qian, Kramer, Peherstorfer and Willcox (2020) extended lifting to model reduction
of problems governed by PDEs, and show that it is a competitive alternative to
hyper-reduction methods.

The relevance of variable transformations to model reduction can be seen through
an illustrative example. Consider the Euler equations describing the dynamics of
inviscid compressible flow. In one spatial dimension, the Euler equations are
written in conservative form (here in strong form for the simple case of no source
terms and an ideal gas) as

∂

∂t





ρ

ρυ

ρe



 = −
∂

∂x





ρυ

ρυ2
+ p

(ρe + p)υ



, (9.7)

where t is time, x is the spatial dimension, and the conservative state variables
u = (ρ ρυ ρe)T are the density ρ, specific momentum ρυ and total energy ρe. The
equation of state

ρe =
p

γ − 1
+

1

2
ρυ2 (9.8)

relates energy and pressure, p, via the heat capacity ratio γ. The structure of the
system can be seen in the PDE operators in (9.7). For example, the first equation
∂ρ/∂t = −∂ρυ/∂x describing conservation of mass is linear in the conservative
state variables ρ and ρυ; however, the other two equations are non-linear and, while
some structure is apparent, the non-linear terms are non-polynomial. Working with
this form of the governing equations would require hyper-reduction, a piecewise
linear representation or some other form of approximation in order to make the
reduced model efficient.

It is well known that the Euler equations can be alternatively formulated in the
specific volume form, using the state ũ = (υ p ζ)T, where ζ = 1/ρ is the specific
volume, υ the velocity and p the pressure. The conservation equations expressed
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in (9.7) then take the form

∂

∂t





υ

p

ζ



 = −
∂

∂x













υ
∂υ

∂x
+ ζ

∂p

∂x

γp
∂υ

∂x
+ υ

∂p

∂x

υ
∂ζ

∂x
− ζ

∂υ

∂x













, (9.9)

where it can now be seen that the equations contain only quadratic non-linear
dependences on the transformed state ũ and its spatial derivatives. This example
illustrates that the choice of state variables impacts the structure of the resulting
equations – by no means a surprising result, but one that has been under-appreciated
in model reduction methods. For this illustrative example of the Euler equations,
working with the conservative variables leads to a system of the general non-linear
form (9.2) while working with the specific volume variables leads to the quadratic
form (9.9). The former is most common in computational fluid dynamics (CFD)
codes, while the latter has clear advantages for model reduction. By discretizing
the conservative form of the equations in a CFD method, one can craft a numerical
solution method that has desirable properties (such as respecting conservation
laws). However, if the goal is not to create a physics-based solver but rather to use
the physical equations as a way to identify, represent and exploit system structure,
then we can see immediately that the specific volume form (9.9) yields a more
attractive set of equations to work with because of the quadratic structure.

The Euler equations provide an illustrative example that highlights the power of
variable transformations, but in many cases the governing PDEs do not obviously
admit a variable transformation that yields a polynomial representation. This is
where the idea of lifting comes in: the introduction of auxiliary variables that expose
polynomial structure in the system. Classical system theory defines a system state
as a set of quantities that provide a minimal representation of the system while
containing enough information to determine the system’s future behaviour under
known input conditions. Lifting introduces (‘unnecessary’) auxiliary variables and
their evolution equations, with the key idea that the dynamics of the lifted system
are polynomial in the expanded set of variables.2 To illustrate lifting, consider the
simple non-linear PDE

∂u

∂t
= u − eu, (9.10)

with scalar state u(x, t). To lift (9.10) to quadratic form, define the auxiliary variable
−eu and the lifted state ũ = (ũ1 ũ2)T

= (u − eu)T. The governing equations can

2 We loosely call the expanded set of variables the ‘lifted state’ even though technically this is not
a ‘state’ in the system-theoretic sense.
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then be written

∂

∂t

(

ũ1

ũ2

)

=

(

1

−eu

)

∂u

∂t
=

(

1

−eu

)

(u − eu) =

(

ũ1 + ũ2

ũ1ũ2 + (ũ2)2

)

. (9.11)

The lifted equation (9.11) is quadratic in the lifted state ũ.
Qian et al. (2020) defines lifting in a general form for systems of PDEs. Con-

sider the non-linear PDE (9.2) where the (continuous) state comprises nu dif-
ferent quantities. That is, u(x, t) = (u1(x, t), . . . , unu (x, t))T and F(u) =

(F1(u), . . . , Fnu (u))T. Define the lifting map, T , as the map that lifts the
original state u(x, t) to the lifted state ũ(x, t) with lifted state dimension nũ ≥ nu.
That is, ũ(x, t) = T (u(x, t)). Qian et al. (2020) define the map T to be a quadratic

lifting of (9.2) if the following conditions are met.

(i) The map T is differentiable with respect to u with bounded derivative, that is,
if J (u) is the Jacobian of T with respect to u, then

sup
u∈U

‖J (u)‖ ≤ c, (9.12)

for some constant c > 0.

(ii) The lifted state ũ satisfies

∂ ũ

∂t
=

∂T (u)

∂t
= J (u)F(u) = A(ũ) +H(ũ, ũ), (9.13)

where

A(ũ) =







A1(ũ)
...

Anũ (ũ)






, H(ũ, ũ) =







H1(ũ, ũ)
...

Hnũ (ũ, ũ)






, (9.14)

for some linear functions Aj and quadratic functions Hj , j = 1, 2, . . . , nũ.

Equation (9.13) is the lifted PDE, which contains only quadratic non-linear terms.
In other words we have identified a lifted state ũ for which the governing PDEs
could be written in quadratic form.

Conditions (9.12)–(9.14) define a map T that leads to a quadratic lifting. Con-
dition (9.13) can be modified to define maps to cubic and higher-order polynomial
forms by adding the appropriate polynomial functions of ũ.

As an illustrative example, consider the non-adiabatic tubular reactor model with
Arrhenius single reaction terms of Heinemann and Poore (1981). We present the
lifting of this model from Kramer and Willcox (2019). The governing equations
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describe the evolution of the species concentration ψ(x, t) and temperature θ(x, t)

with spatial variable x ∈ (0, 1) and time t > 0, via the coupled set of PDEs

∂ψ

∂t
=

1

Pe

∂2ψ

∂x2
−
∂ψ

∂x
−Dψ eγ−γ/θ, (9.15)

∂θ

∂t
=

1

Pe

∂2θ

∂x2
−
∂θ

∂x
− β(θ − θref) + BDψ eγ−γ/θ . (9.16)

Here the parameters are the Damköhler number D, Péclet number Pe and known
constants B, β, θref and γ. Robin boundary conditions are imposed on the left
boundary of the domain and Neumann boundary conditions on the right:

∂ψ

∂x
(0, t) = Pe(ψ(0, t) − 1),

∂θ

∂x
(0, t) = Pe(θ(0, t) − 1),

∂ψ

∂x
(1, t) = 0,

∂θ

∂x
(1, t) = 0.

The initial conditions are prescribed as ψ(x, 0) = ψ0(x) and θ(x, 0) = θ0(x).
To lift the equations (9.15) and (9.16), we introduce the auxiliary variables

ũ3 = eγ−γ/θ , ũ4 = 1/θ2 and ũ5 = 1/θ. The lifting map is thus

T :

(

ψ

θ

)

7→



















ψ

θ

eγ−γ/θ
1

θ2

1

θ



















≡



















ũ1

ũ2

ũ3

ũ4

ũ5



















. (9.17)

Working with the five-dimensional lifted state ũ and applying the chain rule to
derive the auxiliary equations leads to the following set of lifted PDEs, in which
all non-linear terms have polynomial form in the lifted variables:

∂ψ

∂t
=

1

Pe

∂2ψ

∂x2
−
∂ψ

∂x
︸           ︷︷           ︸

linear

− Dψũ3,

︸ ︷︷ ︸
quadratic

(9.18)

∂θ

∂t
=

1

Pe

∂2θ

∂x2
−
∂θ

∂x
− β(θ − θref)

︸                             ︷︷                             ︸
linear

+ BDψũ3

︸  ︷︷  ︸
quadratic

, (9.19)
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∂ũ3

∂t
= γũ3ũ4

∂θ

∂t︸    ︷︷    ︸
quartic

, (9.20)

∂ũ4

∂t
= −2ũ4ũ5

∂θ

∂t︸    ︷︷    ︸
quartic

, (9.21)

∂ũ5

∂t
= −ũ4

∂θ

∂t︸︷︷︸
cubic

, (9.22)

where we compactly write ∂θ/∂t on the right-hand sides of (9.20)–(9.22) but re-
cognize that this term is given by (9.19). At the level of the continuous formulation,
the lifted system (9.18)–(9.22) is equivalent to the original equations (9.15)–(9.16).
The polynomial structure of the lifted equations could be directly exploited in the
projection-based model reduction framework of Section 7, while the original equa-
tions would require hyper-reduction or some other approximate treatment of the
non-linear terms.

In practice, a quartic non-linear term would likely prove to be computationally
unmanageable, since the dimension of the reduced fourth-order tensor would be
r × r4. The tubular reactor system can be further lifted by the introduction of three
additional auxiliary variables: ũ6 = ψũ3, ũ7 = ũ4ũ5 and ũ8 = ũ3ũ4. The system
with eight-dimensional lifted state ũ = (ψ θ ũ3 ũ4 ũ5 ũ6 ũ7 ũ8)T has only
quadratic and linear terms, but the three new equations are algebraic:

0 = ũ6 − ũ3ψ, (9.23)

0 = ũ7 − ũ4ũ5, (9.24)

0 = ũ8 − ũ3ũ4. (9.25)

This quadratic system can still be directly reduced via projection, but special care
is needed with the differential algebraic equation (DAE) structure; see e.g. Benner
and Stykel (2017) for a discussion of the challenges and methods for reduction of
DAE systems.

We have presented this tubular reactor example in some detail to emphasize the
point that the choice of state variables plays a central role in defining problem
structure. With the derivations presented, we now have three options: reduce
the original non-linear system (9.15)–(9.16) using hyper-reduction or a trajectory
piecewise polynomial approximation, or introduce three auxiliary variables and
reduce (9.18)–(9.22) exploiting the quartic structure, or introduce six auxiliary
variables and reduce (9.18)–(9.25) exploiting the quadratic structure while treating
the DAE form.

Kramer and Willcox (2019) presented a numerical study of this tubular reactor
example, comparing POD model reduction of the lifted quartic system (9.18)–
(9.22), POD model reduction of the lifted quadratic DAEs (9.18)–(9.25) and
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(a) (b)

Figure 9.1. Model reduction results for tubular reactor of Kramer and Willcox
(2019, Figure 5). The reduced model uses lifting to quadratic-bilinear (QB) DAE
form, r1 = 30 POD modes to approximate the differential equations and r2 = 9

POD modes to approximate the algebraic equations. (a) D = 0.162 (stable case).
(b) D = 0.167 (unstable case).

(a) (b)

Figure 9.2. Model reduction results for tubular reactor of Kramer and Willcox
(2019, Figure 6), showing the relative state errors for several different reduced
models as a function of the reduced model dimension. Here D = 0.167.

POD-DEIM model reduction of the original non-linear system (9.15)–(9.16). Fig-
ure 9.1 shows an illustrative result of a reduced model prediction of the temper-
ature at the reactor exit compared to the full-order model prediction. In this case
the reduced model is a POD model of the lifted quadratic DAEs (9.18)–(9.25)
with r1 = 30 POD modes to approximate the differential equations and r2 = 9

POD modes to approximate the algebraic equations. Predictions for two different
Damköhler numbers are shown, one in the stable regime and one that leads to a
limit cycle oscillation.
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Figure 9.2 shows the relative state errors as a function of reduced model di-
mension for D = 0.167. Plot (a) compares POD-DEIM approximations with
rd = 14, 16, 20 DEIM interpolation points, the lifted quartic POD reduced model,
and a POD baseline with no hyper-reduction. Plot (b) compares the lifted quartic
POD model and lifted quadratic POD models using r2 = 12, 15, 18 POD modes to
approximate the algebraic equations. The levelling-off behaviour of the error in the
plots is a typical result for non-linear model reduction. In plot (a) it is due to the
error introduced by the DEIM approximation, which does not reduce if rd is fixed.
In plot (b) it is due to the error introduced by the approximation of the algebraic
equations that appear in the quadratic lifting.

For this tubular reactor problem, hyper-reduction via DEIM is more effective
than lifting. We see that the POD-DEIM models recover the performance of POD
applied directly to the non-linear system (i.e. the inefficient baseline POD model as
in (9.3)), provided that number of DEIM points rd is chosen to be sufficiently large.
For the results in Figure 9.2, choosing rd = r yields excellent results. In other
complex PDE models, lifting has been found to have benefits over hyper-reduction,
especially when the nature of the non-linear dynamics requires rd > r . This
includes rocket engine combustion (Swischuk et al. 2020, McQuarrie et al. 2021)
and solidification in additive manufacturing (Khodabakhshi and Willcox 2021).

The lifting map T is not unique, and for any given non-linear system there may
be a myriad of options to reformulate it in a polynomial form. These options
often reveal trade-offs between the number of auxiliary variables, the order of the
polynomial terms in the lifted systems, and other system properties such as sparsity
and algebraic structure. Current lifting strategies are manual, based on inspection of
the governing equations. The automated identification of optimal lifting strategies
is an open research question. Lastly, we comment on the important question of
translating lifted formulations into numerical implementations. In most situations
it will not be viable, or even mathematically sound, to discretize the lifted equations.
Discretization intricacies, such as stabilization terms, may destroy the polynomial
structure. Numerical approximation errors will destroy the equivalence of the lifted
state variables and will make the reverse lifting map ill-posed (e.g. in (9.17) we
can see that issues may arise when the computations yield ũ5 , 1/ũ2). Therefore
in the next section we discuss how the non-intrusive algorithms of OpInf can be
employed to take lifting from a valuable thought exercise to a practical and scalable
approach for non-linear model reduction.

9.4. Non-intrusive model reduction via Lift & Learn

The Lift & Learn method of Qian et al. (2020) combines lifting with OpInf to
achieve model reduction of non-linear systems. The conditions (9.12)–(9.14)
define a quadratic lifting map T that permits the non-linear governing equations
(9.2) to be written in the quadratic form (9.13). As illustrated in Section 9.3, such
a lifting map can be derived analytically for many classes of non-linear PDEs;
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Algorithm 5 Lift & Learn for non-intrusive model reduction of a non-linear system
of PDEs (Qian et al. 2020).

Inputs: snapshots U ∈ Rn×ns , snapshot time derivatives ÛU ∈ Rn×ns , POD cumu-
lative energy threshold κ

1: Analyse (pencil and paper) the form of the governing PDEs to identify a lifting
map T that defines a polynomial (e.g. quadratic) lifting at the PDE level

2: Apply the lifting map to the snapshot data: Ũ = T (U), Û̃U = T ( ÛU)

3: Compute the SVD of Ũ

4: r ← choose r such that (
∑r

i=1 σ
2
i
)/(

∑ns
i=1

σ2
i
) > κ {Determine the reduced

model dimension}
5: V ← the r leading left singular vectors of Ũ {Compute the POD basis from

the lifted snapshots}
6: Û← VTŨ {Project lifted snapshots onto the r-dimensional POD subspace}

7: R← VT Û̃U {Time derivatives of the projected lifted snapshots}
8: λ1, λ2 ← Set regularization parameters by hyper-parameter optimization
9: Â, Ĥ ← solve regularized OpInf regression (8.4) via r independent least-

squares problems
10: return Â, Ĥ, T

however, from a numerical standpoint it will be difficult/impossible to compute the
discretized lifted operators needed to derive a reduced model of the lifted systems.
The non-intrusive formulation of OpInf provides an alternative path: we define the
quadratic (or other polynomial) lifting map T by analysing the PDEs, as discussed
in Section 9.3. But rather than apply this lifting map to the PDE operators, we
apply it to snapshot data computed using the original PDE simulation. The lifted
snapshot data are then used within the OpInf approach of Algorithm 3 to learn the
reduced model operators. In other words, lifting defines the polynomial form of the
reduced model we seek, and OpInf permits us to learn that reduced model directly
from snapshot data, without any modifications to the original full-order simulation.
Algorithm 5 summarizes the Lift & Learn approach for the example of a system
lifted to quadratic form.

Swischuk et al. (2019), McQuarrie et al. (2021) and Qian (2021) present de-
tailed studies that combine variable transformations and OpInf for a single-injector
combustion process. In all three works, the snapshot data are generated using the
General Equation and Mesh Solver (GEMS), a finite-volume based CFD solver
(Harvazinski et al. 2015). McQuarrie et al. (2021) consider the two-dimensional
Navier–Stokes equations with a global one-step chemical reaction model. The
GEMS snapshot data are transformed to provide snapshots of the learning vari-
ables ũ = (p υx υy T ζ c1 c2 c3 c4), which are respectively the pressure,
x-velocity, y-velocity, temperature, specific volume and species molar concentra-
tions of CH4, O2, H2O and CO2. As discussed in McQuarrie et al. (2021), this
transformation makes many, but not all, terms in the governing equations quadratic.
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Figure 9.3. Model reduction results for the single-injector rocket combustion
process of McQuarrie et al. (2021, Figure 6). Pressure trace at a monitor location
(top) and spatially integrated O2 and CO2 molar concentrations (bottom), computed
by GEMS (308 184 dof), a POD-DEIM reduced model (70 dof), and an OpInf
reduced model (43 dof). POD basis computation and reduced model training used
the first two milliseconds of data. (Figure reproduced with permission. Copyright
© 2021 Taylor & Francis Ltd., www.tandfonline.com.)

Figures 9.3 and 9.4 show representative results comparing the performance of
OpInf and POD-DEIM on this challenging problem. Both OpInf and POD-DEIM
reduced models are able to accurately predict pressure dynamics, while transport-
dominated quantities such as temperature and chemical concentrations are more
challenging to capture in a reduced-order model. The non-intrusive OpInf approach
compares favourably in predictive accuracy to the intrusive POD-DEIM approach
for this problem. OpInf reduced models are faster to solve than POD-DEIM models
by several orders of magnitude (less than one second compared to approximately
30 minutes) because DEIM requires repeated queries of the GEMS code to evaluate
the non-linear function as in (9.6), whereas the OpInf quadratic reduced model is
defined entirely by Â and Ĥ and thus can be solved completely independently of
GEMS.

A larger-scale three-dimensional combustion example is considered in Qian
(2021). OpInf reduced models for the three-dimensional Navier–Stokes with flame-
let progress variable model for the chemistry show six orders of magnitude speed-
ups (reducing the dimension from 18M dof in the GEMS model to ∼ 102 dof in
the OpInf reduced models) while achieving accurate predictions of the pressure
field and the large-scale structures in the temperature and chemistry variables.
Representative results for this test problem are shown in Figure 9.5.
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Figure 9.4. Model reduction results for the single-injector rocket combustion pro-
cess of McQuarrie et al. (2021, Figure 8). Molar concentrations of CH4 produced
by GEMS (308 184 dof, left column), POD-DEIM (70 dof, middle column), and
OpInf (43 dof, right column). POD basis computation and reduced model train-
ing used the first two milliseconds of data. (Figure reproduced with permission.
Copyright © 2021 Taylor & Francis Ltd., www.tandfonline.com.)

We close this section by observing some of the relative advantages and disad-
vantages of the Lift & Learn approach compared to hyper-reduction approaches.
Lift & Learn is informed by the structure of the lifted PDE, but makes no attempt
to mimic the function of the full-order discretized model. Lift & Learn is agnostic
to the numerical discretization, other than how the discretization is reflected in the
snapshot data. In contrast, a hyper-reduction method such as DEIM interpolates the
non-linear function through selective evaluations of f(·) as in (9.5). In doing so, it
explicitly embeds elements of the numerical discretization into the reduced model
approximation. Neither approach is clearly better than the other – both introduce
additional approximations to the model reduction process. Lift & Learn has a clear
advantage in being non-intrusive, which in turn broadens its potential to be applied
in industrial and other settings that use commercial and legacy codes.

https://doi.org/10.1017/S0962492921000064 Published online by Cambridge University Press

https://www.tandfonline.com
https://doi.org/10.1017/S0962492921000064


Learning physics-based models from data 537

Figure 9.5. Model reduction results for the CVRC combustor from Qian (2021).
OpInf reduced models are derived from snapshots generated using the General
Equation and Mesh Solver (GEMS) to solve the Navier–Stokes equations with a
flamelet model. Here we show representative results comparing GEMS (18M dof)
with OpInf reduced models of dimension r = 60 and r = 80 for pressure traces and
temperature fields.
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