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ABSTRACT 

We discuss a method of learning by practice 
based on the idea of determining classes of 
problems that can be solved in simplified ways, A 
description of a class is obtained by processes 
that hypothesize descriptions, generate and 
classify problem variations, and test the 
hypotheses against them. The approach has been 
implemented in a system that learns by practice in 
a domain of elementary physics. The system has 
two main components, a Problem Solver and a 
Learning Agent. The Problem Solver handles the 
problems in the domain and the Learning Agent does 
the actual learning. To perform its tasks the 
Learning Agent utilizes algorithms, heuristics, 
and domain knowledge, and for this reason it can 
be regarded as an expert system whose expertise 
resides in being able to learn by experimentation 
and generalization. 

1. INTRODUCTION 

In recent years learning has been 
increasingly recognized as an important area for 
Artificial Intelligence research ([61,[11lL 
While human expert behavior is characterized by 
the ability to increase expertise by learning in 
the course of solving problems, current expert 
systems lack many important capabilities in this 
respect: i> They are not capable of analyzing 
their own solutions, and thus, they cannot 
determine if a solution can be *‘improved” (e.g., 
by simplifying it). ii) They don’t try “mental 
experiments”, that is, imaginary problems in which 
they could apply new methods or heuristics that 
might improve their problem solving capabilities. 
iii) They are not capable of remembering. If they 
are given a problem similar, or even identical, to 
one previously solved, they will not recognize 
this fact and will repeat the solution process. 
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We report research on a method of learning by 
practice that provides these capabilities to a 
certain degree. The method is embodied in a 
system called DARWIN that functions in a domain of 
elementary physics in which interacting ideal 
rigid bodies are in equilibrium. Starting with a 
general method of solving problems in the domain, 
the system learns problem classes and their 
corresponding specialized methods of solution by 
means of experimentation and generalization. This 
presentation is organized as follows : after 
characterizing the problem under study an overview 
of the learning approach is given, the processes 
used to obtain a description of a problem class 
are explained, and some of the limitations and 
difficulties encountered are discussed. 

2. THE PROBLEM 

In the description of the ISAAC system [IO], 
that solves physics problems stated in natural 
language, it was noted that for some of the 
problems that it solved a human expert would have 
produced a simpler solution. This observation 
lead us to consider the following situation. Let 
us suppose that a system has a general method for 
solving problems in its domain. One of the things 
it can learn by practice is that there are 
problems that can be solved in simplified ways, 
that is: 

IF problem belongs-to problem-classj 
THEN use special-methodj 

Thus, two things must be learned: a 
description of a problem class and its 
corresponding special method. One way of doing 
this is by applying a deductive approach. If the 
system had a theory of the domain it could deduce 
that for problems having certain characteristics a 
simplified solution could be obtained. In this 
paper, on the other hand, we take an empirical 
approach in which the system tries to determine 
descriptions of problem classes by performing 
experiments. Thus, a theory of the domain is not 
necessary and this represents an important 
advantage because the experimentation and 
generalization methods can be made relatively 
independent of the domain. The price one pays, 
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however, is diminished certainty of the acquired 
knowledge. Since exhaustive experimentation is 
impossible, this knowledge represents only 
plausible conjectures. Research on learning by 
practice and discovery has been reported in 
[41, [61 and [91, generalization methods are 
presented in [21,[71 and [81, a method of 
experimentation based on perturbation is proposed 
in [31, and expertise in solving problems in 
physics has been analyzed in [l] and [5l. 

3. OVERVIEW OF THE LEARNING APPROACH 

The approach has been implemented in a system 
with two main components: a Problem Solver (PS) 
and a Learning Agent (LA). To emphasize the fact 
that the Learning Agent is responsible for the 
evolution of the problem solver by developing 
specialized solution methods to cope with problems 
in its domain, we refer to it as the DARWIN 
system. 

Analyze solution of problem 
Determine problem class description: 

cycle 
Hypothesize descriptions 
Generate problem variations 
Classify variations 
Test descriptions against 
variations 

end cycle 
Build specialized method and integrate 
it in PS 

Fig.1: Outline 
Process 

of the Learning 

The PS starts with a general method that 
allows it to solve problems in its elementary 
physics domain. The method is based on the 
principles of equilibrium of forces and moments. 
The LA acts as a supervisor of the PS and its task 
can be divided into the following stages (See 
Fig.1): 1) Determine if a given problem can be 
solved in a simplified way: using knowledge about 
the domain, the solution is analyzed to see if it 
has some special characteristics that could lead 
to simplifications (e.g., that one or more 
equations produced by the general method are not 
actually needed to solve the problem). 2) 
Determine a description of the problem class: 
when it has been found that the solution of a 
problem can be simplified the LA uses 
experimentation and generalization processes to 
obtain a description of the class, in such a way 
that all the problems belonging to it can be 
solved in the same simplified way. 3) Derive the 
specialized method and integrate it into the PS: 
using knowledge about the problem domain and about 
information consumed and produced at each step of 
the general solution method, the system builds the 
specialized solution method and adds it to the PS. 
The new method can be obtained by eliminating 
steps from the general method and by replacing 
some steps by simpler ones. The second stage is 
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the most important and complex and will be 
analyzed in detail in the next section. Due to 
space limitations the other two stages will not be 
given further consideration. 

4. DETERMINING A DESCRIPTION OF A PROBLEM 
CLASS 

The learning situation under study is 
characterized by an important fact: the system 
has made a single observation that a specific 
problem can--&-solved in a simplified way. This 
fact is in itself useless, because the likelihood 
that exactly the same problem will be encountered 
by the system in the future is nil, so that this 
knowledge will most likely never be used! This 
implies that the system must perform some kind of 
generalization to determine a class of problems to 
which the specialized solution applies. In order 
for the system to obtain a generalization from 
only one observation it needs to perform 
experiments to gather additional information. 
Thus, the determination of the description of the 
problem class is carried out by two highly 
intertwined processes: experimentation and 
generalization. To perform these tasks the LA 
utilizes algorithms, heuristics, and domain 
knowledge, and for this reason it can be regarded 
as an expert system whose expertise resides in 
being able to learn by experimentation and 
generalization. 

The description of the class will be 
expressed in terms of first order logic and will 
be based on the problem description and the 
background knowledge available to the system [12]. 
The latter kind of information can be classified 
as follows: i) predicates that refer to relations 
between positions of objects (e.g. : 
"symmetrically located", "at left end") * ii) 
predicates that refer to relations Aetween 
attributes of objects (e.g.: "perpendicular", 
"same size") ; and iii) predicates that refer to 
attributes of objects (e.g. : "angle of force 
equal to x1'). To constrain the search space we 
have decomposed the process so that at each stage 
different kinds of predicates are determined in 
the order indicated by the previous 
classification. We illustrate the process with an 
example: 

"A horizontal lever 15 ft long is 
supported at the left and right ends by a 
pivot and rolling pivot, respectively. 
Two forces are applied to the lever, one 
which has a magnitude of 120 lb, an angle 
of 270 degrees. and is applied at a point 
3 ft from the left end; and another which 
has a magnitude of 120 lb, an angle of 270 
degrees, and is applied at a point 12 ft 
from the left end. Determine the forces 
exerted by the pivots so that the lever is 
in equilibrium." (See Fig.2a). 



Fig. 2a: Initial Problem 

is-45 
Fig. 2b: Most General Problem 

After preprocessing the initial description 
the following information is obtained: 

lever: 
weight=0 
angle=0 
length= 15 

force1 : force2 : 
magn= 120 magn=120 
angle=270 angle=270 
pos=3 pas= 12 
desunk=False desunk=False 

pivot: 
pos=o 
desunk=True 

rpivot : 
pos=15 
desunk=True 

(rpivot:rolling pivot; desunk:desired unknown; 
pos:position) 

The PS produces a solution to the problem 
which is then analyzed by the LA. The following 
special characteristics are detected : the 
horizontal component of the force applied by the 
pivot is zero, the vertical components of the 
forces applied by the pivot and the rolling pivot 
have the same magnitude, and all the torques due 
to horizontal components of the forces are zero. 

4.1 Determining Position and Attribute Relations 

The system starts by determining which 
relations between positions and attributes of 
objects are important. 

4.1.1 Hypothesize Descriptions: The system uses 
background knowledge and hypothesizes that the set 
of predicates that evaluate to True in the initial 
problem constitutes a description of the class. 
The following predicates defined in the background 
knowledge are true in the initial problem: 

(I) 
(2) 
(3) 
(4) 
(5) 
(6) 

i;i; 
(9) 

symloc(pivot,rpivot) (*c> 
atleftend(pivot) 
atrightendcrpivot) 
symloc( force1 , force2) 
sameangles{ forcel, force2) 
perpendicular ( force1 , lever > 
perpendicular(force2,lever) 
samesize(forcel,force2) 
mirrorangles(forcel,force2) 

(*) (symloc: symmetrically located with 
respect to the center of the lever) 

4.1.2 Generate Problem Variations: Some of these 
relations may not necessary and since we want 
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to obtain as general as possible a description the 
system should try to eliminate them. This is 
accomplished by proposing variations of the 
original problem and seeing how the predicates 
behave with respect to them. To determine 
interesting problem variations the system uses a 
method based on what we call the “mutual support 
principle** (MSP) . Let us assume that the 
description of the problem class will be expressed 
as a conjunction of predicates. (In general, it 
will consist of a disjunction of con juncts, but 
the MSP can be easily restated to cover that 
case). The MSP simply says that con juncts 
l*supportl* each other in the sense that negative 
variations not rejected by one conjunct must be 
rejected by others, and positive variations must 
be accepted by all predicates (See 4.1.3, below). 

Using this principle, problem variations are 
generated as follows: for every predicate found 
true in the initial problem generate, if possible, 
**true’* and **false** variations (T-vars and F-vars, 
respectively). A T-var with respect to a 
predicate is a variation in which the predicate 
evaluates to true. A false variation is a 
variation in which the predicate evaluates to 
false. T-vars and F-vars are generated using 
functions in the background knowledge, associated 
with each predicate. In general there may be 
several ways of generating T and F-variations from 
a predicate. Let us consider the predicate 
mirrorangles(forcel,force2). F-variations can be 
generated as follows: a) leave the angle of 
force1 fixed and select a random angle for force2; 
b) fix angle of force2 and select a random angle 
for forcel; c) select random angles for both 
force1 and force2. In all of these variations the 
predicate evaluates to False, as desired. The 
other predicates are affected in different ways. 
For instance, perpendicular(force2,lever) will 
evaluate to False in a) and c), but will evaluate 
to True in b). We can conclude from this that in 
order to obtain useful variations, as many 
different ways of generating them as possible must 
be considered. 

4.1.3 Classify variations: The variations 
generated must be classifFed as positive (POS) or 
negative (NEG) according to * whether their 
solutions do or do not have the same special 
characteristics that were detected in the solution 
of the initial problem. 

4.1.4 Test the descriptions: Finally, the 
predicaKar=ested against the sets of POSs and 
~GS. In addition, since the system is trying to 
obtain as general as possible a description, a 
“most general** variation must be picked from all 
the POSs variations. The criterion used is to 
select the one that is re jetted by more 
predicates, because that means that it satisfies 
fewer constraints. (In general, this criterion 
may give more than one “most general” variation, 
meaning that there are alternative most general 
structures. In the current implementation the 
system picks any one of them). Once a most 
general variation is selected, the predicates that 
reject it are eliminated, as long as all the NEGs 
are still re jetted . Continuing with the example, 



it turns out that predicates (2),(3),(5),(6) and 
(7) can be eliminated, which means that the 
initial problem satisfied more constraints than 
needed. Thus, we obtain a new, more **general** 
problem, in which the forces don’t have to be 
perpendicular to the lever, the pivots don’t need 
to be at the ends of the lever, and whose solution 
has the same special characteristics as the 
solution of the initial problem (See Fig.2b). 

4.2 Considering problems with a different number -- 
of objects c- 

So far in our analysis the number of objects 
has remained constant. But in the domain we are 
considering there may be several forces applied to 
a rigid body, so that it is worth exploring such 
cases. 

4.2.1 Hypothesize Descriptions: The approach 
consists of replacing the constants that appear in 
the predicates by variables and then of 
quantifying these variables so that they range 
over sets of objects. The system uses heuristics 
to constrain the number of quantified predicates 
that are generated. For the example above, let 

P = [symloc(forcel,force2) and 
samesize(forcel,force2) and 
mirrorangles(forcel,force2)1. 

That is, P represents the conjunction of all the 
predicates involving forces that were true in the 
most general problem. The system generates all 
predicates of the form: (quantl fl (quant2 f2 P>> 
in which quantl and quant2 can be the quantifiers 
“for all”, “there isI1 and **there is one**. 
(Additional predicates are generated by adding the 
clause notequal(fl,f2) to some of those quantified 
predicates). 

4.2.2 Generate Problem Variations: T and 
F-variations are -ted from each hypothesis, 
using heuristics that depend on the quantifiers 
and basic predicates that appear in them. For 
instance, consider the predicate 

PI = (forall fl (thereisone f2 
(symloc(f1 ,f2) and 
samesize(f1 ,f2) and 
mirrorangles(fl,f2)) 1) 

T-variations from this predicate can be generated 
by adding two forces, one of them with arbitrary 
attribute values, and the other such that all the 
basic predicates are satisfied. F-variations can 
be obtained by adding one or two arbitrary forces. 

4.2.3 Classify the variations: Similar to the 
process describFin Section 4.1.3. 

4.2.4 Test the Hypotheses: The system tries to 
determ= aminimal set of predicates that accept 
all POSs and reject all NEGs, This is carried out 
by a process which is a modification of one 
proposed in II71 to obtain a disjunctive 
description of a concept. After performing this 
process for the example, predicate PI defined 

above accepts all POSs and rejects all NEGs 
generated at this stage, so that it constitutes a 
partial description of the class. 

4.3 Considering Values of Attributes of Objects 

In the previous stages the system obtained a 
partial description of the problem class that 
takes into account relations between positions and 
attributes of different objects. In this last 
stage it is necessary to take into account the 
values of attributes of single objects. 
Additional background knowledge about *lspeciall* 
and “non-special** values of attributes of objects 
is used. For instance, the **weight** attribute of 
a lever has **O** as special value. Any other value 
is non-special. Using this knowledge new 
predicates are hypothesized and tested. 

At the end of the whole process the following 
predicates were obtained for the problem class 
under study: 

(forall fl (thereisone f2 
(symloc(f1 ,f2) and 
samesize(f1 ,f2) and 
mirrorangles(f1 ,f2)) >>, 

(forall pivot (forall rpivot 
symloc(pivot,rpivot) >>, 

(forall lever (lever.angle = O)), 
one(pivot), one(rpivot). 

5. DISCUSSION AND CONCLUSIONS 

In a typical inductive situation a set of 
positive and negative instances of a concept is 
given. In the approach described above this 
information is lacking, so that the search for the 
description of the problem class develops in two 
spaces : the space of descriptions and the space 
of variations. The experiments we have per formed 
show that the process of classifying the problem 
variations is the most expensive. For the example 
given above, approximately 300 problem variations 
had to be classified. (The exact number depends 
on the background knowledge available to the 
system). In the current (interpreted) 
implementation of the problem solver it takes an 
average of 9 seconds to solve a problem. In order 
to classify the proposed variations of the 
original problem they must first be solved. Thus, 
for the system to learn this new class it would 
need 2700 seconds plus the (substantially smaller) 
time required to carry out the other processes 
involved. To lower this cost we have followed a 
**mixed** approach in which the variations are 
classified by the instructor (who is informed by 
the system of the special characteristics their 
solutions should satisfy). If, however, the 
instructor is in doubt about any specific 
variation, he lets the system to classify it by 
itself. In the experiments performed, the DARWIN 
system has learned several problem classes that 
have simplified solutions. It has also learned 
problem classes in which the unknown(s) take 
special values which are remembered by the system, 
and problem classes in which heuristics that 
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transform a problem into a simpler one, can be 
validly applied. 

The classes that can be learned by the system 
are essentially determined by the kinds of special 
characteristics that it can detect in a solution 
and by the information available in the background 
knowledge. If the system is not capable of 
detecting some interesting characteristics of a 
solution then it will not even start a learning 
episode. On the other hand, once a learning 
episode is triggered, the corresponding class will 
be learned only if the system has the appropriate 
predicates in the language to express it. (The 
lack of a predicate will be detected by the system 
during the testing phase, because there will be 
negative variations that will not be rejected). 
Also, the exploration capabilities of the system 
are determined by the functions and heuristics 
that it uses to generate variations. The 
inability to generate certain kinds of variations 
may lead to learning less general descriptions 
(i.e., subclasses of problems) or, even, incorrect 
descriptions. A detailed discussion of this 
point, however, is beyond the scope of this paper. 

In order to apply the learning method to 
another domain it will be necessary to replace the 
background knowledge that the system currently has 
by the background knowledge appropriate for the 
new domain. This can be done without difficulty. 
There are certain characteristics of the current 
domain, however, that are more deeply embedded in 
the system, so that it may be necessary to make 
some non-trivial changes to it. An example of 
this is the order in which different aspects of a 
problem are examined. More importantly, in some 
domains it may be difficult or even impossible to 
have the system classify the variations by itself. 
In those cases a human instructor will have to 
perform that task. Also, the **well formedness** of 
the variations generated by the system may become 
an issue. By the nature of the problems in the 
physics domain it was very easy to generate 
**legal** problems, but this may not be the case for 
other domains so that complex rules of formation 
may have to be introduced. 

When comparing the method proposed here with 
inductive methods in which sets of positive and 
negative variations are given by an instructor, 
certain advantages and disadvantages can be 
discerned. The main advantage is that a system 
implementing this method is more autonomous than 
other systems because instead of being a passive 
receptor of instances it is an active explorer of 
the domain, and so is less dependent on an 
instructor. Disadvantages are that, i> as the 
system assumes more of the burdens of the learning 
process its complexity is increased, and iij the 
method may not be applicable to some domains, as 
was indicated above. A detailed comparison 
between the two kinds of approaches constitutes an 
important topic for research, because it may very 
well be that the advantages of the new method far 
outweigh its disadvantages, at least for certain 
domains. 
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