
Learning Process Models in IoT Edge

Long Cheng†, Cong Liu∗, Qingzhi Liu∗, Yucong Duan‡, and John Murphy†

†School of Computer Science, University College Dublin, Ireland
∗Department of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands

‡College of Information Science and Technology, Hainan University, China

long.cheng@ucd.ie, c.liu.3@tue.nl, q.liu.1@tue.nl, duanyucong@hotmail.com, j.murphy@ucd.ie

Abstract—Process models as knowledge graph representation
have been widely used in various domains to create products
and deliver services. Although different process model discovery
approaches have been proposed in recent years, few of them are
designed for distributed computing environments. Specifically,
none of them has been studied in the emerging edge computing
application scenarios. In this paper, based on the requirements
of some real-time process services, we propose a system design
for learning process models in IoT edge. We present the details
of our solution and our preliminary results on a simulated IoT
network show that our method can discover real-time process
models in less than a second.

Index Terms—process mining; model discovery; edge comput-
ing; IoT; service computing

I. INTRODUCTION

Process mining is an active research discipline aiming

at extracting non-trivial knowledge and interesting insights

about processes from event logs. As one of its core tasks,

process discovery takes an event log as input and produces a

process model without using any prior information [1]. Such

a discovered model can be seen as a knowledge graph, which

abstracts the behavior of all the events in the event log and

also represents all their possible execution semantics. Process

models have been widely used in various domains, such as to

create products and deliver services.

We focus on learning process models from event data

generated from Internet of Things (IoT). Specifically, we are

interested in discovering and delivering process models as a

service in IoT enviroments in real-time where possible. In this

case, data consumers will be able to conduct online deviation

analysis and abnormal detection. The commonly used discov-

ery algorithms such as the Inductive Miner [2] can not be

applied in such scenarios directly. The reason is that these

approaches focus on processing event logs in a centralized

way. Within such a scheme, aggregating event data from large

IoT networks to a standalone machine is costly. Moreover,

model discovery will be also time consuming when the number

of events is large. We can deploy a distributed process model

discovery algorithm like the one using MapReduce [3] in a

cloud to speed up the data aggregation and computing process.

However, such kind of cloud-based computing has been shown

to be not efficient enough for many data applications, e.g., the

ones require very short response time [4].

To meet the real-time service requirements on process

model discovery and delivery in IoT, we propose a design by

leveraging the emerging edge computing paradigm. In fact,

edge computing has been shown to be a better solution for

processing time-sensitive events on supporting instantaneous

response and subsequent decision making, compared to cloud

computing. The main reason is that edge computing brings

memory and computing power closer to the location where

it is needed. Instead of sending data to a centralized cloud

repository or a central data center, data processing happens at

a local gateway device (i.e., edge server) in edge computing.

In this case, the network pressure can be greatly reduced and

consequently the service response time can be improved.

In general, we focus on efficient process model discovery

in IoT edge for real-time services. This is the first time on

how to apply process mining technique in edge computing.

Our main contributions can be summarize as follows.

• We introduce a system design for learning process models

in edge computing, aiming at discovering and delivering

process models as a service to data consumers in real-

time.

• Based on the cluster-based structure of IoT networks, we

propose an efficient discovery approach supporting both

intra-cluster and inter-cluster process model discovery on

edge servers.

• We conduct an experimental evaluation of our method in

a simulated IoT network and the results demonstrate our

approach is efficient on process model discovery.

The paper is organized as follows. Section II defines some

terminologies and basic notations. Related work are introduced

in Section III. The proposed system architecture and discovery

approaches are presented in Section IV. We present our

preliminary experimental results in Section V and conclude

the paper in Section VI.

II. PRELIMINARY

To obtain process models, we rely on event logs. An event

log can be considered as a multi-set of traces [5]. Each trace is

a finite sequence of events where an event refers to an activity.

An event log can be considered as a multiset of traces because

there can be multiple cases having the same trace.

Definition 1. (Trace, Event Log) Let A be a set of activity

labels. A trace is a sequence of activities, i.e., σ ∈ A∗. An

event log is a multiset of traces, i.e., L∈B(A∗).

Given an example log L1 = [〈a, b, c, d, e〉20, 〈a, c, b, d, e〉10].
It contains 30 traces with 20 traces following 〈a, b, c, d, e〉 and

10 traces 〈a, c, b, d, e〉.



As Petri nets [5] are capable of combining a graphical

representation and a formal foundation, they have been widely

used to model, analyze and verify business processes. In this

work, we use Petri nets to represent process models. Some

of the essential terminology and notations regarding Petri nets

are presented as follows.

Definition 2. (Petri net) A Petri net is a 3-tuple PN =
(P, T, F ), satisfying (1) P ∩ T = ∅, P ∪ T 6= ∅ where

P is the place set and T is the transition set; and (2)

F ⊆ (P × T ) ∪ (T × P ) is the flow relation.

b

c

a d e
source sink

p1

p2

p3

p4

p5

Fig. 1. An Example Petri Net

A marking M is a multiset of places, i.e., M ∈ B(P ).
The state of Petri net, called marking, is a multiset of places

indicating how many tokens each place contains. Fig. 1 shows

an example Petri net where [source] is its initial marking. A

transition t ∈ T is enabled in marking M , denoted as M [t> if

each of its input places •t contains at least one token. Consider

the example Petri net in Fig. 1 with M = [p3, p4], M [d >

because both input places (p3 and p4) are marked. An enabled

transition t may fire, i.e., one token is removed from each of

its preset •t and one token is added for each of its postset t•.

Additionally, we consider execution sequences of a PN from

an initial marking and a final marking.

Definition 3. (Process Discovery Algorithm) Let UP be the

universe of all process models. A process discovery algorithm

is a function γ that maps an event log L ⊆ A∗ to a process

model pm ∈ UP , i.e., γ(L) = pm.

Generally speaking, a process discovery algorithm γ is capa-

ble of converting an event log to any form of process models,

such as Petri net, Business Process Modeling Notation, Event-

driven Process Chain, etc. Whatever representation is used,

each trace in the input event log corresponds to a possible

execution sequence in the discovered process model. Consider

for example, by taking as input L1, one can discover a Petri

net that looks like the one in Fig. 1. All traces in L1 can be

replayed by the Petri net in Fig. 1, i.e., each trace corresponds

to an execution sequence in the net.

III. RELATED WORK

Process discovery is one of the most important tasks in

process mining. The problem on how to discover a good

process model and how to learn the model in an efficient

way are still challenging current discovery approaches. Many

disovery algorithms such as the α-miner [6] and Inductive

Miner [2] can learn process models from event logs in which

each process instance is recorded as a case with ordered events.

However, all the methods are on the basis of a standalone

IoT Network

Cluster 1
Cluster 2

Edge 

Servers

Cloud

Server

Dynamic object

Real-time 

Process 

Model 

Requests

Fig. 2. The system architecture of process model discovery in edge comput-
ing. The data aggregation is based on the partitioned clusters in IoT networks.
The discovered models in edge servers are delivered to terminals in real-time
based on service requirements.

implementation and thus they can not be applied in distributed

computing environments directly.

With the growth of IoT networks, the quantity of generated

event data has posed great challenges for current process

mining techniques [7]. For the purpose of efficient process

model disovery over large event logs, the state-of-the-art ap-

proach [3] uses MapReduce leveraging distributed computing

platforms. Its core idea is to distribute logs over computing

nodes, so that the discovery tasks can be efficiently computed

in parallel. Experimental results have shown that the method

can achieve obvious speedups compared to a standalone imple-

mentation. From a service computing aspect, the alogrithm can

be deployed in cloud to improve service efficiency. However,

transmission of the data to a cloud will bring in obvious

overhead for real-time services. Moreover, a process model in

a specified area is more interesting sometimes, and computing

such a model over the data collected from the whole IoT

netowrk in a cloud scenario will be costly in terms of both

computing resouces and time. Recently, a hybrid process

model discovery method has been proposed for handling large

event logs [8]. Similar to [3], the method is designed for cloud

computing, and thus it can not be applied to the case presented

in this work.

IV. PROCESS MODEL DISCOVERY IN EDGE COMPUTING

In this section, we describe our system design and approach

for learning process models in edge computing.

A. System Architecture

The system architecture includes an IoT network and edge

computing servers as shown in Fig. 2. The IoT network

consists of heterogeneous nodes (e.g., sensors) with different

functions (in different colors). Event data is produced by

each node either periodically or triggered by dynamic objects

around the node, and the generated events are transferred to



edge servers by multi-hop communication. The edge servers

can make either parallel or distributed computing for the

aggregated event data from the IoT network. These servers can

re-allocate the data to multiple servers through high bandwidth

network, such as WiFi, 5G or wired network, which can

easily achieve Gigabit communication speed. In a general

case, we utilize a cluster-based data collection solution in the

IoT network [9]. The IoT network has been partitioned into

clusters, e.g., each cluster means the sub-network deployed

in a large organization or a city. For the simplicity of the

presentation, we assume there is only one edge server in each

cluster, which is responsible for collecting the data from the

IoT nodes in the cluster.

B. Process Model Discovery

The data operations for model discovery in our system

mainly contain two layers as follows.

1) Trace Construction: The event data generated by each

IoT node is transferred to the assigned edge server in real-

time, and the server constructs traces based on the events in

a dynamic way. To focus on process model discovery, we

assume that each generated event is associated with a case

id. For a specified condition where there is no case id, we

can use relevant techniques such as event correlation [7] to

discover a case id. To provide a real-time model for consumers,

the constructed traces will be updated batch by batch and

only the ones in a specified time window will be used for

model discovery. The events which are not in the window

will be considered as historical data and transferred to cloud

if required, for storage or global analysis.

2) Model Discovery: For a service requirement on a single

real-time process model, our discovery will perform on the

events from either a single edge server or multiple ones. We

call the former case as intra-cluster discovery, because its

discovered model can only describe the event behavior in

a specified IoT cluster. Similarly, we name the latter case

as inter-cluster discovery, for the purpose of discovering a

model to represent the behavior of dynamic objects, which

could move cross different clusters and trigger the relevant

IoT nodes, as demonstrated in Fig. 2. As these two discovery

implementations are the most basic tasks for model discovery

in edge computing, we will focus on these two cases in this

work. For many other complex service requests, for example,

concurrent service requests on different models (either intra

or inter-cluster) from multiple users in different locations, we

can adopt advanced task scheduling strategies over the edge

servers to achieve the best possible performance on discovery

and to meet the service level agreements.

a) Intra-cluster discovery: For the intra-cluster discov-

ery, all the required events will be on a single edge server.

Therefore, we can use existing process model discovery al-

gorithms on the server to discover a process model. In this

paper, we use the inductive miner [2], as it is currently one

of the leading process discovery techniques that can guarantee

correctness of discovered process models.

The inductive miner discovers process models using a

divide and conquer approach. Given an input event log, it

searches for possible log splits repeatedly such that the original

log is split into smaller sub-logs. The split is built on top

of the so-called directly-follows graph that captures direct

succession information of the activities in an event log. The

cut found from the directly-follows graph is used to split the

corresponding log into smaller ones. This step iterates until a

log contains only a single activity or no cut can be found. Four

types of cuts that correspond to four basic process patterns,

sequence, concurrency, choice and loop, are defined. More

explanations of inductive miner are referred to [2].

b) Inter-cluster discovery: Because of the dynamics of

objects, triggered events with a same case id could be dis-

tributed over different clusters in an IoT network. To discover

an inter-cluster model, we need to collect all the relevant

cross-cluster events on a single edge server and then use

the inductive miner on model discovery. To identify these

events for a given service request, we use an additional

table on each server to record its local case ids in real-time.

Once receiving an inter-cluster discovery request, the edge

server will communicate with the relevant servers to (1) check

whether its recorded case ids appear on the servers, and (2)

retrieve the relevant constructed sub-traces if the ids appear.

For example, we have a request on the edge server X (or

cluster X), which aims to get an inter-cluster model with its

neighbored cluster Y . Assume that at such a time point there is

a trace 〈a, b〉 with case id 3 on X and a trace 〈c, d, e〉 with case

id 3 on Y , then the edge server X will retrieve its required

data 〈c, d, e〉 from Y to construct a local trace 〈a, b, c, d, e〉
with case id 3 for model discovery.

C. Comparison to Current Solutions

Taking a high level comparison with the standalone algo-

rithms and the state-of-the-art cloud-based implementation [3],

there are two main advantages to our design in providing real-

time process model services: (1) From a system performance

aspect, we do not need to aggregate all the event data to either

a single machine or a centralized cloud repository for process

model discovery. In our system, each edge server collects data

independently and they only need to share part of their data for

cross-cluster objects when performing inter-cluster discovery.

This makes computing (i.e., model discovery) closer to the

data sources and thus can greatly reduce the network pressure

and consequently improve real-time performance; (2) From a

service angle, our distributed architecture has also put services

closer to data consumers, which can also improve real-time

efficiency. Moreover, for concurrent requests on local models

(either based on the data from a cluster or multiple clusters),

the model discovery in our system will perform in a more

distributed way rather than a parallel way. Namely, each

edge server is responsible to discover an independent model

in parallel rather than all the edge severs compute a single

model in parallel at a time. This can remove the overhead of

starting parallel programs and communication synchronization

in a cloud-based system.



Fig. 3. The simulated IoT network with edge servers. The network is
partitioned into two clusters as demonstrated by the dashed line.

V. PRELIMINARY EXPERIMENTAL RESULTS

We evaluate the performance of the proposed discovery

approaches in a simulated IoT network. As demonstrated

in Fig. 3, the network is deployed in a square area of

100m×100m. As a preliminary experiment, we test our solu-

tion using 11 sensor nodes. The nodes are randomly scattered

in the area. The network is partitioned into two clusters. Each

IoT node sends data to the edge server of its residing cluster.

We suppose the IoT nodes transmit data to the edge servers

by multi-hop communication, and use the shortest path as the

route from each IoT node to the edge server. We set 100

dynamic objects (e.g., robots) in the IoT area, and each object

moves following some specified patterns. When an object

reaches an ending point, it will move back to its start point

to start a new moving pattern. We set the node 0 and 1 in

Fig. 3 as the two edge servers, and the other nodes with

numbers {2, 3, ..., 13} are IoT nodes, which are responsible

to the activities {A,B, ..., L} respectively. The speed of each

object is 20m/s and the communication speed between IoT

nodes is 1Kb/s. To simplify the simulation, we ignore the

interference in wireless communication.

We assume that we have a service request on the edge server

0 for an intra-cluster and an inter-cluster process model every

30 seconds. We report the experimental results at the time

point that the system has run for 90 seconds. Namely, our

model discovery will be based on the received (and retrieved)

events on the edge server 0 between the time points 60 and

90 second. Fig. 4 shows the discovered intra-cluster process

model, and Fig. 5 demonstrates the discovered inter-cluster

process model. Both the discovery executions are done in

0.3 second including remote data retrieving. In this light, we

believe that our edge based solution has the potential capability

to deliver high-quality process models as a service in real-time.

VI. CONCLUSION AND FUTURE WORK

This paper presents a solution for learning process models

in IoT networks with edge servers, which aims to deliver

process model services in real-time. We give the detailed

system architecture design and describe the intra-cluster and

inter-cluster process model discovery approaches in our solu-

tion. Our preliminary experiments based on a simulated IoT

environment show that our approach can discover both intra

and inter-cluster process models in less than a second.

Fig. 4. The discovered intra-cluster process model on edge server 0 at the
time point 90 sec.

Fig. 5. The discovered inter-cluster process model on edge server 0 at the
time point 90 sec.

Our future work mainly lies in extending our method to

handle more complex service requests, e.g., concurrent service

requests, and more IoT-related business processes, e.g., cross-

organization transportation business processes [10]. Moreover,

we plan to use more advanced strategies to further improve

the real-time efficiency of our method. For the inter-cluster

model discovery, instead of aggregating events, we will try to

aggregate the directly-follows relationships of all the relevant

cross-cluster events. In this case, the computation on directly-

follows relationships will be able to be done in parallel by the

involved edge servers. Finally, we will evaluate the real-time

performance of our solution in large IoT networks.

ACKNOWLEDGMENTS

This work is supported by the European Union’s Horizon

2020 research and innovation programme under the Marie

Sklodowska-Curie grant agreement No 799066.

REFERENCES

[1] C. Liu, Y. Pei, Q. Zeng, and H. Duan, “LogRank: An approach to sample
business process event log for efficient discovery,” in Proc. 11th Int.

Conf. Knowl. Science, Eng. Mgmt., 2018, pp. 415–425.
[2] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Discovering block-

structured process models from event logs-a constructive approach,” in
Int. Conf. Applications and Theory of Petri Nets and Concurrency, 2013,
pp. 311–329.

[3] J. Evermann, “Scalable process discovery using Map-Reduce,” IEEE

Trans. Serv. Comput., vol. 9, no. 3, pp. 469–481, 2016.
[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision

and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[5] W. van der Aalst, Process Mining: Data Science in Action, 2016.
[6] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:

Discovering process models from event logs,” IEEE Trans. Knowl. Data

Eng., vol. 16, no. 9, pp. 1128–1142, 2004.
[7] L. Cheng, B. van Dongen, and W. van der Aalst., “Efficient event

correlation over distributed systems,” in Proc. 17th IEEE/ACM Int. Symp.

Cluster, Cloud and Grid Comput., 2017, pp. 1–10.
[8] L. Cheng, B. van Dongen, and W. van der Aalst, “Scalable discovery of

hybrid process models in a cloud computing environment,” IEEE Trans.

Serv. Comput., pp. 1–1, 2019.
[9] Q. Liu, T. Ozcelebi, L. Cheng, F. Kuipers, and J. Lukkien, “Cluflow:

Cluster-based flow management in software-defined wireless sensor
networks,” in IEEE Wireless Comm. and Networking Conf., 2019.

[10] C. Liu, H. Duan, Z. Qingtian, M. Zhou, F. Lu, and J. Cheng, “Towards
comprehensive support for privacy preservation cross-organization busi-
ness process mining,” IEEE Trans. Serv. Comput., no. 1, pp. 1–1, 2016.


