
Learning probabilities for noisy first-order rules*

Daphne Roller Avi Pfeffer
Stanford University Stanford University

koller@cs.stanford.edu avi@cs.stanford.edu

Abstract

First-order logic is the traditional basis for knowledge rep
resentation languages. However, its applicability to many
real-world tasks is limited by its inability to represent un
certainty. Bayesian belief networks, on the other hand,
are inadequate for complex KR tasks due to the limited
expressivity of the underlying (prepositional) language.
The need to incorporate uncertainty into an expressive
language has led to a resurgence of work on first-order
probabilistic Logic. This paper addresses one of the main
objections to the incorporation of probabilities into the
language: "Where do the numbers come from?" We
present an approach that takes a knowledge base in an
expressive rule-based first-order language, and leams the
probabilistic parameters associated with those rules from
data cases. Our approach, which is based on algorithms
for learning in traditional Bayesian networks, can handle
data cases where many of the relevant aspects of the situ
ation are unobserved. It is also capable of utilizing a rich
variety of data cases, including instances with varying
causal structure, and even involving a varying number of
individuals. These features allow the approach to be used
for a wide range of tasks, such as learning genetic prop
agation models or learning first-order STRIPS planning
operators with uncertain effects.

1 Introduction
First-order logic has traditionally formed the basis for most
large-scale knowledge representation systems. The advan
tages of first-order logic in this context are obvious: The
notions of "individuals*', their properties, and the relations
between them provide an elegant and expressive framework
for reasoning about many diverse domains. The use of quan
tification allows us to compactly represent general rules, that
can be applied in many different situations. For example,
when reasoning about genetic transmission of certain proper
ties (e.g., genetically transmitted diseases), we can write down
general rules that hold for all people and many properties.

Unfortunately, like all deterministic logics, first-order logic
is highly limited in its ability to represent our uncertainty

*This work was supported in part through the generosity of the
Powell foundation, and by ONR grant N00014-96-1 -0718.

about the world. A fact is either known to be true, known to
be false, or neither. One cannot say that a fact is probably true.
Real-world relationships, on the other hand, are noisy and non-
deterministic, a fact which cannot be captured in the standard
logical framework. This severely limits the applicability of
this framework. For example, very few deterministic rules in
the domain of genetically transmitted properties are actually
(absolutely) true in real life.

This limitation, which is crucial in many domains (e.g.,
medical diagnosis), has led over the last decade to the resur
gence of probabilistic reasoning in A I . In particular, Bayesian
belief networks [Pearl, 1988] have been shown to be a prin
cipled and useful framework for reasoning in an uncertain
domain. However, belief networks do not, by themselves,
provide a complete solution for very large-scale knowledge
representation tasks. The primary reason is their attribute-
based (propositional) nature, which does not support a do
main description in terms of general rules that apply to many
qualitatively different situations.

The tension between these two complementary paradigms
has been the primary motivation for some of the recent work
on trying to combine the two [Halpern, 1990; Breese, 1992;
Poole, 1993; Ngo et al, 1995]. Knowledge-based model con
struction (KBMC) goes a considerable way towards bridging
this gap by allowing a set of first-order probabilistic logic
(FOPL) rules (first-order rules with associated probabilistic
uncertainty parameters) to be used as a basis for generating
Bayesian networks tailored to particular problem instances.

The idea of attaching probabilistic parameters to rules
leaves unanswered one of the major objections that have been
raised about probabilistic representations: the famous "where
do the numbers come from" question. This issue has been
addressed satisfactorily for traditional belief networks [Lau-
ritzen, 1995; Heckerman, 1995]. In this paper, we show how
similar techniques can be used to learn the probabilistic pa
rameters of FOPL rules from data.

The ability to learn the uncertainty parameters of a rich first-
order representation has the potential to be a powerful tool in
many situations. We illustrate this using two very different
examples: reasoning about genetically transmitted properties
and planning for mobile robots. In both these examples, as
in many others, the problem of learning these uncertainty pa
rameters is an important one. The skeleton of the rules (the
rules without the parameters) is often easier to acquire than

1316 PROBABILISTIC REASONING

the parameters themselves. In fact, an existing set of tradi
tional first-order rules often provides us with an appropriate
skeleton. In general, the rule structure directly reflects the un
derlying causal structure of the domain, a type of knowledge
with which human experts are often fairly comfortable. By
contrast, probabilistic parameters are notoriously difficult to
elicit from people.

The propagation of genetically transmitted properties was
a key example in some of the early research into belief net
works [Lauritzen and Spiegelhalter, 1988]. Given a particular
family tree and set of properties being studied, one can con
struct a traditional propositional belief network in which the
probability of each property being passed from each genera
tion to the next is represented. However, a new network must
be specially constructed for every family tree. Currently, this
is either done manually or using a special-purpose procedural
program [Szolovits and Pauker, 1992].

Using a first order representation, one can capture the gen
eral mechanism of gene inheritance using a small number of
rules. These can be used to automatically generate an ap
propriate belief network for any family tree and any set of
properties. The generality of first-order languages is mani
fested here in three ways: the same mechanism is at work
in different family trees, in different generations within the
same family tree, and in the propagation of different genes
from parent to child. Our approach enables us to learn the
propagation parameters for the different classes of properties.
We wi l l also be able to learn the strength of the correlations
between propagations of the different properties, e.g., that eye
color is usually propagated together with diabetes (because of
proximity on the chromosome strand).

The task of planning for an autonomous agent has tra
ditionally been based on a logical representation of ac
tions and their effects. In recent years, there has been a
growing consensus that the underlying assumptions of this
representation—deterministic actions, reliable sensors, and
(often) complete observability—are rarely true in practice,
particularly in robotics applications. As a consequence, prob
abilistic representations have recently started to play a role in
planning [Kushmerick et al., 1993; Dean and Wellman, 1991].
These representations, however, are typically attribute-based,
and are therefore limited in their ability to capture general pat
terns in action models. FOPL would allow for an integration
of these two formalisms.

Certain important issues arise when we contemplate learn
ing in domains such as these. First, as in most real-life appli
cations, most of the relevant variables are not observed by the
learning agent. In the domain of genetically transmitted prop
erties, we may observe the phenotype of some of the people in
the family. We wi l l rarely (i f ever) have complete information
about the entire family. We wi l l hardly ever have any informa
tion at all about the genotype of the different people involved.
In the planning domain, we wi l l typically have access only to
the robot's sensors. The variables corresponding to the true
state of the world are almost always unobservable.

A second common thread is that these domains all require
the ability to learn from data cases that are qualitatively very
different from each other. For example, in the genetic propa-
gation example, we wish to learn from different family trees,

over a varying number of individuals, and representing the
inheritance of different properties. In our planning domain,
we are faced with runs of different length, where the robot
undertakes different actions. Note that, in both of these ap
plications, each of the (very different) data cases gives us
information about many (or all) of the parameters of interest,
so that we cannot simply separate them into distinct clusters
and run a learning algorithm on each.

The approach we present in the paper is capable of dealing
with both of these issues. We start out with a knowledge base
consisting of partially specified FOPL rules: the rule structure
is determined, but the uncertainty parameters are left unspec
ified. We are also given a set of data cases, where each data
case consists of a context (e.g., the structure of the family
tree, or the set of actions taken by the robot) and the observa
tions made by the agent. We use a standard KBMC algorithm
to generate the network structure for each of the data cases.
The observations in each data case become evidence in the
resulting network. The conditional probability tables in the
resulting networks are related to the parameters correspond
ing to the rules in the knowledge base. We adaptively learn
these parameters, using an extension to the standard EM algo
rithm [Lauritzen, 1995] for learning the parameters of a belief
network with fixed structure and hidden variables. We extend
it to deal with an ensemble of networks of varying structure,
and in which the same parameter can appear several times.

The two major advantages of first order languages over
propositional languages—generality and compactness—have
particular ramifications in a learning context. The general
ity of first-order models allows the learned parameters to be
reused again and again in many different contexts. The cost
of learning is therefore amortized over a large number of in
stances in which the benefits are reaped. The compactness
of such representations allows a probabilistic model to be
represented using a small number of parameters, hopefully
resulting in faster learning.

2 Knowledge-based model construction
Since the idea of constructing belief networks from a first-
order probabilistic knowledge base was first proposed [Breese,
1992], several approaches have been developed. Most of
these augment logic-programming style rules with uncertainty
parameters. In this paper, we largely follow the framework
of [Ngo et aql., 1995]. In this approach, a set of Horn rules
describes the ways in which first-order predicates influence
each other. Because the influence may be uncertain, each rule
has a uncertainty parameter associated with it. Intuitively, one
can think of a rule as identifying a possible set of conditions
under which the consquence becomes true, and giving the
probability that the consequence actually becomes true as a
result of the conditions.

For example, a very simple model for gene propagation can
be expressed in the rules:

The first rule says that a when a person's parent has a gene,
the person wi l l inherit it with probability 0.5. The second rule

ROLLER & PFEFFER 1317

says that when a person has a gene, it wi l l be observed in the
person's phenotype with probability 0.75.

When only one instantiation of a rule can cause a predicate
to be true, the associated uncertainty parameter is in fact the
conditional probability that the head is true given that the body
is true. Sometimes, more than one set of conditions can cause
a predicate to be true. For example, if both a person's parents
have a gene, the first rule wi l l fire twice, for the two different
values of Q. In such cases, we need a combination rule to
indicate how the different possible causes interact. One very
common combination rule is noisy-or [Pearl, 1988], which
describes a situation in which an effect happens whenever any
of its potential causes succeeds in making it happen, and the
different causal influences act independently. More precisely,
the probability that the effect does not happen is the probability
that all the potential causes independently fail to cause it. For
example, if the combination rule for genotype is noisy-or, then
a person both of whose parents have a gene wi l l fail to inherit
it with probability (0.5)2 = 0.25.

A more accurate model for genetic propagation may in
corporate the number of chromosomes (0, 1, or 2) on which
the gene is found. (Our language allows for multi-valued
variables. Rules for such variables have several parameters
corresponding to each of the possible values.) A person with
the gene on both chromosomes in a pair wi l l always propagate
a copy to his or her children, while a person with one copy wi l l
only propagate it with probability 0.5. The combination rule
in this case wi l l be a noisy addition rule in which the number
of genes possessed by a person is the sum of the number of
succesful propagations from his or her parents. The proba
bility that a gene wi l l be manifested in a person's phenotype
wi l l depend both on the number of copies possessed and on
whether the gene is dominant or recessive. Note that this can
easily be expressed in our language as a property of G. An
even richer model may consider the correlation between the
propagation of different genes based on their proximity on the
chromosome strand.

The rules in the knowledge base describe, in a general man
ner, the ways in which various predicates interact. They are
used in a particular situation to build a Bayesian network, via
a process of knowledge-based model construction (KBMC).
The resulting network defines a probability distribution over
the variables that are relevant in the given situation. A situa
tion is defined by a context, which determines the structural
relationship between the objects in the situation. In the genetic
domain, the parent predicate is part of the context, defining the
family tree. In general, the body of a rule wi l l consist of both
context variables and random variables, which are treated dif
ferently by the model construction process.

The KBMC algorithm takes as input a knowledge base, a
context, a query and evidence, and returns a Bayesian network
that can be used to compute the probability of the query given
the evidence. The context, the query, and the evidence are
all ground facts in the language. The algorithm proceeds by
backward chaining through the Horn rules, iteratively adding
nodes representing different ground facts to the network. It
starts by adding the query and the evidence. Each time a
variable is added to the network, it is matched with the rule
heads to determine what predicates can influence it. Context

predicates appearing in the rule body must be satisfied for
the rule to apply; if it does, the other predicates in the body
(appropriately instantiated) are added to the network as ran
dom variables. Figure 1 shows a simple network constructed
for the genetic domain to compute the probability of pheno-
type(a, big_ears) given phenotype(b, big_ears) and not phenotype(c,
big_ears). The context consists of the ground facts parent(a,c),
parent(b.c), parent(a,d), and parent(b,d).

Figure 1: Generated network for genetic domain.

In order to complete the specification of the probability dis
tribution defined by the Bayesian network, the KBMC algo
rithm must determine the conditional probability table (CPT)
for each node. This table lists the conditional probability
of the node given each possible value of its parents. The
CPT entries are determined by the uncertainty parameters,
using the combination rules. In principle, the combination
rules could determine the entries to be any function of the
parameters. However, learning is greatly simplified if each
CPT entry is associated with at most one parameter which
must be learned. Thus, we restrict attention to decomposable
combination rules, ones which can be expressed using a set
of separate nodes corresponding to the different influences,
which are then combined in another node. Fortunately, all
the commonly occuring combination rules (including noisy-
or and tree-structured iBoutilier ef at., 1996]) generate CPTs
with this property. The KBMC algorithm automatically gen
erates the decomposed representation for these combination
rules, thereby facilitating learning.

This approach can be applied naturally to planning domains.
For example, consider planning in a robotics domain where
properties of objects and the effects of actions such as mov
ing and grasping are uncertain. For any (possibly uncertain)
initial condition and sequence of actions, KBMC is used to
build a probabilistic model of the world after the actions have
been taken. The context here consists of the set of objects in
the world, some known properties of the objects, such as their
type and shape, and the sequence of actions taken. The ran
dom variables include other properties of the objects (such as
whether they are currently wet and therefore harder to grab),
and the locations of objects at different times. The knowl
edge base consists of STRIPS-like rules with uncertainty (as
in [Kushmerick et al, 1993]), stipulating the probability that
certain postconditions wi l l hold given that the preconditions
hold and an action is taken. Our use of the closed world as
sumption on context predicates fits naturally with the STRIPS

1318 PROBABILISTIC REASONING

assumptions.
A useful type of combination rule for planning domains

is a selection rule. A selection rule behaves analogously to
a multiplexer: a predicate may match several rules, and the
value of a selection variable determines which of the rules
is applicable. Selection rules are useful in situations where
a predicate is influenced by a single cause, but the identity
of the cause is itself uncertain. This is typical of planning
situations. For example, the effects of a move action may
depend on the properties of the robot's current location. Since
the robot's location is itself a random variable, the properties
of all locations could potentially influence the action's effects.
The location is used as a selector to determine which properties
are the relevant ones. Computationally, selection rules require
the Bayesian network inference algorithm to take advantage
of context-specific independence lBoutilier et al., 1996].

3 Learning

Our learning task is to take a set of data cases, C, and return
a hypothesis H that "explains" the data C in the best possible
way. The hope is that a hypothesis that provides a good
explanation wi l l also generalize well to unseen data cases
(modulo concerns about overrating). Here, each data case
consists of a context and some evidence. Since our goal is
to learn the parameters for a set of FOPL rules, we assume
that our algorithm is provided with a skeleton rule base, and
must only f i l l in the values of the uncertainty parameters.
Formally, our hypothesis space consists of the possible values
for the rule parameters. We assume for convenience that
the rule parameters have values between 0 and 1. Thus, if
there are M unspecified parameters, the hypothesis space is
the set of M-vectors We
consider a hypothesis as a good explanation for the data if it
gives it high probability. Thus, we seek to find the maximum
likelihood hypothesis that maximizes the probability of the
data C.

Our first task is to define this probability For a
single data case _ , _ , we can use the techniques of Section 2.
A probabilistic model consisting of the rule skeletons and the
parameters defines a belief network for each data case.
The probability of the data case given the hypothesis is thus
defined as the probability that the evidence variables wil l take
on their given values in the distribution defined by this belief
network. More precisely, let C be a particular data case,
Dc the observed evidence in the data case, and the
belief network constructed for that data case from its context.
The probability of C given the hypothesis is defined as

At this point we would like to define the likelihood of
the entire data set as the product of the likelihoods of the
individual data cases, so that if C = {C 1 , . . .,CN}. then

This definition embodies the as
sumption that the different data cases are independent. This
seemingly innocuous assumption, which is made almost uni
versally in the context of machine learning, is not as obviously
justified. Our more expressive language gives us the ability
to relate two individuals, having the properties of one affect

the other. But now, we may be uncertain about whether in
dividuals observed in the context of two different data cases
are related to each other. In the gene inheritance domain, for
example, two people appearing in different family trees may
in fact have a common ancestor, thereby linking the two trees.
In some sense, the 'ideal' model for a data set C is a single
huge belief network incorporating all of our information. Af
ter all, our domain really does contain all of these elements.
In this network, we can represent our uncertainty concerning
the potential relationships between individuals in the different
family trees. Clearly, practical considerations prevent us from
taking this course. This is the reason for making the indepen
dence assumption, which in the genetics example essentially
asserts that different family trees are extremely unlikely to be
closely related to each other, and that the influences between
data cases are attenuated across many generations. However,
it is important to keep in mind that this is purely an approx
imation, and that we need to check every time whether it is
justified in our particular situation.

4 The Learning Algorithm
In this section we describe our learning algorithm in detail.
The algorithm takes as input a set of probabilistic rule skele
tons with some of the rule parameters left unspecified, and a
training set C consisting of contexts and evidence. It attempts
to find the maximum likelihood vector of parameter values
using a two-stage process. In the first stage, it constructs a
belief network for each data case by mimicking the knowl
edge based model construction process. In the second stage,
it attempts to find the maximum likelihood hypothesis using
the EM method (in a manner analogous to its use for learning
Bayesian networks [Lauritzen, 19951).

Let C be a particular data case, the evidence in the data
case, and. the the belief network constructed for that data
case. The learning algorithm begins by building the network
for each data case, via back-chaining from the evidence nodes.
The second phase of the algorithm uses the EM algorithm to
search for the value of that maximizes the likelihood of
the evidence in the constructed belief networks. We briefly
review the EM algorithm and its application to our problem.
To understand the intuition, consider the problem of maximum
likelihood parameter learning in standard Bayesian networks
from fully observable data. There, the network structure is
identical in all data cases, and the parameters are simply the
CPT entries. Let A" be some node in the network and U be
its parents. The maximum likelihood estimate for the CPT
entry is simply the number of data cases
where A, U take the values x, u respectively, divided by the
number of data cases where U takes the value u.

If our data cases have missing values, we can no longer
perform this counting process. The EM algorithm essentially
provides us with a way for probabilistically "f i l l ing in " the
missing values. It starts out with some initial set of parame
ters, and uses them to compute a probability distribution over
the various possible completions of each partial data case.
Each completion is then treated as a fully-observed data case,
but one whose weight is its probability. A new set of pa
rameters is then computed as described above, over the set

ROLLER & PFEFFER 1319

of weighted data cases. The process is now repeated with
the new set of parameters. Standard results (see [McLachlan
and Krishnan, 1997]) imply that this procedure converges to
a set of parameters which is a local maximum in the l ikeli
hood space. In practice, of course, one cannot generate every
fully observable completion for a partially observable data
case C, since the number of such completions is exponen
tial in the number of unobserved variables in C. Luckily,
the total weight of the completions for C which contribute to
the weighted count of the event X = x, U = u is simply

In our context, the basic idea is the same. The two main
differences are that the networks for the different data cases
have different structures, so that a parameter may appear in a
variety of contexts, and that the same parameter can appear
more than once in the same network. To see that neither of
these is a problem, consider some rule r in our knowledge
base. By assumption, r is associated with some set of pa
rameters, and these appear only in r. Recall that our use of
decomposable combination rules implies that each node in
the generated network is associated with at most one rule.
(Some nodes simply compute deterministic functions such as
or and summation.) Thus, while the same rule can induce
more than one node in the network for a data case, all of the
nodes have an identical local structure: the CPTs are the same
and incorporate the parameters in the same way. Thus, each
of the nodes derived from r can be viewed as a separate "ex
periment" for the parameters associated with r. Each should
therefore make a separate contribution to the "count" for those
parameters. This situation is now analogous to the one that
arises in learning Hidden Markov Models [Rabiner and Juang,
1986], where we also have data cases of varying structure and
parameter sharing in each data case.

Formally, let r be some rule, and be one of its parameters.
Let xr, ur be the values for a node and its parents that are
associated with in a node generated by rule r. For every
data case C, let be the set of nodes in the network „
which correspond to the rule r. In each iteration of the EM
algorithm, we begin with some set of parameters and adjust
each of them according to the weighted counts, as follows:

The values of Prx can be computed using standard Bayesian
network calculations in the network , constructed using
the current guess for

The fact that the we get the maximum likelihood estimate
for our parameters in the fully observable case implies the de
sired convergence property [McLachlan and Krishnan, 1997]:

Theorem 1: The iterative EM procedure described above
converges to a set of parameters which induces a local
maximum in the likelihood

It is instructive to compare the complexity of our learning
algorithm to that of parameter estimation in standard (propo-
sitional) Bayesian networks. Our learning procedure involves
a single initial phase of constructing the network structure for
each data case. The cost of this phase is insignificant relative

to the cost of the EM iterations, each of which involves run
ning Bayesian network inference for each data case. This cost
(per iteration) is the same as in the case of learning parame
ters for propositional Bayesian networks. We do not have an
analysis of the number of iterations required for convergence
either for standard Bayesian networks or for our rules. The
first-order rules, however, support a significant reduction in
the dimensionality of the parameter space via the parameter
sharing encoded in the rules. In general, a reduction in the
number of parameters tends to speed up convergence. For ex
ample, it has recently been shown [Friedman and Goldszmidt,
1996] that exploiting context-specific independence in tradi
tional Bayesian networks can speed up the learning process
considerably.

The learning procedure presented here suffers from two
potential problems: local maxima and overrating. Since we
are only attempting to learn numerical parameters, any over-
fitting would be numerical, i.e., learning the parameter values
to too great a degree of accuracy. Techniques such as random
restart may alleviate the problem of local maxima, but possi
bly at the cost of increasing the danger of overrating. Future
work should determine how serious these issues are for this
procedure, and develop techniques to deal with them.

5 Experimental Results
We tested the learning algorithm on a simple gene propaga
tion model with three parameters. We generated data cases
from a given set of rules with associated parameters. We then
gave our algorithm the "correct" rule structures and used it to
learn the parameters from the data cases. In addition to the
two rules shown in Section 2, there was a rule for spontaneous
acquisition of a gene, with uncertainty parameter 0.05. The
experiments tested the ability of the algorithm to learn the cor
rect values of the parameters from n data cases, for various
values of n between 10 and 1000. Each data case described a
family tree relating between 20 and 40 people, with the phe-
notype being observed for approximately one third of them.
Ten sets of experiments were run for every value of ny each
with a different training set constructed from the same set of
parameters.

The results are shown in Figure 2. Figure 2(a) shows the
mean absolute error of the learned parameter values as com
pared to their true values. The graph shows the average, best
and worst results for each value of n. Figure 2(b) shows the
relative error for the parameter values. Figure 2(c) describes
the performance of the learned parameters in predicting the
probabilities of events in a test set. The test set consisted of
500 data cases, generated from the same model as the training
data, but which were not shown to the learning algorithm. The
figure shows the mean relative error of the predicted proba
bilities as compared to the true probabilities. Notice that the
relative error of the predictions is much smaller than the rel
ative error of the parameter values. (Note the scale of the
two graphs.) It has often been observed that the predictive
performance of a Bayesian network is not sensitive to small
error in the parameters. Our results indicate that a similar
phenomenon may hold for the parameters of noisy rules. This
type of robustness to small errors greatly increases the appli-

1320 PROBABILISTIC REASONING

Figure 2: (a) Mean absolute error of learned parameter values, (b) Mean relative error of learned parameter values, (c) Relative
error on probability prediction for new cases. In each figure, the x-axis represents the number of data cases.

cability of learning.

6 Conclusion
We have shown how techniques for learning in standard be
lief networks can be adapted to learning in first-order prob
abilistic models. This allows us to learn in domains where
we encounter many qualitatively different circumstances that
share an underlying causal structure and uncertainty param
eters. Clearly, more extensive experiments are required in
order to test the usefulness of our approach in practice.

Our presentation in this paper was based on a specific rep
resentation language for the first-order probabilistic rules. We
are currently investigating the problem of defining expressive
languages for modeling complex stochastic domains, includ
ing languages that support the representation of continuous
variables and temporal processes, and reasoning at different
levels of granularity. Whatever the results of this research, we
expect that a model in our language wi l l continue to define a
belief network for a given situation, and that the conditional
probabilities wi l l be functions of various parameters. There
fore, the ideas in this paper should continue to be applicable.

Finally, we have focused on learning the numeric uncer
tainty parameters of first-order probabilistic rules. We did not
address the problem of learning the structure of the rules. In
recent years, there has been significant work both on learning
the structure of belief networks (see [Heckerman, 1995] for
a survey) and on inductive logic programming [Muggleton,
1992]—learning deterministic first-order rules. It would be
very interesting to see whether the techniques developed in
these two areas of research can be integrated, allowing us to
learn the causal/rule structure of complex uncertain domains.

References
[Boutilier et aL, 1996] C.E. Boutilier, N. Friedman, M. Gold

szmidt, and D. Roller. Context-specific independence in
bayesian networks. In Proc. UAI, 1996.

[Breese, 1992] J.S. Breese. Construction of belief and deci
sion networks. Computational Intelligence, 1992.

[Dean and Wellman, 1991] T. Dean and M. Wellman. Plan
ning and Control Morgan Kaufmann, 1991.

[Friedman and Goldszmidt, 1996] N. Friedman and
M. Goldszmidt. Learning bayesian networks with local
structure. In Proc. UAI, 1996.

[Halpern, 1990] J. Y. Halpern. An analysis of first-order log
ics of probability. Artificial Intelligence\ 46, 1990.

[Heckerman, 1995] D. Heckerman. A tutorial on learning
with Bayesian networks. Technical Report MSR-TR-95-
06, Microsoft Research, 1995. •

[Kushmerick et al, 1993] N. Kushmerick, S. Hanks, and
D. Weld. An algorithm for probabilistic least-commitment
planning. In Proc. IJCAI, 1993.

[Lauritzen and Spiegelhalter, 1988] S. L. Lauritzen and D. J.
Spiegel halter. Local computations with probabilities on
graphical structures and their application to expert systems.
Journal of the Royal Statistical Society, B 50(2), 1988.

[Lauritzen, 1995] S. L. Lauritzen. The EM algorithm for
graphical association models with missing data. Compu
tational Statistics and Data Analysis, 19, 1995.

[McLachlan and Krishnan, 1997] G. J. McLachlan and T. Kr-
ishnan. The EM Algorithm and Extensions. Wiley Inter-
science, 1997.

[Muggleton, 1992] S. Muggleton. Inductive Logic Program
ming. Academic Press, 1992.

[Ngo et al, 1995] L. Ngo, P. Haddawy, and J. Helwig. A
theoretical framework for context-sensitive temporal prob
ability model construction with application to plan projec
tion. In Proc. UAI, 1995.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, 1988.

[Poole, 1993] David Poole. Probabilistic horn abduction and
bayesian networks. Artificial Intelligence, 64(1), 1993.

[Rabiner and Juang, 1986] L. R. Rabiner and B. H. Juang.
An introduction to hidden markov models. IEEE ASSP
Magazine, 1986.

[Szolovits and Pauker, 1992] P. Szolovits and S.P. Pauker.
Pedigree analysis for genetic counseling. In Proc. 7th
World Congress on Medical Informatics, 1992.

ROLLER & PFEFFER 1321

PROBABILISTIC REASONING

Probabilistic Reasoning 3

