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Learning posture invariant spatial representations through temporal cor-
relations

M. W. Spratling
Division of Engineering, King’s College London, London, UK.

Abstract

A hierarchical neural network model is used to learn, without supervision, sensory-sensory coordinate trans-
formations like those believed to be encoded in the dorsal pathway of the cerebral cortex. The resulting repre-
sentations of visual space are invariant to eye orientation, neck orientation, or posture in general. These posture
invariant spatial representations are learned using the same mechanisms that have previously been proposed to
operate in the cortical ventral pathway to learn object representation that are invariant to translation, scale, orien-
tation, or viewpoint in general. This model thus suggests that the same mechanisms of learning and development
operate across multiple cortical hierarchies.

Keywords: coordinate transformations; invariant representations; dorsal pathway; cerebral cortex; neural net-
works; epigenetic robotics; sensory-motor mapping

1 Introduction
Visually guided behavior is most naturally defined relative to a number of distinct reference frames or spatial
coordinate systems. For example, a saccade takes place within a retina-centered reference frame, reaching for
an object takes place in a body-centered frame, while manipulating one object relative to a reference object is
performed in a coordinate system centered on the reference object. To support such visually-guided behavior,
spatial information is represented in multiple coordinate systems along the dorsal pathway of the cortical visual
system (Battaglia-Mayer et al., 2003): neural representations are arranged in a retinotopic map in primary visual
cortex (V1), while regions of the parietal cortex contain representations of space in head-centered (Andersen
et al., 1985; Duhamel et al., 1997), body-centered (Brotchie et al., 1995), object-centered (Chafee et al., 2007)
and world-centered (Snyder et al., 1998) coordinates. A head-centered reference frame could be considered as a
representation of retinal position that is invariant to eye movements. Similarly, a body-centered representation of
visual space is one that is invariant to both eye and neck movements, and an object or world centered reference
frame is invariant to eye, neck and body movements. This insight suggests a mechanism by which a hierarchy of
coordinate systems (see Fig. 1) could be learned in the dorsal pathway in a manner analogous to that believed to
underlie the learning of object representations invariant to viewpoint in the ventral pathway.

Along the cortical ventral pathway, neurons learn to respond to recurring or behaviorally relevant patterns of
pre-synaptic activity generated by the neurons in more peripheral cortical regions from which they receive their
inputs (Barlow, 1995; Karni, 1996; Karni et al., 1995; Logothetis, 1998; Petersen et al., 1998; Sigala and Logo-
thetis, 2001; Sigman and Gilbert, 2000; Wallis and Bülthoff, 1999; Walsh et al., 1998). Higher-level perceptual
representations are thus learned from lower-level ones, and this process can be repeated hierarchically, such that at
each stage neurons learn increasing specialization together with increasing invariance. The viewpoint invariance
of these representations results from learning associations across time (Cox et al., 2005; Sakai and Miyashita,
1991; Sinha and Poggio, 1996; Stone, 1998; Stryker, 1991; Wallis, 1998, 2002; Wallis and Bülthoff, 2001). By
learning to associate images whose appearance is closely temporally correlated, cortical neurons exploit the fact
that objects are generally observed for periods of time, during which they may undergo a number of transfor-
mations or be observed from a number of viewpoints. By learning to associate images of an object, seen from
different viewpoints, an invariant representation can be formed. This mechanism has formed the basis for a large
number of algorithms that learn viewpoint invariance from sequences of images (Bartlett and Sejnowski, 1998;
Becker, 1999; Einhäuser et al., 2005; Földiák, 1991; Körding and König, 2001; O’Reilly and McClelland, 1992;
Rolls and Milward, 2000; Spratling, 2005; Stone and Bray, 1995; Stringer and Rolls, 2000; Templeman and Loew,
1989; Wallis, 1996; Wallis and Rolls, 1997; Wiskott and Sejnowski, 2002). Hence, a standard method for learning
perceptual representations that are invariant to viewpoint is to form temporal associations across image sequences
showing object transformations.

The same mechanism of learning temporal correlations between sequences of images can also be used to learn
spatial representations invariant to posture. For example, retinocentric visual information can be combined with
information about eye orientation to generate a representation of visual space in head-centric coordinates. Such
a recoding can be learned since as the eye moves, stationary objects will move across the retina. By recording
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Figure 1: A hierarchy of coordinate systems. It is proposed that such a hierarchy is learned by the
cortical dorsal pathway and that each level in the hierarchy is learned by increasing the invariance to
posture, e.g., the head-centric reference frame is learned by forming spatial representations invariant
to eye orientation, and the body-centric reference frame is learned by forming spatial representations
invariant to neck orientation. Each coordinate system is most appropriate for controlling different types
of action, however, this article only considers the learning of sensory-sensory coordinate transformations,
and not how to map those sensory representations to actions.

temporal correlations across sequences of retinal images, it is possible to learn all the combinations of eye ori-
entation and retinal location that correspond to the same point in space (i.e., to learn a spatial representation that
is invariant to eye orientation). Using the same process during head movements to learn associations between
corresponding head-centered visual locations and neck orientations, results in a representation of visual space in
body-centric coordinates.

Rather than learning such sensory-sensory coordinate transformations they could be hard-coded using standard
mathematical equations for describing kinematics or using neural networks with predefined weight values (see
Discussion). The motivation for learning sensory-sensory transformations is two-fold. Firstly, to contribute to
research in developmental robotics which seeks mechanisms for creating more adaptive and more autonomous
robots as well as mechanisms for creating complex robot control systems that are too complex to design by hand
(Spratling, 1999a; Weng et al., 2001). Secondly, to provide a model that may be consistent with the developmental
process that occurs during infancy, and hence, which could potentially offer insights into biological development.

2 Methods
Different mathematical processes are required to learn more specialized representations and to learn more invariant
representations (Riesenhuber and Poggio, 1999; Spratling, 2005). A more specialized representation results from
a node responding to a combination of co-active lower-level features. A node must thus learn to represent a
conjunction of pre-synaptic inputs. To respond to a conjunction of inputs, a standard weighted sum of pre-synaptic
activation values can be used. Such a function will cause the output of the node to be a maximum when all the
lower-level features to which it responds are simultaneously active. In contrast, a more invariant representation
results from a node responding to multiple, non-coactive, lower-level features. A node must thus learn to represent
a disjunction of pre-synaptic inputs. To respond to a disjunction of inputs, the maximum of the weighted pre-
synaptic activation values can be used. Such a function enables a node to respond invariantly across a number of
inputs while maintaining the feature specificity of its response. Hence, several existing architectures for invariant
object recognition (Fukushima, 1980, 1988; LeCun et al., 1998, 2004; Riesenhuber and Poggio, 1999; Serre et al.,
2002, 2007; Spratling, 2005) consist of alternating layers of neurons that perform these two operations in order
to form more specialized representations in one layer, and more invariant representations in the next layer. It
has been proposed (Fukushima, 1988; Riesenhuber and Poggio, 1999; Serre et al., 2007) that these two forms
of processing correspond to the functionality of simple and complex cells observed in the primary visual cortex
(Hubel and Wiesel, 1962).
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Figure 2: The neural network architecture used to learn a hierarchy of coordinate systems. Two layers of
neurons, one learning conjunctions and the other learning disjunctions, are used to perform each sensory-
sensory coordinate transform.

The architecture proposed here for learning a hierarchy of spatial coordinate systems also consists of alternat-
ing layers of neurons that learn conjunctions and disjunctions (see Fig. 2). One pair of conjunctive and disjunctive
layers learns to transform retinocentric coordinates into head-centered coordinates. A second pair of conjunctive
and disjunctive layers then learns to transform these head-centered coordinates into body-centered coordinates.
The inputs to the hierarchy are presumed to come from more peripheral thalamic regions that are not explicitly
modeled. Details of the algorithms employed in the conjunctive and disjunctive layers are provided in the follow-
ing sub-sections. However, in brief these learning methods are as follows. Each conjunctive layer employs a form
of competitive learning that causes a distinct node to learn to represent each distinct input pattern (e.g., for the first
conjunctive layer, each distinct combination of eye pan value, eye tilt value and the location of an active pixel in
the retinotopic input). Each disjunctive layer employs a form of temporal associative learning that causes a node
to learn to represent sets of nodes in the conjunctive layer that are frequently active in sequence (but not simultane-
ously). If we consider a world containing a single, stationary, object then as the eyes move distinct combinations
of eye pan/tilt and retinal input will be generated activating different conjunctive nodes. This sequence of activity
in the first conjunctive layer will be learned by a single node in the first disjunctive layer resulting in a single
disjunctive node representing all the conjunctive nodes that represent the location occupied by the object. The
performance of this algorithm has been tested, as detailed in the Results section, on a simple task in which objects
are represented as single pixels in the retinal input. Future work aims at determining if this entirely unsupervised
learning method will scale-up to learning sensory-sensory coordinate transformations in more realistic tasks.

2.1 Conjunctive Learning
Each conjunctive layer employs the algorithm proposed in (Spratling et al., 2009). This is an unsupervised,
competitive, learning algorithm in which nodes compete to represent unique combinations of inputs. This learning
algorithm has been shown to reliably and accurately learn distinct input patterns or image components (Spratling
et al., 2009). In this algorithm nodes compete to respond to the current pattern of input activity in a manner that is
closely related to a number of other algorithms. This mechanism of competition can be interpreted as: a sequential
version of non-negative matrix factorization (Hoyer, 2004; Lee and Seung, 1999), as a divisive form of lateral
inhibition that targets the inputs to a population of competing nodes (Harpur, 1997; Harpur and Prager, 1994;
Spratling, 1999b; Spratling and Johnson, 2001, 2002), as a neural implementation of Bayes’ theorem (Spratling
et al., 2009), as a form of divisive normalization like that proposed by Heeger (1991, 1992) and a hierarchy of
such networks can be interpreted in terms of both biased competition and predictive coding (Spratling, 2008).

For each conjunctive layer, the output (y) generated in response to an input stimulus (x) was calculated by
iteratively updating the following equations:

e = x�
(
ε+ ŴT y

)
(1)

y← (ε+ y)⊗We (2)

Where y = [y1, . . . , yn]T is an n-element vector of output activations, x = [x1, . . . , xm]T is an m-element vector
of input activations, W = [w1, . . . ,wn]T is an n by m matrix of weight values, each row of which contains the
weights received by a single node, Ŵ = [ŵ1, . . . , ŵn]T is a matrix representing the same synaptic weight values
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as W but such that the rows of Ŵ are normalized to have a maximum value of one, e is the inhibited value of
the input (or, equivalently, the reconstruction error; see below), and � and ⊗ indicate element-wise division and
multiplication respectively. The parameter ε is a small constant (i.e., 1× 10−9) that has a negligible effect on the
calculation of e and y except to prevent division-by-zero errors when the values of y are zero. The steady-state
values of the node outputs were calculated using 100 iterations of the above equations while the input was held
constant.

The following learning rule was applied to the steady-state node activations:

W←W ⊗
{

1 + βy
(
eT − 1

)}
(3)

Where β is a positive constant which controls the learning rate. A value of β = 0.025 was used in the experiments
described in this article. Following learning, weights were clipped at zero to ensure that they were non-negative.
Weights were initialized to random values chosen from a Gaussian distribution with mean 0.5 and standard devi-
ation 0.125.

This learning algorithm for the conjunctive layers operates by minimizing the error between the input stimulus
(x) and the input that is reconstructed from the node outputs (ŴT y). The values of e indicate the degree of
mismatch between the top-down reconstruction of the input and the actual input. When a value within e is greater
than unity, indicating that a particular element of the input is under-represented in the reconstruction, the responses
of all output nodes receiving non-zero weights from this under-represented input are increased (via equation 2)
and the values of weights connecting the under-represented input with active output nodes are also increased (via
equation 3). Both these changes will lead to an increase in the strength with which that element is represented in
the reconstructed input, and hence, reduce the value of that element of e towards one (via equation 1). Similarly,
when a value within e is less than unity, indicating that a particular element of the input is over-represented in
the reconstruction, the responses of all output nodes receiving non-zero weights from this over-represented input
are reduced (via equation 2) and the values of weights connecting the over-represented input with active output
nodes are also reduced (via equation 3). Both these changes will lead to a decrease in the strength with which
that element is represented in the reconstructed input, and hence, increase the value of that element of e towards
one (via equation 1). When the value of e is equal to unity the reconstruction of that element is perfect and the
weights stop changing due to the term

(
eT − 1

)
in equation 3. For elements that are not active in the input vector,

the corresponding elements of e will be zero and the corresponding weights (for active nodes) will stop changing
once they have reached a value of zero. Hence, a weight stops changing value when the top-down reconstruction
is perfect (i.e., when ŴT y = x) or when the weight is zero.

This algorithm thus finds non-negative, elementary, components of the training data, and uses these compo-
nents to encode each stimulus with the minimal loss of information (i.e., with the minimal reconstruction error).
Unlike many other competitive learning algorithms (see Spratling and Johnson, 2002, 2004, and the references
therein), the proposed algorithm does not pre-specify the number of nodes that are required to encode each stimu-
lus. Instead, the number of active nodes is determined by the number of elementary components that are required
to accurately represent the input. Hence, each conjunctive layer can represent multiple, co-occurring, objects.

2.2 Disjunctive Learning
Each disjunctive layer implements an improved version of the algorithm proposed in (Spratling, 2005). This algo-
rithm is similar to previous methods that exploit temporal correlations to learn invariant representations. However,
it differs from these previous methods in (a) learning correlations between consecutive image pairs, rather than
across longer sequences of images, (b) biasing learning so that coincident inputs will be represented by distinct
nodes. These modifications enable learning to succeed when the training environment contains multiple, co-
occurring, stimuli (Spratling, 2005). Multiple stimuli might occur when the visual input contains multiple objects
or background clutter.

For each disjunctive layer, an n-element vector of output values (y) generated in response to an m-element
vector of inputs (x) was calculated using the following equation:

y = max
{
Ŵ ⊗ W̌ ⊗X

}
(4)

Where Ŵ = [ŵ1, . . . , ŵn]T is an n by m matrix representing the synaptic weight values such that the rows of
Ŵ are normalized to have a maximum value of one, W̌ = [w̌1, . . . , w̌n]T is an n by m matrix representing
the same synaptic weight values such that the columns of W̌ are normalized to have a maximum value of one,
X = [xT , . . . ,xT ]T is a n by m matrix each row of which is a copy of the input vector x, and max is a function
which returns the maximum value in each row.
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The activation function, described above, is identical to that used in (Spratling, 2005). The learning rule, de-
scribed below, is different from that used previously, although it operates using the same principles. The following
learning rule was applied:

W←W ⊗ {1 + γy (x∗ − x)} (5)

Where x∗ is the vector of input values for the previous input pattern, and γ is a positive constant which controls
the learning rate. A value of γ = 0.25 was used in the experiments described in this article. Importantly, for
each node the single synapse that produced the maximum value in equation 4 did not have its weights modified.
Following learning, synaptic weights were clipped at zero (i.e., negative weight values were made equal to zero)
and were normalized such that the sum of the weights in each column of W was equal to one. Weights were
initialized to random values chosen from a Gaussian distribution with mean 0.5

n and standard deviation 0.125
n .

This learning algorithm for the disjunctive layers operates by (a) finding correlations between successive input
patterns, and (b) ensuring that coactive inputs (which must be generated by the co-activation of distinct retinal
locations) are not represented by the same node. Objective (a) is achieved by nodes which are active in response
to the current input pattern increasing their synaptic weights to inputs which were active in the previous stimulus
(in proportion to yx∗). A strongly active node has a strong weight to an input that is active in the current stimulus.
Hence, by increasing this node’s synaptic weights to inputs that were active in the previous stimulus the algo-
rithm is learning temporal correlations between successive stimuli, in a manner consistent with Hebbian learning.
Objective (b) is achieved by nodes which are active in response to the current input pattern decreasing their synap-
tic weights to inputs which are active in the current stimulus in an anti-Hebbian manner (i.e., in proportion to
−yx). Note, only those synapses that did not generate the maximum input to the node are modified, so a single
active input remains unchanged but weights to all other active inputs are deceased. Furthermore, the weights are
normalized so that the sum of the weights emanating from a single input are equal to one. This normalization
process provides an implicit form of competition between nodes, since if one node strengthens its connection to a
particular input, then connections from that input to all other nodes are weakened.

3 Results
A two stage hierarchy (as illustrated in Fig. 2) was used to learn to encode sensory input in both head-centric and
body-centric coordinates. The inputs to this hierarchy were a two dimensional image, and four one-dimensional
arrays encoding the four motor degrees of freedom: eye pan/tilt and neck pan/tilt. The axes of the motor actions
were coincident with the x- and y-axes of the retinal array, hence, both the eye and neck pan/tilt values served to
slide the retina around within a larger world coordinate system, as illustrated in Fig. 3. This visual world consisted
of a grid of pixels large enough to accommodate the retina at the extremes of the pan/tilt ranges. The world was
populated by “objects” represented by pixels with contrast values randomly selected within the range 0 to 1. Since
real objects have an extent, representing objects as pixels is a limitation of the current algorithm, but one that it
shares with other methods for performing sensory-sensory transformation (see Discussion).

Experiments were carried out using a small 3-by-3 pixel retina, and pan and tilt values that could each take one
of three values. The world was thus 7-by-7 pixels. For these experiments the first conjunctive layer contained 180
nodes, the first disjunctive layer contained 50 nodes, the second conjunctive layer contained 550 nodes, and the
second disjunctive layer contained 100 nodes. Hence, each layer contained approximately twice as many nodes
than the minimum number required for the task. While this is a small scale problem, it is still more complex than
the task used to test many existing methods (see Discussion) and the network is still quite complex containing
97500 synaptic weights.

The initial world was randomly created with each pixel independently selected to contain an object with
probability Ps (Ps sets the sparsity of the visual input). Values of Ps ranging from 0.05 to 0.3 were used in the
different experiments reported below. Each selected pixel then had its contrast set to a value chosen uniformly
from the range [0,1]. In order to generate a sequence of data in which objects tended to remain stationary for an
extended period of time, each subsequent visual world was created by removing, with probability Poff , existing
objects (by setting the corresponding pixel value to zero). Similarly, new objects could appear at empty pixel
locations with probability Pon. New objects were assigned a random contrast in the range [0,1]. In order to keep
the sparsity of the world constant (at Ps), Pon was related to Poff by Pon = Poff Ps

1−Ps
. Values of Poff ranging from

0.05 to 0.3 were used in the different experiments reported below. Worlds that contained no objects were removed
from the training sequence.

The retinal input corresponding to each world array was generated by randomly selecting pan and tilt values
with the restriction that the highest contrast pixel in the world remained visible on the retina. Each retinal input was
then normalized by the total sum of the pixel values in the retina. To generate the data for training the head-centric
representation, the neck pan/tilt values were kept constant while the eye pan/tilt values were chosen randomly. To
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Figure 3: Training data, for presentation to the inputs of the neural network architecture shown in Fig. 2,
was generated by populating a body centric world with objects represented by pixels with non-zero values
(one object is illustrated near the center of the retinocentric space). The retina was slid around within a
world by both eye and neck movements. The portion of the world visible on the retina at the extremes
of eye pan and tilt (for a fixed neck pan and tilt) defines a head-centric world. The world visible on the
retina at the extremes of both eye and neck pan and tilt defines a body-centric world. Values of pan and
tilt were represented to the network as vectors. Each pan/tilt vector had one element equal to a value of
one, representing the pan/tilt value, and all other elements were zero. The retinotopic image presented to
the network was simply the array of world pixels visible to the retina given the current pan and tilt values.
The strength of the pixel contrasts in the retina were normalized so that they summed to one.

generate the data for training the body-centric representation, both the eye pan/tilt and neck pan/tilt values were
chosen randomly. Examples of sequences of training data generate by this method are shown in Fig. 4. The four
layers of neurons making up the model were trained one after the other. Specifically, a sequence of 100000 input
patterns were used to train the first conjunctive layer. These weights were then held constant while another 100000
input patterns were presented and the weights into the first disjunctive layer were learned. This procedure was
then repeated to train the second conjunctive and disjunctive layers using 100000 input patterns each.

To test the accuracy of the sensory coordinate mappings learned by the network the following procedure was
used. A single object was placed in the visual world at each possible location in turn. For each world location a set
of input patterns were created containing every possible combination of the retinal location and the pan/tilt values
corresponding to this world location. This set of input patterns corresponding to a single world location constitutes
a “disjunctive set” of patterns, and the entire test set consisted of disjunctive sets for every possible world location.
For each individual input pattern the node in the disjunctive layer under test that generated the strongest response
was identified. This node can be said to represent that input pattern. Ideally, all the patterns in a disjunctive set
(i.e., all the combinations of pan/tilt and retinal coordinates corresponding to a single world location) should be
represented by a single node, and patterns in different disjunctive sets (i.e., patterns corresponding to different
world locations) should be represented by distinct nodes. Hence, a pattern was considered mis-represented if
it was not represented by the node representing the majority of patterns in that disjunctive set. Furthermore, if a
single node represented patterns corresponding to more than one distinct world location, those patterns not forming
part of the largest disjunctive set represented by that node were also considered mis-represented. A percentage
error was then calculated as the ratio of mis-represented patterns to all patterns in the test set (i.e., all possible
combinations of retinal location and pan and tilt values for all possible world locations). Note that error was not
calculated in terms of the distance between the actual location of the object and the location represented on the
map. Instead, the error values measured the percentage of patterns mis-mapped by the network. In other words,
for the percentage of patterns not mis-mapped (100-error) the mapping produced was 100% accurate.

Experiments were carried out to assess the robustness of the learning algorithm to changes in the sparsity of
the world (Ps), and the probability that successive images contained the same object (Poff ). For each condition
tested, the neural architecture was trained five times using different randomly generated sequences of input data
and different randomly initialized synaptic weights. Fig. 5 shows the mean percentage error (and the maximum
and minimum error) over these five trials for each combination of Ps and Poff tested. It can be seen from Fig. 5a
that performance was best for Ps values between 0.1 and 0.2. As the world becomes sparser than 0.1, the retina
will rarely contain multiple objects. Since, the disjunctive learning rule exploits the presence of multiple objects to
divide its inputs into separate disjunctive sets, it is not surprising that performance gets worse as Ps becomes very
small. As the world becomes denser than 0.2, the retina will typically contain several objects. It is then difficult to
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Figure 4: Example training data. (a) shows Fig. 3 rearranged to illustrate the format in which the
training data is presented in (b) for learning head-centered coordinates, and (c) for learning body-centered
coordinates. In both (b) and (c) the top rows show a sequence of 12 images of a visual world created using
Ps = 0.1 and Poff = 0.1. The bottom rows show the corresponding 12 sets of input data presented to the
neural network. For learning head-centric coordinates it is assumed that the neck pan and tilt values are
constant. Hence, the visual world, shown on the top row of (b), is the head-centered space (fixed relative
to the body-centered space) as shown on the right of (a). Furthermore, since the neck pan/tilt values are
not used as inputs to the stage of the neural network hierarchy learning the head-centric coordinates (see
Fig. 2), these values are ignored. Hence, the sequence of training data shown on the bottom row of (b)
consists of the retinotopic image and the eye pan and tilt vectors shown in the configuration illustrated
within the dashed box on the top-left of (a). For learning body-centric coordinates the visual world,
shown on the top row of (c), is the body-centered space shown on the right of (a). The sequence of
training data shown on the bottom row of (c) consists of the retinotopic image and both the eye and neck
pan and the eye and neck tilt vectors shown in the configuration illustrated within the dash-dot box on
the top-left of (a). In both sets of training data the retina is smaller than the visual world, and hence
the retinal inputs (top-left square in the bottom row of each sub-figure in (b) and (c)) contains only a
subset of the pixels shown in the corresponding visual world (top row of the same column). The retina is
positioned on the visual world at the location determined by the pan and tilt values, and hence, the subset
of pixels contained in the retinotopic image is determined by the pan and tilt vectors. For example, for
the left most column in (b) both the pan and tilt values are in the middle of their ranges (pan=2, tilt=2)
and so the top and left edges of the retina are positioned one pixel from the top and left edges of the world
(and the bottom and right edges of the retina are positioned one pixel from the bottom and right edges of
the world). Hence, the only object in this world appears at the bottom left of the retina (at coordinates
(1,3)). In the next image in the sequence, the eye pan value has moved one position to the left (pan=1,
tilt=2) so that the left edge of the retina is now positioned at the left edge of the world and the object
now appears in the retina at the bottom center pixel (at coordinates (2,3)). If for brevity we denote each
input pattern using a vector of four values (pan,tilt,x,y), then the first five sets of input data for learning
head-centered coordinates shown on the bottom row of (b) can be written as (2,2,1,3), (1,2,2,3), (1,3,2,2),
(2,2,1,3), (2,3,1,2). Note that the first and fourth patterns are the same, so we have four distinct training
patterns. Each of these patterns represents the same location in the visual world (the location of the
pixel at coordinates (2,4) in the visual world shown on the top row of (b). These four patterns form a
“disjunctive set” representing that location. 7
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Figure 5: Accuracy of head-centric representation (square markers) and body-centric representation
(circular markers), for (a) changing the sparsity of objects in the world (while Poff was fixed at 0.05),
and (b) changing the average time an object stayed static in the world (while Ps was fixed at 0.2). Each
plot shows the mean percentage error with error bars indicating the best and worst performance over
five trials using different randomly generated sequences of input data and different randomly initialized
synaptic weights.

learn which of several objects in one image corresponds to which of several objects in the next image. Hence, it
is to be expected that learning posture invariance from temporal correlations becomes less accurate as the average
number of objects in each input pattern increases. However, it is easy to imagine how the early stages of visual
processing could control the sparseness of the retinocentric representation of space, to enable successful learning
of subsequent sensory-sensory transformations. Fig. 5b shows that the performance of the learning algorithm
improves as Poff decreases. This is expected since the smaller Poff the longer the sequence of training data
containing the same object, and hence, the more opportunity the algorithm has to learn all combinations of retinal
position and pan/tilt value that correspond to the same spatial location.

It can be seen from both Figs. 5a and 5b that the body-centric representation is often more accurate than the
head-centric representation. Since the former is built on the latter, this result seem inconsistent. However, it is due
to the rather strict criteria used to quantify the accuracy of the representations learned. The assessment method
requires that each disjunctive set is represented by a distinct node, and that a single node produces the strongest
response to all members of a disjunctive set. The second criteria of success is responsible for many of the recorded
errors, but such “errors” in the head-centric representation do not prevent the body-centric representation being
learned successfully. For a small proportion of disjunctive sets two or more nodes in the disjunctive layer learn
strong weights to all the members of this disjunctive set. Unless one of these nodes produces the strongest response
to all members of the disjunctive set, we classify some of the patterns making up the disjunctive set as being mis-
represented. However, if multiple nodes all respond to a disjunctive set, the conjunctive layer in the next stage of
the learning hierarchy can learn strong connections to all these nodes and still form an accurate representation of
all possible conjunctions at the next level. Hence, some of the errors being counted by the assessment method,
when applied to the head-centric representation, do not actually have an effect on subsequent learning of the body-
centric representation. Such “errors” seem to be most common at the corners of the space being encoded. Of all
the combinations of retinal location and pan/tilt values a smaller proportion are near corners in the body-centric
space than in the head-centric space, hence, the accuracy of the body-centric representation is better.

4 Discussion
This article has shown that it is possible to learn sensory-sensory coordinate transformations using a completely
unsupervised learning algorithm. Specifically, it has been shown that a sequence of retinal images produced using
random eye movements and a slowly changing world can be used to learn a representation of visual space that is
invariant to eye movements, i.e., a head-centric reference frame. Similarly, this representation of the visual world
combined with random head movements can be used to learn a representation of visual space that is invariant to
eye and neck movements, i.e., a body-centric reference frame. Other recent work has shown that similar methods

8
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Figure 6: (a) A simple task used to test previous models of sensory coordinate transformations. Two
scalar values ri and pj , encoded by the activation pattern of two populations of neurons, are combined
to calculate a third scalar value hk, encoded by the firing of a third population of neurons. This general
task can be interpreted in terms of simulating a mapping from retinocentric coordinates to head-centered
coordinates, if ri is interpreted as representing the position of a target on a one-dimensional retina, and
pi is interpreted as a representation of eye position. In the simple case where the eye position generates a
horizontal shift of the retina along its axis, the correct value of h is simply the sum of the values r and p.
Hence, two pairs of retinocentric coordinates and eye position values that should produce the same head-
centric output are indicated by solid and dashed lines respectively. (b) The architecture of the proposed
model when applied to this simple task. The head-centered representation is generated by a population
of disjunctive nodes. These nodes learn strong weights from a set of conjunctive nodes (all representing
the same spatial location). The conjunctive nodes learn each possible combination of retinotopic and eye
position inputs. The conjunctive layer thus learns a set of basis functions, and the disjunctive layer learns
the mapping from these basis functions to a coordinate system in which object position is invariant to
posture.

which exploit temporal correlations can be used to learn spatial representations invariant to posture similar to those
encoded by “place cells” in the rat hippocampus (Byrne and Becker, 2008; Franzius et al., 2007). The current
results complement this work by showing that similar mechanisms can account for learning spatial reference
frames in parietal cortex.

The reported results demonstrate that the proposed algorithm works on a simple test problem. Future work
will be required to determine if this algorithm can scale-up to more realistic tasks. Existing methods for generating
sensory-sensory mappings use hard-coded solutions or supervised learning, and hence, are likely to outperform
the method proposed here. The advantages of the current method are not in terms of a quantitative improvement
in performance, but rather in demonstrating that a completely unsupervised method can learn sensory-sensory
coordinate transformations. Hence, in the following discussion the comparison with other methods is concerned
primarily in discussing the shortcomings of these existing methods in terms of their plausibility as models of
development in infants and/or as algorithms that can advance work in epigenetic robotics.

The proposed algorithm has been tested with a simple task using a two-dimensional retinal image and four
degrees of freedom for motor action: eye pan/tilt and neck pan/tilt. While this task is simple it is more challenging
and realistic than the task that has typically been used to assess previous models of cortical spatial transformations.
This previous task is illustrated in Fig. 6a. In this task the retinotopic map is one-dimensional and there is one de-
gree of freedom for motor action which causes the retinal input to translate along its length (Pouget and Sejnowski,
1997; Weber and Wermter, 2007). This is equivalent to calculating the sum of two scalar values represented by
peaks of activity in two one dimensional input maps (van Rossum and Renart, 2004). For ease of comparison
with previous methods, the architecture of the proposed algorithm when applied to this simple one-dimensional
problem is shown in Fig. 6b.

Basis function networks (Fig. 7a) are an influential model of cortical spatial transformations (Deneve and
Pouget, 2003; Pouget et al., 2002; Pouget and Sejnowski, 1997; Pouget and Snyder, 2000). In such models, a
layer of basis function nodes encode every possible combination of sensory input signals. This layer is functionally
equivalent to the conjunctive layer in the proposed model (compare Fig. 7a with Fig. 6b). The outputs of the basis
functions can be combined, linearly, to produce a spatial map in a new reference frame (which is equivalent
to the operation performed by the disjunctive layer in the proposed model). The need to assign one node to
represent each combination of sensory signals results in the basis function network size increasing exponentially

9
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Figure 7: Architectures of alternative methods of performing sensory reference frame transformations
for the one-dimensional task described in Fig. 6a. (a) A basis function network as used in (Deneve and
Pouget, 2003; Pouget et al., 2002; Pouget and Sejnowski, 1997; Pouget and Snyder, 2000), (b) A sigma-pi
network as used in (Weber et al., 2007; Weber and Wermter, 2007).

with problem size (Deneve and Pouget, 2003; Pouget and Sejnowski, 1997). To resolve this issue it is possible
to decompose sensory-sensory transformations into several steps. Such a solution results in a model containing a
hierarchy of coordinate systems (Pouget et al., 2002) similar to the one proposed in this article. However, basis
function networks differ in two key respects from the proposed model. Firstly, because the response of a neuron in
a basis function network is inversely proportional to the Euclidean distance between the input and the weights of
that node, basis function networks require that all the sensory information originates from a single object (Pouget
et al., 2002), and hence, unlike the proposed model cannot represent the spatial locations of multiple objects that
are present simultaneously. Secondly, the synaptic weights of each basis function need to be predefined, hence,
unlike the proposed model spatial representations are not learned in an unsupervised way, and such a model cannot
be used to explore the development of spatial representations in cortex.

Weber et al. (2007); Weber and Wermter (2007) proposed a method for learning sensory reference frame
transformations. The nodes in their network were sigma-pi units (Fig. 7b). The response of each node was
determined by calculating the products of pairs of signals, and then calculated the sum over these products. The
two parts of this activation function correspond to the two layers in the proposed model and a basis function
network (compare Fig. 7b with Figs. 6b and 7a). As with the proposed model, the weights connecting products to
outputs are learned using temporal correlations between successive input patterns. However, unlike the proposed
model, the combinations of inputs that form the products are predefined. This is equivalent to predefining the
weights in a basis function network, or predefining the weights in the conjunctive layers of the proposed model.
Hence, only part of the mapping is learned in this algorithm, while half the problem is solved by hard-wiring the
solution rather than learning it.

Hence, in contrast to the algorithm proposed here (and to similar models of hippocampal spatial representations
(Byrne and Becker, 2008; Franzius et al., 2007)), previous models have failed to learn the sensory coordinate
transformation but have had the solution hard-wired into the weights of the network to some extent. Furthermore,
none have demonstrated that the resulting spatial representation can be used as the input to a subsequent spatial
reference frame mapping (i.e., that the model can form part of a larger hierarchy of spatial transformations).

The proposed model, and those discussed above, suggest that when performing a task such a reaching for
an object the retinocentric coordinates of the target object are transformed into body-centered coordinates via a
series of intermediate reference frames. Hence, sensory information is recoded into a coordinate system which
is more likely to be consistent with the coordinate system of the motor effectors. The implicit assumption is
that the new coordinate systems is more appropriate for learning and controlling arm movements. However, an
alternative strategy, embodied in many existing models, is to directly learn the mapping between sensory inputs
and motor outputs without any recoding via intermediate reference frames (e.g., Albus, 1981; Balkenius, 1995;
Baraduc et al., 2001; Churchland, 1990, 1986; Cohen et al., 1997; Coiton et al., 1991; Gaudiano and Grossberg,
1991; Mel, 1990; Meng and Lee, 2007; Metta et al., 1999; Ritter et al., 1992; Salinas and Abbott, 1995; Schulten
and Zeller, 1996). Unlike many previous algorithms for sensory-sensory mappings, these sensory-motor mappings
are usually learned rather than being hard-wired. This is made possible by associating the sensory consequences
of random motor movements (motor “babbling”) with the outputs that generated those motor movements. In other
words, the motor outputs provide a supervisory signal for learning the sensory-motor mapping that is not available
for learning a sensory-sensory mapping.
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While the ability to exploit the correlation between motor outputs and sensory inputs to learn the sensory-motor
mapping gives these methods an advantage over hard-coded methods of learning sensory-sensory mappings, the
existing algorithms for learning direct sensory-motor mappings typically suffer from other issues.

• These existing algorithms typically require that the sensory input contain only one item which always corre-
sponds exactly to the position of the end-effector that the algorithm is learning to control, which is a serious
limitation.

• During training the output of the motor region is determined by a random number generator, whereas it is
controlled by the sensory input once learning is complete. Such a distinction between the training phase
and operational phase is biologically implausible as it requires neurons to switch behaviors (Spratling and
Hayes, 1998).

• There are a large number of possible combinations of sensory inputs for which a mapping needs to be
learned (Tsotsos, 1995), this is equivalent to the problem faced by basis function networks where the size
of the network needs to increase exponentially with the size of the task.

• The required motor configuration may depend on non-linear relationships between the different sensory
inputs. There may thus be little similarity in the required output for similar input patterns, and hence, little
opportunity for generalization.

At least some of these difficulties can be solved by recoding the sensory data into a more abstract representation
such as a body-centric reference frame. Recoding via intermediate coordinate systems can overcome the exponen-
tial increase in problem size, the more direct correspondence between the recoded sensor and motor coordinate
systems provides generalization between similar situations, and the abstract sensory representation can be reused
for learning other sensory-motor mappings.

As well as providing a mechanism for learning sensory-sensory coordinate transforms (and subsequently,
sensory-motor control) the proposed hierarchical neural network algorithm may have application to modeling in-
fant development or implementing developmental processes in robots. Development is a constructivist process
through which progressive improvements in ability are achieved by using simpler skills as a basis for learning
more complex ones, and so on hierarchically (Arbib et al., 1987; Elman et al., 1996; Mareschal et al., 2007;
Quartz, 1999; Siros et al., 2008). A neural network model of such a process thus requires nodes to be available to
exploit the learning that has been achieved by other nodes. One obvious method by which this can be achieved is
to allow the outputs of certain nodes to provide (some of) the inputs to other nodes, in a hierarchical arrangement.
This second set of nodes is then in a position to make use of, and build upon, the results of learning in first set of
nodes. In such a hierarchical neural architecture, more complex representations can be learned in higher-level net-
works based on simpler representations learned in lower-level networks. In addition, the simpler representations
constrain the search space for learning in subsequent layers, and hence, make tractable the task of learning more
complex representations (Clark and Thornton, 1997; Elman et al., 1996). The organization of cortical regions
into functional hierarchies, such as those found in the dorsal and ventral streams, suggest that hierarchical neural
architectures, like that proposed here, can provide the basis for a model of cortical development that is more bio-
logically plausible than many other neural network algorithms, like those reviewed in (Westermann et al., 2006),
that have been proposed as models of development. Neural hierarchies capable of learning complex perceptual
representations which are appropriate for controlling complex actions are likely to be essential to the developmen-
tal process in humans, and algorithms capable of learning a hierarchy of representations are therefore likely to be
essential if the field of developmental robotics (Spratling, 1999a; Weng et al., 2001) is to make further progress,
which in turn, is imperative for the creation of more intelligent and adaptive machines.

In the proposed model, initial learning of a head-centric representation simplifies the subsequent task of learn-
ing a body-centric representation. In turn, the learning of the head-centric spatial representation requires visual
inputs generated by eye movements in the absence of neck movements. Hence, the model proposes that the lack
of head control in young infants is an advantage for learning spatial representations, in the same way that it has
previously been proposed that limitations in motor control or cognitive ability may provide an advantage to learn-
ing complex tasks (Araujo and Grupen, 1996; Elman, 1993; Elman et al., 1996; Lungarella and Berthouze, 2002;
McClelland and Plaut, 1993). Another prediction of the proposed model is that learning invariant representations
will be aided by the presence of multiple stimuli. This is in contrast to other algorithms for learning invariance
which require stimuli to be presented in isolation (e.g., Földiák, 1991; Oram and Földiák, 1996; Stringer and Rolls,
2000; Wallis, 1996; Wallis and Rolls, 1997).
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5 Conclusions
The structural uniformity of the neocortex (Crick and Asanuma, 1986; Ebdon, 1992; Mountcastle, 1998) has led
many theorists to suggest that the cortex is also computationally uniform (Barlow, 1994; Douglas et al., 1989;
Ebdon, 1992, 1996; Grossberg, 1999; Marr, 1970; Mumford, 1992, 1994; Phillips and Singer, 1997). This article
adds to these arguments by demonstrating that the same mechanisms which are widely believed to underlie the
learning of object representations with invariance to viewpoint in the ventral pathway can also give rise to spatial
representations invariant to eye and neck movements that are believed to exist in the dorsal pathway. A major
advantage of the proposed algorithm over previous models of cortical sensory-sensory transformations is that
these coordinate transformations are learned using an entirely unsupervised learning algorithm.
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