
Auton Agent Multi-Agent Syst (2014) 28:637–681

DOI 10.1007/s10458-013-9235-z

Learning potential functions and their representations

for multi-task reinforcement learning

Matthijs Snel · Shimon Whiteson

Published online: 5 September 2013

© The Author(s) 2013

Abstract In multi-task learning, there are roughly two approaches to discovering representa-

tions. The first is to discover task relevant representations, i.e., those that compactly represent

solutions to particular tasks. The second is to discover domain relevant representations, i.e.,

those that compactly represent knowledge that remains invariant across many tasks. In this

article, we propose a new approach to multi-task learning that captures domain-relevant

knowledge by learning potential-based shaping functions, which augment a task’s reward

function with artificial rewards. We address two key issues that arise when deriving potential

functions. The first is what kind of target function the potential function should approximate;

we propose three such targets and show empirically that which one is best depends critically

on the domain and learning parameters. The second issue is the representation for the poten-

tial function. This article introduces the notion of k-relevance, the expected relevance of a

representation on a sample sequence of k tasks, and argues that this is a unifying definition

of relevance of which both task and domain relevance are special cases. We prove formally

that, under certain assumptions, k-relevance converges monotonically to a fixed point as k

increases, and use this property to derive Feature Selection Through Extrapolation of k-

relevance (FS-TEK), a novel feature-selection algorithm. We demonstrate empirically the

benefit of FS-TEK on artificial domains.

Keywords Multi-task reinforcement learning · Feature selection · Abstraction ·
Potential-based shaping · Transfer learning

1 Introduction

Real-world autonomous agents constantly face problems with various degrees of similarity to

problems encountered before. Often, exploiting these similarities is vital to solving the new

M. Snel (B) · S. Whiteson

Intelligent Systems Lab Amsterdam, Universiteit van Amsterdam,

Amsterdam, The Netherlands

e-mail: m.snel@uva.nl

S. Whiteson

e-mail: s.a.whiteson@uva.nl

123

638 Auton Agent Multi-Agent Syst (2014) 28:637–681

problem with acceptable cost in terms of time, money, or damage incurred. For example, a

person learning a new language can do so more quickly if he understands the general structure

of language; a robot navigating a new building should not need to crash into obstacles to

learn that doing so is bad.

This article considers how an agent facing a sequence of tasks can best exploit its experi-

ence with previous tasks to speed learning on new tasks, via two complementary approaches.

First, by extracting knowledge from this experience in a way that can be leveraged by learning

algorithms, and second, by automatically discovering good representations for that knowl-

edge; for example, a subset of the agent’s sensory features. We consider a reinforcement

learning (RL) [73] setting in which agents learn control policies, i.e., mappings from states

to actions, for sequential decision problems based on feedback in the form of reward. Typi-

cally, the agent tries to estimate the value of a state under a given policy as the sum of future

rewards, or return, it can expect under that policy.

Traditionally, the aim has been to converge to the optimal policy, which maximizes

expected return. However, expected online return (return incurred while the agent is learning

and interacting with the environment), rather than convergence, is often more important. By

guiding the agent’s exploration strategy, the application of prior knowledge to the task is one

tool for improving online return.

In transfer learning, prior knowledge is derived from previous tasks seen by the agent

or other agents. More specifically, transfer learning aims to improve performance on a set

of target tasks by leveraging experience from a set of source tasks. Clearly, the target tasks

must be related to the source tasks for transfer to have an expected benefit. In multi-task

reinforcement learning (MTRL), this relationship is formalized through a domain, a distri-

bution over tasks from which the source and target tasks are independently drawn [76,86].

Even so, relatedness can come in different forms. This article focuses on discovering shared

representational structure between tasks and the knowledge captured by that structure.

Discovering a single compact representation (e.g., a subset of the agent’s sensory features)

that is able to capture individual task solutions in the entire domain is the objective of many

multi-task methods (e.g. [18,30,70,83]). We call this a task-relevant representation: a single

representation with which a different function is learned in each task. Its power lies in its

compactness, which makes each task easier to learn.

Other approaches utilize a cross-task representation that, while not necessarily useful for

representing task solutions, captures task-invariant knowledge (e.g. [8,20,22,34,62]). We

call this a domain-relevant representation, which can serve as a basis for a single cross-

task function that captures (approximately) invariant domain knowledge. Roughly speaking,

such a function obviates the need to re-learn task-invariant knowledge and biases the agent’s

behavior.

The key insight underlying the work presented in this article is that task-relevant and

domain-relevant representations are fundamentally different: not only can they capture differ-

ent concepts, but they can employ different features. For example, consider a robot-navigation

domain. In each task, the robot is placed in a different building in which it must locate a bomb

that is placed at a fixed location that depends on the building. An optimal policy for a given

task need condition only on the robot’s position in the building; position is therefore task

relevant. However, in each task, the robot must re-learn how position relates to the bomb’s

location. By contrast, while distance sensors are not needed in a task-specific policy, they

can be used to represent the task-invariant knowledge that crashing into obstacles should be

avoided, and are therefore domain relevant.

Some approaches learn a single new representation that may combine task-relevant and

domain-relevant representations [2,5,8,40,79]. For example, instead of training a separate

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 639

neural network per supervised learning (SL) task, Caruana [8] trains a single network on

all tasks in parallel. Learning benefits from the shared hidden layer between tasks, which

captures task-invariant knowledge, but the network can also represent task-specific solutions

through the separate task weights. However, such approaches have several limitations. First,

task solutions may interfere with each other and with the task-invariant knowledge [9].

Second, any penalty term for model complexity [2,40] affects both task and domain-relevant

representations simultaneously. Lastly, mapping the original problem representation to a

new one makes it harder to interpret the solutions and decipher which knowledge is domain-

relevant.

These problems can be avoided by maintaining separate task-relevant and domain-relevant

representations. In each task, the agent learns a policy using the task-relevant representation

and is aided by a cross-task function using the domain-relevant representation. This approach

also makes it easier to override the bias of the cross-task function, which is important when

that bias proves incorrect [9]. The cross-task function can be represented as, e.g., advice rules

[81], or a shaping function [34,53], the approach we focus on in this article.

Shaping functions, which augment a task’s reward function with additional artificial

rewards, have proven effective in single-task [53], multi-agent [4] and multi-task [34,68,69]

problems, with applications to, e.g., foraging by real robots [15], robot soccer [10], and real-

time strategy games [52]. Ng et al. [53] showed that, to preserve the optimal policy of the

ground task, the shaping function should consist of a difference of potentials Φ : X → R,

which, like value functions, specify the desirability of a given state. In MTRL, shaping func-

tions can be learned automatically by deriving the potential function from the source tasks

[34,68,69], e.g., the navigating robot described above could learn a shaping function that

discourages bumping into obstacles.

The primary aim of this article is to address the two key steps involved in trying to

maximize online return through potential functions in MTRL. The first step is selecting the

appropriate target for the potential function to approximate. This question does not arise

in SL, since the targets are given and thus any single cross-task function strives to mini-

mize a loss function with respect to all tasks’ targets simultaneously. An intuitive choice

of target in MTRL is the optimal value function of each task; approximating this target

leads to the solution that is closest in expectation to the optimal solution of the unknown

next task. However, there is no guarantee that using a potential function that approximates

this target leads to the best online return. Therefore, in Sect. 3, we propose three different

targets.

Given a target, the second key step is to find the representation that approximates this

target as closely as possible while at the same time generalizing well given limited domain

information (observed tasks); i.e., to select a domain-relevant representation. Previous work

on multi-task shaping [34] relied on manually designed representations. Other MTRL work

that employed an analogue of domain-relevant representations also manually designed them

[21,22,63], or learned them but did not learn a cross-task function [20]. Therefore, in Sect. 4,

we introduce the notion of k-relevance, the expected relevance on a sequence of k tasks

sampled from the domain, and argue that this is a unifying definition of relevance of which

both task and domain relevance are special cases. We prove that, under certain assumptions,

k-relevance is an approximately exponential function of k, and use this property to derive

Feature Selection Through Extrapolation of k-relevance (FS-TEK), a novel feature-selection

algorithm that applies to both tabular representations and linear function approximators with

binary features. The key insight behind FS-TEK is that change in relevance observed on

task sequences of increasing length can be extrapolated to more accurately predict domain

relevance.

123

640 Auton Agent Multi-Agent Syst (2014) 28:637–681

Finally, we present an empirical analysis that evaluates these two steps on multiple

domains, including one that requires function approximation. First, we show that which

potential function is best depends critically on the domain and learning parameters. Then,

we demonstrate empirically the benefit of FS-TEK on these same domains.

The remainder of the article is structured as follows. The next section addresses some

essential background on shaping functions and RL. Thereafter, Sects. 3 and 4 discuss the

theoretical aspects of the potential functions and notion of relevance that we propose. Section 5

provides an experimental validation of these concepts. The article concludes with an overview

of related work in Sect. 6 and a discussion in Sect. 7.

2 Background

This section introduces the notation used in the article and provides further background on

shaping functions and the standard framework for solving RL problems. In the last subsection,

we formalize the problem setting considered in this article.

2.1 Reinforcement learning

An RL agent engages in a sequential decision process in which it interacts with an environment

by choosing an action based on sensory input, or state, it receives from the environment. For

each action, the agent receives a real-valued reward from the environment’s reward function.

The agent’s goal is to construct a policy—a mapping from states to actions—that maximizes

the expected cumulative reward, or expected return. Value-based methods do so by learning

a value function, which for each state–action pair estimates the expected return after picking

that action in that state.

In this article, we assume a factored state representation [7], in which each state is described

using a set X of state variables or features: X = {X1, X2, . . . , X p}. An assignment of a specific

value to feature X i is denoted by xi , with the vector x = (x1, x2, . . . , x p) describing one state.

Unless specified otherwise, uppercase letters (X) denote random variables, and lowercase

letters (x) denote their values. Similarly, lowercase boldface denotes vectors of values (x),

and uppercase boldface (X) denotes both a random vector and the set of all possible x. See

Table 2 of Appendix 1 for glossary of terms used in this section and throughout the article.

A RL task is typically modeled as a Markov decision process (MDP), a tuple m =
〈Xm, A, Pm, Rm〉 with set of states Xm and set of actions A. For convenience, X+ denotes the

feature set that includes the action as a feature and X+
m = Xm × A denotes the state–action

space of a task. Since this article focuses on MTRL, we subscript the entities specific to a

given task with m to help distinguish between tasks. We assume the same feature and action

set for all tasks, and that all actions are allowed in any x ∈ Xm . Given state x in task m, the

probability of transitioning to state x′ given action a is Pm(x, a, x′), or Pxax′
m , and results in

expected reward Rm(x, a, x′), or Rxax′
m .

The aim of an RL agent is to maximize the return Rt , a discounted sum over rewards:

Rt =
∞
∑

k=0

γ krt+1+k (1)

where rt+1 is the reward received after taking action at in state xt at time step t and γ is a

discount factor in [0, 1] that determines the relative importance of future rewards.

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 641

The return depends on the agent’s policy π : Xm × A → [0, 1] s.t.
∑

a π(x, a) = 1,

which assigns a probability to action a in state x. The value of state–action pair (x, a) under

policy π is the expected return when starting in x, taking a, and following π thereafter, and

is denoted by Qm : X+
m → R. The optimal value function, which defines the maximum

expected return the agent can accrue, is defined by the Bellman optimality equation:

Q∗
m(x, a) =

∑

x′∈Xm

Pxax′
m

[

Rxax′
m + max

a′
Q∗

m(x′, a′)

]

. (2)

An optimal policy π∗ achieves maximum expected return and can be derived from the optimal

Q-function by setting π∗(x, argmaxa Q∗
m(x, a)) = 1. It follows that the optimal value of

state x is V ∗
m(x) = maxa Q∗

m(x, a).

Solving (2) explicitly requires a model of the MDP; this is the domain of planning methods

such as dynamic programming [6]. For example, policy iteration starts out with a random

policy, and iteratively computes the value function for the policy and makes the policy greedy

with respect to the new value function, until convergence. On the other hand, value iteration

works by iteratively computing solutions to (2) directly.

In RL problems, however, no model is available and the agent must learn about its envi-

ronment by interacting with it. Model-based RL methods do so by iteratively learning a

model of the environment and improving the policy by planning on the estimated model; in

contrast, model-free methods, which we employ in this article, estimate a value function or

policy directly from interaction with the environment [73].

A widely used class of model-free methods is temporal-difference (TD) learning [72].

When used for control, the TD update takes the form

Q(x, a) ← Q(x, a) + αδ, (3)

where α is a learning rate and δ the TD error. There are various approaches to computing the

latter, depending on which TD control algorithm is used. Two of the most popular are Sarsa

[58,64], and Q-Learning [84]. For Sarsa,

δ = r + γ Q(x′, a′) − Q(x, a), (4)

where r is the reward incurred, x′ the next state and a′ the action the agent took at x′. For

Q-Learning,

δ = r + γ max
a∗

Q(x′, a∗) − Q(x, a). (5)

Basic RL methods do not cope well with tasks with large state spaces. One tool for

speeding up learning in such problems is the use of eligibility traces [73]. Here, a state–

action pair gets assigned a trace with value one (so-called replacing traces) when visited;

each trace is decayed by a factor γ λ on each time step, where γ is the discount factor of

the MDP and λ is a decay parameter. At each time step, instead of just updating the most

recent state–action pair, all state–action pairs with traces significantly above zero are updated

as Q(x, a) ← Q(x, a) + αδe(x, a), where e(x, a) is the trace value. When combined with

eligibility traces, Sarsa and Q-Learning are called Sarsa(λ) and Q(λ), respectively.

Function approximators can also improve performance in large state spaces and are

required for continuous state spaces. Linear approximators represent the Q-value for a given

state–action pair as φ(x, a)Tθ , where φ(x, a) maps the state–action pair (possibly nonlin-

early) to a feature vector representation, and θ is the vector of weights. Combined with

eligibility traces, the update takes the form θ ← θ + αδe, where e is the vector of traces. In

123

642 Auton Agent Multi-Agent Syst (2014) 28:637–681

this article we employ tile coding [1,73], a linear function approximator based on a binary

feature vector.

2.2 Shaping

The concept of shaping stems from the field of operant conditioning, where it denotes a

training procedure of rewarding successive approximations to a desired behavior [67]. In RL,

it may refer either to training the agent on successive tasks of increasing complexity, until the

desired complexity is reached [17,27,57,59,61,65], or, more commonly, to supplementing

the MDP’s reward function with additional, artificial rewards [3,14,15,24,38,49,50,53,85].

This article employs shaping functions in the latter sense.

Because the shaping function modifies the rewards the agent receives, the shaped agent

may no longer learn an optimal policy for the original MDP (e.g. [57]). Ng et al. [53] show

that, in order to retain the optimal policy, a shaping function should consist of a difference

of potential functions over states. Like a value function, a potential function Φ : X
→ R

specifies the desirability of a given state. Potential-based shaping functions take the form

Fx
x′ = γΦ(x′)−Φ(x); hence, a positive reward is received when the agent moves from a low

to a high potential, and a negative reward when moving in the opposite direction. Similarly to

potentials in physics and potential field methods in mobile robot navigation [36], a shaping

potential thus results in a “force” encouraging the agent in a certain “direction”.

State potential functions can miss out on additional information provided by the actions

for a state. To address this, Wiewiora et al. [87,88] introduced shaping functions of the form

Fxa
x′a′ = γΦ(x′, a′)−Φ(x, a), where a′ is defined as in the learning rule. In this form, shaping

functions closely resemble advice-giving methods [45,81] in that they bias an agent’s policy

towards the actions that the shaping function estimates as most valuable.1 Wiewiora et al.

show that using F is equivalent to initializing the agent’s Q-table to the potential function,

under the same experience history. However, some important differences remain. Unlike

shaping, initialization biases the agent’s actions before they are taken. In addition, shaping

can be applied to RL with function approximation and in cases where the experimenter does

not have access to the agent’s value function [88]. Either way, the results in this article apply

equally well to shaping as to initialization methods.

2.3 Problem setting

We define a multi-task domain d to be a pair d = 〈D, M〉, where D is a distribution over

tasks D(m) = Pr(m), and D(m) > 0 for all m ∈ M, the set of all MDPs in the domain. This

definition matches the generalized environment proposed in [86]. The domain state space

is Xd =
⋃

m∈M Xm , and similarly X+
d =

⋃

m∈M X+
m . As noted previously, we assume the

same feature and action set for all tasks. However, results from this article can be extended

to different feature and action sets through the use of inter-task mappings (see [76] for an

overview of these methods).

Given a domain d and one or more source tasks drawn with replacement from d , the

agent’s goal is to maximize expected online return on an unknown target task sampled from

d; this measure also implicitly captures the time to reach a good policy. In general, we are

interested in a scenario in which the agent is “interacting sequentially” with the domain,

similar to lifelong learning [79]. That is, starting with an empty history h and potential

function Φ : X+
d → 0, it goes through the following steps:

1 The authors termed these potential-based advice; specifically, look-ahead advice for the formula introduced

here. We use the term “shaping” for both methods, and let function arguments resolve any ambiguity.

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 643

1. Receive a task m sampled with replacement from the domain according to D(m). The

task model is unknown.

2. Learn the solution to m with a model-free learning algorithm, aided by Φ. Add the

solution to the solution history h.

3. Update Φ based on h.

4. Go to step 1.

Nonetheless, this article applies equally well to batch scenarios in which the agent receives

a sequence of source tasks sampled from the domain upfront; the solutions to this sequence

then just become the history h.

3 Potential functions for multi-task learning

In this section, we formulate a definition of an optimal potential-based shaping function and,

since we cannot solve this expression exactly, derive three approximations to this function

for the learning case. For simplicity, we assume a tabular learning algorithm L. Since we

are interested in maximizing online return, an optimal shaping function is one based on a

potential function that maximizes expected online return across target tasks:

Φ∗
L = argmax

Φ

E [Rm |Φ, L] = argmax
Φ

∑

m∈M

D(m)E

[∞
∑

t=0

γ trt,m

∣

∣Φ, L

]

, (6)

where Rm is the return accrued in task m and rt,m is the immediate reward obtained on

timestep t in task m. Note that the task is essentially a hidden variable since the potential

function does not take it as input. Thus the potential function that satisfies (6) may perform

poorly in some tasks, though it performs best in expectation across tasks.

Since shaping with Φ is equivalent to initializing the Q-table with it, solving (6) is equiv-

alent to finding the best cross-task initialization of the Q-table. Unfortunately, because of

interacting unknown task and learning dynamics, there is no obvious way to compute such a

solution efficiently in the learning case, and search approaches quickly become impractical.

However, it is possible to derive a solution for the planning case that provides the lowest

bounds on the number of iterations needed to converge.

In the following sections, we first derive an expression for the optimal value table initial-

ization given that the task models are available and solved using value iteration. We show

that the optimal initialization in this case minimizes, in expectation, the weighted geometric

mean max-norm with the optimal value function in the target task. We then discuss three

strategies for efficiently approximating Φ∗
L for the learning case.

3.1 Optimal initialization for value iteration

In the planning case, an optimal initialization is one that minimizes the expected number of

iterations to solve the target task.

Theorem 1 The initial value function Q∗
0 that in expectation minimizes the number of iter-

ations needed to solve a given task m from a domain d by value iteration is, for γ ∈ (0, 1),

Q∗
0 = argmax

Q0

∑

m

D(m) logγ ‖Q∗
m − Q0‖∞

= argmin
Q0

logγ

∏

m

‖Q∗
m − Q0‖D(m)

∞

123

644 Auton Agent Multi-Agent Syst (2014) 28:637–681

Proof By Banach’s theorem, the value iteration sequence for a single task converges at a

geometric rate [6]:

‖Q∗
m − Qn

m‖∞ ≤ γ n‖Q∗
m − Q0‖∞,

where Qn
m is the value function on task m after n iterations and ‖ · ‖∞ denotes the max-norm.

This equation provides a lower bound on the number of iterations n needed to get within

an arbitrary distance of Q∗
m , in terms of γ and the initial value function Q0. That is, to get

within ε of Q∗
m , then ‖Q∗

m − Qn
m‖∞ ≤ ε, which is satisfied if γ n‖Q∗

m − Q0‖∞ ≤ ε. Let

δm = ‖Q∗
m − Q0‖∞. Assuming δm > 0 and ε < δm , then

γ nδm ≤ ε

n ≥ logγ

ε

δm

= logγ ε − logγ δm .

For multiple tasks the expected lower bound is

n̄ ≥
∑

m

D(m)
[

logγ ε − logγ δm

]

= logγ ε −
∑

m

D(m) logγ δm . (7)

Thus n̄ can be minimized by maximizing
∑

m D(m) logγ δm =
∑

m D(m) logγ ‖Q∗
m

− Q0‖∞.

Note that
∑

m D(m) logγ ‖Q∗
m − Q0‖∞ = logγ

∏

m ‖Q∗
m − Q0‖D(m)

∞ , which equals the

log weighted geometric mean of the max-norm between Q0 and Q∗
m . Therefore, since γ < 1,

the optimal Q0 minimizes the weighted geometric mean of the max-norm. ⊓⊔

Unfortunately, this expression is in general non-linear and non-convex. However, it seems

that good approximations are obtainable by simply minimizing the average distance, accord-

ing to some norm, between Q∗
m and Q0. We exploit this intuition in the heuristic approaches

to initialization for the learning setting that we propose below.

3.2 Initialization for the learning case

Intuitively, a good initialization of the Q-function is the one closest in expectation, according

to some norm, to some desired target value function Qm of the unknown next task m the

agent will face. This can be seen as a definition of a cross-task value function Qd that predicts

the expected value of a given state–action pair (x, a) on an unknown new task sampled from

the domain, given the target values observed for (x, a) on previous tasks. If the norm is

Euclidean, Qd gives the least-squared-error prediction of the value of (x, a) on the new task.

That is, it minimizes the mean squared error (MSE) across tasks:

Qd = argmin
Q0

⎛

⎝

∑

m∈M

D(m)
∑

x,a∈X+
m

Pr(x, a|m)
[

Qm(x, a) − Q0(x, a)
]2

⎞

⎠ , (8)

where Pr(x, a|m) is a task-dependent weighting over state–action pairs that determines how

much each pair contributes to the error. As is common in least squares, one may want to

weight non-uniformly, in our case for example if some state–action pairs occur more often

than others. It is not immediately clear how to define Pr(x, a|m). In Sect. 3.6, we discuss four

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 645

possible options for this distribution. For now, we assume Pr(x, a|m) is given. By setting the

gradient of (8) to zero and solving, we obtain:

Qd(x, a) =
∑

m∈M

Pr(m|x, a)Qm(x, a). (9)

Note that Pr(m|x, a) is a natural way of selecting the right tasks to average over for a given

pair: it is zero for any (x, a) /∈ X+
m , leaving such pairs out of the average.

For linear binary function approximators, solving (8) leads to

wi
d =

∑

m∈M

Pr
(

m|f i = 1
)

wi
m, (10)

where wi
d and wi

m are the weight of feature i across tasks and in task m respectively, and f i is

the value of feature i (either zero or one). See Appendix 3 for the derivation. Thus, instead of

averaging per state–action pair as in (11), Eq. 10 averages per binary feature. In the following

sections, we follow the format of (11) and use table-based value functions, unless mentioned

otherwise.

In SL, the targets Qm are given. In RL, an intuitive choice of target might be the optimal

value function of each task. However, there is no guarantee that using a potential function that

approximates this target leads to the best online return. In the following three subsections,

we propose three different types of Qm to use as target, each leading to a different potential

function.

3.3 Least squared error prediction of Q∗
m

By setting the target to be the optimal value function Q∗
m of each task, we obtain:

Q∗
d(x, a) =

∑

m∈M

Pr (m|x, a) Q∗
m(x, a). (11)

While approaches equivalent to (11) have been used successfully as potential functions or

initializations in previous work [68,74], they are not guaranteed to be optimal with respect

to the online return. Since Q∗
d makes predictions based on the optimal policy of each task, it

may be too optimistic: first, it is likely to overestimate the value of some state–action pairs

in some tasks. Second, the actions that Q∗
d estimates as best may not be cautious enough:

it assumes the optimal policy will be followed from the next timestep onward, and hence

ignores the uncertainty caused by exploration. This may negatively affect online return, in

particular in risky tasks, i.e, tasks where some actions may result in a large negative reward,

for example a helicopter crash or a fall down a steep cliff. Note that this “risky” ordering of

actions may occur even in cases where value is estimated correctly (for example, for states

that only occur in one task). We observe this phenomenon experimentally in the cliff domain

in Sect. 5.1.

3.4 Least squared error prediction of Q̃m

In some cases, the agent’s Q-function on a task m may never reach Q∗
m , even after learning.

This may happen, for example, when using function approximation or an on-policy algorithm

with a soft policy. When this occurs, it may be better to use a potential function based on

an average over Q̃m , the value function to which the learning algorithm converges. The

derivation is the same as for the previous section, yielding:

123

646 Auton Agent Multi-Agent Syst (2014) 28:637–681

Q̃d(x, a) =
∑

m∈M

Pr(m|x, a)Q̃m(x, a). (12)

3.5 Value of the optimal cross-task policy

The previous two approaches to defining cross-task value for the potential function both

rely on value function for tasks that have already been solved. Such approaches may be too

optimistic, even if (12) is used instead of (11), since they are based on the result of learning

and implicitly assume a (near-) optimal policy will be followed from the next time step

onward, which is not typically the case during learning.

In this section, we propose another definition which, in a sense, more closely resembles

the traditional definition of value in that it estimates value of a single fixed cross-task policy

µ : Xd × A → [0, 1] s.t.
∑

a µ(x, a) = 1 that assigns the same probability to a given

state–action pair, regardless of the current task. This definition might also be more suitable

for use as Φ since, like Φ, it is fixed across tasks. The value function of the best possible

cross-task policy, µ∗, will typically make lower estimates than either Q∗
d or Q̃d , since µ∗

is usually not optimal in every (or any) task. For example, consider a domain with a goal

location in an otherwise empty room. If the distribution over goal locations is uniform, and

the state provides no clue as to the goal position, then µ∗ is a uniform distribution over

actions in every state. We define the cross-task value of a state under a stationary policy µ

as

Q
µ
d (x, a) =

∑

m∈M

Pr(m|x, a)Qµ
m(x, a). (13)

Like (11) and (12), this follows (11), except that it averages over the values of a single policy

instead of multiple task-dependent ones.

The fact that µ is task-independent makes the task essentially a hidden variable and MTRL

similar to a partially observable MDP (POMDP), for which µ is a memoryless policy that

conditions only on the current observation and Q
µ
d is similar to the value of such a policy as

defined in [66]. Therefore, there need not exist a stationary policy (stochastic or deterministic)

that maximizes the value of each state simultaneously [66]. Consequently, traditional dynamic

programming methods may not apply. One way to overcome this problem is to assign a scalar

value to each possible policy:

V
µ
d =

∑

x∈Xd

Pr(x)V
µ
d (x) (14)

V
µ
d (x) =

∑

a∈A

µ(x, a)Q
µ
d (x, a) (15)

where V
µ
d is the domain-wide value of µ and Pr(x) is a distribution that assigns an appropriate

measure of weight to each state x. Two options for Pr(x) are the start-state distribution or

the occupation probability of x, Pr(x|µ). For the POMDP case, Singh et al. [66] show that

defining the optimal policy as

µ∗ = argmax
µ

∑

x

Pr(x|µ)V
µ
d (x) (16)

is equivalent to maximizing the average payoff per time step.

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 647

3.6 Choosing Pr(x, a|m)

All three proposed potential function types take the general form

Qd(x, a) =
∑

m∈M

Pr(m|x, a)Qm(x, a),

where Pr(m|x, a) = Pr(x, a|m)D(m)/ Pr(x, a). As indicated in Sect. 3.2, it is not immedi-

ately clear how to define Pr(x, a|m). Four options are:

1. The stationary distribution induced by the policy corresponding to each Qm For Q∗
d and

Q
µ
d , this would be π∗

m and µ∗, respectively. For Q̃d it would be the soft policy (e.g.

ε-greedy). Since Qd averages over all Qm , this seems a good option. However, it may

be problematic for Q∗
d and Q̃m as it represents only the distribution over (x, a) after

learning. There may be state–action pairs that the policy never, or rarely, visits in some

tasks, but clearly the values in these tasks should still be included in the average.

2. The distribution induced by the learning process Since we are interested in improving

performance during learning, another choice may be a distribution over (x, a) during

learning. However, it is unclear how to define this distribution, since it depends, among

other things, on when learning is halted and the trajectory through state–action space taken

during learning. One possibility is to take one sample from all possible such trajectories

and define

Pr(x, a|m) =
T

∑

t=1

Pr(x, a|m, πt) Pr(πt |m),

where Pr(πt |m) = 1/T for the soft policy the agent was following at time step t when

learning task m, Pr(x, a|m, πt) is the stationary distribution over (x, a) given πt , and

T is a predetermined stopping criterion, such as a fixed number of learning steps or a

convergence threshold. Clearly, this option does not apply to Q
µ
d .

3. The start-state distribution and uniform random policy This defines

Pr(x, a|m) = Pr(x0 = x|m) Pr(a),

where Pr(x0 = x|m) is the start-state distribution of m and Pr(a) = 1/|A| for all a. This

definition appropriately captures the distribution over (x, a) when the agent enters a new

task without prior knowledge.

4. The uniform distribution This defines Pr(x, a|m) = 1/|X+
m | for all (x, a) ∈ X+

m .

For Q∗
d and Q̃d , the latter option seems the most sensible one. Under the first and third

definitions, a probability of zero might be assigned to a state–action pair in some tasks, or even

in all, which is clearly not desirable. Also, since (11) and (12) are concerned with prediction

of the optimal (approximate) value of a pair (x, a) in a new target task, the underlying

assumption is that after taking a in x, the optimal (soft) policy for that task will be followed.

However, the first two definitions in the list above make assumptions about the policy that

has been followed so far, which is irrelevant in this context. Empirical comparison of the

options revealed no significant difference for Q∗
d and Q̃d . For Q

µ
d , the stationary distribution

induced by µ was found to work best in most cases.

4 Representation selection

So far, the discussion has focused on different potential functions, without regard to the

knowledge the agent has of the domain; in fact, the formulas in the previous section are based

123

648 Auton Agent Multi-Agent Syst (2014) 28:637–681

on the set of all tasks in the domain, thereby implicitly assuming full domain knowledge.

This discussion is important for selecting the right potential function; as Sect. 5.1 will show,

the best-performing potential function may depend on the domain and learning parameters,

even with full domain knowledge.

In practice, the agent’s knowledge of the domain is limited by the number of tasks it has

observed. Therefore, we now turn to the setting in which only a sample sequence of tasks is

available to the agent. A central aim in this setting is to generalize well from the sample to

new data. As in SL, representation is key to generalization. This section discusses the theory

underlying the second key step in maximizing online return through potential functions for

MTRL: finding the representation that approximates this target as closely as possible while

at the same time generalizing well given limited domain information (observed tasks). To

this end, we propose a definition of relevance that can be used for learning representations

in MTRL. This definition applies to any potential function type; in fact, it applies to any

table-based function that maps vectors to scalars.

In MTRL, new data may consist of both new state–action pairs and new tasks. Our cen-

tral objective, therefore, is to discover which information is relevant across tasks, which

we call domain-relevant information. While our definition also captures which informa-

tion is relevant within tasks (task relevant), this subject has been extensively addressed in

existing research. Therefore, we focus primarily on discovering domain-relevant representa-

tions.

The robot navigation example in the introduction illustrates the distinction between task

and domain relevance. Recall that here, the robot needs to locate a bomb at a fixed task-

dependent location in buildings with different layouts, where each task is a different build-

ing. Now imagine that in addition, a building can be green or red; in red buildings, the

robot receives negative reward when standing still (e.g. because it is in enemy territory and

needs to keep moving). To describe an optimal policy for each task, only position, which

constitute a Markov state representation, is needed to represent state. However, the value

of a given position needs to be re-learned in every task. Since position does not repre-

sent information that can be retained between tasks, this feature is task relevant. Building

color is not useful within a given task, since its value is constant. However, across tasks

it represents information about standing still, which receives additional punishment in red

buildings. Therefore, this feature is domain relevant, but not task relevant. Finally, distance

sensors are useful both within and across tasks, and are therefore both task and domain

relevant.

Projecting the full feature set onto a subset of the task-relevant features may create an

abstract state space that is smaller than the original state space, and can therefore help learn the

task more quickly, under certain conditions on the projection [43]. In the multi-task setting,

it is possible to define this abstract space before entering a new task, by identifying valid

abstractions (task-relevant representations) of previously experienced tasks and transferring

these to the new task (e.g. [19,37,40,83]).

Domain-relevant features also allow for a higher level of abstraction, but in addition allow

the agent to deduce rules from the abstract representation and reason with them, right from

the start of a new task, thereby obviating the need to re-learn this task-invariant knowledge. Of

course, it should be possible for the agent to override the heuristic rules given new information

garnered from interaction with a specific task. Shaping functions are a good candidate for

these kind of rules, endowing the agent with prior knowledge that gradually degrades as the

agent accumulates experience of a task.

Li et al. [43] provide an overview and classification of several state abstraction schemes

in reinforcement learning. We employ their definition of a state abstraction function:

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 649

Definition 1 (State abstraction function) A state abstraction function φ : X
→ Y induces

a partition on X; φ(x) ∈ Y is the abstract state y corresponding to x, and the inverse image

φ−1(y) is the set of ground states that corresponds to y under abstraction function φ.

In the following subsections, we propose a definition of relevance that is based on a state

representation’s ability to predict expected return within tasks (for task-relevant features)

or across tasks (for domain-relevant features). We argue that task and domain relevance

are special cases of a single underlying concept, k-relevance, the expected relevance on a

sequence of k tasks sampled from the domain. We show formally that k-relevance converges

to a fixed point in the limit, and under certain assumptions does so monotonically. We use this

property to introduce FS-TEK, a novel feature selection algorithm. The key insight behind

FS-TEK is that change in relevance observed on task sequences of increasing length can be

extrapolated to more accurately predict domain relevance.

4.1 Relevance

Since our main goal is to find good representations for potential functions, our targets for

abstraction are Q∗
d , Q̃d , or Q

µ
d , the three types of potential function proposed in Sect. 3.

Which of these is used does not matter for the theory, as any Q-function can serve as a basis

for relevance. Therefore, in what follows, we remain agnostic to the target for relevance.

Since the agent has only experienced a sample sequence of tasks from the domain, it cannot

compute this target Qd exactly. Instead, it can approximate Qd by computing a cross-task

value function based on the sequence. Let c = (c1, c2, . . . , ck) be a sequence of |c| tasks

sampled from M, and Xc =
⋃

ci ∈c Xci
.

In the following, we treat the action as just another state feature so that it can be abstracted

away if it is irrelevant. Let x+ ∈ X+
c denote a state–action pair. Let Qc be a cross-task

Q-function computed on a sequence of tasks c, Qc : Xc × A
→ R. If |c| = 1, Qc = Qm .

All of the definitions for Qd in Sect. 3 follow the general form

Qd

(

x+)

=
∑

m∈M

Pr
(

m|x+)

Qm

(

x+)

.

Thus, we have for Qc:

Qc

(

x+)

=
|c|
∑

i=1

Pr
(

ci |x+, c
)

Qci

(

x+)

, (17)

where

Pr
(

ci |x+, c
)

=
Pr

(

x+|ci

)

Pr(ci |c)
Pr

(

x+|c
) ,

where Pr(ci |c) = 1/|c| for all ci , since the probability of sampling a task from the domain

D(m), is already reflected in Pr(c). Furthermore, given a sample of tasks, the best we can

do given the prior of the sample is to assign each task a probability corresponding to its

frequency in the sample, which is accomplished by 1/|c|.
Several notions of predictive power on Qc are possible. For example, the Kullback–Leibler

divergence between the marginal distribution over Qc and the distribution conditioned on

the representation of which we wish to measure relevance [68], or the related measures of

conditional mutual information [29] or correlation [47]. The disadvantage of these measures

is that they do not take the magnitude of the impact of a representation into account; for

example, two representations may cause equal divergence, but the difference in expected

123

650 Auton Agent Multi-Agent Syst (2014) 28:637–681

return associated with one set may be much larger than the other. To address this problem,

we propose a measure of relevance2 that is proportional to the squared error in predicting

Qc.

Let φ(X+
c) = Yc denote all possible projections of X+

c onto Y using φ. For ease of

notation, denote the set of ground state–action pairs belonging to an abstract state–action

pair y ∈ Yc, φ−1(y), by X
y
c . Defining the Q-function of an abstract pair as the weighted

average of the values of its corresponding ground pairs is a natural definition.

Definition 2 (Abstract Q-function) Given abstraction φ : X+
c → Yc and any Q-function

Qc : X+
c → R, the abstract Q-function Q̄c(φ) : Yc → R is defined as the weighted average

of the Q-values of ground pairs x+ corresponding to abstract pair y:

Q̄c(φ, y) =
∑

x+∈X
y
c

Pr
(

x+|y
)

Qc

(

x+)

. (18)

It follows that the Q-value of the null abstract state, denoted Q̄∅
c , which corresponds to the

empty set of features, is the mean of all Q-values.

The Q-value of a given abstract state–action pair y generally differs from those of at

least some ground state–action pairs corresponding to y. The error ε for a given abstract

state–action pair is the weighted mean squared error of ground pairs with respect to y.

Definition 3 (Abstraction error εφ(y, Qc)) Given abstraction φ : X+
c → Yc and any Q-

function Qc : X+
c → R, the error of a given abstract state–action pair y with respect to its

corresponding ground pairs is given by

εφ(y, Qc) =
∑

x+∈X
y
c

Pr
(

x+|y
)

[

Qc

(

x+)

− Q̄c(φ, y)
]2

. (19)

It follows naturally that the relevance of an abstraction with respect to a function Qc is

the total error incurred by applying the abstraction to Qc.

Definition 4 (Relevance) Given abstraction φ : X+
c → Yc and any Q-function Qc : X+

c →
R, the relevance ρ(φ, Qc) of φ with respect to Qc is defined as the weighted mean squared

error on Qc that results from applying φ:

ρ(φ, Qc) =
∑

y∈Yc

Pr(y|c)εφ(y, Qc). (20)

When using an abstract Q-function as defined in (18), this equals the sum of weighted

variances of the Q-values of ground state–action pairs corresponding to a given y:

ρ(φ, Qc) =
∑

y∈Yc

Pr(y|c) Var
(

Qc(X
y
c)

)

. (21)

Note that the aim is therefore to find an abstraction with low relevance: this abstracts

away non-relevant parts of the original representation and keeps the relevant parts. This is

in line with the terminology employed by Li et al. [43], who designate the abstraction that

preserves Q∗ as a Q∗-irrelevance abstraction. Similarly, an abstraction with low relevance

on Qc should be thought of as a Qc-irrelevance abstraction.

2 Relevance is not a measure in the strict mathematical sense; because of dependence between feature sets,

ρ(F ∪ G) �= ρ(F) + ρ(G) for some disjoint feature sets F and G and relevance ρ.

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 651

4.2 k-Relevance

The previous section defined the relevance of an abstraction with respect to a Q-function

computed on a sequence of tasks. This single definition captures both task and domain

relevance; the former just requires a one-task sequence. Naturally, relevance often depends

on both the length of the task sequence over which it is computed and on the tasks that the

sequence contains. For example, in the robot navigation domain as a whole, the position

feature is irrelevant since, given a certain position, there is no way to know what direction

to go. In other words, in Qd , the average value function computed over the whole domain,

Q-values will not vary with the position feature, and therefore the position feature will not

result in any error on Qd if it is discarded.

However, given a sample sequence of two tasks, it is likely that position is still relevant,

e.g., if the bomb is in the same general area of the building in both tasks. In practice, the

agent, while interacting with the domain, will have at its disposal a growing sequence of tasks

based on which it must construct a domain-relevant representation. Doing so is challenging

because representations may appear relevant given the observed sequence but actually not be

domain irrelevant. Intuitively, the longer the sequence, the better sequence relevance approx-

imates domain relevance. Therefore, instead of just computing relevance on the currently

observed sequence, we should try to predict how it changes with increasing sequence length.

Decreasing relevance could mean that the feature, while relevant on the current sequence, is

not relevant in the long run. However, it is not enough to simply observe that the relevance

of a given representation is decreasing because it may plateau above zero.

To predict how relevance changes as more tasks are observed, we use the definitions in

the previous section to define the k-relevance of a representation as the expected relevance

ρk over all possible sequences of length k. Let Ck be the set of all possible sequences c

of length k, i.e., |Ck | = |M|k . The probability of sampling a given sequence c from Ck is

Pr(c) =
∏|c|

i=1 D(ci). Then we have the following definition for k-relevance:

Definition 5 (k-relevance) The k-relevance of an abstraction φ : X+
d → Yd in a domain

d = 〈D, M〉 is the expected relevance of φ on a given Q-function computed from a task

sequence of length k sampled from M according to D

ρk(φ) = E
[

ρ(φ, Qc)|c ∈ Ck

]

=
∑

c∈Ck

Pr(c)ρ(φ, Qc). (22)

Given this definition, an abstraction φ is strictly domain relevant, DR(φ), if and only if its

k-relevance ρk remains positive as k goes to infinity:

DR(φ) ⇔ lim
k→∞

ρk(φ) > 0, (23)

and strictly domain irrelevant otherwise:

¬DR(φ) ⇔ lim
k→∞

ρk(φ) = 0. (24)

Our goal is thus to find a domain-irrelevant abstraction, as applying such an abstraction yields

a domain-relevant representation. In Sect. 4.3, we show that ρk converges to the true domain

relevance as k goes to infinity.

As k tends to infinity, the average over all sample sequences of length k will approach the

true distribution over tasks in the domain ever more closely. However, the value of k at which

k-relevance is a reasonably accurate approximation of the true domain relevance depends

largely on the number of tasks in the domain.

123

652 Auton Agent Multi-Agent Syst (2014) 28:637–681

Fig. 1 Left three columns (k = 1 . . . 3): probability of each sequence as k increases, shown as portions of a

rectangle with area 1, on a 3-task domain with D(1) = 0.5, D(2) = D(3) = 0.25. Probability of sequence

(1, 2) is indicated as p12. For each k + 1, the area of each sequence for k is split into new sequences with

area proportional to D. Right column covariance matrices for the sequences marked in bold on the left. The

weight of each matrix element is equal, namely 1/k2. Relevance on a given sequence is the sum of all matrix

elements. In turn, k-relevance is the sum over all sequences

Similarly, an abstraction may be called task relevant, TR(φ), if and only if its one-relevance

is greater than zero:

TR(φ) ⇔ ρ1(φ) > 0. (25)

Thus, a sensible abstraction to use in the domain for the value function or policy would be

one that is (near-)irrelevant according to this definition and thus the expected error on the

value function of a task introduced by the abstraction is negligible. We believe this is a more

natural definition than, e.g., preserving any feature that has been found relevant in any task

in the domain [83].

Thus, k-relevance is a unifying notion of relevance that naturally captures both task and

domain relevance and can therefore be used for finding abstractions for both the value function

of a new task and the potential function to use on that task. In the next section, we show that

k-relevance converges to a fixed point as k tends to infinity, a result which makes it possible

to extrapolate domain relevance from observed tasks, as we show in Sect. 4.4.

4.3 Properties of k-relevance

Figure 1 illustrates how k-relevance changes with k. Relevance of a given φ is the same on

each single-task sequence for a given task m, i.e. sequences for which each element ci = m.

For k = 1, k-relevance comprises only single-task sequences, but the share of these sequences

decreases exponentially with k; in the example, it is D(1)k + D(2)k + D(3)k . In general, the

sequences represent the true distribution over tasks ever more closely.

For k = 2, every task is combined with every task in the domain. Hence for k > 2,

no new task combinations arise; however, we need a way to quantify relevance on, e.g.,

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 653

c = (1, 2, 3) given the relevance on (1, 2), (1, 3), and (2, 3). We show in Appendix 2 that it

follows, from the expression of relevance in terms of variance (Eq. 21) that relevance on any

sequence equals the sum of covariances between the Q-functions of all task pairs involved in

the sequence. The right column of Fig. 1 visualizes this; the highlighted areas correspond to

the covariance matrix (and hence relevance) for k −1; therefore, k +1-relevance is a function

of k-relevance. The following two theorems follow directly from this, together with the fact

that sequences approximate the true distribution over tasks ever more closely.

Theorem 2 Let φ be an abstraction with abstract Q-function as in Definition2, and let

ρk = ρk(φ) for any k. Let d(x, y) = |x − y| be a metric on R, and let f (ρk) = ρk+1 map

k-relevance to k + 1-relevance. Then f is a contraction; that is, for k > 1 there is a constant

κ ∈ (0, 1] such that

d (f (ρk), f (ρk−1)) ≤ κd (ρk, ρk−1) .

Furthermore, if d(ρ2, ρ1) �= 0, then f is a strict contraction, i.e. there is a κ ∈ (0, 1) such

that the above holds.

Proof See Appendix 2.

Corollary 1 The sequence (ρk)
∞
k=1, k = 1, 2, . . ., converges to a fixed point, namely the

domain relevance of φ.

Proof Since (R, d) is a complete metric space and f is a contraction, f has a unique fixed

point by Banach’s fixed-point theorem. ⊓⊔

Theorem 3 If all tasks share the same distribution over state–action pairs Pr(x+|m), then

ρk is a monotonically increasing or decreasing function of k, or is constant.

Proof See Appendix 2.

In other words, ρk never changes direction. Note that having the exact same distribution

over state–action pairs also implies having the exact same state–action space. By these two

theorems, ρk can be approximated by an exponential or power law function. Even when tasks

do not share the same distribution over state–action pairs, an exponential function can still

approximate where the sequence (ρk)
∞
k=1 will converge to, given sufficient k. In addition, our

experiments suggest that ρk is also monotonic in these cases.

4.4 Feature selection with k-relevance

We now introduce FS-TEK, a novel algorithm for finding relevant abstractions in MTRL

that exploits the notion of k-relevance introduced in the previous sections. FS-TEK focuses

on finding domain-relevant representations, since determining task-relevant representations

using k-relevance is relatively straightforward. As mentioned previously, the key idea behind

FS-TEK is to fit an exponential function to a candidate representation’s relevance based on

an observed sequence of tasks and then extrapolate it to estimate the representation’s domain

relevance.

Since it is a feature selection algorithm, FS-TEK constructs abstractions of the form

φ(x) = x[Y] = y, where Y ⊆ X and x[Y] denotes the values of the features Y in vector x.

That is, the abstract state y to which a state x is mapped consists of the values of the features

in some relevant set Y. Viewed another way, Y is the result of removing some irrelevant set

123

654 Auton Agent Multi-Agent Syst (2014) 28:637–681

Algorithm 1 FS-TEK

Input: a sequence s of task solutions Qsi
, i ∈ {1, 2, . . . , |s|}; α(k), the confidence level

Output: A set R of features to remove

1:

2: R ← ∅
3: f (k; θ) = θ1 + θ2 exp(−θ3k)

4: repeat

5: F ← ∅ //Features marked for removal in this iteration

6: Calculate D, the |s| × |X+ − R| matrix of k-relevance per feature, using BKR

7:

8: // Each feature for which extrapolated function of relevance does not differ

9: // significantly from 0 is marked for removal

10: for all Xi ∈ X+ − R do

11: θ̂ ≈ argmin

θ̂

∑|s|
k=1

[

f (k; θ̂) − D(k, i)
]2

//least-squares fit

12: a = min{a : d f (k;θ̂)
dk

(a) = 0}
13: if f (a; θ̂) − CI(a, α(|s|)) ≤ 0 then

14: F ← F ∪ Xi

15: end if

16: end for

17:

18: // Of all marked features, the one with weakest forward relevance is removed

19: for all Xi ∈ F do

20: r(i) = FR(s, R ∪ Xi)

21: end for

22: R ← R ∪ argmini r(i)

23: until F = ∅

F = X − Y from X. In the following, when we refer the relevance of a set F, we mean the

relevance of the abstraction that removes F from X.

The abstraction function φ(·) is fundamentally different for binary linear function approxi-

mator representations than table-based representations; in the former case, the function needs

to identify and cluster abstract states directly in feature space. However, FS-TEK itself oper-

ates similarly for both representions.

FS-TEK’s main loop is based on an iterative backward elimination procedure (e.g.[28,32]).

Because of interdependence between features, it is not always sufficient to select features

based on their relevance in isolation. Features may be irrelevant on their own, but relevant

together with another feature; similarly, a feature that seems irrelevant may become relevant

once another feature is removed. Backward elimination starts with the full feature set and

iteratively removes features according to a measure of relevance (k-relevance, for FS-TEK).

In contrast, forward selection methods start with the empty set and iteratively add features.

While forward selection may yield a smaller final feature set, it may miss interdependencies

between features (e.g. [28]). Therefore, FS-TEK’s main procedure uses backward elimina-

tion. Nonetheless, it attempts to combine the advantages of both methods by using forward

selection to decide which feature to remove when more than one feature is marked for

elimination.

Algorithm 1 specifies the main body of FS-TEK. It takes as input the sequence s of

solutions to observed tasks and a parameter α(k) that specifies the confidence level for the

statistical test on relevance, possibly depending on sample sequence length k.

In each iteration, FS-TEK starts by computing the k-relevance of each feature united with

the current set of features to be removed, with k ranging from one to the current number of

observed tasks (line 6; the details of BKR, backward-k-relevance, are provided in Algorithm 2

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 655

below). For each feature, this results in a dataset with k as input and relevance as target (each

column of the matrix D). The algorithm subsequently does a nonlinear least-squares fit of

the exponential function f (k; θ) to each feature’s relevance data (line 11).

Next, the function value and confidence interval are computed for the point where f

asymptotes (lines 12–15; in line 13, CI(a, α(|s|) is the confidence interval at point a for the

length of the current observed sequence of tasks). If the confidence interval’s lower bound is

less than or equal to zero, the feature is classified as domain irrelevant and added to the set

of features to be removed (line 20).

This procedure often marks more than one feature for removal. FS-TEK uses forward

selection to decide which of the marked features to remove (lines 19–21). In this check, the

relevance of the set of features to remove is tested in isolation, without taking into account the

features that remain. Contrary to BKR, which computes relevance for a range of k, forward

relevance (FR) computes relevance only on the currently observed sequence of tasks. Using

forward selection can enable FS-TEK to select a smaller subset of relevant features and

provides a “second opinion” to supplement the noisy estimate of BKR.

The forward and backward relevance methods operate essentially according to similar

principles. Algorithm 2 describes BKR, which computes, for each feature not yet marked

for removal, the k-relevance for the given k. Given a set of task sequences Ck , the average

Q-function for each sequence is computed according to Eq. 17 (lines 3–5). Each feature’s

k-relevance is then the average relevance taken over those Q-functions, as defined in (22)

(lines 8–12). Relevance is computed for the abstraction φi that removes from the full feature

set a feature set consisting of the features removed in previous iterations united with the given

feature.

Algorithm 2 BKR: Backward-k-Relevance

Input: a sequence s of task solutions Qsi
, i ∈ {1, 2, . . . , |s|}; R the set of features currently marked for

removal (possibly empty); k

Output: ρk , a row vector with the k-relevance of each Xi ∈ X+ − R

1: Ck ← N sample combinations from the
(|s|

k

)

possible combinations of length k from s

2: // Compute the average Q-function Qc for each sequence

3: for all c ∈ Ck do

4: Qc(X
+) =

∑|c|
i=1

Pr(ci |X+, c)Qci
(X+) // Equation 17

5: end for

6:

7: // Compute k-relevance of each feature

8: for all Xi ∈ X+ − R do

9: Y = X+ − (R ∪ Xi)

10: φi : X → X[Y]
11: ρk (φi) = 1

N

∑

c∈Ck
ρ(φi , Qc) // Equation 22

12: end for

FR (Algorithm 3) is similar but only computes relevance based on the current task

sequence. In addition, it adds features to the empty set instead of removing them from the

full set. It first computes an abstract function based on the set G of features to be removed

(lines 2–4). Forward relevance is then the relevance of the null abstraction (the empty set of

features) with respect to the Q-function based on G: i.e., the difference between the error

made by using G and that made by using no features.

Not taking into account the complexity of the nonlinear least-squares optimization proce-

dure, FS-TEK’s complexity is mainly determined by BKR. Let the number of features |X+| =
P , the size of the state–action space |X+

s | = N , and the maximum number of sequences

123

656 Auton Agent Multi-Agent Syst (2014) 28:637–681

Algorithm 3 FR: Forward Relevance

Input: a sequence s of task solutions Qsi
, i ∈ {1, 2, . . . , |s|}; the set of features to be tested G

1:

2: Qs (X
+) =

∑|s|
i=1

Pr(si |X+, s)Qsi
(X+) // Equation 17

3: φ : X+
s → Ys , where Ys = X+

s [G]
4: Q̄s (y) =

∑

x+∈X
y
s

Pr(x+|y)Qs (x
+) // Abstract function based on G, according to (18)

5: φ∅ : X+
s → ∅

6: return ρ(φ∅, Q̄s)

max_seqs = M . BKR’s worst-case time complexity is O(Mk N + (P − |R|)(N + M N)).

However, in practice FS-TEK does not re-sample the sequences at each iteration and com-

putes the average Q-functions based on the sequences only once at the start of the algorithm,

so the Mk N term can be removed. This results in a complexity of O(N (P − |R|)(1 + M))

for BKR when used by FS-TEK.

In the worst case, all features in X+ need to be removed. FS-TEK’s first iteration incurs a

cost of O(|s|N P(1 + M)), since R is empty. On the second iteration, |R| = 1, and thus the

cost is O(|s|N (P − 1)(1 + M)). Since a total of P iterations is needed, the cost in terms of

P progresses as P + P − 1 + P − 2 + · · · + 1 = P(P + 1)/2. Therefore, the total cost is

O(|s|N (P2 + P)(1 + M)), i.e., quadratic in the number of features. Also, while the cost is

linear in the size of the state–action space N, in the worst case N scales exponentially with

the number of features P . In practice, however, usually not all features need to be removed,

and features frequently covary such that N does not scale exponentially with P .

5 Empirical evaluations

In the previous two sections, we proposed solutions for the two key steps involved in max-

imizing online return in MTRL through potential functions: selection of a good potential

function, and finding a good representation for this function in order to generalize well given

limited domain knowledge. For the first step, we proposed three different types of potential

functions. For the second step, we proposed the novel feature selection algorithm, FS-TEK,

which extrapolates change in relevance to predict true domain relevance. In this section, we

evaluate these contributions empirically on multiple domains.

5.1 Evaluating potential functions

We begin by empirically comparing the three potential functions proposed in Sect. 3 to

a baseline agent that does not use shaping, and introduce the four domains used for all

experiments. While most of these domains are simple, they enable the illustration of critical

factors in the performance of shaping functions in MTRL.

For comparison purposes, in this section we assume the agent has perfect knowledge

of each domain and thus compute each potential function using all tasks in the domain.

Our goal is to demonstrate the theoretical advantages of each type of potential function.

Assuming perfect domain knowledge enables comparisons of the potential functions’ maxi-

mum performance, untainted by sampling error. In Sect. 5.2, we consider the more realistic

setting in which only a sample sequence of tasks is available, and in which generalization

to unseen next tasks, and thus learning a good representation for the potential function, is

important.

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 657

5.1.1 Episodic cliff domain

To illustrate a scenario in which Q∗
d , the average over optimal value functions, is not the

optimal potential function, we define a cliff domain based on the episodic cliff-walking grid

world from Sutton and Barto [73]. The agent starts in one corner of the grid and needs to

reach a goal location in the corner that is in the same row or column as the start state, while

avoiding stepping into the cliff that lies in between the start and goal.

The domain contains all permutations with the goal and start state in opposite corners of

the same row or column with a cliff between them (eight tasks in total). Each task is a 4 × 4

grid world with deterministic actions N, E, S, W, states (x, y), and a −1 step penalty. Falling

down the cliff results in −1, 000 reward and teleportation to the start state. The distribution

over tasks is uniform. We compute each potential function according to the definitions given

in Sect. 3. Finding the cross-task policy µ∗ has been shown to be NP-hard for POMDPs [82].

We use a genetic algorithm (GA) to approximate it.3

To illustrate how performance of a given Φ depends on the learning algorithm, we use

two standard RL algorithms, Sarsa and Q-Learning. Since for Q-Learning, Q∗
d = Q̃d , we

use Sarsa’s solution for Q̃d for both algorithms. Both algorithms use an ε-greedy policy

with ε = 0.1, γ = 1, and the learning rate α = 1 for Q-Learning and α = 0.4 for Sarsa,

maximizing the performance of both algorithms for the given ε.

We also run an additional set of experiments in which the agent is given a cliff sensor

that indicates the direction of the cliff (N, E, S, W) if the agent is standing right next to it.

Note that the addition of this sensor makes no difference for learning a single task, since

the information it provides is already deducible from the agent’s position and the number of

states per task is not affected. However, the number of states in the domain does increase:

one result of adding the sensor is that tasks no longer have identical state spaces.4

For each potential function, we report the mean total reward incurred by sampling a task

from the domain, running the agent for 500 episodes, and repeating this 100 times. Table 1a

shows performance without the cliff sensor. On this domain, Q
µ
d performs very poorly; one

reason may be that the GA did not find µ∗, but a more likely one is that, due to the structure

of the domain, even µ∗ would incur low return for each state, yielding a pessimistic potential

function.

As expected, Sarsa outperforms Q-Learning on this domain due to its on-policy nature:

because Q-Learning learns the optimal policy directly, it tends to take the path right next to

the cliff and is thus more likely to fall in. For Q-Learning, Q∗
d and Q̃d do better than the

baseline, with the latter doing significantly better.

The situation changes when the cliff sensor is added (we did not retest the potential

function that did worse than the baseline), as shown in Table 1b. Though the sensor does

not speed learning within a task, it provides useful information across tasks: whenever the

cliff sensor activates, the agent should not step in that direction. This information is reflected

in the average of the value functions and thus in the potential function, More precisely, the

state–action space X+
d is enlarged and fewer state–action pairs are shared between tasks.

3 We employ a standard real-valued GA with population size 100, no crossover and mutation with p = 0.5;

mutation adds a random value δ ∈ [−0.05, 0.05]. Policies are constructed by a softmax distribution over the

chromosome values.

4 Note that the addition of this sensor is not the same as the manual separation of state features for the value and

potential function as done in [34,63]—see related work (Sect. 6). In the experiments reported in this section,

both functions use the exact same set of features.

123

658 Auton Agent Multi-Agent Syst (2014) 28:637–681

Table 1 Mean total reward and

95 % confidence interval for

various shaping configurations

and learning algorithms on the

cliff domain

All numbers ×104

Q-Learning Sarsa

(a) Without sensor

Q
µ
d

−19.77 ± 2.43 −512 ± 130

No shaping −5.86 ± 0.12 −3.86 ± 0.10

Q∗
d

−5.13 ± 0.17 −3.96 ± 0.11

Q̃d −4.74 ± 0.19 −3.93 ± 0.11

(b) With sensor

Q
µ
d

– –

No shaping −5.85 ± 0.13 −3.96 ± 0.11

Q∗
d

−5.44 ± 0.12 −3.67 ± 0.12

Q̃d −4.75 ± 0.17 −3.37 ± 0.13

Under these circumstances, both Q∗
d and Q̃d significantly outperform baseline Sarsa, with

the latter, again, doing best. The picture for Q-Learning remains largely the same.

5.1.2 Continuing cliff domain

The continuing cliff domain is the same as the episodic version with the cliff sensor, except

that there are no terminal states. Instead there is a reward of zero on every step and ten for

passing through the goal state and teleporting to the start state. We hypothesized an additional

benefit for shaping here, since the reward function is sparser (see e.g. [39] for a formal relation

between the benefit of shaping and sparsity of reward). To our surprise, however, this was

not always the case. Ironically, one main reason seems to be the sparse reward function. In

addition, the presence of an area of large negative reward next to the goal state makes the task

even more difficult to learn. For increasing exploration rate ε, the optimal ε-greedy agent

takes ever larger detours around the cliff, partly because of the sparse reward function; from

around ε = 0.05, it huddles in the corner of the grid indefinitely, without ever attempting to

reach the goal. For this reason, we used ε = 0.01 for all experiments.

Figure 2 shows the mean cumulative reward of Sarsa and Q-learning under various learning

rates and shaping regimes. Here, we used two different methods for computing Q̃d : one uses

the exact values of the optimal ε-greedy policy for each task for ε = 0.01, as computed by

a soft version of policy iteration5, and the other uses solutions as computed by Sarsa run on

each task in the domain with ε = 0.01, α = 0.07, for 107 steps. These two value functions

are different since, as it turns out, Sarsa converges to the wrong solution.

The figure shows a markedly different picture from the episodic cliff world results. Even

at its optimal setting, Sarsa does not significantly outperform Q-Learning on this domain.

Perhaps even more surprising, especially since Sarsa converges to the wrong solution, is that

unshaped Sarsa at its optimal learning rate outperforms shaped Sarsa at its optimal setting;

the shaped version dominates only from around α = 0.15, and generally not significantly.

Figure 3 reveals what is happening. Figure 3a makes clear that, even though shaping has

a disadvantage when measured over a large number of timesteps, it does provide an initial

performance boost which lasts up to around 104 steps. However, as the two rightmost graphs

show, the long-term learning dynamics of shaped Sarsa ultimately result in inferior perfor-

mance: it is plagued by long periods of stasis, in which it keeps far from the cliff and thus

5 In the policy improvement step, the policy is made only ε-greedy w.r.t. the value function.

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 659

1 3 5 7 9 15 20 25 30 35 40 45 50 55 60
−8

−6

−4

−2

0

2

4

6

8

10

x 104

alpha

M
 e

a
n

 r
e

tu
rn

No shaping
Q*

d

Q~
d
(exact)

Q
µ

d

Q
~

d
(sarsa)

x 10
−2

(a) Sarsa

1 3 5 7 9 15 20 25 30 35 40 45 50 55 60
−8

−6

−4

−2

0

2

4

6

8

10

x 104

alpha x 10−2

(b) Q-Learning

Fig. 2 Mean return and 95 % confidence intervals of Sarsa and Q-Learning on the continuing cliff domain,

under various shaping regimes. Return is cumulative reward over 105 steps and averaged over all tasks in the

domain (i.e. 8 runs)

0 5 10 15
−4

−3

−2

−1

0

1

2

3

4

5

Steps

C
u
m

u
la

ti
v
e

 r
e
w

a
rd

No shaping
Q~

d
 (ex act) shaping

x 10
3

x 103

Q
~

d

No shaping

0 0.5 1 1.5 2

x 105

0

2

4

6

8

10

12 x 104

Steps

Mean cum. reward

Cum. reward (single run)

TD error (single run)

Mean

Single

TD Error

(a) Shaped vs unshaped Sarsa (b) No shaping

0 0.5 1 1.5 2

x 105

0

2

4

6

8

10

12 x 104

Steps

Mea n cum. reward

Cum. reward (single run)

TD error (single run)

MeanSingle

TD Error

(c) Q̃d (exact)shaping

Fig. 3 Cumulative reward of unshaped and shaped Sarsa on the continuing cliff domain. Mean curve (light

gray, dashed) represents average over 100 runs; also shown are example cumulative reward (black, solid) and

TD error from a single run

123

660 Auton Agent Multi-Agent Syst (2014) 28:637–681

1

2

3

R

L

U
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−90

−80

−70

−60

−50

−40

−30

−20

−10

alpha
M

e
a
n
 r

e
tu

rn

No shaping
Q*

d

Q~
d

Q
µ

d

(a) Example triangle task (b) Performance

Fig. 4 Example task and mean return of Q-Learning on the triangle domain, under various shaping regimes.

Return is cumulative reward over ten episodes and averaged over all tasks in the domain (i.e. 12 runs). All

differences between the shaping methods are significant, except between q̃d and q
µ
d

. Points shown are for

ε = 0.01, the best-performing setting

the goal, and no reward is incurred. The likely reason is the same as for the eventual stasis of

unshaped Sarsa (not shown), which results from Sarsa’s inability, under the low exploration

rate, to escape from the strong local optimum in the corner of the grid (recall that under higher

exploration rates, the corner of the grid becomes the global optimum). Since shaped Sarsa is

closer to convergence than unshaped Sarsa, it discourages the agent from approaching any

location that might contain a cliff, resulting in an initial performance boost but also earlier

onsets of stasis.

5.1.3 Triangle domain

Each task in the episodic Triangle domain consists of three non-terminal states, in which

three actions can be taken (Fig. 4a). In addition to feature x1, which corresponds to the state

numbers shown, the agent perceives two additional features x2 and x3. Feature x2 is the

inverse of the square of the shortest distance to the goal, i.e. in the figure, the states would be

(1, 0.25), (2, 1), (3, 0.25). Feature x3 is a binary feature that indicates task color: red (1) or

green (0); if red, the agent receives a −10 penalty for self-transitions, in addition to the −1

step reward that is default in every task. x3 is constant within a task, but may change from

one task to the next. The goal may be at any state and the effect of actions L (dashed) and

R (solid) may be reversed. Action U (dotted) always results in either a self-transition or a

goal-transition (when the goal is next to the current state). There are thus 12 tasks in total.

We compare performance of the different shaping regimes on this domain with a Q-

Learning agent with discount factor γ = 1. Not surprisingly, there is no significant difference

between the potentials in this domain: while Q∗
d estimates values higher than Q̃d , which

estimates higher than Q
µ
d , differences in estimates are minimal and the ordering of actions

is the same.

5.1.4 Stock-trading domain

The binary stock-trading domain is an attractive domain for comparison since it is an estab-

lished benchmark [13,37,71], is stochastic, and has an easily varied number of states and

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 661

S1

S2

E1

E2

E1

E2

G1

Buy / Sell

Buy / Sell

Stock domain

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
55

60

65

70

75

80

alpha

M
e
a
n
 r

e
tu

rn

No shaping

Q
µ

d

Q
~

d

Q
*

d

Performance(a) (b)

E1

E2

Fig. 5 Schematic overview of, and mean Q-Learning return on, the stock-trading domain under various

shaping regimes. a See main text. b Return is cumulative reward over 300 learning steps and averaged over

20 runs for all tasks in the domain (i.e. 240 runs). Differences between the methods are generally significant,

except between Q̃d and Q∗
d

tasks. An example task is displayed in Fig. 5a. The domain consists of a number of sectors

S, such as telecom (s1 in the example) and pharmaceuticals (s2). Each contains a E items

of equity (stock). Each stock is either rising (1) or falling (0). An agent can buy or sell all

stocks of one whole sector at a time; sector ownership is indicated by a one (owned) or zero

(not owned) in the state vector. Therefore, if the agent owns pharma but not telecom, the part

of the state vector pertaining to stock in the example would be (0, 1, 1, 1, 0, 1, 0): the first

two elements indicate sector ownership, the next three what telecom stocks are doing, and

the final two what pharma stocks are doing. At each timestep, for each sector that it owns,

the agent receives a reward of +1 for each stock that is rising and one for each stock that is

falling. Thus in the example, the agent would earn a reward of one, since there is one stock

rising in pharma.

The probability of stocks rising in a given sector s, Ps , depends on two factors: the number

of stocks rising in s in the previous timestep, and the influence of G global factors (in the

example, oil is the only global factor). How stocks and globals influence Ps is task-dependent.

In the example, the only telecom stock of influence is e2; in pharma, it is e1. In a given task,

stocks within a sector may be influenced by any combination of stocks in that sector. Stocks

that are rising increase Ps ; stocks that are falling decrease it.

Globals behave just like stocks in that they can rise (1) or fall (0). However, globals

always affect all sectors simultaneously. The effect of a global varies per task; for a given

rising global, it increases Ps in half the tasks, and decreases it in the other half, making its

net cross-task effect zero. The exact formula for determining the probability that stocks in a

given sector s will rise in a given task m is:

Pm
s = 0.1 + 0.8

Rm
s + 3Rm

g

I m
s + 3G

,

where I m
s is the number of stocks of influence in s in m, G is the number of globals, Rm

s

is the number of stocks of influence in s in m that are rising, Rm
g is the number of globals

that are rising and increase Pm
s in m when rising, plus number of globals that are falling and

increase Pm
s in m when falling.

123

662 Auton Agent Multi-Agent Syst (2014) 28:637–681

Thus, in the example, assuming that oil prices are on the rise and increase the probability

that stocks rise when falling, for s = telecom,

Pm
s = 0.1 + 0.8

1 + 3 × 0

1 + 3 × 1
= 0.3.

A domain is defined by the tuple 〈S, E, G〉; the number of tasks in the domain is (2E−1)2G .

A state is represented by S + SE + G binary features, so |Xm | = 2(S+SE+G), and |A| = 2S.

We ran a Q-Learning agent on a domain with S = 1, E = 3, and G = 2. As shown in

Fig. 5, Q∗
d and Q̃d perform best in this domain; once again Q̃d seems to be slightly superior,

although the difference is not significant. Q
µ
d lags behind, although its performance seems

more resistant to changes in α; for higher learning rates, the difference with the other two

shaping functions disappears.

5.1.5 Summary

Our experiments showed that which potential type is best is highly dependent on the domain,

learning algorithm, and learning parameters. In the domains used in this section, prediction

of optimal value Q∗
d never significantly outperforms the other shaping functions. One might

expect that, since Q-Learning is an off-policy algorithm and Sarsa an on-policy one, Q∗
d would

be best suited for the former and Q̃d for the latter. However, Q-Learning combined with Q̃d

or Q
µ
d generally outperformed the other options, while no such effect could be observed for

Sarsa. Finally, on the continuing cliff domain unshaped Sarsa outperforms shaped Sarsa for

low learning rates. This shows that not only task relatedness can negatively affect transfer,

but also the learning algorithm and learning parameters.

5.2 Evaluating representation selection

In this section, we test FS-TEK on the same domains used in Sect, 5.1. We compare to another

backward elimination algorithm that also uses our definition of relevance, but does not make

use of the multi-task information by extrapolating. This algorithm, iterated BKR (IBKR)

is identical to FS-TEK, except that it only computes relevance for k = |s|, the length of

the sequence of experienced tasks. In addition to IBKR, we compare FS-TEK to shaping

functions constructed without FS; with randomly selected features; and with fixed features,

in which only the true domain-relevant features are used.

In each experiment, a learning agent interacts sequentially with each domain. After each

task, the agent constructs a new potential function based on the solutions of the tasks solved

so far. The potential function is based on Q∗
c as defined in (17), unless specified otherwise.

Likewise, relevance is computed based on Q∗
c . Although Sect. 5.1 showed that, in some

domains, using a potential based on Q̃d works better, doing so is impractical here as it would

require solving each task twice (once using Q-Learning, and then again using, e.g., Sarsa to

compute the potential function).

For each domain, we use a fixed learning rate α and ε-greedy exploration, where ε = 0.01

and α is set to the best value found in Sect. 5.1. For each new potential function (i.e., for each

number of tasks seen), we test the agent on ten tasks sampled from the domain; the whole

procedure is repeated for 500 runs. Performance is measured only after three tasks, since

FS-TEK requires at least this many tasks (since the exponential function to be estimated has

three parameters).

While our implementation of FS-TEK largely corresponds to that outlined in Algorithms

1 and 2, there are some practical tweaks. Especially for a small number of experienced tasks,

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 663

3 4 5 6 7 8 9 10 11 12 13 14 15
−40

−35

−30

−25

−20

Tasks seen

M
e

a
n

 t
o

ta
l
re

tu
rn

 o
n

 n
e

w
 t

a
s
k

IBKR

FS−TEK

No FS

Fixed FS

Random FS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3

3

4
45 56 67 78 89 910 1011 1112 1213 1314 1415 15

FPR

T
P

R

IBKR

FS−TEK

FS−TEK 5−15 IBKR 4−15

Fig. 6 Performance of shaping functions constructed using various FS methods (left) and ROC space (right)

of the BKR and FS-TEK methods

the Jacobian of the estimated exponential may be ill-conditioned, often preventing reliable

extrapolation and computation of the confidence interval. When this happens, we mark the

feature as “unsure” until reliable estimates can be made in a subsequent iteration. In addition,

for a given call to FS-TEK, any feature that is neither marked for removal nor “unsure” in

any iteration, is kept indefinitely and not re-checked on subsequent iterations. This greatly

improves speed and yields equal or better performance on the domains under consideration.

We use the Levenberg–Marquardt algorithm [48] for the nonlinear least-squares fit.

5.2.1 Triangle domain

For this domain, we set the confidence level for IBKR to α = 0.15, while for FS-TEK,

we used α(k) = min(max(k − 4, 0) × 0.06 + 10−4, 0.3), i.e., it is 10−4 up to k = 5, from

which point it linearly increases with k until a maximum of 0.3. An increasing confidence

level for FS-TEK of this kind, and a constant level for IBKR, were found to work best by a

coarse parameter search on this domain. Recall that higher confidence means that features are

more easily marked as relevant. Increasing α makes sense since as more tasks are observed,

estimates become more certain and the confidence interval can be tightened.

The left panel of Fig. 6 shows the mean return of shaping functions constructed using

the various FS methods. FS-TEK achieves a significant performance improvement over both

regular shaping and shaping with IBKR and is the first to match the performance of fixed

FS, in which the correct features were hard-coded. The other methods also eventually reach

that performance since, once the experienced tasks and their observed frequency approach

the true set of tasks and distribution, the need for generalization disappears.

The right panel shows the receiver operating characteristic (ROC) space of the IBKR and

FS-TEK method, plotting the false positive rate (FPR) against the true positive rate (TPR).

In the context of this article, the TPR indicates the ratio of features correctly classified

as domain relevant out of all domain relevant features, while the FPR indicates the ratio of

features incorrectly classified as domain relevant out of all domain irrelevant features. Ideally,

TPR = 1 and FPR = 0. From here on, we denote ROC by FPR/TPR, e.g., 0/1 in the ideal

case. In the plot, the numbers next to the markers indicate the number of tasks seen.

The triangle domain contains one domain-irrelevant feature, namely the state number. The

other three features are DR. In this domain, IBKR mostly achieves an ROC of 1/1, which

amounts to never removing any features and is equivalent to the vanilla shaping function—

123

664 Auton Agent Multi-Agent Syst (2014) 28:637–681

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Tasks seen

M
e

a
n

 t
o

ta
l
re

tu
rn

 o
n

 n
e

w
 t

a
s
k

IBKR

FS−TEK

No FS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 12

2

3 34 45 56 67 78 89 910 1011 1112 1213 1314 1415 15

FPR

T
P

R

IBKR

FS−TEK

IBKR 3−15
FS−TEK 4−15

Fig. 7 Cliff domain when Q∗
d

is used as potential. No fixed FS is shown since there are no features to remove;

random FS is not shown because of its inferior performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Tasks seen

M
e

a
n

 t
o

ta
l
re

tu
rn

 o
n

 n
e
w

 t
a

s
k

IB KR

FS−TEK

No FS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 12

2

3 34 45 56 67 78 89 910 1011 1112 1213 1314 1415 15

FPR

T
P

R

IBKR

FS−TEK

FS−TEK 3−15 IBKR 3−15

Fig. 8 Cliff domain when Q̃d is used as potential. No fixed FS is shown since there are no features to remove;

random FS is not shown because of its inferior performance

indeed, their performance is nearly identical. FS-TEK does a better job, achieving an ROC of

around 0.45/1 after five tasks seen, meaning it nearly always identifies the right DR features

(as did IBKR), and in addition removes the irrelevant feature 55 % of the time.

5.2.2 Cliff domain

While the cliff domain contains no domain-irrelevant features, the first two features (encod-

ing position) are only very weakly domain relevant. For the ROC space plot, therefore, we

marked the position features as domain irrelevant; this shows that FS-TEK removes the

position features about 40 % of the time (Fig. 7), which explains its slight performance gain.

Because of the peculiar progress of performance with number of observed tasks, we plotted

performance from one observed task onward. The initial increase and subsequent decrease

in performance with number of observed tasks for all methods is interesting. Since using Q̃d

as potential was found to work better on this domain (Sect. 5.1), we were curious if the same

trend would happen for Q̃d . Figure 8 shows the results.

Clearly, the same trend does not happen for Q̃d , and the benefit of FS-TEK is greater

with this potential type. Moreover, while Q̃d does better than Q∗
d in the long run, as shown

in Sect. 5.1, Q∗
d outperforms Q̃d for low number of observed tasks. The explanation must

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 665

therefore be sought in difference between Q̃d and Q∗
d . With respect to the cliff sensor, Q̃d

encourages the agent to move away from the cliff, while Q∗
d does not. Of course, when a

cliff direction has not been encountered yet in previous tasks, both potentials have uniform

preference over actions. With respect to position (i.e. when the cliff sensor shows no reading),

Q∗
d pushes the agent towards the center of the grid; Q̃d , on the other hand, pushes the agent

towards the edges of the world. In short, Q̃d encourages exploration, but to shy away from

a cliff once one is encountered; Q∗
d encourages sitting in the center, but to stay near a cliff

once one is encountered.

The likelihood that the agent has encountered a given cliff increases with k. Therefore,

for Q∗
d the likelihood that the agent will stick close to a cliff and fall into it increases with

k. At some point, this likelihood together with the tendency to push the agent towards the

center gains critical mass and performance declines. For Q̃d , performance increases, since

as the agent encounters more cliffs it is less likely to fall into them; in addition, this potential

function increasingly encourages exploring the edges of the world and thus discovering the

cliff in the current task sooner.

5.2.3 Stock domain

For the stock domain, we used the settings e = 1, o = 2 as detailed in Sect. 5.1.4, but tested

for h ranging from 1 to 5. For h = 1, the size of the state–action space |X+| = 32 and

|M| = 6; these numbers double every value of h until for h = 5, |X+| = 512 and |M| = 96.

Recall from Sect. 5.1.4 that e represents sector ownership features, o represents number of

stocks per sector and h represents task-dependent global variables that positively or negatively

(depending on the task) affect the probability that stocks rise. For the current settings, stock

ownership is completely irrelevant, while the stock features and action are domain relevant.

The domain is challenging because the H features are strongly task relevant, much more so

than the other features, but domain irrelevant (across all tasks their effect cancels out). In

addition, the stock and action features are only weakly domain relevant. This means that the

H features appear strongly domain relevant when an insufficient number of tasks have been

experienced; moreover, they add noise to the shaping function when selected.

For h < 4, we used a confidence level α = 10−4 for FS-TEK and α = 10−3 for IBKR. For

higher h, we used an α(k) that increases with k for FS-TEK; this was found to result in better

performance. On the other hand, IBKR performed equally well for varying and constant α,

so we kept it constant at α = 10−2 for h ≥ 4.

The results are shown in Fig. 9. Generally, FS-TEK significantly outperforms all other

methods, but its performance deteriorates until, for h = 4 and higher, it performs about as

well as IBKR and vanilla shaping. It may seem that this is caused by the change in ROC

from h = 4 onward, which in turn is caused by the change in the confidence level setting.

However, the opposite is true: earlier experiments showed that a constant α = 10−4 resulted

in a similar ROC as for lower h, but also in a mean return that was significantly worse than

any other method. Instead, the constant performance of FS-TEK in terms of ROC versus

the deteriorating performance shows that the task dynamics, rather than FS-TEK’s ability to

identify the correct features, are the cause of the performance decline. These dynamics are

such that for low H, it is more important to not mistakenly select domain irrelevant features

than to select the relevant ones (this also explains why FS-TEK does better than fixed FS for

H = 1); for higher H , having a low FPR decreases in importance while a high TPR increases

in importance. This makes sense since the more h variables there are, the more their effect is

diluted, and the more important (relatively) the domain relevant features become.

123

666 Auton Agent Multi-Agent Syst (2014) 28:637–681

80

85

90

95

100

105

110

115

120

35

40

45

50

55

60

65

70

75

25

30

35

40

45

50

55

15

20

25

30

35

40

3 4 5 6 7 8 9 10 12 14 16 18 20
5

10

15

20

25

30

Tasks seen

Random FS

Fixed FS

No FS

FS−TEK

IBKR

0.2

0.4

0.6

0.8

1

33

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

FPR

FS−TEK

IBKR

0.2

0.4

0.6

0.8

1

3
3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

FPR

FS−TEK

IBKR

0.2

0.4

0.6

0.8

1

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

FPR

FS−TEK

IBKR

0.2

0.4

0.6

0.8

1

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9
10

101111 1212131314141515161617171818

FPR

FS−TEK

IBKR

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1

1

2

2

3

3

4

4

5

5

6

67 7 8 89 9101011111212131314141515161617171818

FPR

FS−TEK

IBKR

Fig. 9 Stock domain for H = 1 (top) to 5 (bottom). Left column plots tasks seen versus mean total return.

Right column plots FPR versus TPR

5.2.4 Heat domain

To assess FS-TEK’s ability to perform in a more challenging setting requiring function

approximation, we also consider the heat domain, in which a circular agent with a radius of

one learns to find a heat source in a 10 × 10 walled-off area. Note that here, we are using

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 667

Eq. (10) to compute the potential function, and are using an abstraction function φ(·) that

computes abstractions directly in feature space.

State is continuous and consists of (x,y) position, the robot’s heading in radians, and the

intensity of the heat emitted by the source. The agent moves by going forward or backward,

or turning left or right by a small amount.

Reward per step is −10/
√

(10 × 10 + 10 × 10) = 0.71. An episode terminates when

the heat source is within the agent’s radius. The agent employs a jointly tile-coded Q-

function approximator with four overlapping tilings, resulting in a total of 1,664 fea-

tures. We run a Sarsa(λ) agent with λ = 0.9 and ε = 0.05 for 500 episodes, and

compare the performance of FS-TEK to regular shaping under various levels of noise.

Transition noise adds ξ ∼ N (0, σsli p) to the agent’s action and sensor noise adds

ξ ∼ N (0, σsensor) to all state features. Since noise increases the chance of overfit-

ting, our hypothesis is that FS-TEK should result in a greater benefit for higher levels of

noise.

Figure 10 shows results for σsli p = 0.1 and varying sensor noise. The left panel shows

that FS-TEK achieves a significant jump in performance over the initial episodes for lower

k, and as expected this benefit increases to some extent with the noise level. As observed

previously, FS performs on par with regular shaping for higher k. The reason that FS has

less benefit for noise levels above 0.02 seems to be that removing the right features becomes

more difficult. This is confirmed by the ROC plots (Fig. 11), which show that FS-TEK’s FPR

increases as noise increases.

The right panel of Fig. 10 shows the benefit of FS per episode, for σsensor = 0.02

and various k. As k increases, there is a dip for early episodes; this dip is also the rea-

son that FS and no FS perform on par for higher k. The likely explanation is that there is

some small amount of information contained in the features that FS-TEK discards; there-

fore the regular potential function is based on more information. The fact that this hap-

pens for higher k stems from the fact that there is less overfitting because of the larger

amount of data (previous experience) available. Since only the potential function and not

the value function has a reduced feature set, this slightly wrong bias is quickly over-

come.

3 5 7 9
−500

0

500

1000

k

Δ
 t
o
ta

l
re

tu
rn

0

0.01

0.02

0.04

0.06

(a) Improvement in total return per k

0 5 10 15 20
−200

0

200

400

600

Episode

Δ
 r

e
tu

rn

k=4

k=6
k=8

k=10

(b) Improvement per episode, for σsensor 0.02

Fig. 10 Heat domain for σsli p = 0.1. On the left the improvement in total return that FS-TEK achieves over

regular shaping for the first five episodes, per k. Each line represents a different value for σsensor . On the right

the improvement in return that FS-TEK achieves over regular shaping per episode, for σsensor = 0.02

123

668 Auton Agent Multi-Agent Syst (2014) 28:637–681

Fig. 11 FS-TEK ROC space for

various noise levels on the heat

domain. Clockwise starting in the

top left, noise levels σsensor are

0.01, 0.02, 0.04, 0.06

0

0.5

1 3456789

T
P

R

345689

0 0.5 1

34 5
6

89

FPR

0 0.5 1
0

0.5

1
3 45 67 89

FPR
T

P
R

5.2.5 Summary

Our experiments have shown that FS-TEK compares favorably to selection methods that

do not explicitly exploit the history of experienced tasks. Although changes in potential

function and increases in task and state space size affect the relative online return of FS-

TEK compared to other methods, FS-TEK’s performance in terms of ROC remains fairly

constant. Our results furthermore suggest that FS-TEK can be flexibly tuned for a low FPR

or high TPR, according to what is best for the domain; IBKR, on the other hand, has more

trouble in filtering out domain irrelevant features, as expected. Lastly, we have succesfully

applied FS-TEK to a continuous domain using a linear function approximator with binary

features.

6 Related work

Our work is most related to shaping, multi-task (reinforcement) learning, and feature selection

(FS). This section reviews work done in each of these areas and discusses their relationship

to our own work.

6.1 Potential-based shaping

The theoretical result of Ng et al. [53], which showed that potential-based shaping functions

preserve the optimal policy of the ground MDP for model-free RL, has recently been extended

in various ways. Grześ and Kudenko [25] demonstrate empirically that scaling the potential

can affect learning performance, and relate performance of a distance-to-goal-based potential

to the discount factor γ and task size, showing that as task size increases, so should γ .

Asmuth et al. [3] show that R-max, a popular model-based RL method, is still PAC–MDP

[31] when combined with an admissable potential function Φ(x, a) ≥ Q∗(x, a). In multi-

agent RL, potential-based shaping provably preserves the Nash equilibrium in stochastic

games [11,44]. Preservation of optimal policy and Nash equilibrium have also been shown

to hold for potential functions that change while the agent is learning [12]. In practice, it

has also been shown to improve strategies for the iterated Prisoner’s dilemma [4] and robot

soccer [10]. Learning a model of difference rewards, a concept in multi-agent learning related

to shaping, has been shown to improve performance in air traffic control [56].

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 669

There have been a number of successes in learning potentials automatically. In single-task

RL, one approach is to construct an initial shaping function based on intuition [38] or an

initial task model [24], and refine it through interaction with the task. Elfwing et al. [15,16]

evolve a shaping function that, when transferred to a real robot, results in better performance

than when transferring Q-values. Other work has learned a shaping function on abstractions

that are either provided [26] or also learned [49]. This latter approach is related to ours in that

it explores different representations for the potential and value function. However, our work

benefits from the MTRL setting in that it learns the abstractions offline, in between tasks,

and therefore does not incur a cost while interacting with the next task.

Konidaris and Barto [34,35] were the first to learn a shaping function automatically in

a multi-task environment by estimating the value function based on optimal solutions of

previously experienced tasks. They base the value function on problem space, the Markov

representation necessary for optimally solving tasks, and the potential function on agent

space, the representation that retains the same semantics across tasks. However, they pre-

specify both spaces. Similar pre-designed separate representions were employed in [63],

in which an optimal reward function is searched on a distribution of tasks. As mentioned

earlier, this article substantially extends this work by comparing different potential func-

tions and offering a method for automatically discovering both task and domain-relevant

representations.

6.2 Multi-task reinforcement learning

The field of MTRL has rapidly developed in recent years and is too large to survey compre-

hensively. Instead, we focus on approaches most similar to ours; see Taylor et al. [76] for an

extensive survey of the field.

In [74], the average optimal Q-function of previously experienced tasks is used to initialize

the model of a new task. Although the authors state that the average optimal Q-function is

always the best initialization, our article has shown otherwise. Mehta et al. [51] assume fixed

task dynamics and reward features, but different reward feature weights in each task. Given

the reward weights of a target task, they initialize the task with the value function of the

best stored source task policy given the new reward weights. In [77], the value function of

a single source task is transformed via inter-task mappings and then copied to the value

function of the target task. This work is a special case of ours since it considers only one

source task. In this case, the cross-task potential as defined in Eq. 11 equals the value function

of that source task by definition, and thus the initial policy based on the potential would be

the same as the source task policy. However, taking more source tasks into account leads

to significantly better performance on the target task. While we have not considered tasks

with different feature and action spaces, our method can be applied to such scenarios using

inter-task mappings, making the two approaches complementary.

Under a broader interpretation, initialization can also be performed by transferring source

task experience samples to a batch-learning method in the target task [42]. Similar to other

initialization methods, bias towards the source task knowledge decreases as experience with

the target task accumulates. Other forms of initialization are to use a population of evolved

source task policies as initial population for an evolutionary algorithm in the target task [78],

or to use source task information to set the prior for Bayesian RL [41,89].

Advice-giving methods, which suggest an action to the agent given a state, are closely

related to potential-based shaping. Torrey et al. [81] identify actions in source tasks with

higher Q-values than others, and use this information to construct rules on action preferences

that are added as constraints to a linear program for batch-learning Q-function weights in the

123

670 Auton Agent Multi-Agent Syst (2014) 28:637–681

target task. In [80], this work is extended by using inductive logic programming to extract the

rules. Taylor et al. [78] learn rules that summarize a learned source task policy and incorporate

these as an extra action in the target task, to be learned by a policy-search method. All these

approaches are flexible in that they can deal with different state features and actions between

tasks by a set of provided inter-task mappings. However, these mappings have to be provided

by humans, except in [78], where they can be learned if provided with a description of task-

independent state clusters that describe different objects in the domain. These clusters are

similar to our notion of domain-relevant abstractions, which FS-TEK discovers automatically.

6.3 Representation learning

Both FS and state abstraction methods have been applied to single-task RL, with especially

FS seeing a recent surge in interest [23,29,33,46,54,55]. Although similar methods have

also been applied to transfer learning, most of these learn task-relevant representations for

SL [2,5] or RL [18,30,37,40,60,70,75,83]; the latter aim to reduce the state space of the

target task, or find good representations for value functions or policies. However, none of

these approaches learn domain-relevant representations.

In the SL literature, work that does learn such representations includes lifelong [79] and

multitask [8] learning. Both paradigms develop a representation that is shared between tasks

by using training examples from a set of tasks instead of a single task, and show that this

representation can improve performance by generalizing over tasks, if tasks are sufficiently

similar. In RL, Foster and Dayan [20] identify shared task subspaces by identifying shared

structure between task value functions; by augmenting the value function and policy represen-

tation with these subspaces, new tasks can be learned more quickly. While the idea of shared

structure in task value functions is similar to ours, a limitation of this method is that it requires

a single transfer function between tasks and only allows changes in the reward function. Sim-

ilar to the domain-relevant features defined in this article and to the agent space of Konidaris

and Barto [34], Frommberger and Wolter [22] define structure space as the feature space that

retains the same semantics across tasks, and learn a structure space policy between tasks.

Frommberger [21] applies the same concept to tile-coding functions for generalization within

and across tasks. However, in both cases the structure space is hand-designed, as in [34].

While not explicitly concerned with representation learning, Sherstov and Stone [62]

construct a task-independent model of the transition and reward dynamics by identifying

shared outcomes and state classes between tasks, and using this for action transfer. This can

be viewed as a kind of model-based domain relevance, and thus an interesting direction for

future work on model-based MTRL.

There are two primary characteristics distinguishing our approach from the other cross-

task methods discussed here. First, it captures within-task and cross-task relevance within a

single definition. Second, it exploits multi-task structure by considering how representation

relevance changes with increasing task sequence length and using that to predict relevance

on the entire domain.

7 Discussion and future work

We have approached the multi-task learning problem by extracting shared information

between tasks, identifying which state features are relevant to this information, and using

potential functions based on these features to capture the information and guide the agent in

new tasks.

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 671

7.1 Potential functions

This paper proposed and empirically compared three different methods for constructing

potential functions based on past experience, and showed that which one is best depends

on the domain, learning algorithm and parameters. Further studies are needed to determine

what domain factors influence the best potential type. We conjecture that risk may be one

such factor; since the optimal value function Q∗ does not take exploration risk into account,

potential functions based on Q∗ might make it more likely that the agent enters “disaster

states”, if these are present in the domain. We observed this experimentally in the cliff domain

in Sect. 5.1. In such domains, using more cautious potential functions such as Q̃d or Q
µ
d may

work better. In addition, Q
µ
d seems to be more robust to changes in learning rate, which may

be because it is constructed based on a single fixed cross-task policy.

Learning algorithm and parameters may also affect the benefit of transfer: in the cliff

domain, an unshaped Sarsa agent outperformed the shaped agent. However, we think this

scenario is rare, and applies in particular to scenarios in which an on-policy potential function

is applied to a domain with a sparse reward function (where it may be difficult for the agent

to improve upon the initial policy suggested by the potential), and disaster states. The latter

may cause on-policy potential functions to too strongly bias the agent away from disaster

states, causing the agent to get stuck in areas with no reward.

While using a potential function based on a different value function than the agent has

learned may be beneficial, it may not always be practical. However, shaping, and the appli-

cation of prior knowledge in general, are most useful in scenarios where the cost (and risk)

of acquiring samples outweighs the cost of computation. In these cases, it may be well worth

the extra cost of computing a potential based on a different value function.

7.2 Representations

Extrapolating relevance on tabular representations and linear binary function approximators

has shown a significant benefit over regular shaping and methods that select features based

only on the current task sequence. In our experience, FS-TEK’s sole parameter, the confidence

level, is an important tool for improving performance by tuning how aggressively FS-TEK

discards features. In this sense, it is more an “aggressiveness” parameter than a confidence

level, since setting this parameter to values near 10−3 is not uncommon. How to set the

parameter is domain-dependent; increasing it tends to increase FPR but decrease TPR, and

vice versa. Thus, the parameter setting should depend on whether it is more important to

retain true positives or discard true negatives.

It is not immediately clear how to extend FS-TEK to non-binary linear or nonlinear func-

tion approximators, since the abstractions that FS-TEK relies upon may not be well defined

there. One approach could be to learn these approximators using supervised regression on

multiple task solutions simultaneously on task sequences of increasing length, and extrapolate

changes in feature weights to obtain a measure similar to k-relevance. Extending k-relevance

and FS-TEK to these domains is an important direction for future work.

While FS-TEK is an algorithm for FS, our definition of relevance applies to more general

abstractions, e.g., including context-dependent ones. Therefore, a promising direction for

future work is to extend FS-TEK to discover such abstractions. Similarly, while we tested

our algorithm and definition of domain-relevance on potential functions, it is likely that

the definition is equally applicable to other related transfer approaches, such as advice and

rule-based methods [81]. Another possible application is to function approximators such as

cross-task tile coding [21], which is based on a structure space defined by domain-relevant

123

672 Auton Agent Multi-Agent Syst (2014) 28:637–681

features. Our definition and algorithm could therefore enable the automatic discovery and

construction of the appropriate coding, instead of hand-designing it. Domain relevance might

also be useful for constructing informed priors in Bayesian MTRL. For example, Wilson et

al. [89] use a hierarchical Bayesian approach in which distributions over tasks are drawn from

a distribution over classes of tasks. Since purely domain-relevant features (i.e., features that

are not task-relevant) similarly define task classes, they could form a useful basis for a prior.

Acknowledgments We thank George Konidaris, Hado van Hasselt, Eric Wiewiora, Lihong Li, Christos

Dimitrakakis and Harm van Seijen for valuable discussions, and the anonymous reviewers for suggesting

improvements to the original article.

Appendix 1: Glossary

Table 2 Glossary of terms

Xm State space of task m

A Set of actions

Pm Transition function of task m

Rm Expected reward function of task m

X+
m State–action space of task m

x A state

x+ A state–action pair

Q∗
m Optimal value function of task m

D A distribution over tasks

M The set of all tasks

Xd Domain state space; union of all Xm in M

X+
d

Domain state–action space; union of all X+
m in M

Φ A potential function

Qd A cross-task value function; see Eq. 11

Q∗
d

Cross-task value function calculated over the optimal

value function of each task; Eq. 11

Q̃d Cross-task value function calculated over the

approximate value function of each task; Eq. 12

Q
µ
d

Cross-task value function based on a single cross-task

policy µ; Eq. 13

φ A state abstraction function; maps state x to abstract

state y

φ−1 Inverse state abstraction function; maps y to the set of

ground states comprising it

c A sequence of tasks

ci An element from c; a task

Qc Cross-task value function computed over c instead of

over the entire domain

Q̄c(φ) Abstract Q-function of a given Qc , based on abstraction

φ; Definition 2, Eq. 18

ρ(φ, Qc) Relevance of φ with respect to Qc; Definition 3, Eq. 20

ρk (φ) k-Relevance: expected relevance of φ on a task

sequence of length k; Definition 5, Eq. 22

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 673

Appendix 2: Proof of Theorems in Sect. 4

As stated in Theorem 2, we are concerned with the case where the abstract Q-function is

defined as in(18), i.e., the weighted average over state–action pairs in a given cluster. In this

case, relevance equals the sum of weighted variances of the Q-values of ground state–action

pairs corresponding to a given cluster y (21). Before proving the theorems, we show how

relevance can be rewritten as a sum of covariances between Q-functions.

Variance of a weighted sum of n correlated random variables equals the weighted sum of

covariances. We start by showing that any Qc is a weighted sum of random variables (namely

the Q-functions of each task in the sequence), and that therefore relevance can be written in

terms of a weighted sum over covariances. Equation 17 is already a weighted sum, but we

require a constant weight per random variable (task). Thus we rewrite (17) as

Qc

(

x+)

=
k

∑

i=1

Pr(ci |c)Qc
ci

(

x+)

(26)

Qc
ci

(

x+)

=
Pr

(

x+|ci

)

Pr(x+|c) Qci

(

x+)

, (27)

where the last line is just a rescaling of Qci
depending on c, and k = |c|, the sequence length.

Similarly, we define

Qc
y,ci

(

x+)

=
Pr

(

x+|y, ci

)

Pr
(

x+|y, c
) Qci

(

x+)

, (28)

where Pr(x+|y, ci) = 0 for all x+ /∈ X
y
ci

, as the values of Qc
ci

on the domain X
y
ci

.

For ease of notation, we write Var(Qc) for the variance Var(Qc(X
+
c)), leaving the domain

implicit, and similarly for the covariance. Note that Pr(ci |c) = 1/k. Then relevance (21) can

be written as

ρ(φ, Qc) =
∑

y∈Yc

Pr(y|c) Var

(

1

k

k
∑

i=1

Qc
y,ci

)

= 1

k2

∑

y∈Yc

Pr(y|c)
k

∑

i=1

k
∑

j=1

Cov
(

Qc
y,ci

, Qc
y,c j

)

(29)

To see how relevance changes from one sequence to the next, we need to know how

the covariance between two given tasks changes. For this purpose it is easier to write the

covariance as Cov(X i , X j) = E[X i X j]−E[X i] E[X j]; then all we need to do is quantify both

expectations. Let (c, m) be the new sequence formed by appending a task m ∈ M to a given

sequence c. In the following, for ease of notation, assume an abstraction that leaves the original

Q-function intact, i.e. Qc
y,ci

= Qc
ci

. The results can be extended to general abstractions by

substituting Xc = X
y
c , Xm = X

y
m , Pr(x+|c) = Pr(x+|y, c), and Pr(x+|m) = Pr(x+|y, m).

Lemma 1 The expected value of a given Q-function for a given task ci in any sequence c is

the same as the expected value of the original Q-function on ci . That is,

E
[

Qc
ci

]

= E
[

Qci

]

. (30)

123

674 Auton Agent Multi-Agent Syst (2014) 28:637–681

Proof The expected value of any Qc
ci

is

E[Qc
ci
] =

∑

x+∈X+
c

Pr
(

x+|c
)

Qc
ci

(

x+)

=
∑

x+∈X+
ci

Pr
(

x+|c
)

Qc
ci

(

x+)

+
∑

x+∈X+
c /X+

ci

Pr
(

x+|c
)

Qc
ci

(

x+)

=
∑

x+∈X+
ci

Pr
(

x+|c
) Pr

(

x+|m
)

Pr
(

x+|c
) Qci

(

x+)

(Since Qc
ci

= 0 ∀x+ /∈ X+
ci

)

=
∑

x+∈X+
ci

Pr
(

x+|m
)

Qci

(

x+)

= E[Qci
].

⊓⊔

To put bounds on the change in E[Qc
ci

Qc
c j

], we have

Lemma 2 For a given sequence c and new sequence (c, m) formed by appending a task

m ∈ M to c,

0 ≤
∣

∣

∣
E

[

Q(c,m)
ci

Q(c,m)
c j

]∣

∣

∣
≤ k + 1

k

∣

∣

∣
E

[

Qc
ci

Qc
c j

]∣

∣

∣
,

where | · | denotes absolute value.

Proof Let Qi · j

(

x+)

= Qci

(

x+)

Qc j

(

x+)

. Then

E[Qc
ci

Qc
c j

] =
∑

x+∈X+
c

Pr
(

x+|c
)

Qc
ci

(

x+)

Qc
c j

(

x+)

=
∑

x+∈X+
c

Pr
(

x+|ci

)

Pr
(

x+|c j

)

Pr
(

x+|c
) Qi · j

(

x+)

.

For a given task pair, the only quantity that changes from one sequence to the next is Pr(x+|c).
Let f c

i, j (x
+) = Pr(x+|ci) Pr(x+|c j)/ Pr(x+|c), and recall that, for a sequence of length k,

Pr(x+|c) = 1/k
∑k

i=1 Pr(x+|ci). Therefore, on a new sequence (c, m):

f
(c,m)
i, j

(

x+)

=
Pr

(

x+|ci

)

Pr
(

x+|c j

)

(

∑k
i=1 Pr

(

x+|ci

)

+ Pr
(

x+|m
)

) /

(k + 1)

=
(k + 1) Pr

(

x+|ci

)

Pr
(

x+|c j

)

k Pr
(

x+|c
)

+ Pr
(

x+|m
) .

Taking the ratio of f
(c,m)
i, j and f c

i, j :

f
(c,m)
i, j

(

x+) /

f c
i, j

(

x+)

=
(k + 1) Pr

(

x+|ci

)

Pr
(

x+|c j

)

k Pr
(

x+|c
)

+ Pr
(

x+|m
) ×

Pr
(

x+|c
)

Pr
(

x+|ci

)

Pr(x+|c j)

=
k Pr

(

x+|c
)

+ Pr
(

x+|c
)

k Pr
(

x+|c
)

+ Pr
(

x+|m
) . (31)

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 675

If Pr(x+|m) is larger (smaller) than Pr(x+|c), this ratio is smaller (larger) than one. It is

largest when Pr(x+|m) = 0, namely (k + 1)/k, and at its smallest it is

lim
Pr(x+|c)↓0

k Pr
(

x+|c
)

+ Pr
(

x+|c
)

k Pr
(

x+|c
)

+ Pr
(

x+|m
) = 0.

Since Qi · j (x
+) is constant from one sequence to the next, this leads to the bounds as stated

in the lemma. ⊓⊔

Note that especially the lower bound is quite loose, since usually Pr(x+|c) will not be

that close to zero. However, for our present purposes this is sufficient. Given these facts, the

proof of Theorem 2 readily follows.

Theorem 2 Let φ be an abstraction with abstract Q-function as in Definition 2, and let ρk =
ρk(φ) for any k. Let d(x, y) = |x − y| be a metric on R, and let f (ρk) = ρk+1 map k-

relevance to k + 1-relevance. Then f is a contraction; that is, for k > 1 there is a constant

κ ∈ (0, 1] such that

d (f (ρk), f (ρk−1)) ≤ cd (ρk, ρk−1) .

Furthermore, if d(ρ2, ρ1) �= 0, then f is a strict contraction, i.e. there is a κ ∈ (0, 1) such

that the above holds.

Proof We need to show that |ρk+1 − ρk | < |ρk − ρk−1| for any k > 1. The relevance of a

given sequence consists of the sum of the elements of the covariance matrix for that sequence,

where each element has weight 1/k2. As illustrated in Fig. 1, from one sequence c to a new

sequence (c, m), the ratio of additional covariances formed by the new task m with the tasks

already present in c is (2k − 1)/k2 and thus rapidly decreases with k. The same figure also

shows that change in relevance is caused by two factors: the expansion of the covariance

matrices as sequence length increases coupled with the change in sequence probability, and

change in the covariance between a given task pair from one sequence to the next. Suppose

that the covariance of any task pair does not change from one sequence to the next. Then

clearly, since the ratio of new covariance matrix elements changes with k as (2k − 1)/k2 and

in addition the probability of all new sequences (c, m) formed from a given c sums up to the

probability of c, |ρk+1 − ρk | ≤ |ρk − ρk−1| for any k > 1.

Now suppose that covariances do change from one sequence to the next. As Lemmas 1

and 2 show, the maximum change in covariance from any sequence c of length k to the next

is (k +1) Cov(Qc
ci
, Qc

c j
)/k for any i and j . This change also decreases with k, and therefore

|ρk+1 −ρk | ≤ |ρk −ρk−1| for any k > 1. If |ρ2 −ρ1| = 0, then by this property the difference

must stay 0 and |ρk+1 − ρk | = 0 for any k. In all other cases, the change in relevance is a

strict contraction, |ρk+1 − ρk | < |ρk − ρk−1|, by the above arguments. ⊓⊔

In the following lemma, we distinguish between variances Cov(Qc
ci
, Qc

c j
), ci = c j and

covariances Cov(Qc
ci
, Qc

c j
), ci �= c j . For k = 1, k-relevance consists solely of variances.

Lemma 3 The ratio of the number of variances to the number of covariances decreases with

k. For a given sequence c of length k − 1, the ratio of new variances in all new sequences of

length k formed from c is

2(k − 1) + N

N (2k − 1)
(32)

where N = |M|.

123

676 Auton Agent Multi-Agent Syst (2014) 28:637–681

Proof Let c be any sequence on a domain with N = |M| tasks. Assume task m ∈
{1, 2, . . . , N }, occurs om ∈ {0, 1, . . . , k} times in c. Then any c can be represented by

an N -dimensional vector o: o = (o1, o2, . . . , oN). Note that for a given sample size k,
∑

i oi = k for any c. Lastly, denote by σ the sum of elements in the last column and row of

the covariance matrix—as shown in Fig. 1, these are the elements added from one sequence

c to the next (c, m).

Now take any sequence c of length k − 1, with task counts in vector o. Form N new

sequences of length k, where each sequence is formed by adding a task from M to c. To

see how the ratio of covariances changes between k − 1 and k, all that matters is the ratio

in σ . For any new sequence formed by adding task m to sequence c, there will be 2om + 1

variances in σ . Hence, in total, taken over the N new sequences formed from c, there will

be 2(o1 + o2 + . . . + oN) + N = 2(k − 1) + N new variances. In total, taken over the N

new sequences, there are N (2k − 1) covariances. So the ratio of variances in σ for a given

sample size k is

2(k − 1) + N

N (2k − 1)
(33)

This ratio decreases with k. Therefore the ratio of covariances increases with k. ⊓⊔

We can now prove Theorem 3.

Theorem 3 If all tasks share the same distribution over state–action pairs Pr(x+|m), then ρk

is a monotonically increasing or decreasing function of k, or is constant.

Proof The assumption of a single distribution over state–action pairs implies that covariances

do not change from one sequence to the next. This follows from Lemma 1 and Eq. 31: since

Pr(x+|m) = Pr(x+|c), the ratio resolves to one and E
[

Q
(c,m)
ci

Q
(c,m)
c j

]

= E
[

Qc
ci

Qc
c j

]

.

The rest of the proof is by cases. Given k = 1, ρk+1 can either be smaller than, greater

than, or equal to ρk .

Case 1: ρ2 < ρ1.

Since ρ2 < ρ1, it follows that the expected value of a covariance is lower than that of

a variance: ρ1 is made up of all possible variances in the domain, while ρ2 in addition

consists of all possible covariances. Since covariances do not change from one k to the

next, covariances must be lower on average. From Lemma 3, the ratio of covariances

increases with k. Within the covariances, the frequency of a given task pair does not

change, and the same holds for the variances. Therefore, since covariances do not change

with k, ρk must get ever lower with k, and ρk is monotonically decreasing with k.

Case 2: ρ2 > ρ1.

By a similar argument to that for case 1, ρk is a monotonically increasing function of k.

Case 3: ρ2 = ρ1.

Therefore |ρ2 − ρ1| = 0, and |ρk+1 − ρk | must stay 0 by Theorem 2, which shows that

ρk is constant. ⊓⊔

Appendix 3: Cross-task binary function approximator

This appendix derives an average cross-task linear function approximator from a set of linear

function approximators per task, where approximators are assumed to have binary features.

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 677

Let wm be the weight vector of the function approximator in task m and let Qm(x) = wT
mfx

be the Q-value of x. We wish to find

Qd = argmin
Q0

(

∑

m∈M

Pr(m)
∑

x

Pr(x|m)
[

Qm(x) − Q0(x)
]2

)

(34)

= argmin
w0

(

∑

m∈M

Pr(m)
∑

x

Pr(fx|m)
[

(wm − w0)
Tfx

]2
)

. (35)

Let

g(w0) =
(

∑

m∈M

Pr(m)
∑

x

Pr(fx|m)
[

(wm − w0)
Tfx

]2
)

Then with wi the weight of feature i and N features,

g
(

wi
0

)

=
∑

m∈M

Pr(m)
∑

x

Pr
(

fx|m
)

[

(

wi
m − wi

0

)

f i
x

]2

=
∑

m∈M

Pr(m)
(

wi
m − wi

0

)2
∑

{x:f i
x=1}

Pr
(

fx|m
)

,

which follows from the fact that f i
x is either zero or one.

Let Pr(f i
x) indicate Pr(f i = f i

x). Furthermore, Pr(fx|m) = Pr(f1
x , . . . , f N

x |m), which equals

Pr(f1
x |m) Pr(f2

x |f1
x , m) . . . Pr(f N

x |f N−1
x , . . . , f1

x , m). So

∑

{x:f1
x =1}

Pr
(

fx|m
)

=
∑

{x:f1
x =1}

Pr
(

f1
x |m

)

Pr
(

f2
x |f1

x , m
)

· · · Pr
(

f N
x |f N−1

x , . . . , f1
x , m

)

= Pr
(

f1 = 1|m
)

∑

f2,...,f N

Pr
(

f2|f1 = 1, m
)

· · · Pr
(

f N |f N−1, . . . , f1 = 1, m
)

= Pr
(

f1 = 1|m
)

.

This holds for all features i and therefore, if we multiply g with 0.5 for convencience when

taking the partial derivative,

g
(

wi
0

)

= 1

2

∑

m∈M

Pr
(

f i = 1, m
)(

wi
m − wi

0

)2
,

∂g

∂wi
0

=
∑

m∈M

Pr
(

f i = 1, m
)(

wi
0 − wi

m

)

.

Setting this to zero gives

∑

m∈M

Pr
(

f i = 1, m
)

wi
0 =

∑

m∈M

Pr
(

f i = 1, m
)

wi
m

wi
0 Pr

(

f i = 1
)

=
∑

m∈M

Pr
(

f i = 1, m
)

wi
m,

wi
0 =

∑

m∈M

Pr
(

m|f i = 1
)

wi
m .

123

678 Auton Agent Multi-Agent Syst (2014) 28:637–681

References

1. Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.

2. Argyriou, A., Evgeniou, T., & Pontil, M. (2008). Convex multi-task feature learning. Machine Learning,

73(3), 243–272.

3. Asmuth, J., Littman, M., & Zinkov, R. (2008). Potential-based shaping in model-based reinforcement

learning. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence (pp. 604–609). Cam-

bridge: The AAAI Press.

4. Babes, M., de Cote, E.M., & Littman, M. L. (2008). Social reward shaping in the prisoner’s dilemma. In

7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008) (pp.

1389–1392).

5. Baxter, J. (2000). A model of inductive bias learning. Journal of Artificial Intelligence Research (JAIR),

12, 149–198.

6. Bertsekas, D. P. (1995). Dynamic programming and optimal control. Belmont: Athena.

7. Boutilier, C., Dearden, R., & Goldszmidt, M. (2000). Stochastic dynamic programming with factored

representations. Artificial Intelligence, 121(1–2), 49–107.

8. Caruana, R. (1997). Multitask learning. Machine Learning, 28(1), 41–75.

9. Caruana, R. (2005). Inductive transfer retrospective and review. In NIPS 2005 Workshop on Inductive

Transfer: 10 Years Later.

10. Devlin, S., Grzes, M., & Kudenko, D. (2011). Multi-agent, reward shaping for robocup keepaway. In

AAMAS (pp. 1227–1228).

11. Devlin, S., & Kudenko, D. (2011). Theoretical considerations of potential-based reward shaping for

multi-agent systems. In AAMAS, AAMAS ’11 (pp. 225–232).

12. Devlin, S., & Kudenko, D. (2012). Dynamic potential-based reward shaping. In AAMAS (pp. 433–440).

13. Diuk, C., Li, L., & Leffler, B. R. (2009). The adaptive k-meteorologists problem and its application to

structure learning and feature selection in reinforcement learning. In ICML (p. 32).

14. Dorigo, M., & Colombetti, M. (1994). Robot shaping: Developing autonomous agents through learning.

Artificial Intelligence, 71(2), 321–370.

15. Elfwing, S., Uchibe, E., Doya, K., & Christensen, H. (2008). Co-evolution of shaping: Rewards and

meta-parameters in reinforcement learning. Adaptive Behavior, 16(6), 400–412.

16. Elfwing, S., Uchibe, E., Doya, K., & Christensen, H. I. (2011). Darwinian embodied evolution of the

learning ability for survival. Adaptive Behavior, 19(2), 101–120.

17. Erez, T.,& Smart, W. (2008) What does shaping mean for computational reinforcement learning? In 7th

IEEE International Conference on Development and Learning, 2008. ICDL 2008 (pp. 215–219).

18. Ferguson, K., & Mahadevan, S. (2006). Proto-transfer learning in markov decision processes using spectral

methods. In ICML Workshop on Structural Knowledge Transfer for Machine Learning.

19. Ferrante, E., Lazaric, A.,& Restelli, M. (2008). Transfer of task representation in reinforcement learning

using policy-based proto-value functions. In AAMAS (pp. 1329–1332).

20. Foster, D. J., & Dayan, P. (2002). Structure in the space of value functions. Machine Learning, 49(2–3),

325–346.

21. Frommberger, L. (2011). Task space tile coding: In-task and cross-task generalization in reinforcement

learning. In Proceedings of the 9th European Workshop on Reinforcement, Learning (EWRL9).

22. Frommberger, L., & Wolter, D. (2010). Structural knowledge transfer by spatial abstraction for reinforce-

ment learning agents. Adaptive Behavior, 18(6), 507–525.

23. Geramifard, A., Doshi, F., Redding, J., Roy, N., & How, J. P. (2011). Online discovery of feature depen-

dencies. In ICML (pp. 881–888).

24. Grześ, M., & Kudenko, D. (2009). Learning shaping rewards in model-based reinforcement learning. In

Proceedings of AAMAS 2009 Workshop on Adaptive Learning Agents.

25. Grzes, M., & Kudenko, D. (2009). Theoretical and empirical analysis of reward shaping in reinforcement

learning. In ICMLA (pp. 337–344).

26. Grześ, M., & Kudenko, D. (2010). Online learning of shaping rewards in reinforcement learning. Neural

Networks, 23(4), 541–550.

27. Gullapalli, V., & Barto, A.G. (1992). Shaping as a method for accelerating reinforcement learning. In

Proceedings of IEEE International Symposium on Intelligent, Control (pp. 554–559).

28. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine

Learning Research, 3, 1157–1182.

29. Hachiya, H., & Sugiyama, M. (2010). Feature selection for reinforcement learning: Evaluating implicit

state-reward dependency via conditional mutual information. In ECML/PKDD (pp. 474–489).

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 679

30. Jong, N. K., & Stone, P. (2005). State abstraction discovery from irrelevant state variables. In IJCAI-05.

31. Kakade, S. M. (2003). On the sample complexity of reinforcement learning. Ph.D. Thesis, University

College London, London.

32. Koller, D., & Sahami, M. (1996). Toward optimal feature selection. In ICML (pp. 284–292).

33. Kolter, J. Z., & Ng, A. Y. (2009). Regularization and feature selection in least-squares temporal difference

learning. In ICML (p. 66).

34. Konidaris, G., & Barto, A. (2006). Autonomous shaping: Knowledge transfer in reinforcement learning.

In Proceedings of 23rd International Conference on Machine Learning (pp. 489–496).

35. Konidaris, G., Scheidwasser, I., & Barto, A. G. (2012). Transfer in reinforcement learning via shared

features. Journal of Machine Learning Research, 13, 1333–1371.

36. Koren, Y., & Borenstein, J. (1991). Potential field methods and their inherent limitations for mobile robot

navigation. In Proceedings of IEEE Conference on Robotics and Automation (pp. 1398–1404).

37. Kroon, M., & Whiteson, S. (2009). Automatic feature selection for model-based reinforcement learning

in factored MDPs. In ICMLA 2009: Proceedings of the Eighth International Conference on Machine

Learning and Applications (pp. 324–330).

38. Laud, A., & DeJong, G. (2002). Reinforcement learning and shaping: Encouraging intended behaviors.

In Proceedings of 19th International Conference on Machine Learning (pp. 355–362).

39. Laud, A., & DeJong, G. (2003). The influence of reward on the speed of reinforcement learning: An

analysis of shaping. In ICML (pp. 440–447).

40. Lazaric, A. (2008). Knowledge transfer in reinforcement learning. Ph.D. Thesis, Politecnico di Milano,

Milan.

41. Lazaric, A., & Ghavamzadeh, M. (2010). Bayesian multi-task reinforcement learning. In ICML (pp.

599–606).

42. Lazaric, A., Restelli, M., & Bonarini, A. (2008). Transfer of samples in batch reinforcement learning. In

ICML (pp. 544–551).

43. Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a unified theory of state abstraction for mdps. In

Aritificial Intelligence and Mathematics.

44. Lu, X., Schwartz, H. M., & Givigi, S. N. (2011). Policy invariance under reward transformations for

general-sum stochastic games. Journal of Artificial Intelligence Research (JAIR), 41, 397–406.

45. Maclin, R., & Shavlik, J. W. (1996). Creating advice-taking reinforcement learners. Machine Learning,

22(1–3), 251–281.

46. Mahadevan, S. (2010). Representation discovery in sequential decision making. In AAAI.

47. Manoonpong, P., Wörgötter, F., & Morimoto, J. (2010). Extraction of reward-related feature space using

correlation-based and reward-based learning methods. In ICONIP (Vol. 1, pp. 414–421).

48. Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal

of Applied Mathematics, 11, 431–441.

49. Marthi, B. (2007). Automatic shaping and decomposition of reward functions. In Proceedings of 24th

International Conference on Machine Learning (pp. 601–608).

50. Matarić, M. J. (1994). Reward functions for accelerated learning. In Proceedings of 11th International

Conference on Machine Learning.

51. Mehta, N., Natarajan, S., Tadepalli, P., & Fern, A. (2008). Transfer in variable-reward hierarchical rein-

forcement learning. Machine Learning, 73(3), 289–312.

52. Midtgaard, M., Vinther, L., Christiansen, J. R., Christensen, A. M., & Zeng, Y. (2010). Time-based reward

shaping in real-time strategy games. In Proceedings of the 6th International Conference on Agents and

Data Mining Interaction, ADMI’10 (pp. 115–125). Berlin, Heidelberg: Springer-Verlag.

53. Ng, A., Harada, D.,& Russell, S.(1999). Policy invariance under reward transformations: Theory and

application to reward shaping. In Proceedings of 16th International Conference on Machine Learning.

54. Parr, R., Li, L., Taylor, G., Painter-Wakefield, C.,& Littman, M. L. (2008). An analysis of linear models,

linear value-function approximation, and feature selection for reinforcement learning. In ICML (pp. 752–

759).

55. Petrik, M., Taylor, G., Parr, R., & Zilberstein, S. (2010). Feature selection using regularization in approx-

imate linear programs for markov decision processes. InICML (pp. 871–878).

56. Proper, S.,& Tumer, K. (2012). Modeling difference rewards for multiagent learning (extended abstract).

In AAMAS, Valencia, Spain.

57. Randløv, J.,& Alstrøm, P. (1998). Learning to drive a bicycle using reinforcement learning and shaping.

In Proceedings of 15th International Conference on Machine Learning.

58. Rummery, G., & Niranjan, M. (1994). On-line q-learning using connectionist systems. Technical Report

CUED/F-INFENG-RT 116, Engineering Department, Cambridge University, Cambridge.

123

680 Auton Agent Multi-Agent Syst (2014) 28:637–681

59. Saksida, L. M., Raymond, S. M., & Touretzky, D. S. (1997). Shaping robot behavior using principles

from instrumental conditioning. Robotics and Autonomous Systems, 22(3–4), 231–249.

60. van Seijen, H., Whiteson, S., & Kester, L. (2010). Switching between representations in reinforcement

learning. In Interactive Collaborative, Information Systems (pp. 65–84).

61. Selfridge, O., Sutton, R. S.,& Barto, A. G. (1985). Training and tracking in robotics. In Proceedings of

Ninth International Joint Conference on Artificial Intelligence.

62. Sherstov, A. A., & Stone, P. (2005). Improving action selection in MDP’s via knowledge transfer.

InProceedings of the Twentieth National Conference on Artificial Intelligence.

63. Singh, S., Lewis, R.,& Barto, A. (2009). Where do rewards come from? In Proceedings of 31st Annual

Conference of the Cognitive Science Society (pp. 2601–2606).

64. Singh, S., & Sutton, R. (1996). Reinforcement learning with replacing eligibility traces. Machine Learn-

ing, 22(1), 123–158.

65. Singh, S. P. (1992). Transfer of learning by composing solutions of elemental sequential tasks. Machine

Learning, 8(3), 323–339.

66. Singh, S. P., Jaakkola, T., & Jordan, M. I. (1994). Learning without state-estimation in partially observable

markovian decision processes. In ICML (pp. 284–292).

67. Skinner, B. F. (1938). The behavior of organisms: An experimental analysis. New York: Appleton-

Century-Crofts.

68. Snel, M.,& Whiteson, S. (2010). Multi-task evolutionary shaping without pre-specified representations.

In Genetic and Evolutionary Computation Conference (GECCO’10).

69. Snel, M., & Whiteson, S. (2011). Multi-task reinforcement learning: Shaping and feature selection. In

Proceedings of the European Workshop on Reinforcement Learning (EWRL).

70. Sorg, J., & Singh, S. (2009). Transfer via soft homomorphisms. In Proceedings of 8th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009) (pp. 741–748).

71. Strehl, A. L., Diuk, C., & Littman, M. L. (2007). Efficient structure learning in factored-state mdps. In

AAAI (pp. 645–650).

72. Sutton, R. (1983). Learning to predict by the method of temporal differences. Machine Learning, 3, 9–44.

73. Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge: The MIT Press.

74. Tanaka, F.,& Yamamura, M. (2003). Multitask reinforcement learning on the distribution of mdps. In

Proceedings of 2003 IEEE International Symposium on Computational Intelligence in Robotics and

Automation (CIRA 2003) (pp. 1108–113).

75. Taylor, J., Precup, D., & Panagaden, P. (2009). Bounding performance loss in approximate mdp homo-

morphisms. In Koller D., Schuurmans D., Bengio Y., & Bottou L. (Eds.), Advances in Neural Information

Processing Systems (Vol. 21, pp. 1649–1656).

76. Taylor, M., & Stone, P. (2009). Transfer learning for reinforcement learning domains: A survey. Journal

of Machine Learning Research, 10(1), 1633–1685.

77. Taylor, M., Stone, P., & Liu, Y. (2007). Transfer learning via inter-task mappings for temporal difference

learning. Journal of Machine Learning Research, 8(1), 2125–2167.

78. Taylor, M. E., Whiteson, S., & Stone, P. (2007). Transfer via inter-task mappings in policy search rein-

forcement learning. In AAMAS (p. 37).

79. Thrun, S. (1995). Is learning the n-th thing any easier than learning the first? In Advances in Neural

Information Processing (pp. 640–646).

80. Torrey, L., Shavlik, J. W., Walker, T.,& Maclin, R. (2010). Transfer learning via advice taking. In Advances

in Machine Learning I (pp. 147–170). New York: Springer.

81. Torrey, L., Walker, T., Shavlik, J. W., & Maclin, R.: Using advice to transfer knowledge acquired in one

reinforcement learning task to another. In Proceedings of the Sixteenth European Conference on Machine

Learning (ECML 2005) (pp. 412–424).

82. Vlassis, N., Littman, M. L.,& Barber, D. (2011). On the computational complexity of stochastic controller

optimization in pomdps. CoRR abs/1107.3090.

83. Walsh, T. J., Li, L., & Littman, M. L. (2006). Transferring state abstractions between mdps. In ICML-06

Workshop on Structural Knowledge Transfer for Machine Learning.

84. Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292.

85. Whitehead, S. D. (1991). A complexity analysis of cooperative mechanisms in reinforcement learning.

In Proceedings AAAI-91 (pp. 607–613).

86. Whiteson, S., Tanner, B., Taylor, M. E.,& Stone, P. (2011). Protecting against evaluation overfitting in

empirical reinforcement learning. In ADPRL 2011: Proceedings of the IEEE Symposium on Adaptive

Dynamic Programming and Reinforcement, Learning (pp. 120–127).

87. Wiewiora, E. (2003). Potential-based shaping and q-value initialization are equivalent. Journal of Artificial

Intelligence Research, 19, 205–208.

123

Auton Agent Multi-Agent Syst (2014) 28:637–681 681

88. Wiewiora, E., Cottrell, G.,& Elkan, C.(2003). Principled methods for advising reinforcement learning

agents. InProceedings of 20th International Conference on Machine Learning (pp. 792–799).

89. Wilson, A., Fern, A., Ray, S.,& Tadepalli, P. (2007). Multi-task reinforcement learning: A hierarchical

Bayesian approach. In ICML (pp. 1015–1022).

123

	Learning potential functions and their representations for multi-task reinforcement learning
	Abstract
	1 Introduction
	2 Background
	2.1 Reinforcement learning
	2.2 Shaping
	2.3 Problem setting

	3 Potential functions for multi-task learning
	3.1 Optimal initialization for value iteration
	3.2 Initialization for the learning case
	3.3 Least squared error prediction of Q*m
	3.4 Least squared error prediction of
	3.5 Value of the optimal cross-task policy
	3.6 Choosing Pr(x,a|m)

	4 Representation selection
	4.1 Relevance
	4.2 k-Relevance
	4.3 Properties of k-relevance
	4.4 Feature selection with k-relevance

	5 Empirical evaluations
	5.1 Evaluating potential functions
	5.1.1 Episodic cliff domain
	5.1.2 Continuing cliff domain
	5.1.3 Triangle domain
	5.1.4 Stock-trading domain
	5.1.5 Summary

	5.2 Evaluating representation selection
	5.2.1 Triangle domain
	5.2.2 Cliff domain
	5.2.3 Stock domain
	5.2.4 Heat domain
	5.2.5 Summary

	6 Related work
	6.1 Potential-based shaping
	6.2 Multi-task reinforcement learning
	6.3 Representation learning

	7 Discussion and future work
	7.1 Potential functions
	7.2 Representations

	Acknowledgments
	Appendix 1: Glossary
	Appendix 2: Proof of Theorems in Sect. 4
	Appendix 3: Cross-task binary function approximator
	References

