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ABSTRACT 
 
Modeling subspaces of a distribution of interest in high 
dimensional spaces is a challenging problem in pattern 
analysis. In this paper, we present a novel framework for 
pose invariant face detection through multi-view face dis-
tribution modeling. The approach is aimed to learn a set 
of low-dimensional subspaces from an originally nonlin-
ear distribution by using the mixtures of probabilistic 
PCA [16]. From the experiments, we found the learned 
PPCA models are of low dimensionality and exhibit high 
local linearity, and consequently offer an efficient repre-
sentation for visual recognition. The model is then used to 
extract features and select “representative” negative 
training samples. Multi-view face detection is performed 
in the derived feature space by classifying each face into 
one of the view classes or into the nonface class, by using 
a multi-class SVM array classifier. The classification re-
sults from each view are fused together and yields the 
final classification results.  The experimental results dem-
onstrate the performance superiority of our proposed 
framework while performing multi-view face detection.  
 
1. INTRODUCTION 
 
Face images are commonly represented as high dimen-
sional data points in some feature space. Despite the high 
dimensionality, the common spatial structure of faces im-
plies that the data may lie in a lower-dimensional mani-
fold. In recent years, a growing research interest is focused 
on statistically identify and parameterize the low-
dimensional manifold of such data with an objective to 
provide a meaningful representation while performing 
visual recognition tasks. However, face appearance in na-
ture scenes varies drastically with changes in viewpoint, 
illumination conditions, and facial shapes. Such variations 
cause the face distribution to be highly nonlinear and 
complex in the original image space [1] [15]. 
 
To address this problem, a natural treatment is to divide 
face images into several subsets according to view angles 
and model each view subspace respectively [2]. Such 
view-based scheme is preferred because it is avoided to 

explicitly establish 3D model from images or appearances 
of the objects from possible views, which often tends to be 
a more complicate problem. Furthermore, the learning of 
distribution is simplified to be performed only within a 
fixed view class. In this paper, we propose a novel frame-
work which follows the view-based scheme to learn 
nonlinearly distributed view subspaces via the PPCA mix-
tures model, and apply the learned representation to face 
detection.    
 
Learning a subspace representation usually involves deriv-
ing a set of basis components from training data. As a 
powerful technique for data reduction, principal compo-
nent analysis has been applied to face analysis [3, 4]. A 
subspace spanned by a set of eigen-pictures is generated 
and used to encode face images. This method leads to a 
significant improvement in the performance of both face 
recognition and detection because it provides a compact 
description of face appearance and automatically identifies 
the degrees-of-freedom of the underlying statistical vari-
ability. However, as a global linear model, PCA assumes 
that the data distribution is single Gaussian, which is not 
the case in many real-world applications. To obtain a bet-
ter description of face variations, we may consider one of 
the following two methods: 1) Approximate the face dis-
tribution with a mixture of local linear subspace model [5] 
[6] [7] [8]. 2) Nonlinear subspace analysis algorithms, 
such as principle curves [9], splines [10] and kernel prin-
cipal analysis [11] may be used for analyzing face mani-
folds.  
 
The basic assumption of linear subspace mixtures is that 
the intrinsic structure of highly complex data can be cap-
tured by a set of local linear model. Sung and Poggio [5] 
modeled the distribution of frontal face and nonface with 
twelve Gaussian clusters (six for each) where the first 75 
eigenvectors of each cluster span one subspace. Two dis-
tances, DIFS and DFFS computed from training patterns 
and clusters are used to train a MLP classifier. Moghad-
dam and Pentland [6] proposed a density estimation tech-
nique derived from PCA algorithm. The target density is 
divided into two uncorrelated parts: the densities in princi-
pal subspace and its orthogonal complement. The two 
parts were multiplied together to give a complete evalua-



tion of the likelihood. The derived density is subsequently 
used for view-based face recognition and frontal face de-
tection. The authors argue that the introduction of density 
in orthogonal supplementary subspace can remove a great 
number of false alarms. Brendan and Huang [7] applied a 
mixture of factor analysis model to face recognition and 
demonstrated it outperforms traditional PCA methods.  
 
In [21], a nonlinear kernel machine based approach is pre-
sented for learning such nonlinear mappings. The aim is to 
provide an effective view-based representation for multi-
view face detection and pose estimation. Assuming that 
the view is partitioned into a number of distinct ranges, 
one nonlinear view-subspace is learned for each (range of) 
view from a set of example face images of that view 
(range), by using KPCA. Projections of the data onto the 
view-subspaces are then computed as view-based nonlin-
ear features. Multi-view face detection and pose estimation 
are performed by classifying a face into one of the facial 
views or into the nonface class, by using a multi-class ker-
nel support vector classifier (KSVC). 
 
In this paper, we address the problem of multi-view face 
detection from three aspects. First, the principle manifolds 
of target object (multi-view faces, in our case) are learnt 
under a maximum likelihood framework by fitting training 
examples into a mixture of probabilistic subspaces. To be 
specific, a collection of view specific PPCA mixture mod-
els are trained to capture the “intrinsic” dimensionality of 
face manifolds, in contrast to Stan Z Li et al. ’s work [21] 
where nonlinear KPCA was used to achieve this. Given an 
input sample, its posterior probability density can be 
robustly evaluated under a group of constrained Gaussian 
clusters; Second, a set of non-positive training patterns, 
which is generally hard to be directly modeled, are col-
lected in the light of the robust density estimation offered 
by the probabilistic PCA model. An efficient process to 
select a “representative” non-positive training set is intro-
duced and demonstrated to be more efficient than common 
bootstrapping methods; finally, the projections onto each 
subspace and the local reconstruction errors are combined 
as feature vectors to train a SVM array classifier. The out-
puts of each SVM are fused together in the last stage to 
give the final decision.  
 
The rest of the paper is organized as follows: Section 2 
introduces the formulation of PPCA and PPCA mixture 
model. We present the details of our proposed framework 
in section 3. Section 4 provides the experimental results 
and the conclusions are drawn in section 5. 
  
2. MODELS FOR DISTRIBUTION ANALYSIS 
 
Probabilistic PCA is a density estimation technique which 

is well grounded in the theory of factor analysis and latent 
variable models. The major advantage of PPCA is that it 
offers a robust likelihood measure and simultaneously 
provides an efficient computation procedure derived from 
a Gaussian latent variable model. 
 
2.1 Probabilistic Formulation of PCA  
 
Tipping and Bishop developed PPCA model [16] [17] by 
reformulating PCA as a maximum likelihood solution of a 
specific form of latent variable model. The d -dimensional 
observed variable t is related to the q -dimensional latent 
variable x by a linear mapping as εµ ++= Wxt , whereW is 
a qd × weight matrix andε  is an isotropic Gaussian noise. 
We can compute the probability distribution over t for a 
given x as 

}
2

1exp{)2()|( 2

2
2/2 µ

σ
πσ −−−= − Wxtxtp d  

If assuming x is independently distributed Gaussian with 
unit variance ),0(~)( qINxp , we can obtain the likelihood 
of t by integrating over x , 
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which is also a normal distribution with covariance matrix 
TWWIC += 2ο  

The problem here is to find the optimal weight matrix W 
to maximize the log-likelihood of observed data.  
 
With the parameterized probability model of the data, an 
EM based maximum likelihood approach can be naturally 
employed to solve this problem. Considering a “complete” 
data set consisted of both t and x , we derive the complete-
data log-likelihood as )()|(),( tptxpxtp = . The objective of 
maximizing data likelihood can be achieved by an iterative 
two-step procedure of maximizing the expectation 
of ),( xtp : a) First calculate the expectation of ),( xtp with 
respect to the posterior distribution ),,|( 2οWtxp over x; b) 
Find the new parameters W and 2σ which maximize 
the ),( xtp . 
 
The log-likelihood (2) of observed data is maximized 
while the weight matrix W and the noise variance 2σ take 
the form of  
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Where the column vectors of matrix qU are first q eigen-
vectors of the data covariance matrix, with corresponding 
eigenvalues in the diagonal matrix qΛ , R is an arbitrary 
orthogonal rotation matrix. Given a new data point newt , its 
posterior distribution )|( newnew txp can be easily obtained by 



using Bayes’ rule and its projection in latent variable 
space can be computed as the mean of the distribution. 
 
2.2 Mixtures of Probabilistic PCA Model 
 
The probabilistic formulation of PCA offers a graceful 
extension to model complex data structures with a mixture 
of local PPCA models. Again, all parameters of the model, 
i.e. the mean iµ and the variance iΣ of each local modal, 
the noise variance 2σ can be determined within an EM 
framework while the likelihood is maximized. For a given 
data point t , its likelihood is given by a weighted sum 
of M probability density )|( itp associated with correspond-
ing local model i : 
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3. DISTRIBUTION MODELLING AND FACE 
DETECTION 
 
Assume that a set of view-labeled training face are pro-
vided for learning; see fig. 1 for some examples. All left 
in-depth rotated face are mirrored to right side so that each 
view angle is between �0 and �90 . The pose is quantized 
into 10 discrete values: 

9..0: =iiθ , where ��� 90,,10,0 910 =⋅⋅⋅== θθθ  
and grouped into three view classes: frontal, right profile 
and half right profile. All nonfaces are put into one class, 
and this produces 1+L classes (where 3=L ). Our goal is 
to differentiate face patterns from nonfaces and simultane-
ously decide which classes they belong to. 
 
The learning process for face detection carries out in three 
stages: it first learns local linear subspaces with low di-
mensionality from original nonlinear distribution; A large 
amount of nonface patterns with low likelihoods are 
strained out while the left face-like patterns are kept for 
training; Finally one multi-class SVM is trained for each 
view and fused with other SVMs to perform classification 
based on the projection coefficients and local reconstruc-
tion errors. 
 
3.1 Learning Local Structures of Multi-view Face Dis-
tribution 
 
The first stage aims to learn low-dimensional subspace 
from multi-view face images. In our system, this is 
achieved by fitting the training faces into a set of view 
based PPCA mixture models. Face images are first divided 
into subsets according to view angles. The mixture of 

PPCA model is then applied to learn the structures within 
each view subset.  
 
The choice of the latent-space dimensionality q and the 
number of Gaussian components M is crucial for identify-
ing PPCA mixture model. To find the optimal values 
of q and M , we empirically tune the parameters and evalu-
ate the exactness of the model by using the density model 
to classify the testing faces and nonface images. Section 
4.2 accounts for how we set these parameters in detail. We 
evaluate the density of each testing image under the model. 
If it exceeds some threshold, the image will be classified 
as a face.  
 
A meaningful characteristic of the derived model we ob-
serve in the experiments is that, while a fairly low sub-
space dimensionality is adopted (for example, 7=q for 
profile view) for modeling, the classification results based 
on PPCA mixtures model can still be better than an uncon-
strained Gaussian mixtures model with high-dimensional 
subspaces, as illustrated in figure 3, section 4.2. It may 
partly come from the fact that in the conventional mixtures 
model, the partition of clusters is commonly determined by 
an iterative process which involves calculating a hard 
Euclidean distance or a likelihood measure with a full co-
variance matrix. It may give rise to biased local clustering 
results while the training data is insufficient to recover all 
parameters of the full covariance matrix. We can argue 
that with a set of low-dimensional sub-models and less 
free parameters, the PPCA mixtures model can actually 
approximate the data manifolds more faithfully. This char-
acteristic of high local linearity can consequently offer an 
efficient representation for the following classification 
process. 
 
3.2 Choosing Face-like Nonface Samples 
 
While a great deal of images can served as nonface train-
ing patterns, selecting a representative set of nonfaces re-
mains a tricky issue in most of face detection systems. To 
cope with this problem, a “boot-strapping” method [5] [12] 
[13] [14] is often used to iteratively update nonface set 
when starting with a relatively smaller data set. “Boot-
strapping” based nonfaces selection scheme can lead to a 
significant rising in training time since each iteration will 
inevitably involves training a new classifier.  
 
Instead of collecting nonface samples in training phase, we 
seek to an alterative approach based on density measure 
offered by PPCA, to obtain a nonface training set that can 
be viewed as “representative” before the training is started. 
Let x be a new cropped nonface pattern. To which extend 
it is similar with faces in view subset i  can be evaluated by 
its likelihood under the corresponding PPCA mixtures 



model. The following is an outline of our probability 
based nonface selection process:  
 
1) Randomly select a set of nonface (over 8000) samples 

from a group of images. 
2) Compute the likelihood of all nonface samples under 

the PPCA mixtures model; choose the first fifteen 
percent of samples with maximal probability likeli-
hood as an initial training set. The minimal likelihood 
value iτ in the initial set is recorded as a threshold iτ . 

3) Continue to crop image patches from an extended 
image set where there is no face contained and add 
those whose likelihoods exceed the threshold iτ to the 
training set until enough nonface patterns are col-
lected.  

4) Repeat first three steps for every view subset. 
5) Add some randomly selected new nonface samples 

into the training set. 
 
By this strategy we gather a great number of nonface pat-
terns that visually like faces or geometrically locate near 
the face clusters. Some of nonfaces with high likelihood 
under the PPCA mixtures model of frontal faces are 
showed in figure 2. In theory the selected nonfaces can be 
more similar to faces if we set a higher threshold; but 
longer time will be spent to accumulate enough samples. It 
is also worth to note that the different “representative” 
nonface patterns are obtained in different views. We ex-
pect these patterns to improve the classification perform-
ance since they can clearly characterize the boundary be-
tween faces and nonfaces in each view class. 
 
3.3 Training SVM Array 
 
We use a set of view-based multi-class SVM classifiers 
[18] to identify face patterns from nonfaces. One SVM is 
trained for each view to perform 1+L -class classification 
based on the features in the corresponding PPCA mixture 
subspace. The one-against-the rest method [19] [20] is 
used for solving the multi-class problem. SVM is used 
because it can lead to high generalization ability while 
only few parameters need to be tuned. More importantly, 
SVM is a boundary sensitive classifier; for example, most 
of supports vectors from the nonfaces set are quite similar 
to faces [13]. Note that we select a great number of faces-
like nonfaces which locate near the face clusters; SVM can 
obtain enough evidences to learn a boundary between 
faces and nonfaces.  
 
In a specific view, the projections onto each Gaussian sub-
space  

)()( 12 µσ −+= − tWWWIp TT�  
and the local reconstruction errors 
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under the corresponding view are combined together and 
arranged in a row as feature vectors. We use such local 
linear features instead of distance based metrics like DIFS 
in face classification for two reasons: First, in our experi-
ments, distance based metrics achieve good performance 
in detecting frontal face, but while applied to profile or 
half profile face, the detection rate drop down. This can be 
partly interpreted by the fact that non-frontal face patterns 
generally include more artifacts like backgrounds or hairs 
in the appearance. The estimated distance as a similarity 
measurement can be insufficient while applied to non-
frontal faces. Second, the feature vectors composed by 
projection coefficients and reconstruction errors contain 
richer information while still remain a reasonable size due 
to the low dimensionality of local PPCA subspaces.  
 
Reconstruction error is one of the important features used 
in training the classifier. While PPCA mixture model tries 
to maximize the log-likelihood of training data in its itera-
tive optimization, it doesn’t explicitly grant to minimize 
reconstruction errors. For some data points, their recon-
struction errors may be high even in the nearest PPCA 
cluster. We can expect ignoring this information may in-
troduce performance drop in face detection. 
  
4. EXPERIMENTAL RESULTS 
 
The purpose here is to demonstrate the PPCA mixtures 
modeling approach to learning low dimensional manifolds 
and evaluate the performance of our proposed framework 
in multi-view face detection. 
 
4.1 Data Preparation 
 
More than 6,000 face samples are collected by cropping 
from various sources (mostly from video). The view is in 
the range of [0 ,90 ]ο°  with ο0 representing the side view 
and ο90  representing the frontal view. A total number of 
about 25,000 multi-view face images are generating from 
the 6,000 samples by artificially shifting or rotation in the 
image panel. Face samples are grouped into three view 
classes (frontal, half profile and profile). Face samples 
labeled with ��� 70,80,90  are grouped as frontal faces, 
those with ��� 40,50,60 are grouped as half profile faces 
and the faces in ���� 0,10,20,30 are grouped as profile faces. 
The faces from all three views are divided into three data 
sets for the different usages. Table 1 shows the partition 
and the sizes of the three data sets. Set 1 is used for learn-
ing 3 PPCA mixture models and training SVMs. Set 2 is 
used in parameters selection of the mixture model. Set 3 is 
used for testing. A set of 10, 000 3× nonface samples 
(10,000 for each view class) are collected for training in 
the way illustrated in section 3.2,   (see figure 2 for some 



Table 1. Composition of three data sets 
 

View Set 1 Set 2 Set 1 
Frontal 3000 500 4500 
Half Profile 3000 500 4500 
Profile 4000 500 6000 
Total Faces 10000 1500 15000 
Nonfaces 10000x3 2000 10000 

 
 

 
 

Figure 1: Multi-view face examples 
 
 

 
 

Figure 2. (Up) Typical nonface samples collected by den-
sity measure comparison under the frontal PPCA mixtures 
model. The images have been preprocessed. (Bottom) 
Randomly selected nonface samples. 
 
examples) where additional 10,000 nonfaces are used for 
testing.  
 
Each windowed sub-image is normalized into 20 20× pixels, 
approximately aligned and preprocessed by illumination 
correction and histogram equalization in a way similar to 
what was done in most of existing systems [12] [14].  
 
4.2 Face Distribution Modeling  
 
During the training phase, only face samples of one view 
subset are presented to the corresponding mixture model. 
Three view-specific PPCA mixtures, corresponding to 
frontal, profile and half profile, are trained with a same 
component number 9M = . Each component shares a 
common dimension of 7q = . To illustrate how well the 
model can capture the face distribution, we use the density 
model to perform 2-class classification in set 2. The test-
ing sets used in each PPCA mixture model include faces 
samples in the corresponding view class and all other non-
faces samples.  
 
To explore how the model changes with different parame- 

 
 
Figure 3: ROC curves for comparing a PPCA mixture 
model and a full covariance GMM. 3000 profile faces are 
used to train both of the models. Testing image is classi-
fied as face while its density exceeds some threshold. 
 
ters, we evaluate the density of face images of Set 2 under 
a set of PPCA mixture models. The component number is 
fixed with 9M =  while the dimensionality of components 
decreases from 49 to 7. We note the fact that the classifi-
cation accuracy remains almost unchanged. This manifests 
within a specified view, PPCA mixture model is capable 
of capturing the local structures of high complex distribu-
tion with fairly low dimensionality. 
 
Additional experiments have done for comparing PPCA 
mixture with traditional linear subspace mixture model, i.e. 
unconstrained GMM, in view-based face distribution 
modeling. Both PPCA mixtures and a full covariance 
GMM with a relatively optimal choice of parameters 
( 7M = and 75q = ) are used to model profile face mani-
folds and identify profile faces from nonface. This leads to 
an ROC curve, as shown in figure 3. The result highlights 
the improvement of the performance while changing from 
an unconstrained Gaussian mixture model to a PPCA mix-
ture model.  
 
4.3 Face Detection by SVM Array Classification 
 
For the SVM training, an RBF kernel 

2 2/( , ) x yK x y e σ− −= is 
selected, with 9σ = . The parameters are empirically se-
lected and largely dependent on the experiments. All im-
ages in Set 1 are projected to the Gaussian components of 
three derived PPCA mixtures. Their projection coeffi-
cients and reconstruction errors are used for training. Im-
ages in Set 3 are used for testing. The classification results 
are demonstrated in classification matrices (c-matrices); 
see figure 4. The entry ( , )i j of the c-matrix gives the num-
ber of examples whose ground truth class label is i (in row) 
and which are classified into class j (in column). The 
first 3L = rows and 3 columns correspond to the 3 view 



C-matrix for frontal view 
4301 68 1 84 

108 4149 121 44 
27 206 5700 221 
64 77 178 9960 

 
C-matrix for half-profile view 

4199 164 10 189 
180 4127 127 64 

18 159 5694 101 
103 50 169 9655 

 
C-matrix for profile view 

4234 94 2 102 
192 4053 170 59 

9 243 5615 187 
65 110 213 9661 

 
 Figure 4. Classification statistics as demonstrated by c-

matrices 
 
classes (frontal, half-profile, profile) of the ground truth 
and classification result, respectively, whereas the last row 
and column correspond to the nonface class. 
 
From these c-matrices, the corresponding missing and 
false alarm rates for face detection can be calculated, as 
shown in Table 2; the classification consequences from all 
views are fused together in a simple voting scheme. Re-
sults of the fusion show in the bottom of the table. 
 

Table 2. Face Detection Error Rates 
 

View Classes Missing (%) False A. (%) 
Frontal 2.13 3.49 
Half-Profile 2.15 3.54 
Profile 2.59 3.48 
3 SVM’s Fused 2.13 3.28 

 
Finally we apply the system to real images by exhaustively 
scanning for face-like patterns at all possible positions. 
Multiple scales are handled by examining sub-window 
images taken from the scaled image. Testing images col-
lected from VCD movies (in 352 288× pixels) are used for 
the evaluation. Figure 5 shows some examples. 
 

CONCLUSION 
 
We have presented a view-based framework for learning 
the low-dimensional subspace representation of multi-view 
faces and for pose invariant face detection. The main part 
of the work is to model the distribution of multi-view faces 
using PPCA mixture models. Faces are identified from 

 

 

 
 

Figure 5: pose invariant face detection results in some real 
images. 

 
nonface by a set of SVMs. Given this framework demon-
strates good performance in multi-view face detection, we 
stress that the underlying architecture is fairly general and 
can be applied to other appearance based object detection 
tasks. 
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