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ABSTRACT

Learning from graphs has become a popular research area due to the ubiq-

uity of graph data representing web pages, molecules, social networks, pro-

tein interaction networks etc. However, standard graph learning approaches

are often challenged by the computational cost involved in the learning pro-

cess, due to the richness of the representation. Attempts made to improve

their efficiency are often associated with the risk of degrading the perfor-

mance of the predictive models, creating tradeoffs between the efficiency

and effectiveness of the learning. Such a situation is analogous to an opti-

mization problem with two objectives, efficiency and effectiveness, where

improving one objective without the other objective being worse off is a

better solution, called a Pareto improvement. In this thesis, it is inves-

tigated how to improve the efficiency and effectiveness of learning from

graph data using pattern mining methods. Two objectives are set where one

concerns how to improve the efficiency of pattern mining without reducing

the predictive performance of the learning models, and the other objec-

tive concerns how to improve predictive performance without increasing

the complexity of pattern mining. The employed research method mainly

follows a design science approach, including the development and evalu-

ation of artifacts. The contributions of this thesis include a data represen-

tation language that can be characterized as a form in between sequences

and itemsets, where the graph information is embedded within items. Sev-

eral studies, each of which look for Pareto improvements in efficiency and

effectiveness are conducted using sets of small graphs. Summarizing the

findings, some of the proposed methods, namely maximal frequent item-

set mining and constraint based itemset mining, result in a dramatically

increased efficiency of learning, without decreasing the predictive perfor-

mance of the resulting models. It is also shown that additional background

knowledge can be used to enhance the performance of the predictive mod-

els, without increasing the complexity of the graphs.
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SAMMANFATTNING

Inlärning från grafer har blivit ett populärt forskningsområde då grafda-

tabaser har blivit allt mer förekommande för att representera webbsidor,

molekyler, sociala nätverk, proteininteraktionsnätverk m.m. Standardmet-

hoderna för inlärning från grafer begränsas ofta av beräkningskostnaden i

inlärningsprocessen på grund av representationsspråkets komplexitet. För-

sök som har gjorts för att förbättra deras effektivitet är ofta förknippade

med en risk för försämring av de prediktiva modellernas prestanda, vilket

kräver en avvägning mellan effektivitet och verkningsgrad vid inlärningen.

En sådan situation är jämförbar med ett optimeringsproblem med två mål,

effektivitet och verkningsgrad, där förbättring av ett mål utan att det andra

målet blir sämre betraktas som en bättre lösning, en s.k. kallad Paretoför-

bättring. I denna avhandling studeras hur man kan förbättra effektiviteten

och verkningsgraden vid inlärning från grafer med hjälp av mönsterextrak-

tionsmetoder. Två mål för studien är att undersöka hur man kan förbättra

mönsterextraktionens effektivitet utan att minska de resulterande modeller-

nas prediktionsförmåga, och hur den prediktiva förmågan kan förbättras ut-

an att öka mönsterextraktionens komplexitet. Avhandlingens forskningsan-

sats följer huvudsakligen den designvetenskapliga metodiken och inklude-

rar konstruktion och utvärdering av artefakter. Avhandlingens bidrag inklu-

derar ett datarepresentationsspråk, som kan beskrivas som en form mellan

sekvenser (sequences) och oordnade mängder (itemsets) där information

om grafens struktur kodas som element i mängderna. Resultat presenteras

från ett antal studier som undersöker ett antal föreslagna metoders Pare-

toförbättringar med avseende på effektivitet och verkningsgrad vid analys

av datamängder innehållande små grafer. En av de viktigaste slutsatserna i

arbetet är att två av de föreslagna metoderna, nämligen maximal frequent

itemset mining och constraint based itemset mining, dramatiskt ökar effek-

tiviteten vid inlärning utan att minska modellernas prediktiva förmåga. Det

visas också att ytterligare bakgrundskunskap kan användas för att förbättra

de prediktiva modellernas prestanda utan att öka grafernas komplexitet.
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Technologies, Jožef Stefan Institute, Slovenia, as the opponent of my

thesis during the public defense. I must also thank the three examiners

of my PhD thesis, Professor Paul Johannesson from the Department of

Computer and Systems Sciences (DSV), Professor Andriy Andreev from

the Department of statistics and Associate Professor Anne Håkansson

from School of Information and Communication Technology, Royal

Institute of Technology, for their valuable comments, which will definitely

be useful in my future research life. I would also like to thank Anna

Hansson for being so kind to proofread my thesis, in fact in a short time!

I am in debt to the Swedish International Development Cooperation

Agency (SIDA) and the High-Performance Data Mining for Drug Effect

Detection (DADEL) project from the Swedish Foundation for Strate-



XII

gic Research for the financial support I received during my studies at

Stockholm University. My heartfelt gratitude should also be extended to

Associate Professor Henrik Hansson for his kind advices and support.

My colleagues at DSV, especially David, Constantino, Rueben, Orlando,

Thushani, Sampath, Geoffery, Rasika, Japhet (and many more of course!)

deserve a note of thanks for their kind friendship. Nam and Maria for very

nice PhDs outings etc. Sven, Christer, Nicolas and Ola from the DSV

DMC helped me, mostly in crucial times, in solving the problems with

my computers. Fatima, Birgitta, Rodolfo and Sören are also thanked for

their kind support given to me from time to time in my life at Stockholm

University. Without the encouragement, support and understanding of my

husband Sena and daughters Dehani and Sahani, none of this would have

been possible. Also, my parents and two sisters always encouraged me to

uplift my enthusiasm. A big thanks should go to them for believing in me.

Thashmee Karunaratne

Stockholm, March 2014



XIII

TABLE OF CONTENTS

1 Introduction 1

1.1 Background - Machine Learning . . . . . . . . . . . . . . 2

1.2 Data representation . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Logic programs . . . . . . . . . . . . . . . . . . . 5

1.2.2 Graphs Trees and Sequences . . . . . . . . . . . . 7

1.3 Learning from graph data . . . . . . . . . . . . . . . . . . 8

1.4 Pattern mining methods . . . . . . . . . . . . . . . . . . . 12

1.4.1 Frequent subgraph mining . . . . . . . . . . . . . 13

1.4.2 Subsets of frequent subgraphs and other alternative

methods . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.3 The efficiency vs. effectiveness tradeoff in graph

mining methods . . . . . . . . . . . . . . . . . . . 17

1.5 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Research question and thesis objectives . . . . . . 22

1.5.2 Thesis contributions . . . . . . . . . . . . . . . . 23

1.6 Organization of the thesis . . . . . . . . . . . . . . . . . . 30

2 Research Methods 31

2.1 Research methodology . . . . . . . . . . . . . . . . . . . 31

2.1.1 Research philosophy . . . . . . . . . . . . . . . . 32

2.1.2 The design science paradigm . . . . . . . . . . . 34

2.2 Learning framework . . . . . . . . . . . . . . . . . . . . 36

2.2.1 The framework . . . . . . . . . . . . . . . . . . . 36

2.2.2 Learning algorithms . . . . . . . . . . . . . . . . 37

2.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Datasets of small graphs . . . . . . . . . . . . . . 40

2.3.2 The NCI repository . . . . . . . . . . . . . . . . . 40

2.3.3 Synthetic datasets . . . . . . . . . . . . . . . . . . 40

2.4 Comparison methods . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Standard graph mining methods . . . . . . . . . . 43

2.4.2 Domain specific methods . . . . . . . . . . . . . 46



XIV

2.5 Statistical tests . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Experimental design . . . . . . . . . . . . . . . . . . . . 48

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Proposed methods 51

3.1 Graphs as a representation language . . . . . . . . . . . . 51

3.2 Itemsets and itemset mining . . . . . . . . . . . . . . . . 52

3.3 The itemset approach to the representation of graphs . . . 53

3.3.1 Edge list . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Construction of the edge list . . . . . . . . . . . . 56

3.3.3 The edge set . . . . . . . . . . . . . . . . . . . . 58

3.4 Pattern mining methods . . . . . . . . . . . . . . . . . . . 60

3.4.1 Maximal frequent itemset (mfi) . . . . . . . . . . 61

3.4.2 Supervised maximal frequent itemsets . . . . . . 62

3.4.3 Constraint programming on edge sets . . . . . . . 63

3.4.4 Maximal common substructures . . . . . . . . . . 64

3.5 Proposed methods . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 Maximal common substructures (mcs) . . . . . . . 66

3.5.2 Information gain (ig) for mcs . . . . . . . . . . . . 67

3.5.3 Maximal frequent itemsets (mfi) . . . . . . . . . . 67

3.5.4 Hybrid model with mfi and mcs . . . . . . . . . . 67

3.5.5 The vector space model . . . . . . . . . . . . . . 68

3.5.6 Supervised maximal frequent itemsets (Smfi) . . . 68

3.5.7 Constraint programming based itemset mining (CP) 69

3.6 Background knowledge . . . . . . . . . . . . . . . . . . . 69

3.6.1 Encoding background knowledge into graphs . . . 70

3.6.2 Using background knowledge as additional fea-

tures to the learning algorithm . . . . . . . . . . . 71

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Empirical Evaluation 73

4.1 Predictive performance . . . . . . . . . . . . . . . . . . . 73

4.1.1 Maximal common substructures (mcs) . . . . . . . 73



XV

4.1.2 Supervised maximal frequent itemset mining

method (Smfi) . . . . . . . . . . . . . . . . . . . . 74

4.1.3 Maximum frequent itemset mining (mfi) and Con-

straint programming (CP) based methods . . . . . 76

4.1.4 Pattern sets from different methods . . . . . . . . 79

4.1.5 Efficiency of pattern mining methods . . . . . . . 80

4.2 Enhancing the predictive performance of pattern mining

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Pattern language settings vs. predictive performance 82

4.2.2 Incorporating background knowledge into node

and edge labels . . . . . . . . . . . . . . . . . . . 83

4.2.3 Background knowledge as additional features . . . 85

4.2.4 Feature sets from different pattern mining methods

as background knowledge . . . . . . . . . . . . . 87

4.2.5 Efficient and effective learning . . . . . . . . . . 88

4.3 Performance analyses of the proposed methods . . . . . . 90

4.3.1 Performance comparisons of mfi, Smfi and CP . . . 90

4.3.2 Performance comparisons of edge lists and edge sets 93

4.3.3 Size of the feature set of mfi . . . . . . . . . . . . 93

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Concluding remarks 103

5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . 107

Appendices 119

A Paper I 119

B Paper II 125

C Paper III 135

D Paper IV 143



XVI LIST OF FIGURES

E Paper V 159

F Paper VI 167

G Paper VII 175

H Paper VIII 189

I Paper IX 207

LIST OF FIGURES

1.1 An example of a graph: (a) a molecule (b) the correspond-

ing graph (c) a tree structure in (b) and (d) a sequence in

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A single large graph – citation patterns in the small world

literature (Freeman, 2004), where the black, white and gray

nodes refer to physicists, people engaged in social net-

works, and others respectively, and the edges represent the

citations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Chemical graph dataset (a) 2-Nitrobenz(j)aceanthrylene

(b) 3,4,3’-Trinitrobiphenyl (c) 2-nitro-1,3,7,8-

tetrachlorodibenzo-1,4-dioxin (d) 1-((3-(5-Nitro-2-

furyl)allylidene)amino)hydantoin (e) nitrofurantoin (f)

4-nitroindole (Nicklaus, 1996). . . . . . . . . . . . . . . . 10

1.4 Two approaches to learning from graphs. . . . . . . . . . . 11

1.5 Three subgraphs present in the chemoinformatics dataset. . 13

1.6 General representation of a molecular fragment. . . . . . . 19

1.7 Including available background information. . . . . . . . . 20

2.1 The learning framework. . . . . . . . . . . . . . . . . . . 37

2.2 Experimental design. . . . . . . . . . . . . . . . . . . . . 49



LIST OF FIGURES XVII

3.1 Graph structure of the benzene ring (left) and how the struc-

ture is split by transforming it into the edge list (right). . . 54

3.2 Arbitrary graph containing unique node labels (left) and its

edge fragments (right). . . . . . . . . . . . . . . . . . . . 55

3.3 Chemical graphs. . . . . . . . . . . . . . . . . . . . . . . 56

3.4 (a) General description of a graph, (b) Molecular frag-

ment with atom name and type, (c) Graph including 2-

dimensional substructures of the molecular fragment. . . . 70

4.1 Classification accuracies of the classifier models. . . . . . 77

4.2 Root Mean Squared errors (RMSE) of regression models. . 79

4.3 Classification accuracies of combined feature set of back-

ground knowledge and pattern mining methods for methods

mfi, CP, SUBDUE, MoFa and graphSig. . . . . . . . . . . 86

4.4 For regression models. . . . . . . . . . . . . . . . . . . . 87

4.5 Comparison of classification (top) and regression (bottom)

models of CP and mfi. . . . . . . . . . . . . . . . . . . . . 91

4.6 Comparison of classification (top) and regression (bottom)

models of Smfi and mfi. . . . . . . . . . . . . . . . . . . . 92

4.7 Comparison of models of mfi that use edge lists and edge sets. 94

4.8 Comparison of models of CP that use edge lists and edge sets. 95

4.9 No. of mfi vs. threshold (support σ ) for selected datasets

from medicinal chemistry. . . . . . . . . . . . . . . . . . 96

4.10 No. of mfi vs. threshold (support σ ) of selected datasets

from NCI repository. . . . . . . . . . . . . . . . . . . . . 97

4.11 No. of maximal frequent items vs. threshold (support σ )

for the synthetic graphs g, h and i. . . . . . . . . . . . . . 98

4.12 Execution times vs. threshold (support σ ) for the synthetic

graphs g, h and i. . . . . . . . . . . . . . . . . . . . . . . 99

4.13 Database size vs. No of mfi (top) and log(No of mfi) (bottom).100

5.1 Two ways of incorporating the same amount of background

knowledge into node labels–Paper IV. . . . . . . . . . . . 106



XVIII LIST OF TABLES

LIST OF TABLES

1.1 The propositional representation of the chemoinformatics

dataset using frequent subgraphs. . . . . . . . . . . . . . . 14

2.1 Summary of the datasets used in the contributed papers . . 41

2.2 Sixty datasets from the NCI repository . . . . . . . . . . . 42

4.1 Comparison of performance of DIFFER with some state-

of-the-art methods . . . . . . . . . . . . . . . . . . . . . 74

4.2 The average ranks of the performance of classifier models

using 21 datasets . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Pair-wise comparison of performance of methods . . . . . 78

4.4 Pairwise comparison of performance of methods . . . . . 78

4.5 Differences of average ranks of performance of regression

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Differences of average ranks of performance of classifica-

tion models . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Differences of average ranks of efficiency of the graph and

itemset mining . . . . . . . . . . . . . . . . . . . . . . . 82

4.8 Average ranks for the structured datasets . . . . . . . . . 83

4.9 Differences of average ranks . . . . . . . . . . . . . . . . 83

4.10 Accuracy of the models using different levels of back-

ground knowledge . . . . . . . . . . . . . . . . . . . . . . 85

4.11 The number of datasets with reduced RMSE for the com-

bined model . . . . . . . . . . . . . . . . . . . . . . . . 89

4.12 The number of datasets with increased model accuracy for

the combined classifier model . . . . . . . . . . . . . . . 89



CHAPTER 1

INTRODUCTION

Most of us today are lucky enough to receive appropriate medical treat-

ments for many illnesses considered serious in the past, thanks to new

medicinal discoveries. However, the discovery and development of a med-

ical drug is a long term process costing a huge amount of money and time,

resulting in more failures than successes (Wale, 2011). But the time and

cost incurred by drug discovery has dramatically reduced when computer

programs are introduced into certain steps of the drug discovery process.

Computational methods known as in silico utilize computer programs to

design, understand and predict the chemical and biological reactions of the

compounds that are considered for creating drugs (drug candidates) (Ekins

et al., 2007). Such knowledge helps researchers in the pharmaceutical in-

dustry to decide which compounds should be synthesized and tested in lab-

oratories (in vitro), something which is both costly and time-consuming.

In silico methods explore large databases of chemical compounds and au-

tomatically learn relationships between the compounds and their chemical

and biological reactions. Computer programs that can be used to auto-

matically learn from the available information is the core idea of machine

learning.
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1.1 BACKGROUND - MACHINE LEARNING

As Mitchell (2006) states, the best approach for defining a scientific field is

by the central question it studies. Machine learning is the field that studies

the question of ‘how to build computer systems that automatically improve

with experience, and what are the fundamental laws that govern all

learning processes’ (Mitchell, 2006). The following is a typical machine

learning example. A set of emails, which are already known as spam or

non-spam (training set) are available. It is required to build a spam filter

using the given set of spam and non-spam emails. A single email in the

training set is an example, object or an instance of data. The emails are

labeled as spam or non-spam, separating the training set into two classes.

Further, the emails may be represented in terms of a set of words, which are

usually called attributes. These attributes may take the values 1 or 0, where

the presence of a word in an example (email) is represented by 1, and 0

if the word is not included in the email (the number of times each word

appears in the email is an alternative representation). Each email in the set

of training examples can thereby be transformed into a vector consisting of

1’s and 0’s that represent the presence and absence of the words (attributes)

in the email. The form of representing examples as a vector containing

attributes and their values is referred to as propositional, attribute-value

or feature vector representation (Han and Kamber, 2000). An algorithm

that can learn, automatically, which words and/or combinations are more

likely to determine the class label of the email may be used in building

the spam filter. An algorithm that can carry out such learning is called

a machine learning algorithm and the spam filter is a predictive model,

which could be used to predict the label (spam or non-spam) of an unseen

(new) example. The more accurate the model is, the higher the probability

that the spam filter predicts the correct label of new examples.

Learning predictive models using a training dataset with labeled examples,

e.g., the spam and non-spam emails, is also referred to as supervised

learning. The task for the predictive model is classification when the
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labels are categorized into several classes and regression when the label

is a numerical value. In contrast, learning from unlabeled data is called

unsupervised learning (Mitchell, 2006).

The performance of the predictive model that classifies emails into spam

and non-spam (given a training set), is influenced by 1) the chosen set of

words to represent the emails (the attribute set), and, 2) how and in which

way the learning model is built. Different choices of the words used for

representing emails in the propositional (attribute-value) form may result

in models which perform differently, even if the same learning algorithm

is used for model building. Also, different machine learning algorithms

use data in different ways during model building, resulting in differences

in the predictive performance (Alpaydin, 2009). The quality of a machine

learning algorithm is determined mainly by two properties, efficiency and

effectiveness. Efficiency is determined by the computational cost incurred

by the algorithm, that is, in common practice, the memory consumed and

the time taken to complete the algorithm. With respect to a prediction task,

the effectiveness of a machine learning algorithm may be reflected by the

quality of the model built by use of the said algorithm, i.e., whether the

algorithm can build a model and produce accurate predictions (Landwehr,

2009).

1.2 DATA REPRESENTATION

Most of the standard machine learning algorithms deal with data in

attribute-value encodings (Cook and Holder, 2006). In this encoding, data

(examples) are represented using the same (fixed number of) attributes that

can be included in a single table, where each row in the table represents

an example. The attributes correspond to the columns, where one of those

columns may be dedicated to the (class) label. However, real world datasets

often contain plenty of data that has a richer representational form that

may not directly fit into this format (Dietterich et al., 2008). A chemical
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compound from the domain of chemoinformatics1 in Figure 1.1(a) is one

example of such data (Bringmann, 2009).

Figure 1.1: An example of a graph: (a) a molecule (b) the

corresponding graph (c) a tree structure in (b) and (d) a se-

quence in (b).

If the information in this compound is encoded in the attribute-value

(propositional) form, one may choose the atom labels as the attribute

names (presented in any order), for example, (C, Cl, N, O, S), and the

count of atoms with similar label as the value for each attribute. In

Figure 1.1(a), there are 11 atoms with the label C, one with Cl, two with

N, and one each with O and S, and therefore, the molecule could be

represented by (C = 11, Cl = 1, N = 2, O = 1, S = 1) in attribute-value

form. Such a representation ignores structural relationships, e.g. the bonds

1"Chemoinformatics is the mixing of those information resources to transform

data into information and information into knowledge for the intended purpose of

making better decisions faster in the area of drug lead identification and optimiza-

tion" (Brown, 2005)
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between the atoms. A richer representational form may be needed to

encode these relations. Not only chemical data, but also data that could

be found in repositories of social networks, computational biological

data, web data and links, XML data, image data including handwritten

documents, and many more, may require such a representational form.

Data containing structural relationships among the attributes are often

referred to as structured data (Thomas, 2010). Further, along with this

data there may be some additional information available, which could be

useful for learning. This additional information is commonly referred to as

background knowledge (Srinivasan et al., 1999). Usually this background

knowledge comes from information that is specific to the given domain.

For example, the chemoinformatics dataset called mutagenesis (Debnath

et al., 1991) contains, in addition to molecular compounds, several other

chemical properties of the molecules, such as atomic weight and charge

and some structural information such as carbon six ring etc., which are

specific to the domain.

Structured data can be represented in different forms, namely logic pro-

grams, graphs, trees and sequences.

1.2.1 LOGIC PROGRAMS

A logic program represents structured data in first order logic using so-

called predicates (Srinivasan et al., 1999). For example, when representing

the chemical compound in Figure 1.1(a) by a logic program, a predicate

that represent the atoms, and a predicate to represent the relations between

atoms (bonds) may be used. These two predicates can be defined in the

form:

atm(molecule_id, atom_id, atom_name) and

bond(molecule_id, atom_id, atom_id, bond_type)
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Here molecule_id and atom_id are the identifiers assigned to the molecule

and the atoms within, respectively. The atom_name is the name of an

atom (c for a carbon atom for example) and bond_type, which are single

or double, are labeled 1 or 2. Accordingly, the compound in Figure 1.1(a)

could be represented as:

atm( a,a_1,c)

atm( a,a_2,o)

atm( a,a_3,n)

atm( a,a_4,c)

atm( a,a_5,s)

. . .

bond(a,a_1,a_2,2)

bond(a,a_1,a_3,1)

bond(a,a_3,a_4,1)

. . .

Note that only a part of the encoding is presented here. Additional

background information, if available, can also be encoded into logic

programs. For example, the additional information that the molecule has ‘a

ring of six carbon atoms’, which is a specific property in chemical terms,

can be represented by a predicate carbon_six_ring. The compound in

Figure 1.1(a), has a carbon six ring, which may be encoded as follows.

carbon_six_ring(a,a_11,a_12,a_13,a_14,a_15,a_16)

In this representation, the order of the presence of carbon atoms is arbi-

trary. Logic programs is recognized as a rich representational form since

the structured data as well as the background knowledge can be easily en-

coded using first order logic (Srinivasan et al., 1999).
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1.2.2 GRAPHS TREES AND SEQUENCES

The chemical compound in Figure 1.1(a) could be represented as a graph

as shown in Figure 1.1(b) where the atoms are mapped to nodes and the

bonds between atoms are mapped to edges in the graph. Here, nodes are

labeled by the atom name. This representation of molecules are sometimes

referred to as chemical graphs (Deshpande et al., 2003). In molecular

graphs the edges have no directions such as ‘directing from carbon atom

to hydrogen atom’. Graphs containing such undirected edges are called

undirected graphs. But, in general, an edge between two nodes may have a

direction. For example, in a web link dataset, an edge would be a link from

a particular web page to another web page.

Trees is a subclass of graphs. A graph that has its nodes arranged in a

hierarchical form where no node can be revisited when traversing the

structure (and thereby containing no cyclic paths in the structure) is re-

ferred to as a tree. A subgraph of Figure 1.1(b), presented in Figure 1.1(c)

is an example for a tree structure. Sequences are graphs where the nodes

are connected with each other in a sequence, i.e, no node has more than

two edges and exactly two nodes have one edge each. Figure 1.1(d) is a

sequence embedded within the graph in Figure 1.1(b). However, when

general graphs are represented as trees, the cyclic paths of the graph is lost

while all the structures other than the the nodes and edges in sequence are

lost, when the representation is in a form of sequence. Therefore trees and

sequences are less powerful and less complex representational forms than

graphs.

Graph data broadly fall into two categories depending on their size and

characteristics, namely set of (small) graphs and single (large) graph.

Chemical graphs shown in Figure 1.1(b) for example, consist of graphs

with small number of nodes (and edges) which do not usually exceed a

couple of hundreds. There may be small to large numbers of such graphs

in a dataset. Using these chemical graphs, one could model the relationship

between the chemical structure of compounds and their chemical effects,
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such as solubility, permeability, protein binding, mutagenicity, carcino-

genicity, metabolic stability and so on (Srinivasan et al., 1999).

The graph of a social network given in Figure 1.2, is an example for

the other category, single graph, which contain large numbers of nodes

(and edges). In such a graph, nodes represent the individuals attached to

the network (actors) and edges represent the relationship of a particular

individual with the other individuals in the network. Typically, a social

network is a single graph, possibly having hundreds of thousands of nodes.

By analyzing a social network one could identify the relations between

individuals, such as friends, neighbours, etc. (Aggarwal and Wang, 2010).

A fragment that has a large number of connections may be representing an

actor who is popular within the network.

In learning from graphs in these two categories, methods may need to

address different challenges. In this thesis, the main focus is on learning

predictive models when the dataset is a set of (small) graphs.

1.3 LEARNING FROM GRAPH DATA

Consider the chemoinformatics dataset in Figure 1.3, which contains

chemical graphs. The learning task is prediction, where a predictive model

is built using compounds (training data) that are labeled as mutagenetic or

not, e.g. the compounds a–e in Figure 1.3, so that the model can be used to

label previously unseen (non-labeled) molecules, e.g., the compound f in

Figure 1.3.

When the data are represented as logic programs, inductive logic program-

ming algorithms could be used to learn predictive models in the form of so

called relational descriptions (Muggleton, 1991). In the ILP approach, for a

given set of examples (E) and background knowledge (B), a hypothesis (H)

is produced, where B and H together classify E. Here B, H and E are logic
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Figure 1.2: A single large graph – citation patterns in the

small world literature (Freeman, 2004), where the black,

white and gray nodes refer to physicists, people engaged in

social networks, and others respectively, and the edges rep-

resent the citations.

programs. E can be separated into positive examples (E+) and negative

examples (E-) (Muggleton and Raedt, 1994). Logic is used for defining

hypotheses. A hypothesis is a set of rules that cover as many examples as

possible from the positive class, and exclude the examples belonging to the

negative class. There are several techniques within ILP that can be used for

learning classifiers, such as Inverse Resolution, (Muggleton and Buntine,

1988), Relative Least General Generalization (Muggleton and Feng, 1992),

Inverse Implication, Inverse Entailment (Muggleton, 1995) etc. There

exist several studies that show effective applications of ILP methods, e.g.,

(Nédellec et al., 1996), (Lavrač et al., 2002), (Muggleton and Raedt, 1994)

and (Srinivasan, 2004). However, various constraints used by the ILP

based methods during the search and construction of hypotheses may limit
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Figure 1.3: Chemical graph dataset (a) 2-

Nitrobenz(j)aceanthrylene (b) 3,4,3’-Trinitrobiphenyl (c)

2-nitro-1,3,7,8-tetrachlorodibenzo-1,4-dioxin (d) 1-((3-(5-

Nitro-2-furyl)allylidene)amino)hydantoin (e) nitrofurantoin

(f) 4-nitroindole (Nicklaus, 1996).
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the applicability of these methods (Landwehr, 2009).

When the data are represented as graphs, predictive models can be built

by either using graph learning algorithms that accept input data in the

form of graphs (Tsuda and Saigo, 2010), or, by transforming the graphs

into a form that can be used in standard machine learning algorithms (i.e.,

attribute-value representation) (Deshpande et al., 2005; Krogel et al., 2003)

as illustrated in Figure 1.4.

Figure 1.4: Two approaches to learning from graphs.

A majority of the machine learning algorithms that deal with graphs

as their input use the similarity between the graphs in the dataset as a

measure for determining which of the graphs belong to the same class.

In these methods, a function called the kernel is used to compute the

similarity. A similarity matrix (a square matrix of the size of the dataset)

stores the values, where each entry in the matrix represents a value that

indicates the similarity between the two graphs in the respective row and

column. In these methods, both kernel computation and model building are

integrated in the graph learning algorithm (Borgwardt and Kriegel, 2005;

Gärtner, 2003; Horváth et al., 2004; Vishwanathan et al., 2010). The most

challenging aspect of using graph kernel based methods is the selection

of a suitable kernel, as the predictive performance of the model is highly
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dependent on the kernel function (Gärtner, 2003). Further, since the kernel

computation is embedded within the learning algorithm, standard machine

learning algorithms may not be reused in this approach (Platt, 1999).

The other approach to building predictive models is by transforming the

graphs into a form that a standard machine learning algorithm accepts as

the input, which is a two step approach, i.e., 1) selection of an attribute set

to represent graphs, and 2) building predictive models using any standard

machine learning algorithm as illustrated in Figure 1.4. This approach is

also called as Propositionalization (Helma et al., 2003; Krogel et al., 2003;

Lavrač et al., 2002). In general, the attribute set consists of patterns within

the graph data, which are correlated with the class label. Pattern mining

methods can be used to discover these patterns (Han et al., 2007). Further

descriptions of the pattern mining methods are presented in the next section.

The two approaches to graph learning concern two different problems in

learning. When building global models, the main concern is how to learn

efficiently and effectively from graphs. The principal concern of the meth-

ods of learning from attribute-value representations of graphs is the discov-

ery of a pattern set efficiently that maximizes the predictive performance

(Saitta and Sebag, 2010). In this thesis we focus on learning from attribute-

value encodings of graphs, motivated by the possibility of re-using standard

machine learning algorithms.

1.4 PATTERN MINING METHODS

Pattern mining methods concern several types of patterns, namely, graphs,

trees, sequences and itemsets. Among other patterns graphs serve as the

richest representation language (Aggarwal and Wang, 2010; Bringmann,

2009; Deshpande et al., 2003; Gärtner, 2003; Gonzalez et al., 2003;

Han and Kamber, 2000; Landwehr, 2009). These methods employ fast

counting techniques on data to discover interesting features (Borgelt, 2002;

Bringmann and Zimmermann, 2005; Cook and Holder, 1994; De Raedt
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and Kramer, 2001; Hasan and Zaki, 2009; Helma et al., 2003). Subsequent

sections include discussions of these methods.

1.4.1 FREQUENT SUBGRAPH MINING

Frequent subgraph mining is the name given to the methods that discover

frequently appearing subgraphs within a graph dataset. For example, the

three graphs in Figure 1.5 below are some subgraphs present in the graphs

a-d in Figure 1.3.

Figure 1.5: Three subgraphs present in the chemoinformat-

ics dataset.

Suppose we are interested in discovering subgraphs with frequency (sup-

port) ≥ 2, i.e., those subgraphs present in two or more graphs in the graph

database. In this particular dataset, subgraphs (1) and (2) are frequent. If

the presence of a subgraph is denoted by 1, and, 0 if not, the graphs a,

b, c and d in Figure 1.3 could be encoded in terms of these two frequent

subgraphs as in Table 1.11. In this table, the presence of subgraphs (1) and

(2) in graph b, for example, is represented by 1 and 1 in the two columns

1The two frequent graphs are present in the mutagenetic examples, thereby we

can say that if any of these subgraphs are presented in an unlabeled example, e.g.,

the Figure 1.3(f), that example can be labeled as mutagenetic.
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of the second row 1.

Table 1.1: The propositional representation of the chemoin-

formatics dataset using frequent subgraphs.

compound/

subgraph
1 2

a 0 1

b 1 1

c 1 1

d 0 0

e 0 0

The typical approach to discovering frequent subgraphs is an iterative

procedure where in each iteration a set of possible frequent subgraphs

(candidates) is selected, followed by counting the frequency of each

candidate subgraph and extracting the subgraphs that exceed a predefined

level of support (Bringmann, 2009). Although the concept of frequent

subgraphs is simple, discovering the candidate set and computing the

support are not straightforward. The combinatorial explosion of the pattern

search space when the size of the pattern set increases results in 1) a longer

processing time (reduced efficiency) of the subgraph discovery algorithm,

and 2) generating a massive set of frequent subgraphs, cf. the ‘curse of

dimensionality’ (Wang and Yang, 2005), limiting the applicability of the

discovered patterns to tasks such as classification and regression (Aggarwal

and Wang, 2010). Solving the second problem is challenging within the

approach to frequent graph mining, yet there is an abundance of methods

for solving the first problem, i.e., speeding up the processing time of

subgraph discovery. Algorithms that are found in the literature for frequent

subgraph mining broadly fall into two major categories: apriori based and

1The subgraph (3) is not included in the table since it is not frequent.
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pattern-tree based (Han et al., 2007).

Apriori based approaches employ the apriori property that any subgraph of

a frequent graph is frequent (Inokuchi et al., 2000). By applying the apriori

condition, a large number of subgraphs could possibly be removed from

the candidate set. The mining algorithm is iterative. In each iteration, two

small sized graphs are joined to incrementally generate larger (candidate)

graphs, followed by the frequency computation of each new candidate. The

apriori-based graph miner AGM (Inokuchi et al., 2000), and the frequent

subgraph mining algorithm FSG (Kuramochi and Karypis, 2001) were

among the first to use apriori based breadth-first search for discovering

candidate subgraphs. AGM’s candidate generation is vertex (node) based

(the size metric is the number of nodes), which means that during each

iteration, the size of the subgraph is increased by one node. In contrast to

the vertex (node) extension of the AGM algorithm, FSG’s candidate graph

discovery uses edge extension on graphs. The size of the subgraphs is

increased by merging two k+1 sized graphs that contain k identical edges.

However, the complexity of the candidate generation step of apriori based

methods increases with increasing graph size (number of nodes/edges in

the graph) (Hasan and Zaki, 2009). Furthermore, all possible k sized graphs

are checked when determining whether a k+1 sized graph is frequent,

which requires a substantial amount of memory(Han and Kamber, 2000).

In the pattern growth approach, subgraphs are extended by iteratively

adding new edges to the existing subgraphs, allowing the extension of

patterns directly from a single graph. The advantage of this approach

over the apriori is that there is no need to complete the computation of

all the k-sized graphs prior to computing k+1-sized graphs. However an

additional cost might be involved when graphs could be extended in many

ways resulting in the same graph being discovered many times (Han and

Kamber, 2000). For example, an n-edge graph could be discovered from

n different n-1 edge graphs. To avoid generating these duplicate graphs,

one could extend the graphs in a conservative manner (Cook and Holder,
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2006). The pattern growth based algorithm gSpan (Yan and Han, 2002)

and several other methods presented in (Borgelt, 2002; Huan et al., 2003)

and (Nijssen and Kok, 2004) are inspired by this approach. gSpan, the

most cited method in this category, improves the efficiency of the mining

by constructing depth first search (DFS) trees from the graphs, which

are then converted into a lexicographically ordered sequence, called DFS

code. Using mathematical (logical) operations, one sequence referred to as

the minimum DFS code is selected. Thereby the complete frequent pattern

set, i.e., all possible frequent patterns, is discovered (Yan and Han, 2002).

The method GASTON (Nijssen and Kok, 2004) extends this approach by

separating sequences, trees and cyclic graphs during the discovery process.

Since matching subgraphs generally require the computationally costly

operation of subgraph isomorphism test, (Cook and Holder, 2006), a gain

in the efficiency could be obtained by excluding sequences and trees when

testing subgraph isomorphism.

As shown in many publications such as (Han et al., 2007; Kuramochi and

Karypis, 2001; Nijssen and Kok, 2004; Yan and Han, 2002), the size of

the frequent set grows exponentially when reducing the minimum support.

This is a limitation of frequent patterns when the task is classification or

clustering.

1.4.2 SUBSETS OF FREQUENT SUBGRAPHS AND OTHER ALTERNATIVE

METHODS

As a way of obtaining a pattern set that could be used for representing

graphs for prediction tasks, closed (Yan and Han, 2003) and maximal (Bur-

dick et al., 2001) frequent patterns have been introduced (Han et al., 2007).

Several studies including (Yan and Han, 2003), (Huan et al., 2003) and

(Cook and Holder, 2006) have shown that by the use of closed and maximal

sets the size of the pattern set may be reduced by about 90%. CloseGraph

(Yan and Han, 2003) introduces an extension to gSpan (Yan and Han,

2002), which has the same efficiency as gSpan, but determines the closed

set from the gSpan frequent subgraphs. In (Huan et al., 2003) it is shown
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that the maximal frequent subgraphs can be efficiently discovered using

the frequent set. Top k frequent patterns (Ke et al., 2009) is another subset

of frequent patterns. As an alternative to prioritizing the frequency for

choosing the subset of frequent patterns, a weighting scheme is assigned to

reduce the number of subgraphs discovered by gSpan in (Jiang et al., 2010).

Alternative measures to frequency in finding the pattern set, such as,

pattern compression (Cook and Holder, 2006; Ketkar et al., 2005) and

summarization (Hasan and Zaki, 2009; Yan et al., 2005), using interesting-

ness measures (Hintsanen and Toivonen, 2008) and correlations (Ke et al.,

2009), methods that discover significant patterns (not necessarily frequent

but important in terms of correlation with the class variable) (Ranu and

Singh, 2009), and methods that filter subsets from the frequent patterns

(Thoma et al., 2009) are also among the related work. A slightly different

approach to the discovery of interesting (approximate) subgraphs using

the minimum description length, called SUBDUE, is presented in (Cook

and Holder, 2006). Measures such as contrast, which maximizes the

frequency of one class of graphs against the other classes (Borgelt, 2002),

and evolutionary computing methods that can discover interesting patterns

(Jin et al., 2010) are also being used in pattern mining.

1.4.3 THE EFFICIENCY VS. EFFECTIVENESS TRADEOFF IN GRAPH

MINING METHODS

As stated above, limiting the search space and the candidate set improves

the efficiency of the mining. Pruning the search tree at a certain level,

may result in a substantial reduction of the number of candidates to be

evaluated, and hence a gain in efficiency by reducing the number of

subgraph matches, but large and possibly potential subgraphs may then

be left out (Washio and Motoda, 2003). Controlling the beam size of the

methods that use the minimum description length (MDL) principle also

results in a potential loss by missing large subgraphs (Hasan and Zaki,

2009). In SUBDUE (Cook and Holder, 1994), significant patterns may
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be missed due to limiting the candidate subgraphs by the MDL principle

(Inokuchi et al., 2000). Therefore pruning the search space may result in

an incomplete search, and, consequently missing large subgraphs; limiting

the candidate set may result in failing to discover important subgraphs.

Missing potentially useful subgraphs, which could have been captured

if a complete enumeration had been carried out, may lead to a reduced

effectiveness of the learning models (Cook and Holder, 2006).

Representing graphs in other less complex pattern languages before

matching the subgraphs improves the efficiency of the mining (Bringmann,

2009). For example, gSpan’s (Yan and Han, 2002) transformation of graphs

into minimum DFS code, transforms graph matching into a matching of

two sequences. Several methods transform graphs into trees to avoid the

expensive steps of graph mining (Bringmann and Zimmermann, 2005).

Some pattern mining algorithms look for certain forms of patterns such as

trees and sequences. MolFea (De Raedt and Kramer, 2001), for example,

introduces a complete search over some sequences, by a non-greedy search

called the level-vise version-space algorithm, and discovers only the linear

molecular fragments. However, since the purpose of using graphs as the

representational form is to include the complex internal structure of the

data that cannot be captured by other forms of representation, there could

be an information loss due to this approach. Restricting the pattern set to a

specific form may also result in losing important patterns that are not in the

considered form. Both transforming graphs and restricting the search to

less complex representational form may therefore affect the effectiveness

of the predictive models.

As illustrated in Section 1.2, there may be background knowledge avail-

able along with the graph data. Typical graph based learners use only

the topological structures (atom-bond relations) of the molecules in the

representation language, ignoring other available background information.

In Gonzalez et al. (2003), a method to include background knowledge

is presented as follows. A molecular fragment with two carbon atoms
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sharing an aromatic bond, for example, which may be represented as a

chemical graph as in Figure 1.6, where c is the label of the two nodes and

the aromatic bond between the two atoms is denoted by the edge label, 7,

is expanded as illustrated in Figure 1.7. In this representation, background

information, such as, the charge (-13), the atomic value of the carbon atom

(22), and, two sub groups, Halide and Six-ring, each of which contains the

atoms as a part, are presented as additional nodes.

Figure 1.6: General representation of a molecular fragment.

Using additional nodes and edges to represent background knowledge in

the above fashion results in large graphs. The Figure 1.7 corresponds to two

nodes (atoms) and additional background knowledge of three properties

only, but a typical small molecule contains at least 5–6 atoms and several

structural relations. When graphs become large, the number of candidate

graphs increases, requiring additional memory to accommodate the search

space and/or the candidate graphs (Hasan and Zaki, 2009). Graph mining

methods may be subject to the risk of exhausting the memory at such a

point. Large candidate sets may also require longer enumeration times.

The runtime of a typical frequent graph mining algorithm increases

exponentially with decreasing minimum support (Ranu and Singh, 2009).

Therefore, when the graph size is increased the efficiency of the mining

method is substantially reduced. This may be a reason for why there

has been no systematic investigation of efficiently and effectively using
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Figure 1.7: Including available background information.

available background knowledge to enhance the classification accuracy of

existing graph based learning methods. Even in (Gonzalez et al., 2003),

there was no examination of an enhancement in the model accuracy by

representing a graph of Figure 1.6 in the form of Figure 1.7. However,

methods such as MoFa (Borgelt, 2002), for example, use some of this

background knowledge (such as six-ring) to compress the graphs and

evaluate the discovered patterns.

1.5 PROBLEM

Graphs are expressively rich compared to other patterns such as trees,

sequences, itemsets etc. More accurate predictive models could be built

using graph patterns (Bringmann, 2009). Nevertheless, graph pattern

mining methods often encounter complexity related issues during the

mining process due to the richness in the representation (Thomas, 2010).

Reducing the complexity of the graph mining method by using constraints
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at various levels, and restricting the search to specific patterns and/ or

transforming graphs into structures that are less complex to handle, may

however result in a spectrum of efficiency vs. effectiveness tradeoffs as

described in the previous section. The propositional setting illustrated in

Section 1.2.2 lies at one extreme of this spectrum, while the methods that

fully utilize the expressiveness of graphs lie at the other end. In between

are the trade-offs of different pattern mining methods found in the literature.

As stated in the introductory section, the objective of machine learning is

to learn from experience efficiently and effectively (Mitchell, 2006). In

learning from graph data using pattern mining methods, a tradeoff exists

between efficiency and effectiveness, where attempts taken to maximize

one of them may lead to a reduction in the other, as discussed above.

This can be viewed as an optimization problem with two objectives,

i.e., minimize computational cost and maximize predictive performance.

Therefore, any method that is capable of making one of the two objectives

better off without making the other worse off compared to any other

method could be ranked better (Zitzler et al., 2003). Such a state in an

optimization problem is a Pareto improvement. Any such improvement,

which cannot further get better off without making the other objective

worse off, is called Pareto efficient or Pareto optimal. There might exist

several methods that produce such improvements (Pareto front, i.e., the set

of choices that are Pareto efficient). Konak et al. (2006) contains a detailed

discussion of Pareto optimality.

When learning efficient and effective predictive models in the presence of

a tradeoff between efficiency and effectiveness, a method that is Pareto ef-

ficient should be chosen. A comparatively efficient pattern mining method

that results in competitive predictive models, and/ or a method that perform

comparatively better without making efficiency worse off, should be on the

Pareto frontier. However, which of the pattern mining methods results in

Pareto improvements in efficiency vs. effectiveness is an open question. If

the graphs can be represented in an alternative form which is computation-
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ally less complex to handle than graphs, a gain in the efficiency of mining

could thereby be expected. If such an approach results in models com-

petitive in predictive performance compared to the methods using graphs, a

Pareto improvement can be achieved. A graph mining method that explores

a part of the graph search space (due to the restrictions imposed for improv-

ing the efficiency) might not perform any better than a method that uses any

other less complex representational form (hence computationally efficient)

than graphs (Thomas, 2010). Further, the effectiveness of predictive models

may be improved by the use of background knowledge, but, the efficiency

of the pattern mining methods decreases when the background knowledge

is included in the graphs, due to the expansion of the size of the graphs, as

pointed out in the previous section. However, it may be possible to incorpo-

rate background knowledge into learning from graphs, without increasing

the complexity of the pattern mining process, i.e., without expanding the

size of the graphs. Some light has to shed along these lines of research.

1.5.1 RESEARCH QUESTION AND THESIS OBJECTIVES

The research question of this thesis concerns how to improve efficiency and

effectiveness of methods for learning predictive models from graph data

using pattern mining.

In addressing this research question, we set the following objectives:

1. Investigate whether different pattern language settings could be used

for improving the efficiency without affecting the performance of

the predictive models.

2. Investigate whether background knowledge can be incorporated into

learning from graphs without increasing the complexity of pattern

mining.
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1.5.2 THESIS CONTRIBUTIONS

The main contributions of this thesis have been published in nine included

papers. Investigations of the predictive performance when efficiency is im-

proved by using a less complex pattern language, as well as improving the

predictive performance of those models by the use of background knowl-

edge are included in these papers as summarized below.

Paper I

Thashmee Karunaratne and Henrik Boström. DIFFER: A Propositional

Approach for Learning from Structured Data. In A. Pashayev, ed. Trans-

actions on Science Engineering and Technology, 15: 49 – 51, Barcelona,

Spain, 2006. World Enformatika Society.

In this paper, we introduce a less complex representational form than

graphs, and study the performance of the predictive models built using data

in this representation. A graph representation language, which is called

fingerprint in this paper, is introduced. A method that discovers a feature

set using the similarity between the fingerprint transformations of graphs,

referred to as the maximal common substructure discovery method (mcs) is

also presented. The predictive performance of the models using the feature

sets from this method is compared with an inductive logic programming

based method. Results show that the models built using the feature sets

from maximal common substructures perform equally well as the compar-

ison method. Further in this experiment, the feature set of one method is

used as the background knowledge for the other method, since background

knowledge is the additional knowledge available that is not encoded in the

input and the feature sets of the two methods are different from each other.

More accurate predictive models are obtained by combining features de-

rived by both methods. Therefore, the conclusions were drawn that trans-

forming graphs into a form that is less complex to handle, performs equally

well as the standard method, and thereby makes a Pareto improvement in

efficiency and effectiveness. Also, by the use of additional background
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knowledge without increasing the complexity of the pattern mining, an en-

hancement of the model accuracy is achieved. Comparing the proposed

method with only one standard method is a limitation of this experiment.

Paper II

Thashmee Karunaratne and Henrik Boström. Learning from structured

data by finger printing. In Proceedings of the 9th Scandinavian Conference

on Artificial Intelligence, pages 120 –126, Helsinki, Finland, 2006. Finnish

Artificial Intelligence Society.

This paper extends Paper I by larger experimental comparison. The meth-

ods mcs, SUBDUE-CL (Gonzalez et al., 2003), Tree2χ2(Bringmann and

Zimmermann, 2005) and RSD (Lavrač et al., 2002), were compared. The

results showed that there is no difference between the predictive perfor-

mance of the methods, concluding that predictive models that are competi-

tive with graph mining methods and logic based methods can be built using

a representational form that is less complex than graphs (hence more effi-

cient than graph mining), i.e., the proposed methods show Pareto improve-

ment in efficiency and effectiveness compared to some standard methods.

Paper III

Thashmee Karunaratne and Henrik Boström. Learning to classify

structured data by graph propositionalization. In B. Kovalerchuk, ed.

Proceedings of the Second IASTED International Conference on Compu-

tational Intelligence, pages 393–398, San Francisco,USA, 2006. ACTA

press.

In this paper, a method of adding background knowledge into the graphs

is presented. Instead of adding background knowledge as new nodes and

edges, which enlarges the graph (hence increasing the complexity of the

mining), the representation language (fingerprint) is extended in order to

include some background knowledge in the node/edge labels of the graphs.
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By such addition the number of nodes in the graph does not increase. The

proposed method is compared with the two methods, RSD (Lavrač et al.,

2002) and MolFea (Helma et al., 2003). Adding background knowledge

into the extended node/edge labels resulted in a significant increase in clas-

sification accuracy of the models built using the proposed pattern mining

method mcs. In addition to concluding that combining feature sets from the

other methods improve the predictive performance in Papers I and II, fur-

ther enhancement of the predictive performance is shown when the feature

sets with additional background knowledge are combined with the feature

sets discovered by the other comparison methods, showing that background

knowledge can be included in graphs without increasing the complexity of

the pattern mining.

Paper IV

Thashmee Karunaratne and Henrik Boström. The effect of background

knowledge in graph-based learning in the chemoinformatics domain. In

Oscar Castillo, Li Xu, and Sio-Iong Ao, editors, Trends in Intelligent

Systems and Computer Engineering, volume 6, pages 141–153. Springer

US, 2008.

Use of different levels of background knowledge without increasing the

cost of pattern mining is presented in this paper. The relation between

the amount of the background knowledge and the predictive performance

is studied. The method of representing background knowledge introduced

in Paper III is extended to five different levels, where in each level the

amount of the background knowledge included is increased. This paper

concludes that the amount of the relevant background knowledge encoded

into graphs is directly related to the performance of the predictive models,

and the more the additional background knowledge included, the better the

predictive performance of the models.
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Paper V

Thashmee Karunaratne and Henrik Boström. Graph propositionalization

for random forests. In 8th International Conference on Machine Learning

and Applications. pages 196 – 201, Miami, Florida, 2009. IEEE Computer

Society.

This paper presents a performance analysis of different methods of encod-

ing graphs as itemsets. Use of frequent itemset mining methods for graph

data is also presented. Both graph structured data and data in attribute-value

form (unstructured data) are used in the experiments. The results showed

that there is a significant difference between the predictive performances

of the models built using different graph encoding methods, indicating that

it is not the expressiveness of the representational form of the graphs, but

the way the graphs are encoded is what is responsible for the differences

in the predictive performance. For unstructured data there was no signif-

icant difference in the predictive performance of these different encoding

methods. This justifies that, for graph data, failing to take into account

the edges in the representation affects the performance of the models built.

This experiment also showed that graphs encoded as conventional itemsets,

i.e., attribute-value encodings where the attribute names are the node labels,

results in a significantly low predictive performance of the learning mod-

els built using the Random forest algorithm. Note that this is one of the

extremes of the spectrum of efficiency and effectiveness caused by conven-

tional propositional setting discussed in the Section 1.5. The conclusions

drawn in this experiment include that the use of itemset mining algorithms

on the fingerprint representation of graphs is Pareto efficient compared to

the other methods presented in this study.

Paper VI

Thashmee Karunaratne, Henrik Boström, and Ulf Norinder. Pre-processing

structured data for standard machine learning algorithms by supervised

graph propositionalization – A case study with medicinal chemistry
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datasets. In 9th International Conference on Machine Learning and Appli-

cations, pages 828 – 833, Washington DC, USA. 2010. IEEE Computer

Society.

Inspired by the conclusions of Paper V, the frequent itemset mining ap-

proach is applied to chemoinformatics datasets. This method is extended to

a supervised form of discovering features (called supervised maximal fre-

quent itemset mining Smfi), which produces feature sets that are frequent

for a given class in the dataset. Any reduction in the predictive perfor-

mance of Smfi is investigated by comparison with the graph mining methods

SUBDUE (Cook and Holder, 1994) and MoFa (Borgelt, 2002), using three

learning algorithms. Further, any improvement of predictive performance

by using background knowledge, not included in the node definitions but as

additional features to the learning models, is also investigated. The results

showed that predictive models more powerful than from the pattern sets

alone can be obtained by this method of adding background knowledge

as additional features. The conclusion drawn in this paper is that super-

vised maximal frequent itemsets, which is less complex than graph mining,

lead to producing models that are competitive in predictive performance,

compared to graph mining methods. Investigating other itemset mining

methods to see which of them produce Pareto improvements in efficiency-

effectiveness are further works of this study.

Paper VII

Thashmee Karunaratne. Is frequent pattern mining useful in building

predictive models? In ECML/PKDD Workshop of Collective Learning and

Inference on Structured Data. pages 61–72, Athens, Greece, 2011.

In this paper, the usefulness of frequent pattern mining in building pre-

dictive models is further studied by investigating the applicability of fre-

quency based methods for discovering patterns for classification (regres-

sion) tasks. Eight different methods, namely, SUBDUE (Cook and Holder,

1994), MoFa (Borgelt, 2002), graphSig (Ranu and Singh, 2009), Super-
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vised Maximal frequent itemset mining (which is a contribution of the pre-

vious paper), Maximal frequent itemset mining (mfi), constraint program-

ming based itemset mining for graphs (CP), and two domain specific fea-

ture sets SELMA (Olsson and Sherbukhin, 1999) and ECFI (Rogers and

Hahn, 2010), are compared. The method, itemset mining using constraint

programming (CP), is applied to graph data in this study, as a new con-

tribution. The results showed that one of the methods that included the

domain specific features alone resulted in models with significantly bet-

ter performance than the others. Using additional methods to the previous

study, namely mfi, CP and graphSig, the same conclusion as in Paper VI,

i.e. domain specific background knowledge used as separate features in

conjunction with patter sets result in Pareto improvements, is drawn. Bu

the lack of a statistical comparison of the efficiency of the pattern mining

methods is a limitation of this study.

Paper VIII

Thashmee Karunaratne, Henrik Boström, and Ulf Norinder. Comparative

analysis of the use of chemoinformatics-based and substructure-based de-

scriptors for quantitative structure–activity relationship (QSAR) modeling.

In Intelligent Data Analysis, 17(2): 327 – 341, 2013. IOS press.

Investigation of the efficiency-effectiveness tradeoff spectrum resulting

from different methods related to a domain specific problem in chemoinfor-

matics, namely, Quantitative structure–activity relationship (QSAR) anal-

ysis is the main focus of this study. Two domain specific approaches,

ECFI and SELMA, and five approaches for graph mining, CP, graphSig,

MFI, MoFa, and SUBDUE are compared. The contribution of this paper

includes modifying the graph representation language, to accompany the

nodes with identical labels. The empirical investigation concluded that one

of the chemoinformatics-based approaches, ECFI, builds significantly more

accurate models than all other methods. Also, in this paper, the use of fea-

ture sets from another method to enhance the predictive performance of the

models is investigated. In doing so, all possible combinations of the feature
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sets from the methods were combined two at a time. The results showed

a significant improvement of the predictive performance when the features

from the method ECFI are used with any other feature set, while the ECFI

also led to improved performance in many cases when the features gener-

ated by the other methods were added.

Paper IX

Thashmee Karunaratne and Henrik Boström. Can frequent itemset mining

be efficiently and effectively used for learning from graph data? In 11th

International Conference on Machine Learning and Applications, pages

409 – 414. 2012. IEEE Computer Society.

This paper presents a study of different representational forms of graphs

and their efficiency and effectiveness in building predictive models. Based

on the results of the previous studies, two of the proposed methods, mfi

(maximal frequent itemset mining) and CP (constraint programming ap-

proach based itemset mining) are selected to compare with graph mining

methods. A comprehensive empirical evaluation is carried out for classi-

fication as well as regression tasks using 18 medicinal chemistry datasets,

with a randomly chosen learning algorithm for each dataset (for drawing

conclusions independent of the learning algorithm). The efficiency of the

pattern mining methods had not been systematically investigated in the pre-

vious papers. In this paper the efficiency of graph and itemset mining meth-

ods is statistically evaluated. Comparisons of the predictive performance of

the classification and regression models showed that employing frequent

itemset mining results in significant speedups than the graph mining meth-

ods, without sacrificing predictive performance, leading to the conclusion

that less complex representational forms of graphs indeed save significant

computational costs.
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1.6 ORGANIZATION OF THE THESIS

The rest of this thesis is organized as follows. The methodology adopted in

order to address the research question is discussed in Chapter 2. Chapter

3 gives a description of the proposed methods for graph representation and

pattern mining, which are the theoretical contributions of the thesis. Chap-

ter 4 is dedicated to a discussion of the results reported in the nine papers,

and finally, the concluding remarks of the thesis along with some possible

directions to extend this work are presented in Chapter 5. The publications

that include the studies discussed in this thesis are attached in the Appen-

dices A – I.



CHAPTER 2

RESEARCH METHODS

The choice of methods for addressing the research question are discussed in

this chapter. It starts with a discussion of the research methodology adopted

and the learning framework proposed. The design of the framework, in-

cluding the choice of datasets as well as learning, evaluation, comparison,

and statistical testing methods, are also discussed.

2.1 RESEARCH METHODOLOGY

Research is a rigorous and systematic approach to investigation and study

of materials and sources in order to establish relations between natural

phenomena or technical problems and reach new conclusions (Oxford,

2010). Methodology refers to the theoretical rationale or the principles

that justify the research methods (Carr, 2006). Methodologies for scientific

research may be guided by philosophical assumptions under several

paradigms, such as, interpretive vs. positivist, empiricist vs. rationalist,

qualitative vs. quantitative, etc. (Morgan, 2007). Hevner et al. (2004)

discusses another paradigm, namely, behavioural vs. design science,

specifically for information systems research. As elaborated in Chapter

1, machine learning concerns the question of how to build a computer

system that automatically learns through experience. In other words, it
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has the goal of modeling the experience in terms of relations between

observations (McCarthy, 2007). In this research, we argue that there is a

gap in the knowledge for finding which methods have those efficiency and

effectiveness that lie in the Pareto front, and the ways of improving both

these properties, knowing that there exist a tradeoff between the two, are

sought as means of bridging that gap.

2.1.1 RESEARCH PHILOSOPHY

From the philosophical point of view, there are several aspects that give

shape and definition to research. The philosophical stances of claims and

assumptions of what exists, or reality (ontology), and the ways of acquiring

knowledge about reality or how can the assumed knowledge be known

(epistemology) allow understanding the interrelation between the important

strategies of research, namely the strategic approach taken in finding out

knowledge and carrying out the research (methodology), the techniques or

the procedures taken to solve the research question(s) (methods), and how

and in which ways the methods are used to address the research question

(design) (Guba, 1990).

In this research we are interested in approaches to pattern mining that

result in Pareto improvements in the efficiency vs. effectiveness of the

predictive models constructed from data represented in the form of graphs.

In doing so, different pattern mining methods are compared. Comparison

of different methods involves establishing relationships between the

concepts by means of formulating and refuting one or more hypotheses.

Such research is often guided by the positivist paradigm since solving

this research problem concerns establishing relations between theory

and evidence (Danks). Positivist research involves falsifiable theories,

assuming that there exist real world objects (objective reality) that can be

discovered, described or explained using symbols (Cohen and Crabtree,

2006). This approach relies on experimental methods, in contrast to the

interpretive approach, which concerns describing the research in a descrip-
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tive manner, that does not involve quantifiable statements (Kuhn, 1970).

The positivist stance is governed by the epistemological assumptions of

objectivism (Guba, 1990). Objectivism assumes the existence of both

covered and uncovered (absolute) knowledge. Objectivists attempt to

find causes/effects/explanations, predicting events and testing theories and

hypotheses (Crotty, 1998). This stands in opposition to the subjectivist

approach within interpretive research, which seeks understanding and

describing events rather than explaining (Blaikie, 2000).

Under the positivist paradigm, how can the research question be answered,

or the methodology, would be an approach ‘that controls the possibility of

inquirer bias on the one hand and nature’s propensity on the other hand,

and, empirical methods that place the point of decision with the nature

rather than with the inquirer’ (Guba, 1990). The experimental approach

allows questions and/or hypotheses to be formulated and falsified by em-

pirical tests. We require a comparison of several pattern mining methods

in the context of graph mining, in order to establish relations between effi-

ciency and effectiveness, and therefore we choose experimental research,

which is a collection of research designs that includes the manipulation

of causes under controlled testing to understand any relations between

them (Hinkelmann and Kempthorne, 2007). Empirical studies permit

the researcher to study, intensively, the relations between a few variables

through designed experiments, by the use of quantifiable statements that

could possibly be generalized for real time situations (Galliers, 1991). As

stated above, in this study, we assume that the graph data exists, and we try

to establish relations between the complexity of the pattern languages, and

the efficiency and predictive performance of machine learning methods

(by means of testing hypotheses). The methods applied in such research

could mainly be quantitative. The research objectives are accomplished

by building models that could be used to measure the intended quantities

and statistically falsify hypotheses using controls (Hevner and Chatterjee,

2010).
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2.1.2 THE DESIGN SCIENCE PARADIGM

Among the two paradigms classified by Hevner and Chatterjee (2010),

as behavioral and design science, machine learning research mostly fall

under the design science paradigm as it mainly focuses on design and

development of artifacts (Pelillo et al., 2011). Artifacts are theoretical

approaches, practical applications or combinations of both. Theories

can be based on mathematical foundations or algorithms or concepts,

which can be mathematically proven, while practical applications include

developing software, tools or programs that could be empirically evaluated,

comparing them with the performance of other methods used in the area

of application. In addressing the research question in this thesis, different

representational forms of graphs are examined and several methods are

thereby proposed. This may be viewed as developing algorithms. The

approach followed is, thus, building artifacts that could be empirically

evaluated in compliance with the seven guidelines illustrated in Hevner

and Chatterjee (2010), as described below.

1. Design as an artifact. A viable artifact must be produced in the form

of a model, method or an instantiation. We develop artifacts, which are

included in a framework consisting of several methods for data represen-

tation and pattern mining. The framework is presented in the next section

and the methods proposed are given in the next chapter.

2. Problem relevance. In Chapter 1, we have discussed why it is important

to address this research question, and how answering the research question

will fill a certain knowledge gap in the field. This discussion explains the

relevance of the problem.

3. Evaluation of the design. A rigorous assessment of the designed

artifact in terms of utility, quality, and efficacy using well-executed

evaluation methods is carried out as illustrated in the succeeding sections.

The artifacts are compared with each other as well as with the standard

methods in terms of the efficiency and performance of the methods. As
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described in the preceding section, hypotheses are formulated to study

their relations. Statistical tests are used to try to refute the hypotheses.

Descriptions of the methods used for comparison are presented in Section

2.4 and the choices of the statistical tests are discussed in Section 2.5.

4. Contributions of the research. Effective research in design science

must produce clear and verifiable contributions to the field. A set of

artifacts are developed in order to answer the research question, which

are the contributions of the research. The outcome of the studies are

summarized and how the research findings contribute to fill a knowledge

gap is discussed in detail in the concluding chapter.

5. Research rigor. Design science research requires rigorous methods

for both the design and the evaluation of the artifact. Several methods

are proposed to fulfill the objectives set in this thesis, as discussed in the

next chapter, and these methods are evaluated rigorously, using several

datasets. The evaluation is carried out as stated under guideline 3, and the

descriptions of the datasets used for evaluation are presented in Section 2.3.

6. Design as a search process. During this research, we have tested

the efficiency and effectiveness of several methods. Some methods

performed better than the other methods. We have selected the methods

that performed well for further experiments. Descriptions of the proposed

methods are given in the next chapter. The analysis of the performances of

the methods is presented in Chapter 4.

7. Research communication. The discoveries have been disseminated into

the research community using nine peer reviewed publications. These pub-

lications are attached in the appendices of this thesis.
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2.2 LEARNING FRAMEWORK

The focal point of study in this thesis is how to improve the efficiency

and effectiveness of methods for learning predictive models from graphs.

Two objectives were set to answer the question: improving efficiency,

and improving predictive performance. In this thesis we propose several

artifacts. With respect to the first objective, different representational forms

of graphs that are computationally less complex to handle than graphs

and pattern mining methods, which are described in the next chapter

are proposed. Further, with respect to the second objective, methods for

representing background knowledge to enhance performance without in-

creasing the complexity of the pattern mining algorithms (again, described

in Chapter 3) are also proposed. The evaluation of the performance of

these artifacts is based on comparisons of predictive performances of

some standard methods. Several experiments were designed for evaluating

these proposed artifacts, each of which involves testing a hypothesis that

there is no difference between the efficiency/predictive performance of the

proposed methods and the standard methods used for comparison.

Predictive models are built from the proposed artifacts as well as standard

methods presented in Section 2.4 using a learning framework presented

in Section 2.2.1. The performance of these models for several datasets

described in Section 2.3 are statistically evaluated using the tests described

in 2.5.

2.2.1 THE FRAMEWORK

The process of learning from graphs using pattern mining methods is

illustrated in Figure 2.1. We refer to this setup as a framework, where

different combinations of the methods for graph representing, pattern

mining and learning would instantiate the framework.

In Figure 2.1, the transformation of graphs into one of the proposed

representational forms followed by discovering patterns is highlighted
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Figure 2.1: The learning framework.

under proposed methods. For standard pattern mining methods, graphs are

the input. The pattern set1 discovered by the pattern mining method is used

as the set of attributes to represent the graphs in a propositional form. Any

standard machine learning algorithm can thereafter be used for building

predictive models, as described below.

2.2.2 LEARNING ALGORITHMS

One of the main advantages of learning from feature sets (resulting

from pattern mining methods) is the flexibility of being able to choose

any machine learning algorithm for model building. There exist several

1In this thesis, the terms ’pattern set’ and ’feature set’ are used interchangeably.
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machine learning algorithms that can be used for prediction tasks. In our

experiments, the learning algorithms were chosen among random forests

(Breiman, 2001), support vector machines (Platt, 1999), and the k-nearest

neighbour algorithm (Aha et al., 1991) to build the classification models.

For building regression models, support vector machine for regression

(Vapnik, 1999) is used. Although any machine learning algorithm can be

used for building the predictive model when learning from graphs using

pattern mining methods, our choice of these learning algorithms was based

on the acceptance of them for building predictive models with higher

accuracy compared to the other methods (Saitta and Sebag, 2010).

For validating the predictive models, a k-fold cross validation or, splitting

the dataset into training and testing sets, which uses the complete dataset

for model building, and evaluates the model using a validation set, is

commonly used (Luger, 2002). Splitting the datasets into training and

test sets, or using a separate set for validation may be a choice when the

datasets contain a large number of instances. The k-fold cross validation

splits the dataset into k folds (subsets), where, for each fold, the remaining

k-1 folds are used for building the model that is validated using the fold

left out. When k= the size of the dataset, the cross validation is called

leave-one-out, where one example is used for validation, and repeated until

all the examples are considered in validation. Leave-one-out may however

be computationally complex when the dataset is large, due to increased

repetitions of training. Instead, k=10 is considered reasonable (Kohavi,

1995). The data set is separated into ten folds and the machine learning

algorithm is iterated ten times with nine of those ten folds taken as training

data and the remaining set (test set) to validate the model.

There are several ways of analyzing the performance of a machine learning

algorithm. Model accuracy, which is the percentage of correctly classified

instances (examples), precision, recall, Receiver Operating Characteristics

curve (ROC), area under ROC (AUC), and the F-score are some of the com-

monly used metrics (Flach, 2003). Among them, precision, recall and the
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F-score are widely used when the datasets are large and imbalanced (i.e.,

the number of instances in one class can be comparatively larger than that

of the other class), or the prediction accuracy of one class is more important

than that of the other class (Omary and Mtenzi, 2009). Predictive accuracy

and the area under ROC are popular for measuring the performance of

classification tasks (Flach, 2003). We have selected predictive accuracy as

the performance measure since it is a simple measure that considers each

and every data instance as equally important and shows the percentage of

accurate predictions from all the classes. Further, accuracy is a meaningful

measure when the datasets are approximately balanced and none of the

classes are prioritized. The percentage of correctly classified test instances

of each of the ten iterations in a ten-fold cross-validation are averaged for

obtaining the model performance. When the task is related to regression,

mean squared error (MSE), root mean squared error (RMSE), relative

absolute error etc., are used as measures of the error of regression models.

Among them, we choose RMSE, which gives the mean squared difference

of the estimated and observed values for each of the instances, since it is

a widely used measure. According to (Hyndman and Koehler, 2006), ‘of-

ten the RMSE is preferred to the MSE as it is on the same scale as the data’.

2.3 DATASETS

As pointed out in Chapter 1, we focus on learning from a set of (small)

graphs. Most of the datasets of this type can be found in the domain of

medicinal chemistry (chemoinformatics), where the number of nodes in

each graph rarely exceeds a few hundred. However, these graphs, i.e.,

graphs corresponding to chemical compounds, contain plenty of nodes

with the same label. For example 3,4,4’-trinitrobiphenyl given in Figure

1.3(b), contains 28 atoms (nodes) of which 12 contain label C. Pattern

mining methods are often challenged by the large search space and/or by

the need for a subgraph isomorphism test in handling this type of data, as
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discussed in Chapter 1.

Datasets in the UCI repository (Bache and Lichman, 2013), which are

widely used in machine learning research barely contain any datasets of

small graphs, and therefore we have picked appropriate datasets available

in other databases. Descriptions of these datasets are given below.

2.3.1 DATASETS OF SMALL GRAPHS

The datasets given in Table 2.1 are bench-marked for pattern mining from

small graphs. The majority of them are from medicinal chemistry, and are

used to examine the relation between the chemical structure of a compound

and its effects, such as solubility, permeability, protein binding, mutagenic-

ity, carcinogenicity, metabolic stability and so on. These chemical effects

are presented as real values as well as categorical values in most of the

datasets.

2.3.2 THE NCI REPOSITORY

The NCI repository (ChemDB, 2008), contains about 70,000 compounds,

categorized into 72 (overlapping) datasets, which inhibit the growth of dif-

ferent human tumor cells. Sixty datasets out of this 72 are used in several

studies including (Ralaivola et al., 2005). Table 2.2 gives the names and

numbers of positive and negative examples in these datasets.

2.3.3 SYNTHETIC DATASETS

As pointed out in the previous chapter, frequency based pattern mining

algorithms usually encounter issues of completing the mining process

when the size (number of nodes and edges), the number of node and

edge labels, and the number of repeated node labels increases, due to the

construction of a huge search tree and thereby a large pattern set (Hasan

and Zaki, 2009). The main idea behind using synthetic datasets that

contain large graphs of large size is to study how large the discovered
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Table 2.1: Summary of the datasets used in the papers in-

cluded in the thesis.

Dataset

Name

Data

set

size

#posi

-tive

#nodes

in the larg

-est graph

#nodes in

the small

-est graph

Ave.

graph

size

#vert

-ex la

-bels

ace* 114 57 79 18 42 7

ache* 111 55 77 41 56 7

bzr* 163 82 52 23 36 8

caco* 100 50 196 6 45 8

cox2* 322 161 48 32 41 8

dhfr* 397 199 60 20 41 8

gpb* 66 33 45 22 32 8

nct* 131 72 44 8 20 8

therm* 76 38 94 13 52 6

thr* 88 44 101 47 68 5

AI** 69 35 32 20 24 8

AMPH1 ** 130 65 104 73 87 5

ATA ** 94 47 34 13 22 5

COMT ** 92 46 32 11 20 7

EDC ** 119 60 43 8 19 7

HIVPR ** 113 57 64 26 45 9

HIVRT** 101 51 35 19 25 9

HPTP ** 132 66 50 24 38 9

Mutagen

-ecisx 188 125 40 12 31 8

carcinog

-enecisy 298 162 80 22 52 18

trainsz 20 10 19 12 16 16

Satellite

faultsp 600 300 300 40 40 40

*(ChemDB, 2008), **(Mittal et al., 2009), x(Debnath et al., 1991),
y(Srinivasan et al., 1997), z(Michie et al., 1994), p(Muggleton and Feng,

1992)
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Table 2.2: Sixty datasets from the NCI repository

(ChemDB, 2008).

Dataset* +ve − ve Dataset* +ve −ve

786-0 1,832 1,674 NCI-H226 1,781 1,683

A498 1,782 1,698 NCI-H23 1,968 1,751

A549 1,901 1,833 NCI-H322M 1,765 1,925

ACHN 1,795 1,736 NCI-H460 2,049 1,550

BT-549 1,399 1,379 NCI-H522 2,138 1,435

CAKI-1 1,865 1,715 OVCAR-3 2,001 1,690

CCRF-CEM 2,217 1,263 OVCAR-4 1,840 1,742

COLO-205 1,943 1,702 OVCAR-5 1,651 2,019

DU-145 1,416 1,529 OVCAR-8 1,979 1,735

EKVX 1,968 1,713 PC-3 1,522 1,460

HCC-2998 1,804 1,373 RPMI-8226 2,116 1,448

HCT-116 2,049 1,674 RXF-393 1,850 1,551

HCT-15 1,993 1,738 SF-268 2,020 1,701

HL-60-TB 2,188 1,198 SF-295 2,027 1,718

HOP-62 1,888 1,740 SF-539 1,920 1,464

HOP-92 1,982 1,521 SK-MEL-28 1,774 1,950

HS-578T 1,550 1,320 SK-MEL-2 1,783 1,817

HT29 2,004 1,708 SK-MEL-5 2,034 1,651

IGROV1 1,956 1,734 SK-OV-3 1,711 1,792

K-562 2,139 1,479 SN12C 1,918 1,764

KM12 1,941 1,764 SNB-19 1,840 1,885

LOX-IMVI 2,053 1,550 SNB-75 2,131 1,359

M14 1,815 1,736 SR 1,869 1,137

MALME-3M 1,886 1,621 SW-620 1,940 1,813

MCF7 1,733 1,306 T-47D 1,550 1,359

MDA-MB-231 1,475 1,473 TK-10 1,650 1,840

MDA-MB-435 1,519 1,462 U251 2,044 1,711

MDA-N 1,503 1,459 UACC-257 1,873 1,808

MOLT-4 2,175 1,359 UACC-62 2,046 1,638

NCI-ADR-RES 1,586 1,525 UO-31 1,994 1,621

*Columns with labels +ve and −ve represent the numbers of instances in

positive (cancer) and negative (non-cancer) classes respectively.
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pattern set would be in frequency based pattern mining methods used in

the experiments. Synthetic graphs are generated using the graph generation

software (Cheng et al., 2006). We have used three different graph set-ups

referred to as g, h and i, as described below:

g:
graph size 20, 20 node labels, 20 edge labels, edge-density 0.3,

number of edges 100

h:
graph size 200, 200 node labels, 200 edge labels, edge-density 0.3,

number of edges 1,000

i:

combination of graphs of size up to 4,000 (2,000 node labels, 100

edge labels, edge-density 0.2, number of edges 2,000) and graphs of

size up to 3,000 (1,000 node labels, 200 edge labels, edge-density 0.2,

number of edges 2,000)

For each category g, h and i, 10, 100, 1,000, 5,000 and 10,000 graphs are

included (e.g., g10, g100, g1000, g5000 and g10000 and so on).

2.4 COMPARISON METHODS

2.4.1 STANDARD GRAPH MINING METHODS

According to the guidelines of Hevner and Chatterjee (2010), the proposed

artifacts have to be evaluated rigorously for their utility, quality and

efficacy. In doing so, several graph pattern mining methods are compared.

The choice of these comparison methods are based on their approaches to

improving the efficiency of the pattern mining (the main point of discussion

in learning from graphs is the computational complexity, which affects the

efficiency), the availability of the method as a software tool, and the use of

the method in pattern mining (a state-of-the-art method). Accordingly, the

following methods were selected.



44 CHAPTER 2.

GraphSig (Ranu and Singh, 2009): This method discovers significant

patterns from graph databases. GraphSig was selected as a comparison

method since it introduces a method of efficient mining by avoiding the

subgraph isomorphism test. Significant patterns are selected using a

probability measure (the p−value) related to the support of each graph in

the graph database. If this p−value lies below a user defined threshold,

the graph is considered significant. The mining process includes clustering

the dataset using domain knowledge (class labels) and finding frequent

subgraphs in those clusters. The graphs are converted into a feature space

and the significant graphs are discovered from the feature space. The

conversion of the graphs into the feature space results in a loss of structural

information, but avoids the generation of large sets of random graphs

and the calculation of the frequency of the query graph. The clustering

approach allows GraphSig to overcome the scalability issue in discovering

subgraphs with low frequencies.

Molecular Fragment miner (MoFa) (Borgelt, 2002): This method is

used for discovering frequent molecular fragments in chemoinformatics

databases. MoFa claims to be efficient since it considers ring structures in

the molecules as single units and uses wildcard atoms (atom types that are

chemically equivalent), during the search for significant fragments. The

algorithm searches for arbitrarily connected subgraphs, avoiding frequent

embeddings of previously discovered subgraphs by using a specific search

strategy. The algorithm maintains parallel embeddings of a fragment in

all molecules throughout the growth process and exploits a local order

of the atoms and bonds of a fragment to effectively prune the search.

MoFa selects subgraphs that have a certain minimum support in a given

set of molecules, i.e., they are part of at least a certain percentage of the

molecules. However, in order to restrict the search space, the algorithm

considers only connected subgraphs, i.e., subgraphs for which all vertices

are (directly or indirectly) connected by edges.
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SUBDUE (Cook and Holder, 1994): This method was selected as a

comparison method since it avoids subgraph isomorphism by finding

interesting subgraphs using the so-called minimum description length,

as stated in the first chapter. This is a graph-based knowledge discovery

system that finds structural and relational patterns in data represented as

entities and relations. It uses the minimum description length (MDL)

principle to measure the interestingness of the subgraphs discovered.

SUBDUE employs a step-by-step procedure, which starts from a single

vertex and performs a computationally constrained beam search in order

to expand the considered subgraphs by other vertices or edges. It aims at

generating small sets of subgraphs that optimally compress the dataset.

RSD (Lavrač et al., 2002): Relational Subgroup Discovery (RSD) is

an ILP based method. We have selected this method since it has an

option to construct a set of features from graph data represented as logic

programs, which are used as attributes in the transformed propositional

representation. Similar to the methods used in this thesis, any propositional

learner can then be used for learning the predictive model.

MolFea (Helma et al., 2003): Molecular feature miner (MolFea) is a

method specific to the chemoinformatics domain for mining molecular

fragments, which, again, could be used as features for any machine

learning algorithm.

gSpan (Yan and Han, 2002): A widely used method in frequent subgraph

mining (approximately 7000 hits in Google Scholar). Also, gSpan trans-

form graphs into sequences as described in Chapter 1.

GASTON (Nijssen and Kok, 2004): This method can discover subgraphs

in terms of paths, trees and cycles, thereby improves the efficiency com-

pared to the other approaches of frequent pattern mining, as stated in the

first chapter.
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2.4.2 DOMAIN SPECIFIC METHODS

As stated in Section 2.3, the majority of the datasets used in our studies are

from the domain of medicinal chemistry. In this domain there exist meth-

ods to represent compounds as a set of features. We call these methods as

domain specific methods. The reasons for why we consider these methods

for comparing with pattern mining methods used in the context of graph

learning are that they also represent chemical datasets as attribute-value

encodings, followed by building predictive models. Further, these are the

state-of-the-art methods used in medicinal chemistry for prediction tasks.

We have chosen two domain specific methods that produce such feature

sets (called descriptor sets), namely, SELMA (Olsson and Sherbukhin,

1999), and ECFI (Rogers and Hahn, 2010), which are described below.

The choice of these descriptor sets are based on the availability and high

performance of the predictive models shown in the literature (Karunaratne

et al., 2013).

Extended Connectivity Fingerprints (ECFI) (Rogers and Hahn, 2010):

ECFI represents structural fragments of various sizes. Molecules are

encoded as an array of binary values or counts. These structural fragments

are computed using an iterative updating procedure on the non-hydrogen

atoms of the structure, which is based on the number of atoms in the

neighbourhood, the atomic number, the attached hydrogen count, etc.

In the initial assignment stage, each non-hydrogen atom of the structure

is assigned an integer identifier. During each iteration, larger and larger

circular neighbourhoods (of atoms) around each atom are covered and the

respective identifiers are updated. After removing the duplicate identifiers,

the remaining set of identifiers are collected into a list. This integer list

could be used directly for model building or converted into a fixed length

vector containing binary values. A commonly used ECFI descriptor set

contains 1024 binary attributes.

SELMA (Olsson and Sherbukhin, 1999): The SELMA descriptor set is a

collection of commonly used 2D molecular descriptors related to molecular
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size, flexibility, ring structure, connectivity, polarity, charge, lipophilicity,

hydrogen bonding etc. This collection includes 94 such descriptors.

2.5 STATISTICAL TESTS

As described in the methodology section, our research is based on the as-

sumptions of the positivest stance, quantitative methods, thereby falsifying

hypotheses in order to answer the research question. Hypotheses are set

to compare predictive performances (or efficiency) of the pattern mining

methods, and statistical tests 1) to refute the null hypothesis set in the

experiment, and 2) to identify which methods cause the rejection of the

null hypothesis (in the case of the null hypothesis being rejected), are used

in the respective studies.

Prior to statistical testing, the methods are ranked (in terms of each dataset)

so that a method that achieves the best performance gets the lowest rank

and the worst performance gets the highest rank. The average rank for

each method is obtained by averaging over the individual ranks obtained

from each dataset. For the hypothesis tests, the F− statistic is used on the

average of the ranks of the performance measures of each of the methods

compared. The F−distribution can be used for testing the variances of two

(or more) distributions (Demsar, 2006). The following two equations from

(Demsar, 2006), referred to in (Garcia and Herrera, 2008),

χ2
F =

12N

k(k+1)

[ k

∑
j=1

R2
j −

k(k+1)2

4
]

and

FF =
(N −1)χ2

F

N(k−1)−χ2
F

are used for testing all hypotheses. Here χ2
F is the Friedman statistic, N is

the number of datasets we used in the experiment, R2
j is the average rank
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(average of the individual ranks from all the datasets) of the jth pattern

mining method, and k is the number of methods we compared in the

experiment. FF is the refined F−statistic defined in (Demsar, 2006). If

the computed statistic FF > F((k−1),(k−1)(N−1),α), the tabulated F value with

respect to (k − 1) and (k − 1)(N − 1) degrees of freedom in the standard

table of F distribution at significance level α , the null hypothesis is rejected.

In the second part of the statistical testing, i.e., in the case of finding the

cause of rejection of the null hypothesis, a test is used to compare, pairwise,

which methods perform differently. The two-tailed Nemenyi test (Dem-

sar, 2006) is used for this test, since it allows multiple comparisons, i.e.,

produces a set of statistical inferences simultaneously. Accordingly, if the

statistic z between two methods i and j with average ranks Ri and R j, i.e.,

z =
(Ri −R j)
√

k(k−1)
6N

exceeds the value called the critical difference, i.e.,

CD = qα

√

k(k−1)

6N
,

where q is the tabulated value corresponding to α in the table of critical

values of Nemenyi test (Demsar, 2006), then the performances of the two

methods are significantly different. The method with the lowest average

rank in such a case is considered to outperform the other method.

2.6 EXPERIMENTAL DESIGN

As stated in the previous sections, the methods proposed for efficient and

effective learning from graphs are evaluated empirically. The design sci-

ence approach is followed and the methods are evaluated quantitatively by

formulating and testing hypotheses. The general setup of the experiments
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is presented in Figure 2.2.

Figure 2.2: Experimental design.

The general process of the experiments includes formulating a hypothe-

sis, selecting one or more datasets, selecting one or more pattern mining

methods from the proposed methods and comparison methods, discover-

ing pattern sets, selecting one or more learning methods, and building pre-

diction models followed by evaluating the predictive performances statisti-

cally. The results would be whether the null hypothesis is refuted or not,

and in the case of the null hypothesis being rejected, the methods that per-

form differently are identified, which leads to a conclusion as to which

methods outperform the others. The specific descriptions of how each and

every experiment was carried out are further given under the respective em-

pirical evaluations presented in Chapter 4.

2.7 SUMMARY

This research was designed under the philosophical assumptions of the

positivist stance. A design science approach was followed. This chapter

described the basis for the selection of the research methodology and the

choices of the methods for learning, evaluating and comparing. It also in-

cluded a brief description of the datasets used in the experiments.
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CHAPTER 3

PROPOSED METHODS

The proposed methods for representing graphs, discovering patterns and

incorporating domain-specific background knowledge into the graphs are

presented in this chapter. Experiments designed to evaluate the proposed

methods in terms of efficiency and effectiveness are also included.

3.1 GRAPHS AS A REPRESENTATION LANGUAGE

The mathematical foundations of graphs are rooted in the classical graph

theory. Attributed graphs with an unrestricted label alphabet are the most

general way to define graphs (Cook and Holder, 2006).

Definition 3.1: Graph

A labeled graph G is defined as a quadruple (V,E,λ ,µ), where V is the

set of nodes, E is the set of edges and λ : V → Lv and µ : E → Le are the

labeling functions for nodes and edges respectively, given the alphabets of

nodes and edges, Lv and Le. Further, an edge e from u ∈ V to v ∈ V is

denoted by e = (u,v), if (u,v) ∈ E. For undirected graphs, (u,v) = (v,u).
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Definition 3.2: Subgraph

A subgraph Gs of G = (V,E,λ ,µ), denoted by Gs ⊆ G, is a graph

Gs = (Vs,Es,λs,µs), such that Vs ⊆ V,Es ⊆ E, λs(v) = λ (v)∀v ∈ V and

µs((u,v)) = µ((u,v))∀(u,v) ∈ E .

As stated in Chapter 1, although graphs is a rich and informative repre-

sentation language for data with complex structures, pattern mining from

graph data is a computationally costly process. Transforming graphs into

trees and sequences has been shown to be beneficial in reducing this cost in

the literature, as discussed in Chapter 1. Less expressive representations for

graphs than sequences, with attempts to minimize the loss of information

during the transformation, are proposed in this thesis.

3.2 ITEMSETS AND ITEMSET MINING

As a representational form, Itemset is a set of literals (features), such

as a set of names of the commodities in a grocery shop for example. A

transaction, i.e, the commodities purchased by a person, is a subset of the

itemset. A dataset that includes several such transactions is a set of subsets

of the itemset. The term itemset first appeared in conjunction with the

problem of market basket analysis, which studies interesting patterns from

transaction databases. Itemset mining has been identified as an important

pattern mining problem since the 1980s (Han and Kamber, 2000). It

includes counting different items in purchase lists of a store, and searching

for associations among two or more items (Agrawal and Srikant, 1994).

However, itemset representation is limited to the form of a set of subsets,

and thereby, in general, may not include any relation between the features.

Therefore, itemset representation is less expressive than sequences, trees

and graphs, as stated in Chapter 1.

Mining itemset patterns from a dataset of itemsets, on the other hand, is

computationally less expensive than mining graphs (Thomas, 2010) from
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a graph dataset, although graphs and itemsets mining basically follow

the same procedure, i.e., iterative process of expanding the search space,

candidate generation, support calculation and evaluation. As discussed

in Chapter 1, graph pattern mining is costly, mainly due to subgraph

matching. Matching two itemsets, in contrast, is less expensive than

matching subgraphs, since a subset of an itemset is again a set, and hence,

does not involve any subgraph isomorphism test.

3.3 THE ITEMSET APPROACH TO THE REPRESENTA-

TION OF GRAPHS

Typical itemsets are not expressive enough to encode the relations (edges)

in graphs as stated above. Therefore, a graph in an itemset representation

may simply be the node set of the graph. Recall the graph in Figure 1.1.

This graph could be represented as {c,cl,n,o,s}. This representation leads

to a loss of a considerable amount of information of the graph structure,

namely, 1) the relations between the nodes (edges), 2) the information

about repeated items (nodes with identical labels) and 3) the topology

of the graph, i.e., the arrangement of the nodes and edges within the

graph structure. The more of this information is included in the itemset

representation, the less the loss of information due to the transformation of

graphs into itemset will be.

3.3.1 EDGE LIST

The term edge list is given to the representation language that allows

including the relation between the nodes (edges) in the itemset (node set).

The approach to representing a graphs as an edge list was introduced

in Paper I. Prior to defining the edge list formally, let us consider the

examples below.
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Example 3.1:

Consider the chemical graph of a benzene ring in Figure 3.1(left) below.

Figure 3.1: Graph structure of the benzene ring (left) and

how the structure is split by transforming it into the edge list

(right).

The graph in Figure 3.1 (left) is split into fragments where one frag-

ment represents an edge of the graph and two nodes connected to the

edge. All such fragments created are included in a list, in the form of

(node_label,node_label,edge_label). For example, two carbon atoms

connected by a double bond is a fragment C = C, and is represented by

(C,C,2). Each element of the list is therefore a triplet that contains the

(lexicographically or numerically) ordered labels of two nodes, followed by

the edge label, and thereby the graph in Figure 3.1 (left) has the edge list

L= ((C,C,1),(C,C,1), (C,C,1), (C,C,2), (C,C,2), (C,C,2), (C,H,1), (C,H,1),

(C,H,1), (C,H,1), (C,H,1), (C,H,1)). Here 1 is the label assigned for a single

bond in the benzene ring and 2 is for the double bond.
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Example 3.2:

The graph in Figure 3.2(left) has a unique feature in that the node labels are

not repeated. The edges in this graph are labeled by 1. The transformation

of the fragments in Figure 3.2(right) into a list would yield L= ((A,B,1),

(A,F,1), (B,C,1), (C,D,1), (D,E,1), (E,F,1)). Note that since this graph has

unique node labels, the original graph can be reconstructed from the edge

list, unlike the graph in Example 3.1.

Figure 3.2: Arbitrary graph containing unique node labels

(left) and its edge fragments (right).

Example 3.3:

Figure 3.3 contains some graphs from a chemical graph database. Each

graph in this graph database can be transformed into an edge list as given

below. The same procedure described in the previous two examples is

followed, i.e., splitting the graph into node-edge-node fragments, and

aggregating all such fragments in to a list.

L(G1) = ((C,N,1),(C,N,2),(C,S,1),(N,O,1))
L(G2) = ((C,C,1),(C,N,1),(C,N,2),(C,S,1),(C,S,1),(C,S,1))
L(G3) = ((C,C,1),(C,O,1),(C,O,1),(C,O,2),(C,S,1))
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Here, L(G1),L(G2),L(G3) are the edge lists of the graphs G1,G2 and G3 in

Figure 3.3. Let us formally define the method demonstrated in the exam-

ples.

Figure 3.3: Chemical graphs.

3.3.2 CONSTRUCTION OF THE EDGE LIST

The list of edges, referred to as the edge list, of a graph is constructed

according to Definitions 3.3 or 3.4 below.

Definition 3.3: The edge list of a directed graph

The edge list L of a directed graph G = (V,E,λ ,µ) is:

L =

{ (λ (vi),λ (v j),µ(ek)) for all vi,v j ∈V such that ek = (vi,v j) ∈ E

λ (vi) viis not connected to any other node in the

graph (no edges)
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Definition 3.4: Edge list of an undirected graph

The edge list L of an undirected graph G = (V,E,λ ,µ), where for any

ek = (vi,v j) ∈ E , there exists ek = (v j,vi), is defined as

L =

{

(λ (vi),λ (v j),µ(ek)) for all vi,v j ∈V such that ek = (vi,v j) ∈ E

and λ (vi)≺ λ (v j)
λ (vi) vi is not connected to any other node in the

graph (no edges)

We define each unit (λ (vi),λ (v j),µ(ek)), or, (λ (vi) (if vi has no edges), to

be an element of the edge list. In this thesis, a graph is an undirected graph,

unless stated otherwise.

Definition 3.5: Vertex Label

A vertex label is a sequence of literals, i.e, a word,

X = x1,x2, . . . ,xk

where k is a positive integer and each xi is an element from the set

a,b,c, . . . ,x,y,z or a language where an ordering on the characters is de-

fined. The integer k is called the length of the word X, i.e., length (X).

Hereafter, we use ’word’ and ’label’ interchangeably.

Definition 3.6: Lexicographical order of words

The lexicographic order of two words X and Y is defined by the relation

X ≺ Y

If length(X) = 1,

let X = x and Y = αZ, where Z is any word and α ∈ {a,b, . . . ,x,y,z}.

First we order the alphabet:

{a ≺ b ≺ c ≺ ·· · ≺ x ≺ y ≺ z}
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Then X ≺ Y if and only if :α � y

If length(X) 6= 1: Suppose that X = x1,x2, . . . ,xk and Y = y1,y2, . . . ,yl are

two words. Then

X ≺ Y

if and only if there is a non-negative integer t such that:

∀i = 1, . . . , t −1 : xi = yi and

xt ≺ yt or,

∀i = 1, . . . ,k : xi = yi and l > k

For example, considering the usual order on the English alphabet, the fol-

lowing words are ordered as

a ≺ aa ≺ aaa ≺ ab ≺ aba ≺ abb ≺ abba

3.3.3 THE EDGE SET

When the graphs are represented as edge lists, some of the structural infor-

mation of the graphs may be lost. If a graph contains nodes with identical

node labels, the corresponding elements in the edge list may be identical.

These identical elements will vanish when the edge list is considered as

an itemset (e.g., in any subsequent use with itemset mining algorithms for

discovering patterns). For example, the edge list given in Example 3.1,

i.e., ((C,C,1),(C,C,1), (C,C,1), (C,C,2), (C,C,2), (C,C,2), (C,H,1),
(C,H,1), (C,H,1), (C,H,1), (C,H,1),(C,H,1)) is transformed into a set

with elements {(C,C,1), (C,C,2), (C,H,1)}. The edge set is what we

define to accommodate these identical elements of the edge list. This rep-

resentation method is used in the experiments reported in Papers VIII and

IX.
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Lexicographically ordered edge list

Suppose W 1 = (X1,Y 1,Z1) and W 2 = (X2,Y 2,Z2) , are two elements from

the edge list, where X1,Y 1,X2 and Y 2 are node labels and Z1 and Z2 are

edge labels. Then

W 1 ≺W 2

if and only if,

i). X1 ≺ X2 or,

ii). X1 = X2 and Y 1 ≺ Y 2 or,

iii). X1 = X2 and Y 1 = Y 2 and Z1 ≺ Z2

The edge set

Consider the lexicographically ordered edge list

L = (W 1
,W 2

, . . . ,W n)

The identical elements in this edge list L are indexed as follows.

Each element in the edge list is a tuple 〈W, i〉, where W is the element and

1 ≤ i ≤ n, where n is the length of L.

Therefore, the indexed edge list, when, say, a is the number of repetitions

of W 1 in L, and so on, is

Lindex =

(

a

∑
i=1

〈W 1
, i〉,

b

∑
i=1

〈W 2
, i〉, . . . ,

m

∑
i=1

〈W r
, i〉

)

where a+b+ · · ·+m = n, and r is the number of different elements in L.

Lindex is a set, and is represented by the edge set S as follows.

S =

{

a

∑
i=1

〈W 1
, i〉,

b

∑
i=1

〈W 2
, i〉, . . . ,

m

∑
i=1

〈W r
, i〉

}
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Example 3.4:

Consider the edge list L = ((C,C,1),(C,C,1), (C,C,1), (C,C,2), (C,C,2),

(C,C,2), (C,H,1), (C,H,1), (C,H,1), (C,H,1), (C,H,1), (C,H,1)) given in

Example 3.1. This has several identical elements out of the three elements

(C,C,1), (C,C,2) and (C,H,1). According to the edge set representation S,

with n=12, r=3, a=3, b=3 and m=6, the resulting edge set is,

{(C,C,1,1),(C,C,1,2),(C,C,1,3),(C,C,2,1),(C,C,2,2),(C,C,2,3),
(C,H,1,1),(C,H,1,2),(C,H,1,3),(C,H,1,4),(C,H,1,5),(C,H,1,6)}

Therefore, the edge set retains the repeated node labels (thereby repeating

elements of the edge list). However the edge set may not be capable of

holding the topological structure of the graphs when there are identical node

labels. For example, the graph in Figure 3.1(left) cannot be reconstructed

using the edge set while Figure 3.2(left) may possibly be reconstructed.

3.4 PATTERN MINING METHODS

An element of the edge set (list) is analogous to an item in the itemset rep-

resentation. Therefore, an edge list is analogous to a transaction in item-

set mining. Item, itemset and the itemset mining problem (Agrawal and

Srikant, 1994) can therefore be represented in terms of elements and edge

sets (lists) as follows.

Definition 3.9:

Let an element of the edge set S of a graph G be an item. Let the database

D consist of edge sets of the graphs in the graph database and I be the set

of items from D where X ⊆ I is an itemset. Then, D is a multiset of subsets

of I. For itemset X , an edge set including X is an occurrence of X and the

support(X) is the number of edgesets in which X is present.
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This definition replaces an item in the conventional itemset by a fragment

of a graph, i.e, a triplet that consists of a node–edge–node relation (an ele-

ment), and an itemset by a set of such fragments.

3.4.1 MAXIMAL FREQUENT ITEMSET (MFI)

Let D, and X be as in Definition 3.9. The problem of frequent item set

mining thereby becomes finding the frequent set, F(D,σ), given D, I and

σ (the minimum support) where

F(D,σ) := {X ⊆ I|support(X ,D)≥ σ}

Further, a frequent itemset X which is included in no other frequent itemset

is called a maximal frequent itemset (mfi).

In this thesis, hereafter, we use the term ’itemset’ presumably in accordance

with Definition 3.9, i.e., an item in an itemset is an element of the edge set

(list), unless stated otherwise.

Example 3.5

Consider the chemical dataset in Example 3.3. The edge sets of the three

graphs are

S(G1) = {(C,N,1,1),(C,N,2,1),(C,S,1,1),(N,O,1,1)}

S(G2) =
{(C,C,1,1), (C,N,1,1), (C,N,2,1),(C,S,1,1),

(C,S,1,2), (C,S,1,3)}

S(G3) = {(C,C,1,1),(C,O,1,1),(C,O,1,2),(C,O,2,1),(C,S,1,1)}

and the itemset,

I = {(C,N,1,1),(C,N,2,1),(C,S,1,1),(N,O,1,1),(C,C,1,1),
(C,S,1,2),(C,S,1,3),(C,O,1,1),(C,O,1,2),(C,O,2,1)}.

Given σ = 2, the frequent itemset and the maximal frequent itemset of

chemical dataset are given below.
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Frequent itemsets Maximal frequent itemsets

{(C,N,1,1), (C,N,2,1), (C,S,1,1)} {(C,N,1,1), (C,N,2,1), (C,S,1,1)}

{ (C,N,1,1), (C,N,2,1)} {(C,C,1,1), (C,S,1,1)}

{(C,N,2,1), (C,S,1,1)}

{(C,N,2,1)}

{(C,N,1,1), (C,S,1,1)}

{(C,N,1,1)}

{(C,C,1,1), (C,S,1,1)}

{(C,C,1,1)}

{(C,S,1,1)}

3.4.2 SUPERVISED MAXIMAL FREQUENT ITEMSETS

When the data mining problem is a classification task, each element in the

graph database is assumed to be associated with a value for the target vari-

able (class). Maximizing the correlation between the target variable and

the discovered pattern is a commonly used pattern selection/evaluation ap-

proach. Whenever the class attribute is present, mfi could be refined in the

following manner.

Supervised Maximal Frequent Itemset (Smfi)

Suppose each example in the graph database D is associated with a tar-

get variable (class) c j, where 1 ≤ j ≤ m, and m is the number of different

classes. The graph database D can then be presented as,

D =
m

∑
1

(D j,c)|c ∈ {c1, . . . ,cm}

where D j ⊂ D is the cluster of the graphs that are associated with the class

c j. Let I j ⊆ I be the itemset corresponding to the jth class. Then, the

respective frequent itemset would be,
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F

(

∑(D j,c = c j),σ

)

:= {X ⊆ I j|support(X ,(D j,c = c j))≥ σ}

Then,

m f i(c=c j) = maximal set of{X ⊆ I j|support(X ,(D j,c = c j))≥ σ}

where the maximal set consists of the X that are included in no other fre-

quent itemset, and

Sm f i =
m

∑
1

(m f i(c=c j))

3.4.3 CONSTRAINT PROGRAMMING ON EDGE SETS

Use of various monotonic and anti-monotonic constraints is proposed in

Nijssen and Kok (2004), as an alternative measure to frequency. This

approach has the flexibility of allowing the user to define which constraint,

among several, is used in pattern discovery (Nijssen et al., 2009). For

example, maximal and closed frequent itemsets can also be transformed

into constraint based problems (Guns et al., 2011). In the framework of

constraint programming, itemsets are represented as a set of binary vectors,

and, supposing for example that the itemset is the edge set as in Definition

3.9, then I = {1, . . . ,m} and n = |D| is the size of the database D of edge

sets, then D can be represented as a binary matrix of size n×m.

The discriminative pattern mining problem is therefore defined as:

Definition 3.10:

Given a database D, a measure of discrimination f and a threshold parame-

ter σ , the discriminative itemset mining problem is to discover all itemsets

in

{I| f (I)≥ σ}
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Definition 3.11:

Suppose that database D contains two target variables positive and negative,

where the subset of D such that the target variable is positive (from the

binary class) is D+, and D− for the negative class. Then an itemset I is

discriminative if and only if the discriminative measure f with threshold σ

for the given variables,

p = ∑
t∈|D+|

Tt

and

n = ∑
t∈|D−|

Tt

where Tt is the transaction of the tth entry of the database, satisfies

f (p,n)≥ σ

In this method f (p,n) is called the bounded PN space. The PN space

is used together with the constraints, coverage and support as defined in

(Guns et al., 2011) to find correlated patterns.

3.4.4 MAXIMAL COMMON SUBSTRUCTURES

The method called ’maximal common substructures’ measures the simi-

larity between two graphs (edge sets) in terms of the number of common

elements in the edge sets of the two graphs.

Maximal common substructures (mcs)

Let S and S′ be the edge sets of the graphs G1 and G2 respectively. The

maximal common substructure between G1 and G2 is

Smcs(G1 ,G2)
= {S∩S′}
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Let D be the graph database and |D| be the size of D. Then the set of

maximal common substructures is

Smcs =

{

|D−1|

∑
i=1

|D|

∑
j=i

Smcs(Gi ,G j)

}

For a given maximal and minimal support σmax and σmin, mcs represent the

set of substructures that satisfy

∀i, j,σmax ≤ F(Smcs(Gi ,G j)
)≤ σmin

Here, F(Smcs(Gi ,G j)
) is the number of edge sets in D such that Smcs(Gi ,G j)

is

present.

Example 3.6

Recall the chemical dataset in Example 3.3. The edge lists of the three

graphs are,

L(G1) = ((C,N,1),(C,N,2),(C,S,1),(N,O,1))
L(G2) = ((C,C,1),(C,N,1),(C,N,2),(C,S,1),(C,S,1),(C,S,1))
L(G3) = ((C,C,1),(C,O,1),(C,O,1),(C,O,2),(C,S,1))

The corresponding edge sets are

S(G1) = {(C,N,1,1),(C,N,2,1),(C,S,1,1),(N,O,1,1)}
S(G2) = {(C,C,1,1),(C,N,1,1),(C,N,2,1),(C,S,1,1),(C,S,1,2),(C,S,1,3)}
S(G3) = {(C,C,1,1),(C,O,1,1),(C,O,1,2),(C,O,2,1),(C,S,1,1)}

The set of Smcs is

S
(G1+G2)
mcs = {S(G1)∩S(G2)} = {(C,N,1,1),(C,N,2,1),(C,S,1,1)}

S
(G1+G3)
mcs = {S(G1)∩S(G3)} = {(C,S,1,1)}

S
(G2+G3)
mcs = {S(G2)∩S(G3)} = {(C,C,1,1),(C,S,1,1)}

The set of mcs when σmax = 2 and σmin = 1 is

{(C,N,1,1),(C,N,2,1),(C,S,1,1)}
{(C,C,1,1),(C,S,1,1)}
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3.5 PROPOSED METHODS

In this section, we present several methods proposed for the framework in

Figure 2.1, using the itemset representation methods for graphs, edge list

and edge set, and, pattern mining with mfi, Smfi, CP, and mcs, as discussed

in the preceding sections.

3.5.1 MAXIMAL COMMON SUBSTRUCTURES (mcs)

The method of maximal common sub structures, mcs, defined in Section

3.4.4 is used in papers I–V. In these papers, the edge list is used for

discovering mcs. The maximal common substructure discovery algorithm

(Paper I) is shown in the algorithm below.

Data: edge lists of graphs

Result: MaximalCommonSubstructures

j = 1;

while j ≤ n−1 do

k = j+1 ;

while k ≤ n do

s[ j,k] = s[k, j]= f j ∩ fk;

add s[ j,k] and s[k, j] to MaximalCommonSubstructures;

k++;

end

j++;

end

Algorithm 1: Maximal common substructure search algorithm.

A framework called DIscovery of Features using FingERprints (DIFFER)

is constructed in Paper I, which includes transforming graphs into edge

list (fingerprint), discovery of maximal common substructures using mcs

algorithm, and build predictive models using the feature vectors constructed

from the discovered mcs set. Here, minimal support σmin is set to 5% (a

maximal support threshold is not applied).
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3.5.2 INFORMATION GAIN (IG) FOR mcs

The maximal common substructure search algorithm does not make use of

class labels when selecting the features, but only ensures that the selected

features fulfill the user-defined upper and lower bounds (maximal and min-

imal support σmax and σmin, as defined in Section 3.4.4). Instead of relying

on these bounds, another method is proposed that calculates the information

gain of each of the features generated by the maximal common substruc-

ture search algorithm and chooses the n most informative features, where

n is a parameter of the method. The best 10, 20, 50 and 100 substructures

are used in model building. 10-fold cross-validation on the training set is

used to determine what number of substructures to use when generating the

model that is evaluated on the test set. This method is used in the study

presented in Paper V.

3.5.3 MAXIMAL FREQUENT ITEMSETS (mfi)

The maximal frequent itemset mining method defined in Section 3.4.1 is

implemented using the maximal frequent itemset mining algorithm (Bur-

dick et al., 2001), which is an algorithm that discovers maximal frequent

itemsets from transaction databases. The edge set representation is used

to transform the graphs into itemsets. A minimum support value σ is re-

quired in computing the maximal frequent patterns, as described in Section

3.4.1. Seven values namely, 0.5, 0.4, 0.2, 0.1, 0.025 and 0.01 are used for

σ , since a formal method for choosing such a value does not exist. The

relatively best support value that provides a pattern set resulting in the best

classification model with the training set is selected for building the model

that is evaluated on the test set. This method is used in various experiments

presented in Paper V–IX.

3.5.4 HYBRID MODEL WITH mfi AND mcs

We have used a hybrid method comprising the two methods mfi and mcs.

Using edge lists, the maximal common substructures are discovered. These

mcs’s, which are subsets of the edge lists, are used for mining maximal
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frequent itemsets. The minimum support σmin = 5% is applied in mcs.

Support values 0.5, 0.4, 0.2, 0.1, 0.025 and 0.01 are applied for mfi. This

method is introduced in Paper V.

3.5.5 THE VECTOR SPACE MODEL

The vector space model is quite popular within the text classification

community for its simplicity. This model, in general, is used in information

retrieval from a large set of documents (called document collection), where

each document in this set is represented by a vector of terms (one or more

words). Therefore, if a document collection consists of the set of terms

T = {t1, . . . , tn}, an arbitrary vector for a particular document could be

represented as di = {w(i,1), . . . ,w(i,n)} where each w(i, j) corresponds to a

weight assigned for the respective term t j within the dth
i document. There

are several approaches to obtain the weights, where term frequency is one

of them.

The edge list of a graph could be interpreted as a document that consists of

a set of terms. Therefore considering each element (X i,Y i,Zi) as a term, we

could represent the edge list by a term frequency vector. Here the weight

of each element of the feature vector is the frequency of (X i,Y i,Zi) in each

edge list. Predictive models are built using these term frequency vectors.

This method is introduced in Paper V.

3.5.6 SUPERVISED MAXIMAL FREQUENT ITEMSETS (Smfi)

The supervised maximal frequent itemset mining method is applied to

the datasets containing class labels as described in Section 3.4.2. In this

method, the mfi algorithm is applied separately on the edge lists from the

graphs of different classes. The maximal frequent patterns discovered for

each class is aggregated. Similarly to mfi, several values, namely, 0.5, 0.4,

0.2, 0.1, 0.025 and 0.01 are used for the minimum support σ , and, the

level of support resulting in the highest accuracy, as estimated by 10-fold
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cross-validation on the training set, is used for generating the model that is

evaluated on the test set. This method was introduced in Paper VI.

3.5.7 CONSTRAINT PROGRAMMING BASED ITEMSET MINING (CP)

When the target variable (class label) is available, a constraint on the cor-

relation between the target variable and the set of items could be used to

discover discriminative itemsets (from the edge sets) as described in Sec-

tion 3.4.3. This is an extension of the constraint programming on trans-

action databases described in (Nijssen et al., 2009). When the graphs are

represented as edge sets, the existing algorithm for discriminative itemset

mining by Nijssen et al. (2009) could be used on these edge sets. In all the

experiments based on the constraint programming approach we have used

the complete set of discovered patterns and allowed the learning algorithm

to select the most important patterns for model learning. Experiments with

constraint programming method CP are included in the studies of Papers

VII, VIII and IX.

3.6 BACKGROUND KNOWLEDGE

As pointed out in Chapter 1, background knowledge can be encoded into

graphs as new edge labels for the additional relations and new nodes for

additional entities/attributes. SUBDUE (Gonzalez et al., 2003) has used

this method as illustrated in Figure 1.7 of Chapter 1. Incorporating new

knowledge as new nodes and edges is straightforward, yet this representa-

tion may produce very large graphs. Recall that the graph in Figure 1.6,

which contains only two atoms, may be expanded to a graph such as Figure

1.7 and a typical molecule may contain about 20 atoms on average. When

handling large graphs, the pattern mining algorithm requires several con-

straints due to the computational demands, resulting in incomplete search,

or in missing important relations, as pointed out in Section 1.4.3. Instead

of expanding the graphs by new relations of existing elements with new

entities or attributes for background knowledge, we propose two different
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strategies to incorporate such additional information: embedding the back-

ground knowledge into the node label of the graph, or using the additional

information as additional features in the feature vector, as discussed below.

3.6.1 ENCODING BACKGROUND KNOWLEDGE INTO GRAPHS

In this approach we propose to incorporate the background knowledge as a

part of the existing node label. As illustrated in Figure 3.4 below, the node

labels are renamed in terms of the background knowledge used. In this

representation, the node labels contain information related to the entities

(and their attributes) and edge labels correspond to the relations between

entities (and attributes). For example, Figure 1.6 could be renamed as

Figure 3.4 (a). The additional information of the atomic value 22 for

the carbon atoms may thereby be included as in Figure 3.4 (b). Further,

helide10 and six_group may be included in the graph by renaming the

nodes (and edges) as in Figure 3.4 (c).

Figure 3.4: (a) General description of a graph, (b) Molecular

fragment with atom name and type, (c) Graph including 2-

dimensional substructures of the molecular fragment.
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3.6.2 USING BACKGROUND KNOWLEDGE AS ADDITIONAL FEATURES

TO THE LEARNING ALGORITHM

Adding background knowledge as additional features to the learning al-

gorithm may be quite straightforward since the same method of encoding

graphs for pattern mining need not necessarily be applied to encode back-

ground knowledge. In this approach the feature sets discovered by a pattern

mining method can simply be concatenated with the feature set that encodes

the background knowledge. We have used this method in almost all the pa-

pers, with different interpretations. In Papers I–IV, feature sets from differ-

ent pattern mining methods are aggregated, arguing that patterns discovered

by different pattern mining methods may not be the same, and thereby the

feature set from one method could be considered as additional knowledge

for any other method. In Papers VI–IX, domain specific background knowl-

edge of medicinal chemistry datasets, encoded as feature vectors, are used

in conjunction with the pattern sets discovered by pattern mining methods.

The encodings of background knowledge into feature sets (chemical de-

scriptors), SELMA (Olsson and Sherbukhin, 1999) and ECFI (Rogers and

Hahn, 2010), which are described in Section 2.4.2, are combined with the

feature sets obtained by pattern mining methods.

3.7 SUMMARY

Our approaches for efficient and effective learning from graphs are based

on methods that represent graphs in forms similar to itemsets, which can be

used with itemset mining algorithms for pattern discovery. Pareto improve-

ments to the efficiency are sought by this representation, which is compu-

tationally less complex to handle than graphs. To improve the predictive

performance, background knowledge is utilized in the pattern sets. The

empirical evaluations of these methods are discussed in the next chapter.
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CHAPTER 4

EMPIRICAL EVALUATION

This chapter includes an empirical evaluation of the methods we proposed

for investigating how to increase the efficiency of pattern mining methods

without affecting their predictive performance, and how to enhance the pre-

dictive performance without sacrificing their efficiency.

4.1 PREDICTIVE PERFORMANCE

In this research, methods that transform graph data into pattern sets that

are computationally less complex to handle are proposed. Predictive per-

formance of the classification and/or regression models built from repre-

sentations derived from the proposed pattern mining methods are evaluated

by comparing them with standard methods, as described in the following

sections.

4.1.1 MAXIMAL COMMON SUBSTRUCTURES (mcs)

Two studies were conducted to evaluate the method, maximal common

substructures (mcs) on edge lists. The mcs and the framework, which is

called DIFFER in Paper I, is compared with an Inductive logic program-

ming method, RSD (Lavrač et al., 2002) for four datasets from Table 2.1.

Classification models are generated using the feature sets from DIFFER
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and RSD in the Random Forest algorithm with 50 trees. In Paper II, in ad-

dition to RSD, DIFFER is compared with two other graph mining methods,

SUBDUE (Gonzalez et al., 2003) and Tree2χ2 (Bringmann, 2009) for three

datasets from Table 2.1. The results are shown in Table 4.1.

Table 4.1: Comparison of performance of DIFFER with

some state-of-the-art methods (Paper I & II).

Dataset Accuracy

DIFFER RSD
SUBDUE

-CL
Tree2χ2 DIFFER

+ RSD

Trains 80.00% 75.00% - - 85.00%

Mutagenesis 80.61% 88.86% - 80.26% 92.76%

Carcinogenesis 65.25% 54.37% 61.54% - 65.33%

Satellite faults 71.43% 71.43% - - 80.95%

The column DIFFER + RSD in Table 4.1 shows the prediction accuracy

of the models built using the combined feature set of DIFFER and RSD.

Results show that DIFFER, which contains mcs for pattern mining, is com-

petitive in predictive performance with the standard methods considered

in this experiment. Since the maximal common substructures are compu-

tationally less complex to handle than graphs (hence efficient), showing

competitive predictive performance is a Pareto improvement on efficiency-

effectiveness.

4.1.2 SUPERVISED MAXIMAL FREQUENT ITEMSET MINING METHOD

(Smfi)

Supervised maximal frequent itemsets (Smfi) on the edge lists is evaluated

using 21 datasets from Table 2.1, in Paper VI. The predictive performance

of Smfi with three classifier algorithms, Random Forest (RF), Support vec-

tor machine (SVMP), and the k-nearest neighbour algorithm (KNN), is

compared with SUBDUE (Cook and Holder, 1994) and MoFa (Borgelt,

2002). The number of trees generated by the random forest algorithm was
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set to 50. Two kernels for the SVM algorithm were investigated; the RBF

kernel with complexity 2, and the polynomial kernel with complexity 2.

The IBk algorithm with the number of nearest neighbours k = 3 was used

as the nearest neighbour classifier. As described in Section 2.2.2, classifi-

cation accuracy was chosen as the performance criterion, which was esti-

mated using 10-fold cross-validation. The class labels were used for feature

construction in all the methods. For Smfi, the minimum support was opti-

mized by cross-validation on the training sets, and the optimized parameter

was used for the test set. The same training and test folds were used for

all methods. Predictive performances of the three methods are statistically

compared. The null hypothesis in this experiment is that there is no dif-

ference between the predictive performances of the models built using the

three mining methods. The null hypothesis is rejected by the Friedman test.

Table 4.2 presents the average ranks, each method obtained with respect to

each machine learning algorithm. In calculating the average rank, a method

that obtained the highest accuracy, with respect to a dataset was given the

lowest rank. The average rank for a method is obtained by averaging the

ranks of that method over all the datasets.

Table 4.2: The average ranks of the performance of classifier

models using 21 datasets (Paper VI).

RF SVMP KNN

Smfi 1.24 1.10 1.30

SUBDUE 2.14 2.24 2.10

MoFa 2.62 2.67 2.62

The results of this experiment lead to the conclusion that the proposed

method Smfi is significantly better than both comparison methods, SUB-

DUE and MoFa with respect to all the learning models while SUBDUE

outperforms MoFa when the models are built using KNN.
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4.1.3 MAXIMUM FREQUENT ITEMSET MINING (mfi) AND CON-

STRAINT PROGRAMMING (CP) BASED METHODS

Classification and regression tasks were designed to compare the model

performances of the methods mfi, CP, SUBDUE (Cook and Holder, 1994),

MoFa (Borgelt, 2002) and graphSig (Ranu and Singh, 2009) in Paper

VII, using 18 datasets from Table 2.1. For classification, one of the

learning algorithms from random forests (RF), support vector machine

with non-polynomial kernel (SVMP) and radial bias kernel (SVMR), and

the k-nearest neighbour classifier (KNN) along with the same parameter

settings as the previous experiment, was randomly chosen for each of the

datasets, i.e., for each dataset, all the standard and proposed methods build

predictive models using the same (randomly chosen) learning algorithm.

For regression, the SVM algorithm for regression problems (SMOReg)

with two different parameter settings were chosen arbitrarily, i.e., the

nonlinear polynomial kernel with complexity 2 and the RBF kernel

with complexity 2. The root mean squared error (RMSE) using 10-fold

cross validation is ranked for statistically evaluating the methods. Figure

4.1 presents the classifier accuracies of the classification models for 18

datasets. The learning algorithm used for model building is given in the

parentheses next to the name of the dataset.

In comparing the performances of the methods the null hypothesis was

that there is no difference between performances of the methods. The

significance of the differences of the classification accuracies was tested

by comparing the average ranks using the Friedman test (cf. Section 2.5).

The Friedman test did not reject the null hypothesis for this experiment,

showing that there is no significant difference between the predictive

performances of the methods compared. We also have summarized, in

Table 4.3, the performances of the five methods with respect to pairwise

wins of each method. In Table 4.3, the first value of each cell gives the

wins of the method in the column label over the method in the row label,

and the second value is the losses of the same. For example, the numbers

7 and 9 in the cell in row 2 and column 1 correspond to wins of mfi over
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Figure 4.1: Classification accuracies of the classifier mod-

els.

CP in 7 instances out of 18, and 9 losses for mfi over CP. The cell in row 1,

column 2 gives the opposite, i.e., the win of CP over mfi followed by the

losses of CP over mfi. Also, there are two ties since CP wins 7 out of 18

and mfi wins 9 out of 18 (18- (7+9) = 2).

Table 4.3 shows that the methods mfi and CP achieved more wins than those

from the graph mining methods. Further, the results lead to the conclusion

that the proposed methods mfi and CP have not shown any statistically sig-

nificant reduction in predictive performance of classification models, due

to the use of less complex form than graphs to improve their efficiency.

Regression models

Figure 4.2 shows the results for the predictive performance of regression

models for the same experiment as above. The null hypothesis is again not

rejected by the Friedman test, thereby showing that there are no significant

differences among the performance levels of the methods. The wins/losses
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Table 4.3: Pairwise comparison of performance of methods

(Paper IX).

mfi CP
graph

-Sig

SUB

-DUE
MoFa

mfi - 7/9 5/13 7/10 6/11

CP 7/9 - 4/14 5/13 5/13

graphSig 13/5 14/4 - 11/7 7/10

SUBDUE 10/7 13/5 7/11 - 9/9

MoFa 11/6 13/5 10/7 9/9 -

for pairwise comparisons of the methods are presented in Table 4.4.

Table 4.4: Pair-wise comparison of performance of methods

(Paper IX).

mfi CP
graph

-Sig

SUB

-DUE
MoFa

mfi - 9/8 6/11 8/9 4/13

CP 8/9 - 6/11 9/8 4/14

graphSig 11/6 12/6 - 10/8 6/10

SUBDUE 9/8 8/9 8/10 - 5/13

MoFa 13/4 14/4 10/6 13/5 -

Again, mfi and CP have more wins than the other methods. The relatively

high computational cost of the graph mining methods compared to the item-

set mining approaches can again not be motivated by a corresponding gain

in predictive performance. On the contrary, the itemset mining approaches

appear to have Pareto improvements to efficiency–effectiveness compared

to graph mining approaches.
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Figure 4.2: Root Mean Squared errors (RMSE) of regression

models.

4.1.4 PATTERN SETS FROM DIFFERENT METHODS

Which of the performances of those itemset mining and graph mining

methods are closer to the Pareto frontier with respect to a specific problem

in the medicinal chemistry domain, i.e., the quantitative structure–activity

relationship modeling is investigated in Paper VIII. In this experiment,

specific methods for the particular domain in handling such problems

were also considered. Therefore, the domain specific feature sets SELMA

(Olsson and Sherbukhin, 1999) and ECFI (Rogers and Hahn, 2010),

itemset mining methods mfi and CP and graph mining methods SUBDUE,

MoFa and graphSig were compared. Again, two separate experiments

were designed for classification and regression. Learning algorithms were

randomly picked as described in a previous experiment. The results were

statistically compared (cf. Section 2.5) using the null hypothesis that there

is no difference between the performances of the methods. The results

of the predictive performances lead to the rejection of the null hypothesis

set for this experiment, showing that there exists differences between

the performances of the methods. Further tests using the differences of
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ranks show that the pairs presented in the gray cells in Table 4.5, have

significantly different performances. Here, a positive value indicates that

the method in the column label outperforms the method in the row label,

and vice versa for negative values. The classification models showed

significant differences against graphSig, as seen from Table 4.6. All the

other methods turned out to perform similarly.

Table 4.5: Differences of average ranks of performance of

regression models (Paper VIII).

ECFI SELMA mfi CP
graph

-Sig

SUB

-DUE
MoFa

ECFI -

SELMA 2.17 -

mfi 2.17 0.00 -

CP 2.33 0.17 0.17 -

graphSig 3.17 1.00 1.00 0.83 -

SUBDUE 2.39 0.22 0.22 0.06 -0.78 -

MoFa 3.28 1.11 1.11 0.94 0.11 0.89 -

4.1.5 EFFICIENCY OF PATTERN MINING METHODS

In Paper IX we investigate to what degree the efficiency of the pattern

mining methods vary, using 18 datasets from Table 2.1. Two proposed

methods, mfi and CP and three standard methods, SUBDUE, MoFa and

graphSig were compared in this experiment. The CPU time consumed for

the completion of the mining algorithm of each method (in seconds) was

recorded. A null hypothesis was set that there is no significant difference

between the execution times of the methods. The Friedman test (cf. Section

2.5) was used to test the hypothesis on the ranks of the execution times.

The method with the lowest CPU time was assigned rank 1 while the

method with the maximum CPU time ranked the highest. A method that



EMPIRICAL EVALUATION 81

Table 4.6: Differences of average ranks of performance of

classification models (Paper VIII).

ECFI SELMA mfi CP
graph

-Sig

SUB

-DUE
MoFa

ECFI -

SELMA 0.5 -

mfi 1.44 0.94 -

CP 0.78 0.28 -0.67 -

graphSig 3.17 2.67 1.72 2.39 -

SUBDUE 2.06 1.56 0.61 1.28 -1.11 -

MoFa 1.67 1.17 0.22 0.89 -1.5 -0.39 -

failed to complete was also assigned the highest rank. The null hypothesis

is rejected for this experiment. Table 4.7 gives the differences of the

ranks for all the pairwise tests. Further tests to investigate which pairs of

methods perform significantly differently compared to each other using

the Nemenyi test (Section 2.5, resulted in the pairs corresponding to the

gray-colored cells in Table 4.7 performed significantly different, where a

positive value indicates that the method in the row label outperformed the

method in the column label, and vice versa for negative values. Both the

itemset mining methods, mfi and CP have significantly higher efficiency

than the graph mining methods.

Summarizing the results, it can be concluded that the proposed pattern min-

ing methods, which are computationally less complex to handle than graphs

are efficient in mining patterns. Also, any reduction of the predictive per-

formance is not showed up as a result. Therefore, the proposed methods

are closer to the Pareto front than the standard methods compared in the

experiments.
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Table 4.7: Differences of average ranks of efficiency of the

graph and itemset mining (Paper IX).

Itemset mining

methods
Graph mining methods

mfi CP SUBDUE MoFa graphSig

mfi - 0.67 2.11 2.89 3.22

CP -0.67 - 1.44 2.22 2.56

SUBDUE -2.11 -1.44 - 0.78 1.11

MoFa -2.89 -2.22 -0.78 - 0.33

graphSig -3.22 -2.56 -1.11 -0.33 -

4.2 ENHANCING THE PREDICTIVE PERFORMANCE

OF PATTERN MINING METHODS

Enhancing the predictive performance of the pattern mining methods is

sought by 1) different pattern language settings and 2) background knowl-

edge. We propose using the background knowledge 1) as a part of the node

and edge definitions or, 2) as additional features to the learning algorithm.

Empirical evaluation of these methods are presented below.

4.2.1 PATTERN LANGUAGE SETTINGS VS. PREDICTIVE PERFOR-

MANCE

The aim of this study is to identify which of the different methods we

used for encoding graphs lead to predictive models that are comparatively

better/worse. The experiment presented in Paper V compares the predic-

tive performance of the methods that use different forms of the edge list,

namely, mfi, mfi + mcs (combined set of mfi and mcs features), mcs, sub-

set of mcs derived using information gain measure (ig) and the edge list in

attribute value format (vs) as described in Section 3.5. In addition, a base-

line representation of the inputs (av), which transforms graphs into typical
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itemsets by ignoring edges, is also used for comparison. Fifteen structured

datasets from Table 2.1 are used for building classification models using the

Random forest algorithm (Breiman, 2001). Their classification accuracies

are compared statistically with the null hypothesis that there is no difference

among the predictive performances of the methods compared. The average

ranks of the six methods are presented in Table 4.8. The null hypothesis is

rejected in this experiment, due to the differences in the performance of the

pairs with respect to the gray cells in Table 4.9. This experiment lead to

the conclusion that the way of representing a graph as an itemsets results in

significant differences in predictive performance.

Table 4.8: Average ranks for the structured datasets (Paper

V).

Method av mfi mfi+mcs ig vs mcs

Average rank 5.00 2.03 2.17 3.50 4.13 3.87

Table 4.9: Differences of average ranks (Paper V).

Method av mfi mfi+mcs ig vs mcs

av -

mfi 2.97 -

mfi+mcs 2.83 0.14 -

ig 1.5 1.47 1.33 -

vs 0.87 2.1 1.96 0.63 -

mcs 1.13 1.84 1.7 0.37 -0.26 -

4.2.2 INCORPORATING BACKGROUND KNOWLEDGE INTO NODE AND

EDGE LABELS

In this approach the node definitions are expanded to accommodate the

additional background information. Five different levels of background



84 CHAPTER 4.

knowledge have been used in the experiments as given below (Paper IV).

D1: Each node is labeled with an atom’s name, its type, and a set of bonds

by which the atom is connected to other atoms. The node definition for

D1 is represented by (atom name, atom type, [bond type/s]). For example,

a node in Figure 1.6 representing a carbon atom of type 22, which is

connected to other atoms by an aromatic bond is labeled with (c,22, [7]),
where 7 denotes the aromatic bond. No edge label is associated with

this representation (or all edges can be considered to have the same label

connected).

D2: The amount of information used for encoding is similar to D1, but the

node and edge labels are different. Each node label in D2 is of the bonds

by which the atom is connected to other atoms and it can be represented

by (atom name, atom type). The edges are labeled with the bond type

by which two atoms are connected. For example, a node representing a

carbon atom of type 22, which is connected to two other atoms by one

single and one double bond is labeled with (c,22), and the edges to the

nodes corresponding to the other atoms are labeled with single and double,

respectively.

D3: Edge set of the graphs with node and edge labels similar to D2 is used.

D4: In addition to node–edge labels, the atom’s presence in complex

structures such as benzene rings or nitro groups is also included in the node

labels. Accordingly, the node label for D4 would be (atom name, atom

type, [list of complex structures]). For example, a carbon atom of type

22 that is part of a nitro group, a benzene group, and a 5-aromatic ring is

labeled with (c,22, [nitro,benzene,5−aromaticring]). The edge labels are

the same as for D2.

D5: Edge set of the graphs with node and edge labels similar to D4 is used.
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Predictive models are built using the random forest and support vector ma-

chine algorithms for mutagenesis and carcinogenesis datasets in Table 2.1.

The results presented in Table 4.10 show that the predictive performances

of the models increase with the addition of more background knowledge.

The learning algorithm used for model building is given in the parentheses

next to the model accuracy. The difference in accuracy between the lowest

and highest levels of background knowledge is statistically significant.

There is almost no difference in the accuracies of the graph encodings D1

and D2, reflecting the fact that these encodings do not differ in information

content, but only in their formulation of the node labels.

Table 4.10: Accuracy of the models using different levels of

background knowledge (Paper IV).

Data Accuracy %

Set D1 D2 D3 D4 D5

Mutagenesis
80.61

(RF)

80.61

(RF)

84.04

(SVM)

87.77

(SVM)

88.3

(SVM)

Carcinogenesis
61.25

(RF)

61.1

(RF)

68.73

(SVM)

71.03

(SVM)

75.0

(SVM)

4.2.3 BACKGROUND KNOWLEDGE AS ADDITIONAL FEATURES

Background knowledge encoded in the form of so-called chemical de-

scriptors are used in this experiment. In Paper VI, descriptor sets of

the methods ECFI (Rogers and Hahn, 2010) and SELMA (Olsson and

Sherbukhin, 1999) are combined with the feature sets of Smfi, SUBDUE

and MoFa. The predictive performances of the combined models are

statistically tested (separately for three classifiers, Random forest, Support

vector machine and k- nearest neighbour, with the same parameter settings

used in the other experiments) with the null hypothesis that there is no

difference between the predictive performances of the combined models
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with constituent models, using Friedman test (Section 2.5). In Paper VIII

a similar experiment is designed with methods mfi, CP, SUBDUE, MoFa

and graphSig. The graphs in Figure 4.3 show the results when background

knowledge in the form of ECFI and SELMA feature sets, are incorporated

as additional features into the feature vector from pattern mining methods.

The same experiment was repeated for regression models and the results

are presented in Figure 4.4.

Figure 4.3: Classification accuracies of combined feature

set of background knowledge and pattern mining methods

for methods mfi, CP, SUBDUE, MoFa and graphSig.
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Figure 4.4: For regression models.

According to Figure 4.3 and Figure 4.4, the majority of the pattern mining

methods achieve better predictive performance by either increased accuracy

or reduced error when the domain specific background knowledge is used

in conjunction with the features produced by their own method.

4.2.4 FEATURE SETS FROM DIFFERENT PATTERN MINING METHODS

AS BACKGROUND KNOWLEDGE

Due to the differences in the pattern sets discovered by different pattern

mining methods, any pattern set could contain additional information
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with respect to another pattern set, which, in principle, could be used as

background knowledge. In almost all the papers, investigations of the

predictive performance of models by adding different pattern sets are

included. Domain specific features, features from graph mining methods

and features from itemset mining methods are compared in Paper VIII. The

combined sets were used as features for the classification and regression

models. The learning algorithms were selected randomly for each dataset.

The models generated from the combined feature sets for 18 datasets from

Table 2.1 were compared with the models generated from the constituent

feature sets. For example, a model generated from the combination of CP

and SUBDUE features was compared to a model generated from SUBDUE

alone and a model generated from CP alone. Table 4.11 and Table 4.12

show for each combined model and a model generated from one of its

constituent feature sets, for how many datasets the combination resulted in

an improvement in predictive performance for regression and classification

models respectively. For example, the number 14 in the cell in row 2 and

column 1 in Table 4.11 means that models using SELMA+ECFI resulted

in a higher predictive accuracy than models generated from SELMA alone

for 14 out of the 18 data sets, and the number 11 in the cell in row 1

column 2 means that the models using ECFI+SELMA resulted in a higher

predictive accuracy than the models developed using ECFI alone for 11 out

of the 18 datasets.

Adding the feature sets from the domain specific method ECFI, to the other

feature sets helped increase the predictive performance of the resulting

models for most of the datasets. Thus, the ECFI feature set can be used to

enhance the predictive performance of regression and classification models.

4.2.5 EFFICIENT AND EFFECTIVE LEARNING

From the experiments presented in the previous section, it was shown that

1) by using a less complex representational form than graphs, the efficiency

can be improved without affecting the predictive performance, and, 2) by
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Table 4.11: The number of datasets which RMSE is reduced

with the combined model (Paper VIII).

ECFI SELMA mfi CP
graph

-Sig

SUB

-DUE
MoFa

ECFI - 11 5 7 4 3 4

SELMA 14 - 10 8 9 11 11

mfi 16 9 - 8 11 13 9

CP 16 10 7 - 8 11 6

graphSig 16 11 16 10 - 12 11

SUBDUE 17 10 14 11 9 - 14

MoFa 16 13 14 13 12 16 -

Table 4.12: The number of datasets which the model accu-

racy is increased with the combined classifier model (Paper

VIII).

ECFI SELMA MFI CP
graph

-Sig

SUB

-DUE
MoFa

ECFI - 10 7 9 2 8 4

SELMA 11 - 12 8 10 9 11

MFI 15 15 - 8 8 10 10

CP 10 14 2 - 4 10 6

graphSig 17 15 13 14 - 13 12

SUBDUE 14 12 13 14 10 - 10

MoFa 14 14 14 13 12 11 -
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incorporating background knowledge the effectiveness can be improved

without adding complexity to the pattern mining, thereby efficient and ef-

fective learning could be obtained.

4.3 PERFORMANCE ANALYSES OF THE PROPOSED

METHODS

The proposed methods for pattern mining in this thesis have shown Pareto

improvements in efficiency and effectiveness compared with several

standard methods, as described in the previous sections and the papers

included in this thesis. In this section the proposed methods are compared

with each other to see which of these methods show Pareto improvements

in efficiency and effectiveness.

4.3.1 PERFORMANCE COMPARISONS OF mfi, Smfi AND CP

Figure 4.5 and 4.6 present the comparisons of the performances of the

classification and regression models for mfi and CP and mfi and Smfi

respectively. The predictive performances of the models built using mfi and

CP are not significantly different, leading to the conclusion that both mfi

and CP lead to models that perform equally well. The regression models

with mfi and Smfi are almost identical, but the classification models show

that Smfi is slightly ahead of mfi.

The comparisons between mfi, Smf i and CP did not conclude in favour of

any of the methods. Nevertheless one may select mfi over Smfi due to the

extra work involved in the computation of the Smfii’s (i.e., applying mfi

separately to data that is split into different classes). CP may be penalized

compared to mfi sometimes by the large set of discovered patterns. However

it is possible to find out whether smaller subsets bounded by top-k patterns

of CP would provide similar (or enhanced) performance.
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Figure 4.5: Comparison of classification (top) and regres-

sion (bottom) models of CP and mfi.
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Figure 4.6: Comparison of classification (top) and regres-

sion (bottom) models of Smfi and mfi.
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4.3.2 PERFORMANCE COMPARISONS OF EDGE LISTS AND EDGE SETS

Representing graphs as edge lists is less complex than representing them as

edge sets, since an edge set requires the lexicographical order of the items.

But the edge set contains more information than an edge list, as discussed

in Chapter 3. The two graphs in Figure 4.7 show the performance levels of

the method mfi when edge lists and edge sets are used. The models using

an edge set provide a better performance for the majority of the datasets,

having only one loss for classification models and no losses for regression

models. The additional information in the edge set may be the reason for

this enhanced performance. Figure 4.8 shows the same for models of CP.

From these results it can be concluded that the models built using edge sets

perform better than those with edge lists. In conclusion, mfi in conjunction

with an edge set appears to be the best approach among the other proposed

methods for efficient and effective learning from graph data.

4.3.3 SIZE OF THE FEATURE SET OF mfi

As stated in Chapter 1, the size of the feature set of frequency based

methods can be very large when the graph size increases and/or the

minimum support σ decreases. An analysis of the pattern set size of

the proposed method mfi was therefore carried out. The results for some

medicinal chemistry datasets, picked from Table 2.1, are presented in

Figure 4.9. The sizes of the mfi of the datasets are small even for low

values of σ , so that they could be effectively used in any learning algorithm.

Large graph databases

Figure 4.10 shows the pattern set sizes of mfi for some randomly picked

datasets from Table 2.2. The curve corresponding to Average in Figure

4.10 represents the average of the sizes of the pattern sets discovered for the

60 datasets given in Table 2.2, with respect to the given support (σ ). The

variation of the sizes of the mfi’s are almost the same for all the datasets and

are around 4500 for low support values such as 0.01 (which is not large for
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Figure 4.7: Comparison of models of mfi that use edge lists

and edge sets.
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Figure 4.8: Comparison of models of CP that use edge lists

and edge sets.
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Figure 4.9: No. of mfi vs. threshold (support σ ) for selected

datasets from medicinal chemistry.

machine learning algorithms), and hence shows that mfi does not explode

its pattern set for low support values when the dataset is large.

Datasets with large graphs

Figure 4.11 shows the size of the pattern sets discovered by mfi for the

synthetic datasets g, h and I, with different graph sizes from 10 graphs to

10,000 graphs per dataset. Accordingly, the number of mfi’s generated for

large graph databases such as i10000, are less than 9000. The execution

times for the generation of the mfi’s for the datasets g, h and i are given in

Figure 4.12. The execution times increase up to 7000 ms when the support

value is decreased down to 0.01, but this becomes (almost) steady when the

support is increased beyond 0.025. These results show that the efficiency of

the method mfi does not get affected by reduced support σ , and/or increased

database and graph size.
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Figure 4.10: No. of mfi vs. threshold (support σ ) of selected

datasets from NCI repository.

mfi vs. database size

In this analysis we summarize the above results to establish any relation

of the variation of the size of pattern sets with the support values. Figure

4.13 (top) shows the number of mfi’s vs. the size of the graph database.

Figure 4.13 (bottom) shows the logarithmic values of mfi, which clearly

shows the pattern of growth of mfi’s when the database size increases. The

mfi’s corresponding to 5,000 and 10,000 are for the dataset g, and, as can

be seen from the figure, are similar. This may be due to the similarity of

the generated graphs when the graph size is increased to higher values.

Accordingly, we can see that the highest number of discovered mfi’s is ap-

proximately equal to the size of the dataset, except for g1000 that produce

about 4500 patterns with 1000 graphs. These results show, contrary to the

claim that the maximal set of the frequent patterns may not always be ap-

plicable in learning tasks (Hasan and Zaki, 2009), but that the mfi algorithm

produce pattern sets that can still be applied for learning from datasets con-

taining a set of (small) graphs.
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Figure 4.11: No. of maximal frequent items vs. threshold

(support σ ) for the synthetic graphs g, h and i.
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Figure 4.12: Execution times vs. threshold (support σ ) for

the synthetic graphs g, h and i.
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Figure 4.13: Database size vs. No of mfi (top) and log(No

of mfi) (bottom).
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4.4 SUMMARY

The results obtained from several experiments were discussed in this chap-

ter. We have shown using various datasets that the methods mfi and CP

are efficient compared to graph mining methods. Based on the predictive

performance of the models built using the feature sets discovered by vari-

ous pattern mining methods, it is concluded that the graph representation

method edge sets in conjunction with the itemset mining methods resulted

in feature sets that build predictive models efficiently without deteriorating

the predictive performance. Inclusion of relevant background knowledge

was shown to be useful in enhancing the predictive performance of any

method, independently of the form in which they were used. We have also

shown that some approaches such as using mfi and CP with edge sets are

more successful than the other representations. The conclusions arrived at

using these results will be compiled in the next chapter in order to examine

whether we addressed the research question adequately.
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CHAPTER 5

CONCLUDING REMARKS

The core of this thesis is the investigation of how to improve the efficiency

and effectiveness of methods for learning predictive models from graph

data using pattern mining. Due to the vast differences in the approaches

taken to learn from graphs, we have selected a subset of methods to inves-

tigate, namely, learning from a set of small graphs using pattern mining

methods. Several studies were conducted, each of which partially con-

tributes to answering the research question. The conclusions drawn, based

on the results of these studies, and a discussion of the future studies to

which this research could be extended, are included in this chapter.

5.1 CONTRIBUTIONS

This thesis is based on nine publications describing the methods we

proposed and evaluated for efficient and effective learning from graph data

using pattern mining techniques. In Chapter 1, we pointed out that graph

data are ubiquitous, but learning from graphs is a computationally expen-

sive process, mainly due to the complexity of their representational form.

On the other hand, due to the richness in the representation, predictive

models built using graph data perform better than the models using other

representational forms such as trees, sequences or itemsets. The majority
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of the related approaches of learning from graphs take steps to improve the

efficiency of the learning process by applying various constraints to the

search space. Transforming the graphs into forms which are less complex

to handle also reduce the cost of the mining process. Such steps however

create different efficiency vs. effectiveness tradeoffs, turning the question

of learning efficient and effective models, into an optimization problem

with two objectives, where better solutions lie on the Pareto frontier of the

solutions space. In such a situation, a method that has a higher efficiency

and competitive predictive performance, or vice versa, constitutes a Pareto

improvement (and thereby becomes a better method than the compared

methods). However, which of the pattern mining methods used in feature

construction to a propositional learner would result in Pareto improvements

in efficiency vs. effectiveness was an open question that we addressed

in this thesis. The efficiency of graph mining may be improved by using

a less complex representational form than graphs. If such an approach

results in models competitive in predictive performance, such a tradeoff

would be near Pareto front. Further, the effectiveness of predictive models

can be improved by the use of background knowledge, but, as pointed out

in Chapter 1, the efficiency of the pattern mining methods decreases when

the background knowledge is included in the graphs. However, it may

be possible to incorporate background knowledge without increasing the

complexity of the pattern mining process. The research presented in this

thesis aimed at shedding some light along this line of research.

Our approach to answering the research question of efficient an effective

learning from graphs is illustrated in Figure 2.1, where the graph repre-

sentation and pattern mining methods are the contributions. Two graph

representations named edge list and edge set have been used to transform

graphs into forms that can be recognized by the pattern mining methods,

maximal frequent itemset (mfi), maximal common substructures (mcs),

and constraint programming based itemset mining (CP) and their variants

defined in Section 3.5. Edge list and edge set are contributions of the

thesis, whereas mfi and CP are itemset mining methods which are used
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to discover patterns from graph data. The method mcs (and the system

DIFFER) is also a new contribution.

In accomplishing the objective of improving the efficiency without depre-

ciating the predictive performance, several graph encoding methods have

been compared. The method mcs showed improved results compared to

the state-of-the-art methods. However, the maximum itemset mining based

method mfi has shown better performance than mcs. The methods mfi

and CP demonstrated higher predictive performances than the comparison

methods in many experiments. Further, both mfi and CP consumed

only a few seconds for the discovery of their pattern sets for all the

datasets, while the comparison methods required more time. Some of

them did not complete the discovery of the pattern set within the stipulated

time for some datasets. These outcomes lead to the conclusion that the

proposed itemset mining methods speed up the learning process without

decreasing the predictive performance. Hence, by representing graphs in

the form of itemsets, which are computationally less expensive to handle

than graphs, Pareto improvements in efficiency and effectiveness can be

obtained, compared to the standard methods. Albeit the methods involving

frequency are penalized by an unpredictable (and huge) size of the pattern

set when the support values are low, we have shown using several datasets

with different graph properties that the size of the pattern set of mfi for

small graph datasets does not exceed the size of the dataset most of the time.

Ways of improving the predictive performance without increasing the

complexity of the process of graph mining have also been examined along

several lines. We have proposed two approaches to encoding background

knowledge into graphs by 1) incorporating them into the graphs as a part

of the node and edge definitions and 2) using them as additional features

to the learning algorithm. The gain achieved by adding background

knowledge into the node labels of graphs is significant. The amount of

information contained in the node and edge labels is more important for

better accuracy, than the form of representing the information inside the
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node and edge labels. For example, in the chemoinformatics domain, ‘two

carbon atoms are connected by a bond labeled 7’ is represented in two

forms as given in Figure 2.1, but both encodings produced similar accuracy.

Figure 5.1: Two ways of incorporating the same amount of

background knowledge into node labels–Paper IV.

The predictive performance of 75% of the regression models and 78% of

classification models was improved by introducing domain specific back-

ground knowledge as additional features to the pattern sets of the graph

and itemset mining methods. Also, the experiments using pattern sets from

graph and itemset mining methods themselves as background knowledge

concluded that 74% of the classification and 82% of the regression tasks

on average had improved predictive performance when the feature set from

itemset mining methods (mfi and CP) were used as background knowledge

to the graph mining methods. The corresponding percentages, when graph

mining methods were added to the proposed itemset mining methods, are

51% (classification) and 61% (regression).

These summaries of the outcomes of the experiments lead to the conclusion

that the performance of the predictive models could be further improved

by using background knowledge either in the form of extra features or as

parts of the node and edge labels. In doing so, the size of the graph is not

increased, thereby the complexity of mining algorithm is not increased,
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and, therefore, any improvement to predictive performance is a Pareto

improvement. Pareto improvements on pattern mining methods are more

likely when the domain specific background knowledge is used as extra

features than those from other pattern mining methods.

The empirical evaluations presented in this thesis lead to conclusions in

favour of the proposed methods. However, we cannot rule out that not

detecting any decreased performance might simply be due to using only

a few datasets in the evaluation, and that the outcome of the empirical

investigation could have been different if more datasets had been used.

5.2 FURTHER WORK

The presented experiments are focused on graph data in the form of a set

of small graphs. An immediate question is whether or not the conclusions

from this research carry over to other domains as well. Graphs such as

social networks, web, and community networks, web link structures etc.,

contain huge structures of hundreds of thousands of nodes and even larger

numbers of connections (edges) between the nodes, where nodes (and

edges) are mostly labeled and the labels are almost unique. The present

works could be extended to such domains. Similar studies could also be

carried out for particular types of chemical compound datasets, e.g., very

large or imbalanced datasets.

In optimization problems, finding the Pareto front is not an easy task

(Konak et al., 2006). From our experiments we can only distinguish the

methods that show Pareto improvements. Without conducting further

experiments with many different approaches, concluding anything related

to Pareto optimality is impossible. Even the proposed methods in this

research could be subjected to improvements in their effectiveness and/or

efficiency. For example, the predictive performance of the methods mcs

and CP could be improved in many ways. The mcs algorithm could
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possibly be extended to a graph kernel since this algorithm searches for

common fragments in the edge sets of two graphs, which can be viewed

as the similarity between the two graphs. This would be worthwhile to ex-

plore since mcs does not involve the graph isomorphism test during kernel

computation (hence it is more efficient than graph kernels). The method CP

could be further examined using the option of obtaining the top-k feature

set, since the experiments we carried out show that the feature set of CP is

comparatively large for some datasets. Further, the experiments involving

CP could be extended with several different constraints such as information

gain, the Gini index, convex hull, Fisher score, etc., to investigate any

possibility of creating Pareto improvements in efficiency vs. effectiveness.

More accurate predictive models could be obtained by further improving

the feature selection in the itemset mining methods. The measures we used

for feature selection for mcs, CP and mfi are currently somewhat naïve and

straightforward. For mcs, the support values are purely user defined. The

support values we used for itemset mining were selected from a limited set

of discrete values that are not certainly optimized. It may be worthwhile

to define a more compact and representative measure for the selection of

features since selecting the most important set of features is the key factor

for a better predictive performance. Using some coverage measure or a

significance test, or a voting scheme using the ROC convex hull, might

be promising approaches. The class labels of the training data could also

be taken into account for a better measure for coverage or significance, as

most of the existing methods does.

Alternative ways of utilizing background knowledge, such as, using

the features of the domain specific method ECFI (which correspond to

subgraphs), as a basis for compressing data, similar to replacing the molec-

ular ring structures in MoFa (Borgelt, 2002), or replacing the subgraph

fragments proposed by Cook and Holder (1994), could be investigated

since such node labeling provide more structural information in the label,

resulting in more accurate models.
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