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Abstract 

First-order logic is the traditional basis for knowledge rep­
resentation languages. However, its applicability to many 
real-world tasks is limited by its inability to represent un­
certainty. Bayesian belief networks, on the other hand, 
are inadequate for complex KR tasks due to the limited 
expressivity of the underlying (prepositional) language. 
The need to incorporate uncertainty into an expressive 
language has led to a resurgence of work on first-order 
probabilistic Logic. This paper addresses one of the main 
objections to the incorporation of probabilities into the 
language: "Where do the numbers come from?" We 
present an approach that takes a knowledge base in an 
expressive rule-based first-order language, and leams the 
probabilistic parameters associated with those rules from 
data cases. Our approach, which is based on algorithms 
for learning in traditional Bayesian networks, can handle 
data cases where many of the relevant aspects of the situ­
ation are unobserved. It is also capable of utilizing a rich 
variety of data cases, including instances with varying 
causal structure, and even involving a varying number of 
individuals. These features allow the approach to be used 
for a wide range of tasks, such as learning genetic prop­
agation models or learning first-order STRIPS planning 
operators with uncertain effects. 

1 Introduction 
First-order logic has traditionally formed the basis for most 
large-scale knowledge representation systems. The advan­
tages of first-order logic in this context are obvious: The 
notions of "individuals*', their properties, and the relations 
between them provide an elegant and expressive framework 
for reasoning about many diverse domains. The use of quan­
tification allows us to compactly represent general rules, that 
can be applied in many different situations. For example, 
when reasoning about genetic transmission of certain proper­
ties (e.g., genetically transmitted diseases), we can write down 
general rules that hold for all people and many properties. 

Unfortunately, like all deterministic logics, first-order logic 
is highly limited in its ability to represent our uncertainty 

*This work was supported in part through the generosity of the 
Powell foundation, and by ONR grant N00014-96-1 -0718. 

about the world. A fact is either known to be true, known to 
be false, or neither. One cannot say that a fact is probably true. 
Real-world relationships, on the other hand, are noisy and non-
deterministic, a fact which cannot be captured in the standard 
logical framework. This severely limits the applicability of 
this framework. For example, very few deterministic rules in 
the domain of genetically transmitted properties are actually 
(absolutely) true in real life. 

This limitation, which is crucial in many domains (e.g., 
medical diagnosis), has led over the last decade to the resur­
gence of probabilistic reasoning in A I . In particular, Bayesian 
belief networks [Pearl, 1988] have been shown to be a prin­
cipled and useful framework for reasoning in an uncertain 
domain. However, belief networks do not, by themselves, 
provide a complete solution for very large-scale knowledge 
representation tasks. The primary reason is their attribute-
based (propositional) nature, which does not support a do­
main description in terms of general rules that apply to many 
qualitatively different situations. 

The tension between these two complementary paradigms 
has been the primary motivation for some of the recent work 
on trying to combine the two [Halpern, 1990; Breese, 1992; 
Poole, 1993; Ngo et al, 1995]. Knowledge-based model con­
struction (KBMC) goes a considerable way towards bridging 
this gap by allowing a set of first-order probabilistic logic 
(FOPL) rules (first-order rules with associated probabilistic 
uncertainty parameters) to be used as a basis for generating 
Bayesian networks tailored to particular problem instances. 

The idea of attaching probabilistic parameters to rules 
leaves unanswered one of the major objections that have been 
raised about probabilistic representations: the famous "where 
do the numbers come from" question. This issue has been 
addressed satisfactorily for traditional belief networks [Lau-
ritzen, 1995; Heckerman, 1995]. In this paper, we show how 
similar techniques can be used to learn the probabilistic pa­
rameters of FOPL rules from data. 

The ability to learn the uncertainty parameters of a rich first-
order representation has the potential to be a powerful tool in 
many situations. We illustrate this using two very different 
examples: reasoning about genetically transmitted properties 
and planning for mobile robots. In both these examples, as 
in many others, the problem of learning these uncertainty pa­
rameters is an important one. The skeleton of the rules (the 
rules without the parameters) is often easier to acquire than 
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the parameters themselves. In fact, an existing set of tradi­
tional first-order rules often provides us with an appropriate 
skeleton. In general, the rule structure directly reflects the un­
derlying causal structure of the domain, a type of knowledge 
with which human experts are often fairly comfortable. By 
contrast, probabilistic parameters are notoriously difficult to 
elicit from people. 

The propagation of genetically transmitted properties was 
a key example in some of the early research into belief net­
works [Lauritzen and Spiegelhalter, 1988]. Given a particular 
family tree and set of properties being studied, one can con­
struct a traditional propositional belief network in which the 
probability of each property being passed from each genera­
tion to the next is represented. However, a new network must 
be specially constructed for every family tree. Currently, this 
is either done manually or using a special-purpose procedural 
program [Szolovits and Pauker, 1992]. 

Using a first order representation, one can capture the gen­
eral mechanism of gene inheritance using a small number of 
rules. These can be used to automatically generate an ap­
propriate belief network for any family tree and any set of 
properties. The generality of first-order languages is mani­
fested here in three ways: the same mechanism is at work 
in different family trees, in different generations within the 
same family tree, and in the propagation of different genes 
from parent to child. Our approach enables us to learn the 
propagation parameters for the different classes of properties. 
We wi l l also be able to learn the strength of the correlations 
between propagations of the different properties, e.g., that eye 
color is usually propagated together with diabetes (because of 
proximity on the chromosome strand). 

The task of planning for an autonomous agent has tra­
ditionally been based on a logical representation of ac­
tions and their effects. In recent years, there has been a 
growing consensus that the underlying assumptions of this 
representation—deterministic actions, reliable sensors, and 
(often) complete observability—are rarely true in practice, 
particularly in robotics applications. As a consequence, prob­
abilistic representations have recently started to play a role in 
planning [Kushmerick et al., 1993; Dean and Wellman, 1991]. 
These representations, however, are typically attribute-based, 
and are therefore limited in their ability to capture general pat­
terns in action models. FOPL would allow for an integration 
of these two formalisms. 

Certain important issues arise when we contemplate learn­
ing in domains such as these. First, as in most real-life appli­
cations, most of the relevant variables are not observed by the 
learning agent. In the domain of genetically transmitted prop­
erties, we may observe the phenotype of some of the people in 
the family. We wi l l rarely ( i f ever) have complete information 
about the entire family. We wi l l hardly ever have any informa­
tion at all about the genotype of the different people involved. 
In the planning domain, we wi l l typically have access only to 
the robot's sensors. The variables corresponding to the true 
state of the world are almost always unobservable. 

A second common thread is that these domains all require 
the ability to learn from data cases that are qualitatively very 
different from each other. For example, in the genetic propa-
gation example, we wish to learn from different family trees, 

over a varying number of individuals, and representing the 
inheritance of different properties. In our planning domain, 
we are faced with runs of different length, where the robot 
undertakes different actions. Note that, in both of these ap­
plications, each of the (very different) data cases gives us 
information about many (or all) of the parameters of interest, 
so that we cannot simply separate them into distinct clusters 
and run a learning algorithm on each. 

The approach we present in the paper is capable of dealing 
with both of these issues. We start out with a knowledge base 
consisting of partially specified FOPL rules: the rule structure 
is determined, but the uncertainty parameters are left unspec­
ified. We are also given a set of data cases, where each data 
case consists of a context (e.g., the structure of the family 
tree, or the set of actions taken by the robot) and the observa­
tions made by the agent. We use a standard KBMC algorithm 
to generate the network structure for each of the data cases. 
The observations in each data case become evidence in the 
resulting network. The conditional probability tables in the 
resulting networks are related to the parameters correspond­
ing to the rules in the knowledge base. We adaptively learn 
these parameters, using an extension to the standard EM algo­
rithm [Lauritzen, 1995] for learning the parameters of a belief 
network with fixed structure and hidden variables. We extend 
it to deal with an ensemble of networks of varying structure, 
and in which the same parameter can appear several times. 

The two major advantages of first order languages over 
propositional languages—generality and compactness—have 
particular ramifications in a learning context. The general­
ity of first-order models allows the learned parameters to be 
reused again and again in many different contexts. The cost 
of learning is therefore amortized over a large number of in­
stances in which the benefits are reaped. The compactness 
of such representations allows a probabilistic model to be 
represented using a small number of parameters, hopefully 
resulting in faster learning. 

2 Knowledge-based model construction 
Since the idea of constructing belief networks from a first-
order probabilistic knowledge base was first proposed [Breese, 
1992], several approaches have been developed. Most of 
these augment logic-programming style rules with uncertainty 
parameters. In this paper, we largely follow the framework 
of [Ngo et aql., 1995]. In this approach, a set of Horn rules 
describes the ways in which first-order predicates influence 
each other. Because the influence may be uncertain, each rule 
has a uncertainty parameter associated with it. Intuitively, one 
can think of a rule as identifying a possible set of conditions 
under which the consquence becomes true, and giving the 
probability that the consequence actually becomes true as a 
result of the conditions. 

For example, a very simple model for gene propagation can 
be expressed in the rules: 

The first rule says that a when a person's parent has a gene, 
the person wi l l inherit it with probability 0.5. The second rule 
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says that when a person has a gene, it wi l l be observed in the 
person's phenotype with probability 0.75. 

When only one instantiation of a rule can cause a predicate 
to be true, the associated uncertainty parameter is in fact the 
conditional probability that the head is true given that the body 
is true. Sometimes, more than one set of conditions can cause 
a predicate to be true. For example, if both a person's parents 
have a gene, the first rule wi l l fire twice, for the two different 
values of Q. In such cases, we need a combination rule to 
indicate how the different possible causes interact. One very 
common combination rule is noisy-or [Pearl, 1988], which 
describes a situation in which an effect happens whenever any 
of its potential causes succeeds in making it happen, and the 
different causal influences act independently. More precisely, 
the probability that the effect does not happen is the probability 
that all the potential causes independently fail to cause it. For 
example, if the combination rule for genotype is noisy-or, then 
a person both of whose parents have a gene wi l l fail to inherit 
it with probability (0.5)2 = 0.25. 

A more accurate model for genetic propagation may in­
corporate the number of chromosomes (0, 1, or 2) on which 
the gene is found. (Our language allows for multi-valued 
variables. Rules for such variables have several parameters 
corresponding to each of the possible values.) A person with 
the gene on both chromosomes in a pair wi l l always propagate 
a copy to his or her children, while a person with one copy wi l l 
only propagate it with probability 0.5. The combination rule 
in this case wi l l be a noisy addition rule in which the number 
of genes possessed by a person is the sum of the number of 
succesful propagations from his or her parents. The proba­
bility that a gene wi l l be manifested in a person's phenotype 
wi l l depend both on the number of copies possessed and on 
whether the gene is dominant or recessive. Note that this can 
easily be expressed in our language as a property of G. An 
even richer model may consider the correlation between the 
propagation of different genes based on their proximity on the 
chromosome strand. 

The rules in the knowledge base describe, in a general man­
ner, the ways in which various predicates interact. They are 
used in a particular situation to build a Bayesian network, via 
a process of knowledge-based model construction (KBMC). 
The resulting network defines a probability distribution over 
the variables that are relevant in the given situation. A situa­
tion is defined by a context, which determines the structural 
relationship between the objects in the situation. In the genetic 
domain, the parent predicate is part of the context, defining the 
family tree. In general, the body of a rule wi l l consist of both 
context variables and random variables, which are treated dif­
ferently by the model construction process. 

The KBMC algorithm takes as input a knowledge base, a 
context, a query and evidence, and returns a Bayesian network 
that can be used to compute the probability of the query given 
the evidence. The context, the query, and the evidence are 
all ground facts in the language. The algorithm proceeds by 
backward chaining through the Horn rules, iteratively adding 
nodes representing different ground facts to the network. It 
starts by adding the query and the evidence. Each time a 
variable is added to the network, it is matched with the rule 
heads to determine what predicates can influence it. Context 

predicates appearing in the rule body must be satisfied for 
the rule to apply; if it does, the other predicates in the body 
(appropriately instantiated) are added to the network as ran­
dom variables. Figure 1 shows a simple network constructed 
for the genetic domain to compute the probability of pheno-
type(a, big_ears) given phenotype(b, big_ears) and not phenotype(c, 
big_ears). The context consists of the ground facts parent(a,c), 
parent(b.c), parent(a,d), and parent(b,d). 

Figure 1: Generated network for genetic domain. 

In order to complete the specification of the probability dis­
tribution defined by the Bayesian network, the KBMC algo­
rithm must determine the conditional probability table (CPT) 
for each node. This table lists the conditional probability 
of the node given each possible value of its parents. The 
CPT entries are determined by the uncertainty parameters, 
using the combination rules. In principle, the combination 
rules could determine the entries to be any function of the 
parameters. However, learning is greatly simplified if each 
CPT entry is associated with at most one parameter which 
must be learned. Thus, we restrict attention to decomposable 
combination rules, ones which can be expressed using a set 
of separate nodes corresponding to the different influences, 
which are then combined in another node. Fortunately, all 
the commonly occuring combination rules (including noisy-
or and tree-structured iBoutilier ef at., 1996]) generate CPTs 
with this property. The KBMC algorithm automatically gen­
erates the decomposed representation for these combination 
rules, thereby facilitating learning. 

This approach can be applied naturally to planning domains. 
For example, consider planning in a robotics domain where 
properties of objects and the effects of actions such as mov­
ing and grasping are uncertain. For any (possibly uncertain) 
initial condition and sequence of actions, KBMC is used to 
build a probabilistic model of the world after the actions have 
been taken. The context here consists of the set of objects in 
the world, some known properties of the objects, such as their 
type and shape, and the sequence of actions taken. The ran­
dom variables include other properties of the objects (such as 
whether they are currently wet and therefore harder to grab), 
and the locations of objects at different times. The knowl­
edge base consists of STRIPS-like rules with uncertainty (as 
in [Kushmerick et al, 1993]), stipulating the probability that 
certain postconditions wi l l hold given that the preconditions 
hold and an action is taken. Our use of the closed world as­
sumption on context predicates fits naturally with the STRIPS 
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assumptions. 
A useful type of combination rule for planning domains 

is a selection rule. A selection rule behaves analogously to 
a multiplexer: a predicate may match several rules, and the 
value of a selection variable determines which of the rules 
is applicable. Selection rules are useful in situations where 
a predicate is influenced by a single cause, but the identity 
of the cause is itself uncertain. This is typical of planning 
situations. For example, the effects of a move action may 
depend on the properties of the robot's current location. Since 
the robot's location is itself a random variable, the properties 
of all locations could potentially influence the action's effects. 
The location is used as a selector to determine which properties 
are the relevant ones. Computationally, selection rules require 
the Bayesian network inference algorithm to take advantage 
of context-specific independence lBoutilier et al., 1996]. 

3 Learning 

Our learning task is to take a set of data cases, C, and return 
a hypothesis H that "explains" the data C in the best possible 
way. The hope is that a hypothesis that provides a good 
explanation wi l l also generalize well to unseen data cases 
(modulo concerns about overrating). Here, each data case 
consists of a context and some evidence. Since our goal is 
to learn the parameters for a set of FOPL rules, we assume 
that our algorithm is provided with a skeleton rule base, and 
must only f i l l in the values of the uncertainty parameters. 
Formally, our hypothesis space consists of the possible values 
for the rule parameters. We assume for convenience that 
the rule parameters have values between 0 and 1. Thus, if 
there are M unspecified parameters, the hypothesis space is 
the set of M-vectors We 
consider a hypothesis as a good explanation for the data if it 
gives it high probability. Thus, we seek to find the maximum 
likelihood hypothesis that maximizes the probability of the 
data C. 

Our first task is to define this probability For a 
single data case _ , _ , we can use the techniques of Section 2. 
A probabilistic model consisting of the rule skeletons and the 
parameters defines a belief network for each data case. 
The probability of the data case given the hypothesis is thus 
defined as the probability that the evidence variables wil l take 
on their given values in the distribution defined by this belief 
network. More precisely, let C be a particular data case, 
Dc the observed evidence in the data case, and the 
belief network constructed for that data case from its context. 
The probability of C given the hypothesis is defined as 

At this point we would like to define the likelihood of 
the entire data set as the product of the likelihoods of the 
individual data cases, so that if C = {C 1 , . . .,CN}. then 

This definition embodies the as­
sumption that the different data cases are independent. This 
seemingly innocuous assumption, which is made almost uni­
versally in the context of machine learning, is not as obviously 
justified. Our more expressive language gives us the ability 
to relate two individuals, having the properties of one affect 

the other. But now, we may be uncertain about whether in­
dividuals observed in the context of two different data cases 
are related to each other. In the gene inheritance domain, for 
example, two people appearing in different family trees may 
in fact have a common ancestor, thereby linking the two trees. 
In some sense, the 'ideal' model for a data set C is a single 
huge belief network incorporating all of our information. Af­
ter all, our domain really does contain all of these elements. 
In this network, we can represent our uncertainty concerning 
the potential relationships between individuals in the different 
family trees. Clearly, practical considerations prevent us from 
taking this course. This is the reason for making the indepen­
dence assumption, which in the genetics example essentially 
asserts that different family trees are extremely unlikely to be 
closely related to each other, and that the influences between 
data cases are attenuated across many generations. However, 
it is important to keep in mind that this is purely an approx­
imation, and that we need to check every time whether it is 
justified in our particular situation. 

4 The Learning Algorithm 
In this section we describe our learning algorithm in detail. 
The algorithm takes as input a set of probabilistic rule skele­
tons with some of the rule parameters left unspecified, and a 
training set C consisting of contexts and evidence. It attempts 
to find the maximum likelihood vector of parameter values 
using a two-stage process. In the first stage, it constructs a 
belief network for each data case by mimicking the knowl­
edge based model construction process. In the second stage, 
it attempts to find the maximum likelihood hypothesis using 
the EM method (in a manner analogous to its use for learning 
Bayesian networks [Lauritzen, 19951). 

Let C be a particular data case, the evidence in the data 
case, and. the the belief network constructed for that data 
case. The learning algorithm begins by building the network 
for each data case, via back-chaining from the evidence nodes. 
The second phase of the algorithm uses the EM algorithm to 
search for the value of that maximizes the likelihood of 
the evidence in the constructed belief networks. We briefly 
review the EM algorithm and its application to our problem. 
To understand the intuition, consider the problem of maximum 
likelihood parameter learning in standard Bayesian networks 
from fully observable data. There, the network structure is 
identical in all data cases, and the parameters are simply the 
CPT entries. Let A" be some node in the network and U be 
its parents. The maximum likelihood estimate for the CPT 
entry is simply the number of data cases 
where A, U take the values x, u respectively, divided by the 
number of data cases where U takes the value u. 

If our data cases have missing values, we can no longer 
perform this counting process. The EM algorithm essentially 
provides us with a way for probabilistically "f i l l ing in " the 
missing values. It starts out with some initial set of parame­
ters, and uses them to compute a probability distribution over 
the various possible completions of each partial data case. 
Each completion is then treated as a fully-observed data case, 
but one whose weight is its probability. A new set of pa­
rameters is then computed as described above, over the set 
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of weighted data cases. The process is now repeated with 
the new set of parameters. Standard results (see [McLachlan 
and Krishnan, 1997]) imply that this procedure converges to 
a set of parameters which is a local maximum in the l ikeli­
hood space. In practice, of course, one cannot generate every 
fully observable completion for a partially observable data 
case C, since the number of such completions is exponen­
tial in the number of unobserved variables in C. Luckily, 
the total weight of the completions for C which contribute to 
the weighted count of the event X = x, U = u is simply 

In our context, the basic idea is the same. The two main 
differences are that the networks for the different data cases 
have different structures, so that a parameter may appear in a 
variety of contexts, and that the same parameter can appear 
more than once in the same network. To see that neither of 
these is a problem, consider some rule r in our knowledge 
base. By assumption, r is associated with some set of pa­
rameters, and these appear only in r. Recall that our use of 
decomposable combination rules implies that each node in 
the generated network is associated with at most one rule. 
(Some nodes simply compute deterministic functions such as 
or and summation.) Thus, while the same rule can induce 
more than one node in the network for a data case, all of the 
nodes have an identical local structure: the CPTs are the same 
and incorporate the parameters in the same way. Thus, each 
of the nodes derived from r can be viewed as a separate "ex­
periment" for the parameters associated with r. Each should 
therefore make a separate contribution to the "count" for those 
parameters. This situation is now analogous to the one that 
arises in learning Hidden Markov Models [Rabiner and Juang, 
1986], where we also have data cases of varying structure and 
parameter sharing in each data case. 

Formally, let r be some rule, and be one of its parameters. 
Let xr, ur be the values for a node and its parents that are 
associated with in a node generated by rule r. For every 
data case C, let be the set of nodes in the network „ 
which correspond to the rule r. In each iteration of the EM 
algorithm, we begin with some set of parameters and adjust 
each of them according to the weighted counts, as follows: 

The values of Prx can be computed using standard Bayesian 
network calculations in the network , constructed using 
the current guess for 

The fact that the we get the maximum likelihood estimate 
for our parameters in the fully observable case implies the de­
sired convergence property [McLachlan and Krishnan, 1997]: 

Theorem 1: The iterative EM procedure described above 
converges to a set of parameters which induces a local 
maximum in the likelihood 

It is instructive to compare the complexity of our learning 
algorithm to that of parameter estimation in standard (propo-
sitional) Bayesian networks. Our learning procedure involves 
a single initial phase of constructing the network structure for 
each data case. The cost of this phase is insignificant relative 

to the cost of the EM iterations, each of which involves run­
ning Bayesian network inference for each data case. This cost 
(per iteration) is the same as in the case of learning parame­
ters for propositional Bayesian networks. We do not have an 
analysis of the number of iterations required for convergence 
either for standard Bayesian networks or for our rules. The 
first-order rules, however, support a significant reduction in 
the dimensionality of the parameter space via the parameter 
sharing encoded in the rules. In general, a reduction in the 
number of parameters tends to speed up convergence. For ex­
ample, it has recently been shown [Friedman and Goldszmidt, 
1996] that exploiting context-specific independence in tradi­
tional Bayesian networks can speed up the learning process 
considerably. 

The learning procedure presented here suffers from two 
potential problems: local maxima and overrating. Since we 
are only attempting to learn numerical parameters, any over-
fitting would be numerical, i.e., learning the parameter values 
to too great a degree of accuracy. Techniques such as random 
restart may alleviate the problem of local maxima, but possi­
bly at the cost of increasing the danger of overrating. Future 
work should determine how serious these issues are for this 
procedure, and develop techniques to deal with them. 

5 Experimental Results 
We tested the learning algorithm on a simple gene propaga­
tion model with three parameters. We generated data cases 
from a given set of rules with associated parameters. We then 
gave our algorithm the "correct" rule structures and used it to 
learn the parameters from the data cases. In addition to the 
two rules shown in Section 2, there was a rule for spontaneous 
acquisition of a gene, with uncertainty parameter 0.05. The 
experiments tested the ability of the algorithm to learn the cor­
rect values of the parameters from n data cases, for various 
values of n between 10 and 1000. Each data case described a 
family tree relating between 20 and 40 people, with the phe-
notype being observed for approximately one third of them. 
Ten sets of experiments were run for every value of ny each 
with a different training set constructed from the same set of 
parameters. 

The results are shown in Figure 2. Figure 2(a) shows the 
mean absolute error of the learned parameter values as com­
pared to their true values. The graph shows the average, best 
and worst results for each value of n. Figure 2(b) shows the 
relative error for the parameter values. Figure 2(c) describes 
the performance of the learned parameters in predicting the 
probabilities of events in a test set. The test set consisted of 
500 data cases, generated from the same model as the training 
data, but which were not shown to the learning algorithm. The 
figure shows the mean relative error of the predicted proba­
bilities as compared to the true probabilities. Notice that the 
relative error of the predictions is much smaller than the rel­
ative error of the parameter values. (Note the scale of the 
two graphs.) It has often been observed that the predictive 
performance of a Bayesian network is not sensitive to small 
error in the parameters. Our results indicate that a similar 
phenomenon may hold for the parameters of noisy rules. This 
type of robustness to small errors greatly increases the appli-
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Figure 2: (a) Mean absolute error of learned parameter values, (b) Mean relative error of learned parameter values, (c) Relative 
error on probability prediction for new cases. In each figure, the x-axis represents the number of data cases. 

cability of learning. 

6 Conclusion 
We have shown how techniques for learning in standard be­
lief networks can be adapted to learning in first-order prob­
abilistic models. This allows us to learn in domains where 
we encounter many qualitatively different circumstances that 
share an underlying causal structure and uncertainty param­
eters. Clearly, more extensive experiments are required in 
order to test the usefulness of our approach in practice. 

Our presentation in this paper was based on a specific rep­
resentation language for the first-order probabilistic rules. We 
are currently investigating the problem of defining expressive 
languages for modeling complex stochastic domains, includ­
ing languages that support the representation of continuous 
variables and temporal processes, and reasoning at different 
levels of granularity. Whatever the results of this research, we 
expect that a model in our language wi l l continue to define a 
belief network for a given situation, and that the conditional 
probabilities wi l l be functions of various parameters. There­
fore, the ideas in this paper should continue to be applicable. 

Finally, we have focused on learning the numeric uncer­
tainty parameters of first-order probabilistic rules. We did not 
address the problem of learning the structure of the rules. In 
recent years, there has been significant work both on learning 
the structure of belief networks (see [Heckerman, 1995] for 
a survey) and on inductive logic programming [Muggleton, 
1992]—learning deterministic first-order rules. It would be 
very interesting to see whether the techniques developed in 
these two areas of research can be integrated, allowing us to 
learn the causal/rule structure of complex uncertain domains. 
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