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Abstract 

The predictive coding hypothesis proposes that top-down predictions are 
compared with incoming bottom-up sensory information, with prediction errors 
signaling the discrepancies between these inputs. While this hypothesis explains 
the presence of prediction errors, recent experimental studies suggest that 
prediction error signals can emerge within a local circuit, that is, from bottom-up 
sensory input alone. In this paper, we test whether local circuits alone can 
generate predictive signals by training a recurrent spiking network using local 
plasticity rules. Our network model replicates prediction errors resembling various 
experimental results, such as a biphasic pattern of prediction errors and context-
specific representation of error signals. Our findings shed light on how synaptic 
plasticity can shape prediction errors and enables the acquisition and updating of 
an internal model of sensory input within a recurrent neural network.  
 

Introduction 

The brain is thought to learn an internal model of the environment to predict 
upcoming sensory inputs (Keller & Mrsic-Flogel, 2018). In support of this 
hypothesis, a wide variety of experiments have reported mismatch responses in 
the brain (Garrido et al., 2009; Wacongne et al., 2012; Keller et al., 2012). These 
responses are typically elicited by presenting subjects with a series of familiar or 
consistent stimuli, and then introducing a deviant stimulus. Mismatch responses 
then emerge as the difference between the neural activity evoked by the standard 
stimulus and the deviant stimulus. For example, using electroencephalography 
(EEG), deviant stimuli have been shown to elicit a mismatch negativity (MMN) 
response in humans, typically seen as a biphasic response in which a negative 
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deflection is followed by a positive one (Liebenthal et al., 2003; Luck 2005; 
Garrido et al., 2009; Wacongne et al., 2011; Nagai et al., 2017; Meyer et al., 2011). 
Early studies of this mismatch response were primarily conducted using auditory 
oddball paradigms (Liebenthal et al., 2003; Garrido et al., 2009). However, many 
studies have since shown MMN-like responses emerging from a variety of 
sensory tasks and brain regions, including visual (Strömmer et al., 2014; Kimura 
et al., 2009; Kimura et al., 2010; Meyer et al., 2011; Winkler et al., 2005) and 
auditory (Näätänen and Alho, 1997; Schröger and Wolff, 1996) areas, as well as 
cognitive processing regions like prefrontal cortex (Opitz et al., 2002; Näätänen 
et al., 2005). Although there may be some differences between these signals, 
together this suggests that mismatch responses may constitute a general 
mechanism for automatically detecting deviations from the brain’s internal model. 

A plausible explanation for these mismatch signals in the brain is provided by the 
predictive coding hypothesis (Garrido et al., 2009). In predictive coding, at each 
level of sensory processing, top-down predictions from the brain’s internal model 
of the world are used to cancel out incoming sensory information. Only the 
discrepancies between the predicted and actual sensory information are 
communicated to higher levels of the cortical hierarchy. These discrepancies are 
called prediction errors and they are thought to be critical for the brain to improve 
its internal model, and thus the predictions passed down through the sensory 
processing hierarchy (Bastos et al., 2012; Rao & Ballard, 1999, Huang & Rao, 
2011). Several generative models derived from the predictive coding hypothesis 
have been implemented in biologically plausible models of neurons to explain the 
mismatch signals observed in the brain. For example, Wacongne et al. (2012) 
proposed a spiking neuron model of predictive coding to account for the MMN in 
an oddball paradigm. Relatedly, a study by Lieder et al. (2013) based on dynamic 
causal models provided a potential link between the MMN and Bayesian filtering. 
In these models, mismatch responses are explained to be prediction errors, 
computed at different levels of the sensory processing hierarchy.  

Although these types of generative predictive coding models provide a broad 
explanation of the emergence of mismatch signals, there are two important 
aspects that they do not capture. First, there is considerable evidence that the 
brain develops internal predictions through experience, and thus that learning 
and prediction errors occur alongside one another (Liebenthal et al., 2003; 
Wacongne et al., 2011; Fiser et al., 2016; Garrett et al., 2020; Hertäg & Clopath, 
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2022). However, it has not been demonstrated how a set of synaptic plasticity 
rules can account simultaneously for prediction errors and learning within the 
same network. Second, several studies have shown that mismatch responses 
can occur automatically in contexts during which there appears to be minimal top-
down input, like when subjects are inattentive or even sleeping (Garrido et al., 
2009). However, most existing models focus on the emergence of mismatch 
signals in hierarchical circuits, and do not explain how such signals can emerge 
within a local circuit, from bottom-up sensory input alone.  

In this paper, we addressed these open questions by simulating a recurrent 
spiking network using local plasticity rules we recently proposed (Asabuki & 
Clopath, 2023). The network model consists of a population of excitatory and 
inhibitory spiking neuron models. The synapses onto excitatory neurons undergo 
synaptic plasticity, allowing them to develop connectivity patterns that predict the 
network activity evoked by upcoming sensory events. Simultaneously, inhibitory 
synapses undergo additional plasticity to maintain the excitatory-inhibitory 
balance. We found that recurrent networks trained with these plasticity rules 
replicated many features of prediction errors that have been observed in 
experimental studies (Liebenthal et al., 2003; Luck 2005; Garrido et al., 2009; 
Nagai et al., 2017; Wacongne et al., 2011; Meyer et al., 2011). For example, the 
prediction errors displayed a similar biphasic pattern to the MMN waveform, and 
were context-dependent (Audette & Schneider, 2023; Price et al., 2022). Overall, 
our study provides new insights into the mechanism by which synaptic plasticity 
shapes prediction errors and the acquisition and updating of an internal model of 
sensory input within a recurrent neural network. 

Results 

To test whether predictive signals can be computed in a local circuit, we simulated 
recurrent spiking network consists of excitatory (E) and inhibitory (I) model 
neurons (Fig. 1a). Excitatory neurons only were driven by external stimuli. We 
presented a number of stimuli to the network, each of which increased the firing 
rate of a non-overlapping subset of excitatory neurons. All feedforward 
connections were fixed.  
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Figure 1. Model. (a) A network model with distinct excitatory and inhibitory populations. Only 
excitatory populations are driven by external inputs. Only synapses that project to excitatory 
neurons are assumed to be plastic. (b) A schematic of the plasticity rules proposed in (Asabuki & 
Clopath, 2023). Excitatory (blue) and inhibitory (orange) synapses projecting to an excitatory 
neuron (triangle) obey different plasticity rules. For excitatory synapses, errors between internally 
driven excitation (blue sigmoid) and the output of the cell provide feedback to the synapses and 
modulate plasticity (blue square). All excitatory connections seek to minimize such errors. For 
inhibitory synapses, the error between internally driven excitation (blue sigmoid) and inhibition 
(orange sigmoid) must be minimized to maintain excitation-inhibition balance (orange square). 
 
 
We investigated how prediction errors are formed through sensory experiences 
by using synaptic plasticity rules that we proposed previously (Asabuki & Clopath, 
2023). We assumed that excitatory and inhibitory synapses undergo distinct 
plasticity rules. Briefly, excitatory synapses that contributed to predicting neural 
activity were strengthened (Pfister et al., 2006; Urbanczik and Senn, 2014; 
Asabuki & Fukai, 2020; Asabuki & Fukai, 2023) (Fig. 1b, blue square), while the 
inhibitory synapses were modified to maintain the excitation-inhibition balance (EI 
balance) by predicting the recurrent excitatory potential (Fig. 1b, orange square).  
 

Emergence of a biphasic prediction error in a local recurrent network 

Numerous experimental studies using electro-encephalography (EEG) and 
magneto-encephalography (MEG) have shown that a mismatch signal arises in 
auditory cortex when a rare “deviant” vocal stimulus occurs among a sequence 
of consistently repeated “standard” stimuli (Näätänen et al., 1978; Garrido et al., 
2009; Strauss et al., 2015). This mismatch signal is measured by subtracting the 
response to the standard event from the response to the deviant one. Typically, 
this response difference (also known as difference waves) comprises both a 
negative (mismatch negativity; MMN) and a positive component (Liebenthal et al., 
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2003; Luck 2005; Garrido et al., 2009; Nagai et al., 2017; Wacongne et al., 2011; 
Meyer et al., 2011). Intriguingly, further experimental studies have found that 
inferotemporal cortex shows similar biphasic mismatch responses when a 
violation of transitional rules imposed during learning occurs (Meyer et al., 2011). 
Despite the consistency of these observations over various tasks, the plasticity 
mechanism that generates biphasic mismatch response is still unclear. 
  
We first asked whether the proposed model could account for this biphasic 
mismatch response when a transition is violated in a learned sequence. To this 
end, a sequence with the deterministic transition “ABC” was presented to the 
network during a learning phase (Fig.2a, top). The excitatory synapses within 
each assembly (i.e., group of neurons targeted by the same stimulus, e.g. “A”) 
increased through learning, indicating the formation of cell assemblies for all 
stimuli (Fig.2b, diagonal blocks). Second, between-assembly connections for 
assembly A to B and B to C were strengthened, indicating that the model learned 
the transition probabilities between stimulus patterns as we have shown 
previously (Fig.2b, blue squares, Asabuki & Clopath, 2023). 
 
We then investigated whether the network which learned stereotypical 
sequences showed a prediction error signal when a deviant sequence was 
presented. To this end, we measured the entire network response over a 
standard sequence (“ABC”) and a novel sequence with a deviant transition 
(“ABA”) (Fig.2a, bottom). In this analysis, all synaptic weights were fixed so that 
we could monitor the pure dynamics of the network. Note that the transition from 
pattern B to A in a deviant sequence violated the transition rule established during 
learning, and hence recurrent excitation connections from B to A had not been 
enhanced (Fig.2b, red square). In both the standard and deviant case, the 
network activities immediately after the transition showed an abrupt drop (early 
phase) followed by a slower rise (late phase) (Fig.2c, around vertical dashed line). 
However, we found a significant difference between the two: the response 
amplitudes were much stronger in both the negative and positive phases, in the 
deviant case than in the standard one, making the resulting error signals biphasic 
(Fig. 2d), consistent with results reported in the EEG literature (Liebenthal et al., 
2003; Luck 2005; Garrido et al., 2009; Nagai et al., 2017; Wacongne et al., 2011; 
Meyer et al., 2011). 
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Figure 2. Biphasic prediction error learned through plasticity. (a, top) During learning, the 
sequence ‘ABC’ was repeatedly presented to the network. We assumed 300 ms-long gaps 
between each sequence. (a, bottom) After learning, all synapses were fixed and both the standard 
sequence ‘ABC’ and the deviant sequence ‘ABA’ were presented alternately. (b) Learned 
excitatory synapses are shown. Synapses were strengthened within each assembly (diagonal 
component of the matrix) and between assemblies that had transitions in a standard sequence 
(blue squares). Red squares show synapses between assemblies in the deviant sequence. (c) 
Mean responses of the whole network during the standard (blue) and deviant (red) sequences 
are shown. Period during which the last elements of sequences were presented was divided into 
early and late phase. Shaded areas represent s.d. over 10 trials. Black horizontal lines show 
periods during the two responses show significant difference. (d) Mean prediction errors during 
early and late phase over 10 independent simulations are shown. Here, prediction error was 
defined as difference between responses to deviant and standard sequences (deviant - standard). 
In c and d, p-values were calculated using a two-sided Welch’s t-test (***p<0.001). 
 
In summary, these results show that our network model learns prediction error 
responses when presented with a stimulus sequence transition violation. In 
particular, the model shows a biphasic prediction error response, comprising a 
negative and a positive component, as found in neurophysiological experiments. 
 

Network mechanism of biphasic prediction errors 

We then asked what is the network mechanism underlying this biphasic behavior. 
As the network dynamics were determined by recurrent connections onto 
assemblies, we analyzed the dynamics of excitatory and inhibitory recurrent 
currents. Here, we limited our analysis to the period during which the last stimulus 
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of each sequence was presented, as the prediction error occurs only within this 
period. Specifically, we analyzed the currents in assembly C for the standard case 
and in assembly A for the deviant case (Supplementary Fig.1). We first explain 
the mechanism underlying the negative component of the prediction error, which 
occurs during the early phase. During the early phase in the standard sequence, 
excitatory and inhibitory currents showed almost similar levels, indicating that the 
model approximately maintained EI balance (Fig.3a, standard). In contrast, in the 
deviant case, these currents showed a significant deviation (Fig.3a, deviant; 
Fig.3b), breaking the EI balance. As the inhibitory current in the deviant case was 
dominant over the excitatory current, a negative component appeared in the 
prediction error in the early phase. Note that this break in EI balance was 
triggered by the significant decrease in excitatory currents in the deviant case 
(Fig.3a, cyan). Although the inhibitory current also showed similar behavior 
(Fig.3a, orange), the difference between the inhibitory currents was much smaller 
than for the excitatory currents (Supplementary Fig.3a). The significant difference 
in excitatory currents is likely explained by the fact that the recurrent connections 
from assembly B to A were not strengthened by learning, as we have already 
seen (Fig. 2b). 
 
The positive error component during the late phase is more surprising. We 
analyzed recurrent currents for both excitatory and inhibitory during the late 
phase, as we did for the early phase case. As in the early phase, the EI balance 
was maintained in the standard case (Fig.3c, standard) and was broken in the 
deviant case (Fig.3c, deviant; Fig.3d). Notably, we found that, in contrast to early 
phase, the excitatory current was much stronger than the inhibitory one in the 
deviant case, generating a positive prediction error during the late phase. The 
opposite direction of breaking EI balance was due to a significant decrease in 
inhibitory currents in the deviant case (Supplementary Fig.3b). 
 
Altogether, these results suggest that negative and positive prediction errors in 
the early and late phases, respectively, result from distinct mechanisms. They 
show further that both negative and positive prediction errors can be explained 
by a disruption in the EI balance in the deviant case, but that the underlying 
mechanism is different for the two phases: in the early phase, the EI balance is 
broken due to the significant decrease in excitatory currents, whereas in the late 
phase, the break is due to a decrease in inhibitory currents.  
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Figure 3. Analysis of recurrent currents. (a) Averaged excitatory (cyan) and inhibitory (orange) 
currents in the early phase for standard and deviant case are shown. The symbol "~" indicates 
that an approximate EI balance is maintained in the standard case. (b) Differences between 
excitatory and inhibitory currents in the early phase for standard and deviant case are shown. (c) 
Same as a, but for the late phase. (d) Same as b, but for the late phase. In b and d, p-values were 
calculated using a two-sided Welch’s t-test (***p<0.001). Data points for each case were 
generated by 10 independent simulations. 

 
Learning of expectation dependent prediction error signals 

The above results indicate that the model shows transitional surprise response if 
a predicted stimulus in a sequence is replaced by another stimulus, creating a 
deviant transition. If the network does indeed encode expected sequence order 
through learning, the responses to a same stimulus might be influenced by 
specific features of the stimuli that precede it.  
 
Similarly, recent experimental study has shown that primary visual cortex (V1) 
responds differently to a stimulus based on whether the preceding stimulus in the 
sequence was expected or unexpected (Price et al., 2022). Extracellular neuronal 
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recordings were acquired in awake head-fixed mice viewing sequences of visual 
stimuli “ABCD”, where each stimulus in the sequence had a set orientation. Mice 
were randomly assigned to four test days (i.e., days 1-4), such that each group 
experienced a different number of learning days (Fig. 4a). After experiencing the 
test stimuli once, mice were removed from the experiment. To quantify to what 
extent prediction certainty influences neural responses, two types of sequences 
(i.e., “AB*CD” and “EB*CD” ) were used as test stimuli set in the experiment. Here, 
“E” was a novel or unexpected, stimulus which had not been included in the 
learned sequence “ABCD”. Further, “B*” reflects the fact that the “B” shown at 
test time varied in its orientation by a few degrees compared to the trained “B”. 
To summarize the experimental results, when comparing V1 neural activity mice 
tested on days 1 and 4 of learning, only the responses to stimulus “B*” in the “AB*” 
sequence, and not the “EB*” one, were significantly suppressed with learning.  
 
We sought to test whether our model is consistent with these experimental results. 
In our simulation, a sequence “XYZ” and a single element sequence “W” were 
presented randomly during learning (Fig. 4b, top). Stimulus sequences were 
separated from each other by a 300 ms gap. As the learning progressed, 
recurrent weights formed four assemblies, with three of them (i.e., assemblies X, 
Y, and Z) being connected by unidirectional connections (as in Fig. 2, see 
Supplementary Fig. 3). We then asked how the maturation of weights influences 
prediction errors by comparing the response to two sequences (i.e., expected 
“XY*Z” and unexpected “WY*Z”), as in the experimental setting described above 
(Fig.4b, bottom). Here, during the presentation of “Y*”, we activated all 
assemblies, but stimulated assembly “Y” most strongly (Methods). To quantify to 
what extent these stimulation protocols influenced the network activity, we first 
split the period during which “Y*” was presented into an early and a late phase, 
as in the experiment (Fig. 4c). The average network activity for the expected and 
unexpected cases in the early and late phase was then calculated for each day. 
Consistent with experimental results, the network response to “Y*” was different 
between the pre- and post-learning stages, only for the “XY*” sequence (Fig.4d). 
A possible mechanism behind these results is that due to inhibitory synapses 
getting stronger with learning, the presentation of the expected sequence 
produced stronger inhibitory currents, leading to strong suppression in the 
expected case. 
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Figure 4. Learning of expectation dependent prediction error signals. (a) Learning phase 
was divided into four stages. At the end of each stage, all synapses were consolidated and 
network performance was tested against familiar and novel sequences. (b, top) During learning, 
sequence “XYZ” and an isolated element “W” were presented alternately. (b, bottom) During the 
testing phase, two sequences, “XY*Z” and “WY*Z”, were presented to the network alternately. 
Here, “Y*” is a noisy version of pattern “Y” (see Methods). (c, left) Mean network responses to the 
sequence “XY*Z” over different days. (c, right) Same as left figure, but for sequence “WY*Z”. (d) 
Average firing rates in the early and late windows after the occurrence of the second element “Y*” 
preceding “X” (left) or “W” (right) over different days are shown. Consistent with an experiment by 
Price et al. (2022), only the late window for “XY*” showed suppression through learning. In d, p-
value was calculated using a two-sided Welch’s t-test (***p<0.001). Data points for each case 
were generated by 10 independent simulations. 

 
In summary, we have shown that the model network activity changes significantly 
through training, to a degree that is dependent on predictive certainty. Consistent 
with the experimental results, network responses to expected stimuli were 
suppressed in a late phase in a stimulus transition after training, but responses 
to novel stimuli did not show such suppression. 
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Learning context-dependent prediction error signals  

So far, we have explored how our network could develop a relatively simple class 
of prediction error-related activity. Indeed, in all the simulations so far, prediction 
errors were generated by a violation of a particular transition between a pair of 
stimuli. Although it is possible that prediction errors only encode a generic error 
signal, shared across multiple stimuli, a recent experimental study has shown 
that prediction error signals for particular stimulus emerges in a context-
dependent manner (Audette & Schneider; 2023). The experiment showed that 
many neurons show strong suppression of responses to certain stimuli only in the 
expected context, indicating that these signals were not simply responses to the 
simultaneous presentation of multiple stimuli. As a simple mechanism in which 
shared inhibition among excitatory neurons does not explain such context-
dependent signals based on expectation, this result suggests that inhibitory 
connections are precisely tuned to selectively generate expectations for sensory 
stimuli. However, the plasticity mechanism underlying learning such context-
dependent prediction errors is still elusive. We therefore wondered whether our 
model could account for learning such context-dependent prediction error 
representations. 

In Audette & Schneider (2023), mice were trained to perform a sound-generating 
spontaneous forelimb movement task to explore how movement-based 
predictions affect neural responses to expected and unexpected sounds. During 
training, a stereotypical auditory stimulus was presented at the beginning of each 
movement. After the animal underwent sufficient training to produce spontaneous 
forelimb movements, mice heard either the well-trained expected sound or a 
novel auditory stimulus with a slightly different frequency at the beginning of each 
lever movement they produced (‘active’ condition). These sounds were also 
played in conditions where the animal was not performing lever movements 
(‘passive’ condition). The experiment showed that neural responses to the 
expected sound in the active condition were suppressed compared to the same 
sound heard in the passive case. In contrast, responses to the unexpected sound 
under the active condition were enhanced relative to the passive case. This result 
suggests that prediction error signals emerge due to a specific combination of 
stimulus and context in a way that is dependent from expectation. 
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We show that our model can learn context-specific prediction errors as well. To 
this end, we considered two types of inputs: one corresponding to auditory signals, 
and the other to a motor signal from motor cortex. Excitatory populations were 
divided into two distinct populations, each of them receiving one auditory signals 
(i.e., familiar or novel; A or B) (Fig. 5a, top). All neurons, excitatory and inhibitory, 
received distributed step-shaped inputs to model motor command signals. We 
assumed that presentation of both auditory and motor command inputs increased 
excitatory drive to neurons targeted by each pattern. During learning, the auditory 
signals A and B were presented to the network alternately, with only signal A 
being combined to the motor signal (“active” condition, Fig. 5a, bottom). 
 
 

 
 
Figure 5. Learning of context-dependent prediction error signals. (a, top) Model settings. 
Excitatory population was divided to two subpopulations, each of which received either sound 
stimulus A or B (green and orange arrows). In addition, all neurons in the network could receive 
motor command input. (a, bottom) During learning, the auditory signal A was combined to the 
motor signal, but signal B was isolated from any motor signal. (b) After learning, sounds A and B 
were presented either coupled (active) or isolated (passive) from the motor input. (c) Mean 
network responses to sound A and B in the passive (Darker) and active (Lighter) context. (d) 
Recurrent excitatory and inhibitory currents while sound A (left) or B (right) was presented in the 
active context are shown. (e) Same as d, but in the passive context. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2023. ; https://doi.org/10.1101/2023.06.15.545081doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.15.545081
http://creativecommons.org/licenses/by/4.0/


13 
 

After learning, we first compared the network responses to the familiar stimulus 
(i.e., stimulus pattern ‘A’) under the active and the passive cases. We simulated 
responses under the active condition by measuring evoked dynamics in the 
network receiving both stimulus pattern A and a motor command signal (Fig. 5b, 
left). In contrast, we defined responses to stimulus ‘A’ under the passive condition 
as network responses to stimulus pattern ‘A’ alone (Fig. 5b, right). Consistent with 
the experimental results, the network responses to the expected sound in the 
active condition were suppressed compared to the responses to the same sound 
heard in the passive case (Fig. 5c, left). To test whether our model showed 
context-dependent prediction errors as shown experimentally (Audette 
& Schneider; 2023), we also compared the network responses to the stimulus 
pattern ‘B’ under the active and passive cases. Interestingly, in contrast to 
stimulus ‘A’, responses to the stimulus ‘B’ in the active condition were enhanced 
relative to the passive case (Fig. 5c, right).  
 
We then asked what the potential mechanism is underlying the emergence of 
context-dependent prediction errors in the network model. As we have seen in 
the simple task, prediction error signals are generated by breaking the EI balance 
with an unexpected stimulus presentation. We therefore monitored excitatory and 
inhibitory recurrent currents during stimulus pattern ‘A’ or ‘B’, as presented under 
two different conditions (i.e., active or passive condition). When stimulus ‘A’ was 
presented, the strength of both currents was not drastically different in the active 
case (Fig. 5d, left), but was significantly different in the passive condition (Fig. 5e, 
left). In contrast, when the novel pattern ‘B’ was presented, the EI balance was 
maintained in the passive case (Fig. 5e, right), but broken in the active condition 
(Fig. 5d, right).  

In summary, these results suggest that our network model with prediction-based 
plasticity can learn context-dependent prediction errors, as shown in the 
experimental study of Audette & Schneider (2023). The results also showed that 
prediction errors were generated due to a breaking in the EI balance that was 
precisely tuned in context-dependent manner. 

Discussion 

In this study, we investigated how plasticity at recurrent excitatory and inhibitory 
synapses can produce prediction errors that carry features of mismatch 
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responses observed in the brain. Specifically, we trained our model to predict 
upcoming network activity through its excitatory synapses, while its inhibitory 
synapses were tuned to maintain the EI balance (Asabuki & Clopath, 2023). We 
showed that the network learned the appropriate connectivity patterns to encode 
stimulus statistics and generate prediction error signals when deviant stimuli were 
presented, in agreement with various experimental results (Liebenthal et al., 
2003; Luck 2005; Garrido et al., 2009; Nagai et al., 2017; Wacongne et al., 2011; 
Meyer et al., 2011; Audette & Schneider, 2023; Price et al., 2022). 
 
Predictive coding suggests that mismatch signals may carry prediction errors in 
the brain. Indeed, previous computational studies have shown that spiking 
network models with layered cortical architecture trained using predictive coding 
replicate mismatch signals (Wacongne et al., 2012). Notably, however, although 
both predictive coding models and our recurrent network model generate 
prediction errors, there are several differences between the two. First, in standard 
predictive coding models, predicted state and prediction error signals are typically 
encoded in separate populations of neurons (Rao & Ballard, 1999;  Bastos et al., 
2012; Huang & Rao, 2011; Friston, 2012; Friston, 2018; Shipp, 2016). In contrast, 
in our model, both the predicted states and prediction errors are represented 
within a single neuron. We achieved this by implementing two distinct nonlinear 
activation functions within single neurons. A potential biologically plausible 
implementation of this feature would be to explicitly implement neurons as two-
compartment units, where a dendritic compartment is non-linearly connected to 
a somatic compartment, which produces the neuron’s output. We leave the 
question of how exactly prediction and error signals might be encoded in more 
biologically plausible segregated neuron compartments and the associated 
plasticity rules to future work.  
 
Another difference between standard predictive coding and our model is that, in 
predictive coding, top-down input predicts bottom-up input (Rao & Ballard, 1999; 
Bastos et al., 2012; Huang & Rao, 2011; Lotter et al., 2016). In contrast, in our 
model, predictions are generated locally, by the recurrent input. Experiments 
have shown that mismatch responses occur even when participants are engaged 
in a distractor task that draws attention away from the sensory modality in which 
the oddball stimulus occurs. This suggests that top-down input may not always 
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be necessary for generating prediction error signals (Garrido et al., 2009; 
Näätänen et al., 2007).  
 
We showed that local recurrent connectivity is sufficient to reproduce different 
forms of prediction error signals. Although a previous study suggested that 
combining recurrent connectivity with top-down prediction supports associative 
memory tasks via covariance learning, recurrent connections were trained to 
predict specifically in the spatial domain (Tang et al., 2023). Due to this nature of 
recurrent plasticity, the direct relationship between recurrent input and prediction 
error signals has remained elusive. We found that our model learns predictions 
in the temporal domain via local recurrent circuit and thus generates prediction 
error signals over sequential stimuli. How prediction error signals can encode 
both spatial and temporal information remains an open question. 
 
Our model reproduces the general temporal profile of mismatch responses. 
Experimentally, several types of prediction error signals, including the standard 
MMN and inferotemporal cortical mismatch responses to visual stimuli violating 
sequence transitional rules, show a biphasic waveform (Nagai et al., 2017; Meyer 
et al., 2011). This waveform typically consists of an early negative deflection, 
followed by a positive one. Although one must be cautious in interpreting the 
meaning of positive and negative waves in EEG studies, it is notable that a very 
similar biphasic pattern emerges when measuring the difference in overall neural 
activity in response to standard and deviant stimuli in our recurrent network. 
 
Predictive coding in which the prediction and prediction error signals are carried 
by different neurons (Rao & Ballard, 1999;  Bastos et al., 2012; Huang & Rao, 
2011; Friston, 2012; Friston, 2018), as opposed to a single neuron as in our study, 
may present some benefits. In particular, this may allow for more complex error 
signals to emerge through populations of error neurons specializing, for example, 
in positive and negative errors, respectively. Hertäg and Clopath (2022) show 
that such a network can, for example, use negative prediction error neurons to 
represent when an actual sensory stimulus is smaller than predicted, and positive 
prediction error neurons to represent when an actual sensory stimulus is bigger 
than predicted. In our model, it is conceivable that a similar function could be 
achieved using a temporal code, i.e., by modulating the amplitude of the positive 
or negative components of the prediction error signal, specifically. Indeed, we 
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showed that both negative and positive prediction errors could arise from 
breaking of the EI balance. Specifically, negative prediction errors were due to a 
significant decrease in excitatory currents, whereas positive ones were due to a 
decrease in inhibitory currents. Further study is required to determine what 
advantages and disadvantages these different implementations present, and 
which best explains the spatial and temporal properties of mismatch signals in 
the brain. 
 
Although our model can account for learning a variety of prediction error signals, 
in principle, it cannot learn predictions over the global structure of stimulus chunks. 
The reason behind this shortcoming is that our model learns local transition 
statistics between stimuli only, but is not designed to learn higher-order statistics 
(e.g., non-Markovian statistics) of stimuli. There are several possible ways to 
overcome this limitation. One possible solution is to consider much longer time 
scales than we considered in this study, such as calcium dynamics or NMDA 
spikes. Indeed, previous computational study show that NMDA-dependent 
plasticity is crucial for learning prediction error signals over global structure of 
sequence (Wacongne et al., 2012). Another possible way to achieve this is to 
consider hierarchically structured networks, as in real cortical structures. In such 
hierarchical networks, sub-networks lower in the hierarchy could learn to encode 
local element-level transitions, while the higher-level networks could learn slow 
and abstract dynamics (Maes et al., 2021), thus developing error signals related 
to the global structure of the sensory inputs. Extending our recurrent network 
model into a hierarchically structured model, and studying the relationship 
between recurrently driven and top-down driven prediction error signals could 
shed important light on the different between global and local mismatch signals 
in the brain. 
 
In conclusion, our study sheds light on the learning mechanisms that may 
underlie mismatch signals in the brain, and provides a new perspective on the 
relationship between synaptic plasticity and prediction errors. Furthermore, it 
opens up new avenues for future studies of prediction error signals in hierarchical 
networks, and may contribute to the development of more flexible and biologically 
plausible models of neural computation. 
 
Methods 
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Our recurrent neural networks consist of 𝑁! excitatory and 𝑁" inhibitory neurons. 
During learning, the membrane potentials of neuron 𝑖  at time 𝑡  with external 
current 𝐼#$%& were calculated as follows:  

𝑢!"(𝑡) =&𝑊!#
""𝑥#"(𝑡) −&𝑊!$

"%𝑥$% (𝑡) + 𝐼!&'((𝑡)
)!

$*+

,
)"

#*+

(1) 

𝑢#"(𝑡) = ∑ 𝑊#'
"!𝑥'!(𝑡) − ∑ 𝑊#(

""𝑥(" (𝑡)
)!
(*+

)"
'*+ ,    (2) 

where 𝑢#!  and 𝑢#"  are the membrane potential of 𝑖 -th excitatory and inhibitory 
neuron, respectively (see Table 1 for the list of variables and functions). The 
strength of external input 𝐼#$%& takes the value 1 if a stimulus pattern targeting 
neuron 𝑖  was presented, and 0 otherwise. This structured external input was 
replaced by constant inputs 𝐼#,-./& of value 0.3 during spontaneous activity. We 
will describe the details of stimulus patterns later. 𝑊#'

01(𝑎, 𝑏 = 𝐸; 𝐼) is a recurrent 
connection weight from 𝑗-th neuron in population 𝑏 to 𝑖-th neuron in population 𝑎. 
All neurons were connected with a coupling probability of 𝑝 =0.5. The initial value 

of synaptic weights 𝑊#'
01 were uniformly set to 0.5/4𝑝𝑁1). 𝑥#0 is a postsynaptic 

potential evoked by 𝑖-th neuron in population 𝑎, which will be described later. 

Spiking of each neuron model in population 𝐸  was modeled as an 
inhomogeneous Poisson process with instantaneous firing rate 𝑓#!  with a 
sigmoidal response function 𝜑, with parameters slope 𝛽 and threshold 𝜃, as: 

𝑓#! = 𝜑(𝑢#!) ≡ 𝜑2 :1 + exp[𝛽(−𝑢#! + 𝜃)]B
3+
, (3) 

where 𝜑, is the maximum instantaneous firing rate of 50 Hz.  
 
Inhibitory neurons’ firing rates were assumed to be calculated with static 
sigmoidal function as: 

𝑓!% = 𝜑0𝑢!%1 ≡ 𝜑, 31 + exp7𝛽0−𝑢!% + 𝜃1:;
-+
,    (4) 

where the maximum instantaneous firing rate 𝜑, was assumed to be same as 
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that of excitatory neurons (i.e., 50 Hz). 
  
Neuron 𝑖 in population 𝑎 generates a Poisson spike train at the instantaneous 
firing rate of 𝑓!.. Let us describe the generated Poisson spike trains as: 

𝑆!.(𝑡) = ∑ 𝛿(𝑡 − 𝑡/)(#∈($
% ,       (5) 

where 𝛿  is Dirac’s delta function and 𝑡!.  is the set of times at which a spike 
occurred in the neuron. The postsynaptic potential evoked by the neuron (i.e., 𝑥!.) 
is then calculated as: 

𝜏1𝐼!. = −𝐼!. +
+
2
𝑆!.(6)�̇�!. =

-'$
%

2
+ 𝑥,𝐼!. ,        (7) 

where 𝜏1 = 5ms, 𝜏 = 15 ms, and 𝑥, = 25.        
 

The learning rules 
As in Asabuki & Clopath (2023), all excitatory synaptic connections onto 
excitatory neurons obeyed the following plasticity rule to predict the activity of 
postsynaptic neurons as: 

∆𝑊!#
"" = 𝜖[𝑓!" − 𝑦!"] ∙ 𝑥#",         (8) 

where 𝑦!" is a recurrent prediction of a firing rate, defined as: 
𝑦!" = 𝜑0∑ 𝑊!#

"" ∙ 𝑥#"
)"
#*+ 1,        (9) 

where the function 𝜑(∙) is the sigmoid function defined in Eq.3. In this study, the 
learning rate was set to 𝜖 = 10-3 in all simulations.  
The inhibitory synapses onto excitatory neurons were plastic according to the 
following rule: 

∆𝑊!#
"% = 𝜖[𝑦!" − 𝑦!%]𝑥#%,         (10) 

where 𝑦!% was the total inhibitory input onto postsynaptic neuron: 
𝑦!% = 𝜑0∑ 𝑊!#

"% ∙ 𝑥#%
)!
#*+ 1.       (11) 

Through this inhibitory plasticity, inhibitory synapses were modified to maintain 
excitatory-inhibitory balance in all excitatory neurons. 
 
Table1. Definition of variables and functions. 
𝑢!", 𝑢!% Membrane potentials 
𝑥#", 𝑥$%  Postsynaptic potentials 
𝑆!. Poisson spike train generated by network neurons 
𝑊!#

"", 𝑊!$
"%, 𝑊!#

%", 𝑊!$
%% Recurrent connections 

𝐼!" , 𝐼!% Synaptic currents generated by network neurons 
𝑓!", 𝑓!% Instantaneous firing rates 
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𝑦!", 𝑦!% Recurrent predictions 
ℎ! Memory trace 
𝜑 Sigmoidal function 

 
Table2. Parameter settings. 
𝑝 Connection probability 0.5 
𝑁", 𝑁% Network size 500 
𝜖 Learning rate 10-3 
𝜏1 Synaptic time constant 5 ms 
𝜏 Membrane time constant 15 ms 
𝛽, 𝜃 Parameters for sigmoid 5, 1 
𝜑, Maximal firing rate 50 Hz 
𝑥, Scaling factor of synaptic current 25 
𝐼!&'( External current elicited by stimulus 

presentation 
1 

𝐼!4561( Constant external current during testing 
phase 

0.3 

 

Simulation details 

The parameters used in the simulations are summarized in Table 2. All 
simulations were performed in customized Python3 code written by TA with 
numpy 1.17.3 and scipy 0.18. Differential equations were numerically integrated 
using a Euler method with integration time steps of 1 ms. 
 

Stimulation protocols 

In all simulations, each stimulus pattern had a duration of 100 ms and was 
presented without an inter-pattern interval. Sequences of patterns were 
presented alternately with an interval of 300 ms. We assumed each neuron in a 
network was stimulated by one of the stimulus patterns and that targeted 
assemblies did not overlap. Presentation of each pattern triggered excitatory 
currents to its targeted neurons of strength 1 and zero otherwise. In all 
simulations, we assumed that only external inputs caused by the presentation of 
the stimuli were injected into the network during learning. In contrast, we 
assumed all excitatory neurons received both structured and constant 
background inputs over the whole period occurring after learning. During learning, 
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all excitatory synaptic connections onto excitatory neurons were assumed to be 
plastic, while they were static during the testing phase after learning. The network 
was trained typically for 1,000 seconds except in Figure 4, where the simulation 
time was 300 seconds. 
 

Measuring prediction error signals 

In Figure 2d, the early and late phases of responses were first defined as the 
periods before and after the point at which the mean standard and deviant 
responses intersected. Mean responses were calculated over 10 independent 
simulations. We then calculated the mean differences between responses over 
deviant and standard sequence (deviant-standard) for the two periods (i.e., early 
and late phases). 
 

Learning of expectation dependent prediction error signals 

In Figures 4c and 4d, periods during which stimulus pattern “Y*” was presented 
were divided into a first (early) and a second (late) half. Mean activities over time 
were calculated over different days for each condition. To simulate stimulation 
with noisy stimulus “Y*”, assembly Y was stimulated with an input of intensity 
0.6𝐼&'( and the other assemblies with an input of intensity 0.4𝐼&'(, where 𝐼&'( is the 
strength of input for all other patterns (i.e., “X”, “W”, and “Z”). 
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Figure legends 

Figure 1. Model. (a) A network model with distinct excitatory and inhibitory populations. Only 

excitatory populations are driven by external inputs. Only synapses that project to excitatory 

neurons are assumed to be plastic. (b) A schematic of the plasticity rules proposed in (Asabuki & 

Clopath, 2023). Excitatory (blue) and inhibitory (orange) synapses projecting to an excitatory 

neuron (triangle) obey different plasticity rules. For excitatory synapses, errors between internally 

driven excitation (blue sigmoid) and the output of the cell provide feedback to the synapses and 

modulate plasticity (blue square). All excitatory connections seek to minimize such errors. For 

inhibitory synapses, the error between internally driven excitation (blue sigmoid) and inhibition 

(orange sigmoid) must be minimized to maintain excitation-inhibition balance (orange square). 

 

Figure 2. Biphasic prediction error learned through plasticity. (a, top) During learning, the 

sequence ‘ABC’ was repeatedly presented to the network. We assumed 300 ms-long gaps 

between each sequence. (a, bottom) After learning, all synapses were fixed and both the standard 

sequence ‘ABC’ and the deviant sequence ‘ABA’ were presented alternately. (b) Learned 

excitatory synapses are shown. Synapses were strengthened within each assembly (diagonal 

component of the matrix) and between assemblies that had transitions in a standard sequence 

(blue squares). Red squares show synapses between assemblies in the deviant sequence. (c) 

Mean responses of the whole network during the standard (blue) and deviant (red) sequences 

are shown. Period during which the last elements of sequences were presented was divided into 

early and late phase. Shaded areas represent s.d. over 10 trials. Black horizontal lines show 

periods during the two responses show significant difference. (d) Mean prediction errors during 

early and late phase over 10 independent simulations are shown. Here, prediction error was 

defined as difference between responses to deviant and standard sequences (deviant - standard). 

In c and d, p-values were calculated using a two-sided Welch’s t-test (***p<0.001). 

Figure 3. Analysis of recurrent currents. (a) Averaged excitatory (cyan) and inhibitory (orange) 

currents in the early phase for standard and deviant case are shown. The symbol "~" indicates 

that an approximate EI balance is maintained in the standard case. (b) Differences between 

excitatory and inhibitory currents in the early phase for standard and deviant case are shown. (c) 

Same as a, but for the late phase. (d) Same as b, but for the late phase. In b and d, p-values were 
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calculated using a two-sided Welch’s t-test (***p<0.001). Data points for each case were 

generated by 10 independent simulations. 

Figure 4. Learning of expectation dependent prediction error signals. (a) Learning phase 

was divided into four stages. At the end of each stage, all synapses were consolidated and 

network performance was tested against familiar and novel sequences. (b, top) During learning, 

sequence “XYZ” and an isolated element “W” were presented alternately. (b, bottom) During the 

testing phase, two sequences, “XY*Z” and “WY*Z”, were presented to the network alternately. 

Here, “Y*” is a noisy version of pattern “Y” (see Methods). (c, left) Mean network responses to the 

sequence “XY*Z” over different days. (c, right) Same as left figure, but for sequence “WY*Z”. (d) 
Average firing rates in the early and late windows after the occurrence of the second element “Y*” 

preceding “X” (left) or “W” (right) over different days are shown. Consistent with an experiment by 

Price et al. (2022), only the late window for “XY*” showed suppression through learning. In d, p-

value was calculated using a two-sided Welch’s t-test (***p<0.001). Data points for each case 

were generated by 10 independent simulations. 

Figure 5. Learning of context-dependent prediction error signals. (a, top) Model settings. 

Excitatory population was divided to two subpopulations, each of which received either sound 

stimulus A or B (green and orange arrows). In addition, all neurons in the network could receive 

motor command input. (a, bottom) During learning, the auditory signal A was combined to the 

motor signal, but signal B was isolated from any motor signal. (b) After learning, sounds A and B 

were presented either coupled (active) or isolated (passive) from the motor input. (c) Mean 

network responses to sound A and B in the passive (Darker) and active (Lighter) context. (d) 

Recurrent excitatory and inhibitory currents while sound A (left) or B (right) was presented in the 

active context are shown. (e) Same as d, but in the passive context. 
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