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Abstract
We consider the problem of learning a probabilistic model from the viewpoint of an expected util-
ity maximizing decision maker/investor who would use the model to make decisions (bets), which
result in well defined payoffs. In our new approach, we seek good out-of-sample model perfor-
mance by considering a one-parameter family of Pareto optimal models, which we define in terms
of consistency with the training data and consistency with a prior (benchmark) model. We measure
the former by means of the large-sample distribution of a vector of sample-averaged features, and
the latter by means of a generalized relative entropy. We express each Pareto optimal model as
the solution of a strictly convex optimization problem and its strictly concave (and tractable) dual.
Each dual problem is a regularized maximization of expected utility over a well-defined family of
functions. Each Pareto optimal model is robust: maximizing worst-case outperformance relative to
the benchmark model. Finally, we select the Pareto optimal model with maximum (out-of-sample)
expected utility. We show that our method reduces to the minimum relative entropy method if and
only if the utility function is a member of a three-parameter logarithmic family.
Keywords: Learning Probabilistic Models, Expected Utility, Relative Entropy, Pareto Optimality,
Robustness

1. Introduction

From the viewpoint of a rational decision maker in an uncertain world, the efficacy of a probabilistic
model is directly related to the quality of the decisions that he makes, based on the model. If, for
example, the decision maker is an investor in a financial market, a probabilistic market model can
be used by the investor to design an optimal investment strategy; the efficacy of the model should be
judged by the success of this (optimal with respect to the model) strategy. Should the decision maker
build a model, he ought to take this into account. In principle, standard approaches to probabilistic
modeling (see, for example, Vapnik, 1999, Berger, 1985, or Hastie, Tibshirani, and Friedman,
2001) allow for the model builder to incorporate the decision consequences of a madel, usually in
terms of a risk functional or a loss function. However, these approaches often give no guidance as to
how to construct, from first principles, a risk functional or a loss function. In this paper, we propose
a new approach to model building that talkesplicitly into account the decision consequences of

the model; we measure these decision consequences by the success of the strategy that a rational
investor (who believes the model) would choose to place bets in a horse race (see, for example,

(©2003 Craig Friedman and Sven Sandow.



FRIEDMAN AND SANDOW

Cover and Thomas, 1991 for a discussion of the horse race). In particular, we monetize the decision
conseqguences by assuming that there is a market with payoffs associated with each state (the horse
race). The assumption of a rational investor who bets on horses allows us to relate the model
user’s decisions and their consequences to the model itself; as we shall see, this assumption leads
to tractable models. Our approach combines ideas from maximum entropy modeling and utility
theory.

Maximum entropy inference, introduced by Jaynes (1957, 1982, 1984) in the context of sta-
tistical physics, has been successfully applied to image processing (see, for example, Wu, 1997,
or Gull and Daniell, 1978) as well as to a wide range of problems in biology (see, for example,
Burnham and Anderson, 2002), finance (see, for example, Avellaneda, 1998, Avellaneda et al.,
1997, Samperi, 1997, Gulko, 2002 and Frittelli, 2000) and economics (see, for example, Golan
et al.,, 1996). The basic idea of the maximum entropy approach is that one chooses a model that
maximizes uncertainty, or, more generally, minimizes the information-theoretic (Kullback-Leibler)
distance to a prior, while ensuring that important features of the data are reproduced. In many ap-
plications, in order to avoid overfitting, one has to allow for some error in the calibration of the
model-expected feature values to the expected feature values under the empirical measure (see, for
example, Daniell, 1991, Skilling, 1991, Wu, 1997, Chen and Rosenfeld, 1999, or Lebanon and
Lafferty, 2001).

In order to evaluate a model in terms of the decision consequences of a rational decision maker
who believes the model, we need to first relate the rational decisions to the model and then evaluate
the consequences of these decisions. For both of these purposes, we employ a utility function, a
well established concept in economics (see, for example, Neumann and Morgenstern, 1944, or
Luenberger, 1998). One can show that, under some additional plausible assumptions, a decision
maker has a well defined utility function if he has preferences between the possible states of the
world and probability weighted combinations of these states. It follows from the axioms of utility
theory that a rational decision maker acts to maximize his expected utility based on the model he
believes; his decisions are uniquely (and explicitly) determined by his model. Utility theory also
dictates that the consequences of these decisions should be evaluated by means of the expected
utility they lead to.

Friedman and Sandow (2003a) consider the performance of probabilistic models from the point
of view of an expected utility maximizing investor who bets on horses. In order to evaluate a
particular model, we assume that there is an investor who believes the model. This investor places
bets in a horse race so as to maximize his expected utility according to his beliefs, i.e., the investor
bets so as to maximize the expectation of his utility under the model probability measure. We then
measure the success of the investor’s investment strategy in terms of the average utility the strategy
provides on an out-of-sample data set. An investor who has a highly accurate model will be able
to choose a sound investment strategy, while an investor with a less accurate model will sometimes
overbet or underbet, and consequently, be less successful in the long run. Therefore, the success of
the investor’s strategy, as measured by the utility averaged over a test sample, is a measure of the
quality of the model on which the investor bases his strategy. This measure was used to evaluate
probabilistic models.

In that work, we assume that there exist a number of candidate models and that an investor
seeks the best (in the expected utility sense) of these models. A related, but harder, question is: how
can we learn a model (from data) so that an investor, who makes decisions according to the model,
maximizes his expected utility? We address this question in this paper. Our modeling approach,
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which is different from existing approaches, is based on the idea that one can achieve good out-of-
sample model performance (as measured by expected utility under the model-optimal strategy) by
considering models on an efficient frontier (Pareto optimal models), which we define in terms of
consistency with the training data and consistency with a prior (benchmark) model. We measure the
former by means of the large-sample distribution of a vector of sample-averaged features, and the
latter by means of the generalized relative entropy introduced by Friedman and Sandow (2003a).
This generalized relative entropy is essentially the same as the one independently introduced by
Griinwald and Dawid (2002). The models on the efficient frontier, each of which can be obtained
by solving a convex optimization problem (see Problems 2 and 8) form a single-parameter family.
We show that each Pareto optimal model is robust in the sense that, for its level of consistency
with the data, the model maximizes the worst-case outperformance relative to the benchmark model
(see Section 2.2.5 and Appendix A). For each level of consistency with the data, we derive the
dual problem (see Problems 3, 4 and 9), which has a Pareto optimal measure as its solution; this
dual problem, which is new for non-logarithmic utility functions, amounts to the maximization of
expected utility with a regularization penalty over a well-defined family of functions. We rank the
models on the efficient frontier by computing their expected utilities on a hold-out sample, and
select the model with maximum estimated expected utility. For ease of exposition, we consider
only one hold-out sample; our procedure can be modifietfdold cross validation.

Our economic paradigm, in general, requires the specification of the payoff structure of the horse
race. This requirement imposes an additional encumbrance on the model-builder. However, we
show that the optimization problems that follow from our paradigm are independent of the payoffs
if and only if the investor’s utility function is in a three-parameter logarithmic family (see Theorem
3). This logarithmic family is rich enough to describe a wide range of risk aversions, and it can
be used to well-approximate (under reasonable conditions) non-logarithmic utility functions (see
Friedman and Sandow, 2003a); it is therefore applicable to many practical problems. In the case
of a utility function from this logarithmic family, our method leads to a regularized relative entropy
minimization similar to the ones by Daniell (1991), Skilling (1991), Wu (1997), or Lebanon and
Lafferty (2001) (see Corollary 1). This means that our approach provides new motivation of this
regularized relative entropy minimization. It is well known that the relative entropy can be related
to the expected utility of an investor with a logarithmic utility (of the fothiz) = log(z)) who bets
optimally in a horse race (see, for example, Cover and Thomas, 1991). Our result, however, is
more general since we allow the investor’s utility to be any member of the three-parameter family
of logarithmic functions given by (z) = y1log(z+Y) + V2.

Some of our discussion, such as the definition and robustness of the Pareto optimal measures
(See Appendix A) and the formulation of the primal problems (see Sections 2.2 and 3.2), can be
developed in a more general setting than the horse race. However, our dual problem formulation
(see Sections 2.3 and 3.3), depends on the horse race setting. To keep things as simple as possible,
we have confined our discussion to the horse race setting.

In Section 2, we formulate our modeling approach in the simplest context: we seek a discrete
probability model. In Section 3, we briefly discuss our approach in a more general context: we seek
a model that describes the conditional distribution of a possibly vector-valued random variable with
a continuous range and discrete point masses. Numerical experiments based on the methodology of
this paper are reported by Friedman and Sandow (2003b), Friedman and Huang (2003) and Sandow
et al. (2003).
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2. Discrete Probability Models

In this section, we describe our modeling paradigm in the simplest context: discrete probabilities.

2.1 Preliminaries

This section sets the stage for our modeling approach for the case of discrete probabilities. The
ideas outlined below are explained in more detail in Section 2 in Friedman and Sandow (2003a).

We seek a probabilistic model for the discrete random varigbighich can take any of the
valuesy,...,ym. For later use we define the following three probability measures:

Definition 1

= true (unknown) probability that ¥=y,
Py = empirical probability that Y=y,
gy = model probability that Y=y .

NS

The true probabilitiesp = (py,...,pm)", are unknown, but we assume their existence; the em-
pirical probabilities, p™= (f1,..., Pm)", are known from the data, and the model probabilities,
q=(q,...,0qm)", are the ones we are trying to find. We define the probability simplex

Q={a:9=07} qy=1}.
y

We identify the probabilistic problem with the horse race (see , for example, Cover and Thomas,
1991, Chapter 6; Cover and Thomas discuss the horse race from the point of view of an investor
with logarithmic utility).

Definition 2 A horse race is a market characterized by the discrete random variable Y with m
possible states, in which an investor can place a bet thatyf which pay<, > 0 for each dollar
wagered if Y=y, and0, otherwise"

We consider a decision maker/invegtarho places bets on horses; we assume that our investor
allocateshy to the event =y, where

;by:].. 1)

We note that Equation 1 corresponds to the assumption that the investor allocates all his wealth to
bets on the horses, without cash borrowing or lending. This setting does not represent the most
general financial market.

In order to quantify the benefits of a modgko an expected utility-maximizing investor, we
consider the investor’s utility functioty , and assume that it is

(i) strictly concave,

1. The investor does not get his dollar back in addition to the pa@offThis horse race definition is general enough to
allow for situations where the investor loses with certainty.

2. Throughout the rest of this paper we will use the term investor for any type of decision maker, while keeping in mind
that the decision maker does not necessarily act in a financial market.
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(ii) twice differentiable, and
(iii) strictly monotone increasing.

We note that many popular utility functions (for example, the logarithmic, exponential and power
utilities (see Luenberger, 1998)) are consistent with these conditions. It is possible to develop the
ideas in this paper under more relaxed assumptions.

Our investor allocates his assets so as to maximize his expected utility according to his beliefs,
i.e., the investor allocates so as to maximize the expectation of his utility under the model probability
measure. This means that our investor allocates according to

b*(q) =arg max U (byOy). 2
(a) g{b:zyby:l}gch (byOy) 2)
It has been shown (see Theorem 1 from Friedman and Sandow, 2003a) that
1 A
* . U/ -1 <—> , 3
b =51 G0, ©
whereA is the solution of the following equation:
1 A
~(UunT (—) =1, 4)
; Oy Oy

if the solution of Equation 4 exists, which we assume to be the case here:
Assumption 1 There exists a solution to Equation 4.

We note that there does not always exist a solution to Equation 4, however, there exists a solution
for many common utilities, for example the logarithmic, power, exponential and quadratic utilities
(see Corollary 1, Appendix B of Friedman and Sandow, 2003a).

Equipped with above tools, we can formulate our modeling objective:

Objective:
Find argmax,[U (b*(q),0)], (5)
9eQ
where, slightly abusing notation,
EpU (b"(a),0)] = > pU(by(q)0y) .
y

Thus, it is our objective to find the model that maximizes titue expectation of the utility of an
investor who bets according to the model.

Since we don’t know the true modgd, we cannot compute thp—expectation in Equation 5
exactly. Therefore, we approximate it by a sample average; in order to construct models that don’t
overfit, we approximate thp—expectation in Equation 5 by an average over a test sample:

EpU (b"(0),0)] ~ EglU (b"(q),0)] ,

wherep’is the empirical measure of the test sample, which is different from the sample the model
was trained on. It is obvious that one cannot maximize such an out-of-sample average analytically
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over an arbitrary family of models. However, one can easily (numerically) maxiggike(b*(q),0)]

over a one-parameter family of models. This is the approach we will take. In Sections 2.2 and 2.3
we will describe how one can construct a one-parameter family of candidate models based on the
idea of an efficient frontier, which we define in terms of consistency with the training data and con-
sistency with a prior distribution. We shall see that the construction of the candidate models involves
a regularized in-sample expected utility maximization, and that each candidate model is robust in
the sense that, for its level of consistency with the data, it maximizes the worst case outperformance
relative to the benchmark model. This is another rationale for our choice of candidate models.

For our approach we will make use of the concept of generalized relative entropy, which was
introduced in Friedman and Sandow (2003a) (Section 2.2). A very similar generalization of the
relative entropy was independently introduced byi@vald and Dawid (2002). The approach in
Griinwald and Dawid (2002) is based on the idea of expected loss, and is therefore closely related
to the approach in Friedman and Sandow (2003a), in which the utility function of an investor who
bets (utility-optimally) on horses leads to an expected utility that can be viewed as the negative of
an expected loss. Unlike Gmivald and Dawid (2002), however, Friedman and Sandow (2003a)
explicitely link the decision-maker’s/investor's action/investment-strategy to the probabilities he
assigns to the states of the world. In Friedman and Sandow (2003a), the generalized relative entropy
between the measurgsandq® was defined as

Du.o(alla’) = U (b (@)0y) — 5 ayU (b(a°)Oy) 6)
y y

It can be interpreted as the loss in expected utility experienced by an investor who bets according
to modelg® whengq is the true probability measure. It has been shown (see Friedman and Sandow,
2003a, Theorem 2) thaty o (q||o°) is a strictly convex function of and thaDy o (q||g°) > 0 with
equality if and only ifqg = q°. We note that fotd (W) = yilog(W +) + Y2, Dy o reduces to the
Kullback-Leibler relative entropy, up to a constant factor (see Theorem 3 in Section 2.5, below).

2.2 Modeling Approach

We consider the tradeoff between consistency with the data and consistency with the investor’s prior
beliefs (as encoded in the prior measw®, This approach is similar to others; see, for example,
Lebanon and Lafferty (2001) or Wu (1997). However, we strive to formulate our problem(s) in
economically meaningful ways. Given models equally consistent with the investor’s prior beliefs,
we assume that the investor prefers a model that is more consistent with the data; given models
equally consistent with the data, we assume that the investor prefers a model that is more consistent
with the investor’s prior beliefs. We also show that these assumptions lead to measures which are
robust, in the sense that they maximize a worst-case relative outperformance over the benchmark
model. We make all of this precise below.

2.2.1 (ONSISTENCY WITH THEDATA

For a model measurg € Q, let p43?3(q) denote the investor's measure of the consistency of
with the data; this consistency is expressed in terms of expectations fefatuee vector f (y) =
(fa(y), ..., f3(y))T € R where each featuré,f;, is a mapping fronR to R. We make the following
assumption:

3. For further discussion, see, for example, Vapnik (1999).
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Assumption 2 The investor measures the consistehg§22(q), of the model ¢ Q with the data
as a strictly monotone decreasing function of the large sample probability density of the sample
feature means, evaluated at the model q feature expectatigig, E

Itis possible (for small sample sets, for example) to develop the theory under more general assump-
tions, by considering more general families of convex level sets.

To elaborate, for a fixed measugec Q, the model feature mearkg[f;], is a deterministic
quantity depending on. The sample mean ofj, however, depends on the sample set and is
therefore a random variabley. The quantityEp[f;] is therefore an observation of the random
variable ;. By the Central Limit Theorem, for a large number of observatidsthe random
vector @ = (@1,...,@)" is approximately normally distributed with me&y[f] and covariance
matrix ﬁz, whereZ is the empirical feature covariance matrix. Therefore, for a given measure
g € Q, the probability density for the random varialgieevaluated al,| f] is (approximately) given
by

N

_1 1 _1 N -
p°(0) = pd ()] guryr, = (2 2INZ[Z| 27202, (7)
where

C= (Clv"'>CJ)T

and
¢j = Eqfj] — Ep[fj. (8)

We note that though we have used the Central Limit Theoremdtivateour assumption, we
have not made any assumption on the probability distribution of the meagaré&s Our assump-
tion allows us to parameterize the degree of consistency of a megswith the data. Equally
consistent measureg, lie on the same level set of the functipd®?(q). We parameterize the
nested family of sets, consisting of poifs Q that are equally consistent with the data.

Note that, by constructiony®?(q) is invariant with respect to translations and rotations of the
feature vectors. James Huang (2003) first pointed this out to the authors.

2.2.2 GONSISTENCY WITH THEPRIOR MEASURE

To quantify consistency of the modej,c Q, with the investor’s prior beliefs, we make use of the
generalized entropPy o (q||q°), whereU is the investor's utility function an@ is the set of odds
ratios.

Assumption 3 The investor measures the consisten&j°{q), of the model ¢ Q with the prior,
o°, by using some strictly monotone increasing function of the generalized relative entyepyy°).

More precisely, loms values are associated with highly consistent models and jhigdlues are
associated with less consistent models. We shall see in Section 2.3 that generalized relative entropy
is an appropriate measure of consistency, as it leads to models which asymptotically maximize
expected utility.

4. More precisely, lowt values are associated with highly consistent models andhigiiues are associated with less
consistent models.
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2.2.3 RARETO OPTIMAL MEASURES

To characterize the measurmgsc Q which are optimal (in a sense to be made precise), we define
dominance Pareto optimalprobability measures, the set athievable measureand theefficient
frontier. These notions are from vector optimization theory (see, for example, Boyd and Vanden-
berghe, 2001) and portfolio theory (see, for example, Luenberger, 1998).

Definition 3 q' € Q dominates §e Q with respect to {2 and (Pro" if
(i)
(udata(ql)7 uprior (ql)) 7& (udata(qZ)’ uprior (qZ))
and
(i)
udata(ql) < udata(qZ)
and
uprior(ql) < uprior(qZ)‘

Observe thatf' € Q dominatesy? € Q with respect tou?@@ and pP"o" if and only if gt € Q
dominatesy? € Q with respect ta9a3(pdata) gndtPrior (P wheretda andtPor are strictly
monotone increasing functions. Therefore, it follows from Equation 7 and Assumptions 2 and 3
that, without loss of generality, we may continue our discussion®with

W'*%(q) = a(q) =Nc'= >0 ©)
and
WP () = Dy 0 (q]|c°).

This choice is convenient as it leads to numerically tractable convex optimization problems (see Sec-
tion 2.3, below). We note that(q) is the Mahalanobis distance. For a definition of the Mahalanobis
distance and its properties, see, for example, Kullback (1997), p. 190.

Definition 4 A model, ¢ € Q, is Pareto optimal if and only if no measureseQ dominates gwith
respect to f?3(q) = a(q) and [P (q) = Dy o(q||g°). The efficient frontier is the set of Pareto
optimal measures.

We note that for any Pareto optimal measgfe Q,

a(g) < a(q’) implies thatDy o (q)|q®) > Du o (a*/|a°) (10)

forallge Q.
The Pareto optimal measures are contained imdhéevable sef, which is defined as follows:

5. This form forpd@ta|eads to the regularization used, for example, in Wu (1997), and Gull and Daniell (1978).
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Definition 5 The achievable sef, is given by
A = {(a,D)|a(q) < a and Dy o(ql|e°) < D for some ¢t Q} c R2.

We slightly abuse notation: we sometimes asandD to denote functions, and at other times we
use the same symbols to denote real values; our intentions should be clear from the context.
By Equations 8 and 9, measumgthat are equally consistent with the data lie on the same level
set of the function
a(q) = N(Eq[f] — Ep[f)) 7= (Eq[f] — E5[f]). (11)

We parameterize the nested family of sets, consisting of pgiat® that are equally consistent with
the data, by Equation 11. We note ti2at! is a nonnegative definite matrix, sqq) is a convex
function ofq.

The achievable set, is convex. To see this, recall the{q) and Dy o(q||q°) are convex
functions ofqg (see the remark following Equation 11 for the convexityodf)); see Friedman
and Sandow (2003a), Theorem 2 for the strict convexityDgfo (q||q®)). A is convex by the
convexity ofa(q) and Dy o(q||q°) (see, for example, Boyd and Vandenberghe, 2001, Section
4.7). The convexity of the achievable set follows from the particular chal®&(q) = a(q) and
P’ () = Du,o(allc®).

We may visualize the achievable s@t,and the efficient frontier as displayed in Figure 1, which
also incorporates the following lemma.

Lemma 1 If g* is a Pareto optimal measure, then
(i) a(g") < omax Where

Amax= N(Ep[f] — Eg[f])" =" (Eqo[f] — Eplf)). (12)

(i) (a(g*),Duo(g*||a®)) lies on the lower D-boundary ofA.

¥ [ (e

aLE

Figure 1: Achievable sef\: shaded region above curve; Efficient Frontier: points on bold curve
with 0 < o < Omax
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Proof: (i) For the measurg®, we haven (q°) = amaxandD = Dy o (q°||q®) = 0. If a(q) > Amax
theng cannot be identical tq°, soDy 0(q||g°) > 0, soq is dominated by’ and cannot be efficient.
(i) follows directly from Equation 10

We shall make use of the preceding lemma when we formulate our optimization problem.

We make the following assumption, which serves as one of our guiding principles.

Assumption 4 The investor selects a measure on the efficient frontier.

Thus, given a set of measures equally consistent with the prior, our investor prefers measures that

are more consistent with the data, and, given a set of measures equally consistent with the data,

he prefers measures that are more consistent with the prior. He makes no assumptions about the
precedence of these two preferences. We shall see (in Section 2.2.5) that every Pareto optimal

measure is robust in the sense that it maximizes, over all measures, the worst-case (over measures
equally consistent with the data) relative outperformance of the model over the benchmark model.

2.2.4 ONVEX OPTIMIZATION PROBLEM

We seek the set of Pareto optimal measures. That is, motivated by Lemma 1, dez &lwith
a(q) = a, we seek all solutions of the following problem, asanges from 0 t@ay, Whereamax
is defined in Equation 12.

Problem 1 (Initial Problem, Giverna,0 < a < Opay)

Find ar inf - D 0 13

SR uo(alla’) (13)

under the constraintd = qu (14)
y

and Nd=%c = «a (15)

where ¢ = FEq[fj] —Ejp[fj] . (16)

Problem 1 is not a standard convex optimization problem (see, for example, Berkovitz, 2002),
since Equation 15 is a non-affine equality constraint. However, we formulate a different (strictly
convex optimization) problem, which, as we shall show, has the same solutions:

Problem 2 (Initial Strictly Convex Problem, Given, 0 < o < Onay)

Find arg min D 0 17

9 mmin o u.o(alla’) 17

under the constraintd = Z Oy (18)
y

and Nz < «a (19)

where ¢ = Eq[fj] —Ejp[fj] . (20)

Lemma 2 Problem 2 is a strictly convex optimization problem and Problems 1 and 2 have the same
unique solution.
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Proof. See Appendix B.

In order to visualize the solutions to Problem 2, we define
S ={q:Nc'z 'c=0a,q€ Qc}, (21)

where
Q={a:920% ay=1% qfj(y) =c;+Eplfj],i =1,....3}.
y y

By solving Problem 2, for eachi, we generate a one-parameter family of candidate models,
g“(a), indexed bya. We can visualize these models as the points of tangency (on the probabil-
ity simplex, Q) of the nested surfaces of the famili€ and the level sets dDy o(q||q®) (see
Figure 2). Each candidate modej;(a), is a solution of Problem 2; accordingly, each point
(a,Dyo(g*(a)||a%) is a point on the efficient frontier (see Figure 1), and the efficient frontier
consists of all points of the forrta, Dy o (g (a)[|a°) ), asa ranges from(0, Omax)-

h] .-'.
e p - I.-"/_"
( LN -

Figure 2: The set&; (see Equation 21), centered &4, the g*(a)-curve, and the level sets of
Du.o(ql|a®), centered at®, on the probability simplex

2.2.5 ROBUSTNESS OF THEPARETO OPTIMAL MEASURES

We can measure the quality of a modgby the relative outperformance of the model over the
benchmark modél,q%: the gain in expected (under the true measure) utility experienced by an in-
vestor who invests optimally according to the model relative to an investor who invests optimally
according to the benchmark modgi(see Friedman and Sandow, 2003a). That is, the relative out-
performance is given by [U (b*(g),0) —U (b*(qo),O)] , Wherep' is a potentiakrue probability
measure. It follows from the fact that the Pareto optimal measures are solutions of Problem 2 and
from Theorem 5 (in Appendix A) that every Pareto optimal measyit@), is robust in the follow-

ing sense: it maximizes, over all measures, the worst-case (with respect to potential true measures

6. Here, we look at the prion?, from a slightly different perspective; in this context, we vigivas a model against
which we benchmark performance.
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equally consistent with the data) relative outperformance of the model over the benchmark model,
ie.,

g*(a) =arg maxmig {Ey [U(b*(g),0)] — Ey [U(b*(?),0)] } .

aeQ p'e

2.2.6 (HOOSING AMEASURE ON THEEFFICIENT FRONTIER

According to our paradigm, the best candidate model lies on a one-parameter efficient frontier. In
order to choose the best candidate model from this one-parameter family, we make the following
assumption.

Assumption 5 The investor chooseas so as to maximize his expected utility on an out-of-sample
data set.

Thus, given a utility functionlJ, odds ratiosQ, and a prior beliefg®, Assumptions 1 to 5 lead
to a method for finding a probability measure

ko

with a* = argmaxésU (b"(q"(a)), 0)] ,

wherep’is the empirical measure of the test set. In our method, the relative importance of the data
and the prior is determined by the out-of-sample performance (expected utility) of the model.

2.2.7 NFORMAL COMMENT: PRACTICAL BOUND FORQ

In practice, given a confidence levklunder Assumption 2, we can search over the range,

a € (0,0search,
where
Osearch= MiN(a}, O max)
and
o = (cdfie) (1)

(see, for example, Davidson and MacKinnon, 1993 or Wu, 1997). That is, we search until

(i) we are 1001% confident that the true value ofs within the regiolNc' >~ 1c < a,

(i) the regiorNc'z ¢ < a includesg® andg* is insensitive to further increasing the valueoof

In practice, the covariance matfXmay be nearly singular, so we may need to regularize it to
insure that our search spatisspace.
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2.3 Dual Problem

We have shown in Section 2.2 that, in order to find the Pareto optimal ngydédr a givena, we
have to solve Problem 2. As we have seen, this problem is strictly convex. Convex problems are
known to have so called dual problems.

We show in Appendix C that the dual of Problem 2 can be formulated as:

Problem 3 (Easily Interpreted Version of Dual Problem, Giveh

FindB* = arg rr;ﬂa>h([3) (22)
T
with hB) = Y BUB(E)0,) — /ol P, 29
y

where (q°) = Oiy(u’)1 <qi\—;y> (24)

y

)\*
9= UG e | 2
with Gy(®,B,u") = U(bi(qo) y) + BTf(y) — i, (26)
where [isolves 1 = ZO H(Gy(d, B, 1)) (27)

1 -1

andA = {zoyuwuaey(qo,rs,w»)} | @9

Equation 25 is often referred to as the connecting equation (see, for example, Lebanon and
Lafferty, 2001).
We also show in Appendix C that an alternative formulation of the dual problem is the following:

Problem 4 (Easily Implemented Version of Dual Problem, Giwen

FindB* = arg rrgiam(B) (29)
with h(B) = PBTEp[f] — U — aBTNZB, (30)
where [isolves 1 = ZO L(Gy(d, B, 1)) (31)
y
with Gy(a®,B,1) = U(bj(d?)0y) + BT f(y) — W' . (32)
The optimal probability distribution is then

o = x (33)

Y T OU UG )

-1
1
ith A" = . 3

wit {2 5,0 U (G @B 1)) } Y
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We state the following theorem:
Theorem 1 Problems 2, 3 and 4 have the same unique solutipn, q

Proof: see Appendix C.

Problems 3 and 4 are equivalent. Problem 4 is easier to implement and Problem 3 is easier to
interpret. The first term in the objective function of Problem 3 is the utility (of the utility maximizing
investor) averaged over the training sample. Thus, our dual problem is a regularized maximization
of the training-sample averaged utility, where the utility functidnjs the utility function on which
the generalized relative entro o (q||q°) depends.

The dual problems, Problems 3 and 4, drdimensional { is the number of features), un-
constrained, concave maximization problems (see Boyd and Vandenberghe, 2001, p. 159 for the
concavity). The primal problem, Problem 2, on the other hand, is-dimensional fnis the num-
ber of states) convex minimization with convex quadratic constraints. The dual problem, Problem
4, may be easier to solve than the primal problem, Problemn2>ifJ. In the more general context
discussed in section 3, the dual problem will always be easier to solve than the primal problem.

We note that we can obtain the sameparameterized family of solutions to Problems 3 and
4, if we allowa to vary over|0,«), by dropping the square roots in Equations 23 and 30; we show
that this is so in Appendix E.

2.3.1 ASYMPTOTIC OPTIMALITY

It follows from Equation 23 that

Theorem 2 As N— o, to leading order, the optimal solution to Problem 2 maximizes (over the
parametric family prescribed by the connecting equation, Equation 25) the expected utility for the
investor.

2.3.2 EXAMPLE: A LOGARITHMIC FAMILY OF UTILITIES

We consider a utility of the form

1
U2 = vilog(z+y)+Y2 ,Y>——+,>0, (35)
y Oy

(see Theorems 3 and 4 in Friedman and Sandow, 2003a). This logarithmic family is rich enough
to describe a wide range of risk aversions; and it can be used to approximate non-logarithmic utility
functions (see Friedman and Sandow, 2003a).

In Appendix D, we show that the dual problem is given by:

Problem 5 (Dual Problem for our Logarithmic Family of Utilities)

FindB* = arg rréam(B)

-
with h(B) = zr)ylogq;—,/%BNZB,
y 1

1 T
5y a0ef fY) T

where q =
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This problem is equivalent to a regularized maximum likelihood search, which is independent
of the odds ratiosQ; this is consistent with Section 2.5, where we show that the odds ratios drop
out of the primal problem for this logarithmic family of utility functions.

2.3.3 EXAMPLE: POWERUTILITY

We consider a utility of the form

U(z = . 36

(@ = T (36)
(see Section 2.1.1 in Friedman and Sandow, 2003a). In order to specify the dual problem for this
utility, note that

U@ = z¥, (37)
Ulz = [1+(1-K)Fr= (38)
andU’(U"%2) = [14+(1—K)ZT* . (39)
One can show that
"9~ oew0) 40
with B(q,0) = Zoi(qyoy)%, (41)
y <Y

(see Section 2.1.1in Friedman and Sandow, 2003a). Using this equation, we ce@))(\q‘ﬁ@, M)
from Equation 26 as

00,) &
GY(q07I37u*) = liK [((B((c;yo g>)1K> -1 + BTf(y) - H* : (42)
Inserting Equations 38 and 42 into Equation 27 gives
OO )17 T * rlK
zo ﬁ ARty -] (43)

which is our condition fot*. Next we specify the condition Equation 28 for. We use Equations
39 and 42 to write Equation 28 as

-1
OO )% -«
{z 0, [qoi(y)))l.ﬂr(l—K)[BTf(Y)—ll*]] } : (44)
By means of Equations 25, 39 and 42 we obtain for the optimal probability distribution
1 (9 Oy) K T v
o= =2 (1 f(y) — W . 45
Oy o, [( B0, 0))F +(1-Kk)[B" f(y) -] (45)

Collecting Equations 43, 41, 44 and 45, we obtain:
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Problem 6 (Dual problem for power utility)

FindB* = arg n%am(B)

with h(B) = BTEs(f] — ' — O(BTNZB ’

where [isolves 1 = zi ﬂ—%(l—K)[BTf(Y)—W] -
2.0, | (B(cP,0))
1
O_

1

x\l—\

with B(¢®,0) = %
y

The optimal probability distribution is then

K

1« 1K

* OO =
g = g—y[%m—mmﬂuw—m]

K -1
Q)+ T
with A* = g oiy [‘Zvoio)))“ +(1=K)[BTf(y) - u*]] }

2.4 Summary of Modeling Approach

The modeling approach described in Sections 2.2 and 2.3 is based on the idea that our investor
selects a Pareto optimal model, i.e. a model on an efficient frontier, which we have defined in terms
of consistency with the training data and consistency with a prior distribution. We measured the
former by means of the large-sample distribution of a vector of sample-averaged features, and the
latter by means of a generalized relative entropy. We have seen that the measures on the efficient
frontier form a family which is parameterized by the single parameter(0, amay), and that, for a
givena, the Pareto optimal measure is the unique solution of Problem 2, which is a strictly convex
optimization problem. Moreover, the Pareto optimal measures are robust in the sense of Theorem 5.
For a giver, the Pareto optimal measure can be found by solving the dual (concave maximization)
problem in the form of Problem 3 or in the form of Problem 4. Solving this dual problem amounts

to a regularized expected utility maximization (over the training sample) over a certain family of
measures; for many practical examples, solving the dual problem can be easier than solving the
primal problem. Having thus computed arparameterized family of Pareto optimal measures, we
pick the measure with highest expected utility on a hold-out sample.

We note that the procedure to selects, by virtue of the fact thatx is one-dimensional, both
tractable and barely susceptible to overfitting on the hold-out sample set.

Our approach boils down to the following procedure:

272



MAXIMUM EXPECTEDUTILITY LEARNING MODELS

1. Break the data into a training set and a hold-out sample. (In their numerical experiments,
Friedman and Sandow, 2003b, Friedman and Huang, 2003, and Sandow et al., 2003 used
75% or 80% of the data, selected randomly, to train the model.)

2. Choose a discrete s&t= {0y € (0,0max), k=1,...,K}.
3. Fork=1,... K,

e Solve Problem 4 fop*(a), based on the training set,

e Compute the out-of-sample performanBe= EgU (b*(g*(ak)),0)] on the out-of
sample test set, whepeis the empirical measure on this test set, ghds determined
from Equation 33 with parametefs (ay), andb* is determined from Equation 3.

4. Putk* = argmaxPx.

5. Our modelg™, is determined from Equation 33 with paramet@t&oy- ).

2.5 Utilities Admitting Odds Ratio Independent Problems: a Logarithmic Family

Model builders who use probabilistic models make decisions (bets) which result in well defined
benefits or ill effects (payoffs) in the presence of risk. In principle, the payoffs associated with
the various outcomes can be assigned precise values; in practice, it may be difficult to assign such
values. Outside the financial modeling context, for example, there may be no “market makers” who
set odds ratios. Even in the financial modeling context, the data for the payoffs (or equivalently,
market prices or odds ratios) may not exist or be of poor quality. In this context, given market prices
on instruments which have nonzero payoffs for more than one state, we would need a complete
market in order to calculate the odds ratios (see, for example, Duffie, 1996, for a definition of
complete markets). In the absence of high quality data, one might consider modeling the odds
ratios, but that introduces additional complexity; moreover, the resulting model, under a general
utility function, will be sensitive to the odds ratio model.

For these reasons, we seek the most general family of utility functions for which our problem
formulation is independent of the odds ratios. This family is specified in the following theorem

Theorem 3 The generalized relative entropyyB (ql|q®), is independent of the odds ratid3, for
any candidate model g and prior measuré, if and only if the utility function, U, is a member of
the logarithmic family

UW) =vilogW +Y) +y2 , VW >max{0, -y} , (46)

1

— are constants. In this case,
Y Oy

wherey; > 0, yo andy > -3

Duo(alle) ke 09 ()] (@7)
which depends ow in a trivial way and is independent gfandys..
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Proof: First we prove that if the utility function has the form Equation 46 ti3no (q||q°)
is independent 0D, for any measureg andq®, and Equation 47 holds. Theorem 4 in Friedman
and Sandow (2003a) states that, if the utility function has the form Equation 46 then the relative
performance measure

Au(q',7,0) = Z By[U Oy) —U (by(g")0y)] (48)

is independent dD, for any measureg', ¢?, andg. Puttingg= g, q* = ¢® andg? = g, we see from
Equations 48 and 6 that

Duo(dlla®) = Au(a', &, 0) .
It follows from Theorem 4 in Friedman and Sandow (2003a) that

Duo(dl|d®) = yiEq [Iog (%ﬂ ;

which is independent d, for any measureg ando®.

Next we prove the reverse: Iy o (q||q°) is independent oD, for any measures, andg?, then
the utility function has the form Equation 46.0§ o (q||¢°) is independent oD, for any measures
g andg®, then botDy o (p||g*) andDy o (f||g?) are independent @, for any measurep, §* and
¢?. Consequently, the performance measure

Ay (g, o%,0) =Dy o(plla*) —Du o (Blla’)

is independent oD, for any measureg, G andg?®. It follows then from Theorem 3 in Friedman
and Sandow (2003a) that the utility function has the form Equatiofi 46.
From this theorem and Problem 2, we obtain

Corollary 1 For utility functions of the form Equation 35, Problem 2 reduces to Problem 7.

Problem 7 (Initial Strictly Convex Problem for U in our Logarithmic Family, Given0 < a <

Omax)

. . q
Find ar min Eq [log| —
R MR 1 q{ g<q0>]

under the constraints = qy

and Ncz'c < a
where ¢ = Eq[fj] —Ejp[fj] .

We have already explicitly derived the dual problem for utility functions of the form Equation
46 in Section 2.3.2.

We note that the family of utility functions Equation 46 admits a wide range of risk aversions
(see the discussion in Friedman and Sandow, 2003a, Section 2.3). Moreover, for utilities not of
this form and horse races with sufficiently homogeneous expected returns, we can approximate well
Du.o(dl|g°) by Diogo(dl|a°); see Friedman and Sandow (2003a), Theorem 5. For utilities in this
logarithmic family, the primal problem (Problem 2) and equivalent dual problems (Problems 3 and
4) are independent of the odds ratios.

7. Modelg? outperforms moded® if and only if Ay (g, %,0) > 0
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3. Conditional Density Models

In this section we briefly discuss our approach in the context of a conditional density model which
may include point masses, i.e. for the case where the random vaYidiale the continuous condi-

tional probability density(y|x) on the finite se¥ < R" and the finite conditional point probabilities

Jojx ON the set of pointgy, € R",p = 1,2,...,m}, wherex denotes a value of the vectirof ex-
planatory variables which can take any of the valggs..,xu,% € RY. This setting has interesting
applications such as the modeling of recovery values of defaulted debt (see Friedman and Sandow,
2003Db).

3.1 Preliminaries

We generalize the results and definitions from Section 2.1. Let us dengtetbg €mpirical prob-
ability of the vector,X, of explanatory variables, and define the following conditional probability
measures:

Definition 6
p = {(p(y|x)7 pp\X)7y € Y Jp = 17 27 e MX =X, ”'7XM}
= true (unknown) conditional probability measure
p = {(ﬁ(WX)a ﬁp|x)>y€ Y ,p=1, 2,...,M X=X, '-'>XM}
= empirical conditional probability measure
q = {(q(wx),qu),y eY ,Pp=1, 2,...,M X=X, -"7XM}
= model conditional probability measure

Following Lebanon and Lafferty (2001), we assume that the following relations between conditional
and joint probabilities hold:

Py, x) = Pxp(y[x),

Pox = ﬁxpp|><a
ay,x) = pxa(yx), and
Oox = ﬁXQp\x-

Next we identify the probabilistic problem with the conditional horse race ( Friedman and Sandow,
2003a, Definition 8), and consider an investor who places bets on horses. We assume that our
investor allocate®(y|x) to the everitY =y and boix to the eventy =y, if X = x was observed,

where

1= /Y b(y|x)dy+ p;bmx. (49)

Our investor allocates his assets so as to maximize his utility fundtipmhich is strictly concave,
twice differentiable, and strictly monotone increasing. This means that an investor who believes the
modelq allocates according to

b*[q] = arg ax { /Y ay¥)U (b(y|x)O(x,y))dy+ g Ao (BoxOxp) |

8. To be precise, we have to bet on finite partitions of the intéfvals described by Friedman and Sandow (2003a),
Section 3.2.
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where
B = (B0 B¢ DOV 5 b= 1)

denotes the set of betting weights consistent with Equation 49, and the odd©ratigsandOy o
are defined by Friedman and Sandow (2003a). It is straightforward to generalize the results from
Friedman and Sandow (2003a) for the optimal betting weights to:

. 1 A

Y60 = o5 (pagmonn) ©0
. 1, AL

p\x[q] = Oxp (U ) ! <ﬁxqp|XOX,p> ) (51)

whereA; is the solution of the following equation:

= L n-1 (L) i n-1 <L>
1=/, 5oV (samioney ) &+ 205"\ BapOun (52

In analogy with Assumption 1, we make the following assumption:
Assumption 6 For each x, there exists a solution to Equation 52.

Equipped with above tools, we can formulate our modeling objective:

Objective:

Find argmax,|U (b*[q],0)],
qeQ

i.e., find the model that maximizes the true expectation,

EplU sz{ /, poiou o [1<y|x>0<x,y>>dy+;ppxu<b;:|x[q1opx>},

of the utility of an investor who bets according to the model.

As in the context of discrete probabilities, we don’t know the true meaguss that we cannot
solve above optimization problem exactly. We will use the same ideas as in Section 2 to find
an approximate solution (see the discussion after Equation 5. To this end, we need to define the
generalized relative entropy for conditional probability densities with point masses. We notice that
the generalized relative entropy was defined by Friedman and Sandow (2003b), Section 4.2 based
on the notion of expected utility undgt for an investor who invests’-optimal, which in our case
is

J, @ b G0 (x.y))dy

Px
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This suggests the following definition of the generalized relative entropy for conditional probability
densities with point masses

Duo(dd®) = EqlU(b*[d],0)] — Eq[U(b*[¢°],0)], (54)
where the expectation of a functigr(y) is defined as
Eqlg) = > PEqldX (55)
X

with Eqlglx = {/Y a(yx)gx(y)dy + Zprgx(Y)} .
b

3.2 Modeling Approach

In this section, we generalize the modeling paradigm from Section 2.2 to the case of a conditional
probability density with point masses. To this end, let us define the spaces

Q = {(ayx),qox) aylx) € LMY}, (56)
andQ™ = {q:9e€Q,q(yjx) >0,qyx >0}

where the integer indelx> 1 (the power up to which we can perform the integrfll d' (y|x)dy) is
chosen such that the integrals Equation 54 exits. We assume¢hat'.

We further assume that Assumptions 2-5 hold. This leads to the following optimization problem
or a given value otr, which is analogous to Problem 2:

Problem 8 (Convex Problem: Conditional Probability Density, Givep

Find arg min_ Dyo(q|/®) (57)
geQ +,ceRy '
under the constraintd = Eg[1/x] (58)
and Nczc < «a (59)
where ¢ = Eq[fj]—Ep[fj] . (60)

Here, as in the context of discrete probabilitiésdenotes a feature; there ardeatures, each of
which is a real-valued function ofandy.

According to Assumption 5, our investor will choose the measure that maximizes his expected
utility among the measures that are the family (parameterizen) lo§ solutions to Problem 8.

3.3 Dual Problem

Like Problem 2, Problem 8 has a dual. In order to derive this dual problem, we nof@ th&’ is

a convex subset of a vector space, the constraints expressed by Equations 58-60 can be rewritten in
terms of convex mappings into a normed space, and the equality constraints expressed by Equations
58 and 60 are linear. By Theorem 1 of Section 8.6 in Luenberger (1969), the dual problem is the
maximization ove > 0, B = (B1,....Bs)", M= {I.X = Xa,....xm }, andv = {(v(y|x) > 0,vpx >
0),yeY,p=12...mx=xy..,%u} of infqeq ccrs L (0,¢,B,&, V), where

L(a.c.B.&,wv) = Dyo(alla’)+B" {c—Eq[f] +Ep[f]} +E%{NCTZ’1C—O(}
+ 5 B {Eq[1X —1} — EqV] .
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is a generalization of the Lagrangian Equation 84 for the case of discrete probabilities. One can find
iNfqeq cero L (q,c,B,&, 1, v) the same way as we have done in Appendix C for discrete probabilities;
the only difference is that we have to usee€hét derivatives instead of ordinary ones. As a result,
we obtain the analog of the connecting equation described in Appendix C. We can then continue
along the lines from Appendix C, showing that 0 and finding¢* andp*. This leads to the dual

of Problem 8:

Problem 9 (Dual Problem: Conditional Probability Density, Giver)

Find B* = arg rrgiam(B) (61)
T
with hB) = Eplu(0'[q].0)] — /aPP (62
1 A
wherBiT1 = 5550 (Geny) ©3
1 A
* * - = U/ -1 X ’ 64
P\x[q] Ox,p( ) <qzlxox.’p> ( )
A
and dM = BhyU UGy B ) (©9)
L A
B = 00 (U G . B.15) ©9
with G(x,y,0°B,i) = U (b [Q(yx)0(xy))+B" f(x.y) — K, (67)
Gon(a”, B, 1) = U( E|x[q0]0p\x) + BT E(XYp) — M, (68)
where |f solves 1 = y O xy (G(x,y, %, B, 1)) dy (69)
Z Oxp p|x CI B “x)) (70)

and ()\;)71 = /O (x,y)U’ (U ( (%,y,q°, Bllx)))dy

26,0 (UG p\x<q B (r1)

This dual problem is a straightforward generalization of the dual problem for discrete probabilities,
Problem 3. In general, it is easier to solve the dual problem than the primal problem.
The following theorem, which follows from Equation 62, is the analog of Theorem 2:

Theorem 4 As N— o, to leading order, the optimal solution to Problem 8 maximizes (over the
parametric family prescribed by the connecting equation) the expected utility for the investor.

As for the discrete probability models, discussed in Section 2.2.5, under mild regularity condi-
tions, every Pareto optimal measure is robust in the sense that it maximizes, over all measures, the
worst-case (over measures equally consistent with the data) relative outperformance of the model
over the benchmark model (see Appendix A).
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We note that we can obtain the sameparameterized family of solutions to Problem 10, if we
allow a to vary over|[0,), by dropping the square root in Equation 75; we show that this is so in
Appendix E.

3.3.1 EXAMPLE: UTILITIES FROM OUR LOGARITHMIC FAMILY

Because of its practical relevance, we state the above dual problem for the case of a utility from
the logarithmic family Equation 35. It is easy to see that, in this case, the Equations 50-52 for the
optimal betting weights give:

oxld = i l+v§ in,] - OL (72)
b*[al(ylx) = a(ylx) l+v; 0 ] ) (73)

The generalized relative entropy, which enters Problem 8, is then
Duo(dld’) = viEq [Iog (%ﬂ : (74)

Inserting Equations 35, 72 and 73 into Problem 9, we derive the dual problem as:

Problem 10 (Dual Problem for Probability Densities and our Logarithmic Family of Utilities)

FindB* = arg rrgiam(B)

. 1 aB'z
wih W) = ¥ logd ) - |/ SERE (79)
|
8) _ ~1 BT f(xy) qp‘x ify =y, for somep
where &P (y|x) zlé x{ By otherwise (76)
andz = /Y Pyx)e " Ndy + 5 o, & 1) (77)
2

where the(x;,y;) are the observed values aNds the number of observations. The measure on the
efficient frontier is then

*

a° = {(@yX).0x).yeY ,p=12.. . mX=x,...Xu}
with g*(yx) = P’ (y]x)
and gy, = qP)(ypl0) .

We note that we can obtain the sameparameterized family of solutions to Problem 10, if we
allow a to vary over[0, ), by dropping the square root in Equation 75; we show that this is so in
Appendix E.

3.3.2 EXAMPLE: LOGISTIC REGRESSION

We note that in the special case wher@V) is in our logarithmic family Equation 3%, =0, m=2,
the prior is flat, anax = 0, the dual problem, Problem 10, is the logistic regression problem.
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3.4 Summary of Modeling Approach

The logic of our modeling approach in this section’s more general context is similar to the logic
described in Section 2.4. We have the following procedure:

1. Break the data into a training set and a hold-out sample. (In their numerical experiments,
Friedman and Sandow, 2003b, Friedman and Huang, 2003, and Sandow et al., 2003) used
75% or 80% of the data, selected randomly, to train the model.)

2. Choose a discrete skt= {0y € (0,0max), k=1,...,K}.
3. Fork=1,... K,

e Solve Problem 9 fop*(ay),

e Compute the out-of-sample performanBe= EgU (b*(g*(ak)),0)] on the out-of
sample test set, whegeis the empirical measure on this test set, ghds determined
from Equations 65 and 66 with parametgtsgay), andb* is determined from Equations
63 and 64.

4. Putk* = argmaxPx.

5. Our modelg™, is determined from Equations 65 and 66 with paramei&fsy- ).
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Appendix A. Robustness of the Minimum Generalized Relative Entropy Measure

In this appendix, we state and prove the following theorem, which is only a slight modification of a
result from Grinwald and Dawid (2002) and is based on the logic from Topsge (1979).

Theorem 5
: 0\ _ : x _ % (0
argminDy o (q|q”) = argmaxmin {Ey [U (b°(), 0)] ~ Ey [U(b°(a"), 0] } .

where Q is the compact convex set of all possible probability measures, an@ i compact and
convex.

Interpretation: We can measure the quality of a modddy the gain in expected (under the true
measure) utility experienced by an investor who invests optimally according to the model relative to
an investor who invests optimally according to the benchmark ngddskee Friedman and Sandow,
2003a), i.e. bfEy [U (b*(q),0) — U (b*(q°),0)], wherep' is thetrue probability measure. If we use
this performance measure, Theorem 5 states the following: minimiing(q||q®) with respect to
g € K is equivalent to searching for the measgre= Q that maximizes the worst-case (with respect
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to the potential true measurgs,c K) relative model performance. The optimal modgl,is robust
in the sense that for any other modg),the worst (over potential true measungse K) relative
performance is even worse than the worst-case relative performanceqintlég do not know the
true measure; an investor who makes allocation decisions basgdi®prepared for the worst that
nature can offer.

Proof: We start with the definition, Equation 6, of the generalized relative entropy:

Dy 0(all°) = Eq[U (b*(d),0)] — Eq [U (b*(°),0)] .
By the definition (Equation 2) of the optimal betting weigHhs,

Eq[U (b"(a),0)] > Eq U (b"(1,0)] (78)

for any measurete Q. Therefore, we have
Duo(dlld’) = rpe%X{Eq U (b*(19,0)] — Eq[U(b"(d”).0)] } ,
and

g;lgDu,o(qllq )= g@grpe%X{Eq U (b*(1),0)] — Eq [U(b*(a"),0)] } .
Since bothK andQ are compact and convex, akg [U (b*(1),0) —U (b*(¢°),0)] is a continuous
concave-convex function ok x Q, we can apply a minimax theorem (see, for example, Frenk
et al., 2002, Theorem 3); we obtain

minDy o (cllc°) = mapamin {Eq U (6" (19,0)] — Eq [U (" (e).0)]}

The maximum is attained for some pdir,q*). From Equation 78, it follows that* = g*. To see
this, suppose that" # g*; then, withg* fixed, we can increase the value of the term

{Eq: [U(b*(1),0)] — Eq [U(b"(c?),0)] }

by settingm* = g*, which contradicts our assumption that the maximum is attained for the pair
(T, g*) with T* # g*. So

argmlnDU o(dllg )—argma>m|n{Eq (b*(1),0)] — Eq [U (b*(?),0)] } .

After renaming the optimization variables of the right-hand-sideas p’ and T asq, we obtain
Theorem 501

We note that this result can be applied directly to the discrete probability case (see Section
2.2.5). For conditional density models, we restrict the admissible probability measures so that
the maximum value of the probability density is less than some finite nurghst, to insure the
compactness oK in the preceding theorem. We can always do so without changing the Pareto
optimal measure by choosing

Omax= a&-maxqg*(y|x),
X,y

wherea > 1 is some constant argd (y|X) is given in Equation 65. Note that any measur€ih can
be approximated by a measurekrfor a sufficiently large, and thajg*(y|x) is finite for all utilities.

281



FRIEDMAN AND SANDOW

Appendix B. Proof of Lemma 2

We restate Lemma 2:
Lemma 2 Problem 2 is a strictly convex optimization problem and Problems 1 and 2 have the same
unique solution.

Proof: We note that the objective functioBy o(q||q°), is strictly convex (see Theorem 2 in
Friedman and Sandow, 2003a). The inequality constraint, Inequality 19, of Problem 2 is also con-
vex; this follows from the fact thal is a covariance matrix and therefore nonnegative definite. The
equality constraints, Equations 18 and 20, are both affine. Therefore, Problem 2 is a strictly convex
programming problem (see, for example, the Convex Programming Problem Il Berkovitz, 2002).

We now show that Problems 1 and 2 have the same unique solution.

We firstassume thatt < amax and show that in this case, the solution to Problem 2 satisfies

Nc'stc=a.

To this end, we note thddy o (q||q®) is strictly convex ing, for g in the simplexQ, and that the
global minimum of the functio®y o (q||q°) occurs ag = ¢° (see Friedman and Sandow, 2003a,
Theorem 2 for thesBy o (q|q°) properties), which occurs only if = amay, therefore,

OqDu o (alla®) #0 (79)

for q# q°. Suppose that* is such thatNc(q*)"=1c(q*) < a where

c(q) = Eq[ f] — Eg[f].

Then there exists a neighborhoodgifon the simplexQ, such that for ally in the neighborhood,
Nc(q)"= 1c(q) < a. From Equation 79, we see that there is a direction of decrease of the objective
function Dy o (q}|g°) on the simplexQ, sog* cannot be the optimal solution. Therefore, we cannot
have Nc(q*)"Z1c(g*) < a. It follows that Nc"=~1c = a, so the solution to Problem 2 is the
solution to 1 for the case < Omax

In the casax = amay, it is Obvious that both problems have the unique solutjos: o°.

The objective functionDy o (q||q°) is strictly convex ing, so the solution of Problem 2 is unique
(see, for example, Rockafellar, 1970, Section 27). It follows that the solution to Problem 1 is also
unique.d

Appendix C. Proof of Theorem 1

We will show that Problem 2, which we restate below for convenience, has the (equivalent) dual
formulations Problems 3 and 4.

Problem 2 (Initial Convex Problem, Given,0 < a < Oimay)

Find min D ° 80

qcamin_,Duolalld’) (80)

under the constrainty = Z Oy (81)
y

and Nz < a (82)

where ¢ = FEq[fj]—Ejp[fj] . (83)
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We will derive the dual of Problem 2 now. To this end, note that the Lagrangian is given by
L(a.c,B,&wVv) = Duo(alla’)+B {c—Eq[f] +Es[f]}
1 Ts-1
+E§{Nc T c—a} + u{gqy—l}
_VTqv (84)

where& >0, B = (By,....B3)", 1, andv™ = (vy,...,vm) > 0 are Lagrange multipliers arglvaries
overR™.

C.1 The Connecting Equation

In order to derive the connecting equation, we have to solve

oL (g,c,B,&, 1 V)

0 = ac, (85)
and O — aL (q7CJB7E7u7V) . (86)
dgy

The first one of these equations has solution

c:c*z—EiNZB . (87)

In order to solve Equation 86, we insert Equation 84 and the equation (see Lemma 2 from Friedman
and Sandow, 2003a)

20l y 5510, -U (by(f)0,) (@8)

into Equation 86, and obtain
0=U (bj(q)0y) —U (by(d’)Oy) — BT f(y) + pH—vy. (89)

We rewrite this equation as
Uby(@)0y) = Gy(a’.B,pv) (90)
with Gy(a”,B.wv) = U(by(a°)0y) + BT () — p+vy (91)

WhereGy(qO,B, K,v) does not depend o In order to solve fog, we substitute Equation 3 into

Equation 90, to obtain
A
-1 — 0
U <U <qyoy>> Gy(q 7[37 UN) . (92)

Solving forgy, we obtain the connecting equation

A
O,U’ (UL(Gy(P, B, V)))

oy (93)
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From Equation 93, by the positivity of th@y and the fact th&J is a monotone increasing
function, we conclude that all of thgf andA have the same sign. We note, from Equation 81, that
theq; andA must be positive. From the Karush-Kuhn-Tucker conditions, we mustWaye= 0;
it follows thatvy, = O for all y. Accordingly, we may suppress the dependenc® ahdL onv.

The connecting equation, Equation 93, dependB,anandp. We now show how to calculate

A andp in terms ofp. Solving Equation 92 fol)/~1 (@ACE) and substituting into Equation 4, we
obtain a condition fopt*:

zo H(Gy(B)) =1 (94)
This equation is easy to solve numerically for, by the following lemma.

Lemma 3 There exists a unique solution’,jto Equation 94. The left hand side of Equation 94 is
a strictly monotone decreasing function ¢f pu

Proof: First, we note that sindd is a strictly increasing function,

1
U =55>0

aw
soU 1 is a strictly increasing function and the left hand side of Equation 94 is a strictly decreasing
function of u*.
Letting
R=maxp’f(y),
we see that
BT f(y)—m<Oforally.

In this case, it follows from Equation 91 that

(q B,H) <Ub§j y) for all'y,
so, by the monotonicity dff 2,
1
8w < ¥ SUTHUb(”)0y) (95)
Z ()y Gy(q ) g Oy ( by )
LG
y

Note thatGy(q°, B, 1) € domU ~1) for all y, by Equation 90. Similarly, by letting

H=minBTf(y),

we can guarantee that

> OiyU Gyl B,w) > 1
y
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By the Intermediate Value Theorem and the monotonicity and continuity of the left hand side of
Equation 94, there exists a unique solution to Equation_94.

We now show how to calculatein terms off3 andp*. We insert Equation 93 into Equation 81,
and obtain:

1 .
L2 S0 UGB )

solving forA, we obtain

1

-1
o {2 OV (U (G B: u*)))} | (96)

Summarizing the result of this subsection:

The connecting equation, which descriliggsas a member of a parametric fam-
ily (in B), is given by
A*

Y = 0,07 (U Gy (B ) ®7)

where we determing* from Equation 94 via Lemma 3 and from Equation
96.

C.2 Dual Problems

We now show that
Lemma 4 Problem 4 is the dual of Problem 2.

Proof. Equations 87 and 93, together with the Equations 94 and 96, give the \@&ctibre
probabilitiesgj and the Lagrange multipliegs’, v* for which the Lagrangian is at its minimum for
given multipliersp, &. This allows us to formulate the dual problem as an optimization with respect
to 3 and&. To this end, we have to computte(q*,c*, 3,&,1*). We insert Equations 6 and 87 into
Equation 84), and obtain:

L(a.cBEW) = T qubi(a)0y) — Y U b (c)0y)
y y

+BT{—Eizs—zq;f<y>+Eﬁ[f1}
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SO
La"cB.&w) = o {Ubj(q)0y)—U(by(a)Oy) — BT F(y)+ 1}
y

1 1
+BTEp(f] - ZE,—NBTZB - EEO‘—U* .

Because of Equation 89, the first line on the r.h.s. of above equation is zero, i.e., we obtain

1 1
* K *\ _ NTe. = nT = T
L(Q7C7[37E7l‘l)_[3 Ep[f] ZENB ZB ZEG l‘l .
The dual problem is to maximize the functibi) = L (g*,c*,B,&, ") with respect td3,§. We
can analytically maximize with respect & by solving 0= %ﬁ“ for §. The maximum is
attained when
BT2pB

§=¢" = WZO;

the Lagrangian & = &* is given by

i
Lo ,c' BE W) = BTEglf]—p —(/al P (99)

Now we are ready to formulate the dual problem: maxintig®) = L (q*,c*,3,&*, ") with respect
to 3. From Equations 98, 91, 97, 96 and 94 we obtain Problem 4, which completes the proof of the
equivalence of the solutions to Problems 4 andl2.

In the following lemma, we show that we can express the dual problem objective function in a
more easily interpreted form.

Lemma5 Problem 4 can be restated as Problem 3.
Proof: Using Equation 89 to replad® Eg| f] — u* in Equation 30, and noticing th'alt(b;j(qO)Oy)
does not depend dBy we obtain:

i
n®) = Y RUGE)0y) —yfaP (99)
y

up to an unimportant constant. This means that the dual problem can be restated as in Prablem 3.

The proof of Theorem 1 is a direct consequence of Lemmas 4 and 5 and the fact that the primal
problem satisfies the Slater condition and therefore there is no duality gap (see, for example Section
V, Theorem 4.2 in Berkovitz, 2002). The primal problem is strictly convex and therefore has a
unique solution (see, for example, Rockafellar, 1970, Section 27).

Appendix D. Dual Problem for our Logarithmic Family

In order to specify the dual problem for our utility (Equation 35), we first notice that

Y1
U’ = — 100
@ = 7. (100)
Yy
Ulz = enr —y (101)
andU’(U 1(2) = yie (102)
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Using the relation

by (a) = ay

1 y

(see Theorem 4 in Friedman and Sandow, 2003a), we can @Mq? B, ") from Equation 26 as

Gy(d,B, 1) = [log<qy0 1+vzo >+BTf(y)—p*

Inserting Equations 101 and 104 into Equation 27 gives
10, 1
— 4,0y |14V ~— (105)
e L St
1
Oy

SR

+VY2 . (104)

1

ST (106)

which can be solved fqu*:

U = log (Z P’ > (107)

Next we solve Equation 28 for*. We use Equations 102 and 104 to write Equation 28 as

. 1 1 T £ )L
1 = A ;{O—y<q§’oy 1+y;®]eﬁf(y) “>}
1 T «
1+yy = 0B’ fy—1
Vgoy] 2{% }

After inserting Equation 107 we can solve forand get:
1
N= —— . (108)
1+Viy o,

By means of Equations 25, 102, 108 and 104 we obtain for the optimal probability distribution

1 "
o = T
T(y
oy o B I (109)
1 U .
= 5 0T @ & 'Y (by Equation 107). (110)
We can now compute the objective functibf3). Based on Equations 23 and 109, we obtain
~ a BTzB
h(B) = Bylogay — |/ = ; (111)
2.109% — \[\e N

up to the constamEf,[Ioqu] andy, and the factoy;.
Collecting Equations 110 and 111, we obtain Problem 5.

287



FRIEDMAN AND SANDOW

Appendix E. Family-Equivalent Dual Problems

In this appendix, we show that we can construct problems that are family-equivalent to the dual
optimization problem 4 (or 3, or 9), where we call two problems family-equivalent if they have the
same family of solutions (as parameterizedof)y We first state and prove the following lemma:

Lemma 6 Let K and g be functions oR’; and letk be a strictly monotone increasing function on
the range of g. Furthermore, let K ancb g be concave. If, for sonte> 0, the function

h(B) = K(B)+ag(B)

has its maximum & = B* € R’, then there exists af > 0 such that the function

h(B) = K(B) +ak(g(B)) (112)

has its maximum & = 3* too. Moreover, if K, g and are differentiable, and]Bg(B)\B:B* #0,
then
G——2 (113)
K'(9(B*))

Proof: We first show the existence af SinceB* maximizes the functioK +ag, it corresponds
to a Pareto optimal value of the vecte(K,qg), i.e., if, for somef3, (K(B),9(B)) # (K(B*),9(B*)),
then eithelK (B) < K(B*) org(B) < g(B*), or both (see, for example, the section on scalarization in
Boyd and Vandenberghe, 2001). Becakse a strictly monotone increasing, i.e. order-preserving,
function, 3* also corresponds to a Pareto optimal value of the veetét, k o g). SinceK andk og
are concave, the sét of achievable-(K,k o g) is convex. Therefore, there exists a nonnegaiive
such tha3* maximizes the functiof = K + dik og from Equation 112 defines a tangent o ,
see, for example Section 2.6 in Boyd and Vandenberghe, 2001).

Next, we show that, iK, g andk are differentiable and]Bg(B)|B:B* =# 0, then Equation 113

holds. To this end, we consider the first-order conditions for the maximizatibraodh:

0 = OgK(B)|g_p + 0B 5_g (114)
and 0 = CgK(B)|g_g + 6K (G(B")p0B) 5. -

Comparing these two equations results in Equation T13.
As a direct consequence of Lemma 6, we have the following lemma:

Lemma 7 Let K and g be functions oR”; and letk be a strictly monotone increasing function on

the range of g. Furthermore, let,l§ andk o g be concave. Then tleeparameterized (witlx > 0)
family of maxima of

h(B) = K(B)+ag(B) (115)

is the same as th@-parameterized (witlii > 0) family of maxima of
h(B) = K(B) +Gk(9(B)) - (116)
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Proof: It follows from Lemma 6 that for every membpt of the family of solutions of Equation
115 (witha > 0) there exists a valug > 0 such thaf3* is a solution of Equation 116, i.e. a member
of the family of solutions of Equation 116. Next we define the funcieak o g, which has the
propertyk og = g. Using again Lemma 6 witg replaced byg, we can see that for every member
B* of the family of solutions of Equation 116 (with > 0) there exists a value > 0 such thaf3*
is a solution of Equation 115, i.e. a member of family of solutions of Equation 115. Therefore,
Equations 115 and 116 have the same family of solutibhs.

Lemma 7 allows us to construct family-equivalent problems to our dual optimization problems
(such as Problems 3, 4 or 9) if we allawto vary form zero to infinity. This follows from the
fact that our dual optimization problems have the form given by Equation 115 with comcave
andg. (The concavity oK andg is a consequence of the concavitytof K + ag for all a > 0,
which, in its turn, follows from the fact that, for arty > 0, h is the objective function of the dual
of a convex optimization problem.) In order to construct a family-equivalent problem, we have
to choose a strictly monotone increasing functiosuch that o g is concave. For example, by
choosingk (x) = x?, we obtain a family-equivalent problem to our dual optimization problem that
does not have the square root in the second term.
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