
Original Paper

Adaptive Behavior

2016, Vol. 24(1) 27–51

� The Author(s) 2015

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/1059712315609412

adb.sagepub.com

Learning programs is better than
learning dynamics: A programmable
neural network hierarchical
architecture in a multi-task scenario

Francesco Donnarumma1, Roberto Prevete2, Andrea de Giorgio3,

Guglielmo Montone4 and Giovanni Pezzulo1

Abstract

Distributed and hierarchical models of control are nowadays popular in computational modeling and robotics. In the arti-

ficial neural network literature, complex behaviors can be produced by composing elementary building blocks or motor
primitives, possibly organized in a layered structure. However, it is still unknown how the brain learns and encodes mul-

tiple motor primitives, and how it rapidly reassembles, sequences and switches them by exerting cognitive control. In

this paper we advance a novel proposal, a hierarchical programmable neural network architecture, based on the notion
of programmability and an interpreter-programmer computational scheme. In this approach, complex (and novel) beha-

viors can be acquired by embedding multiple modules (motor primitives) in a single, multi-purpose neural network. This is

supported by recent theories of brain functioning in which skilled behaviors can be generated by combining functional
different primitives embedded in ‘‘reusable’’ areas of ‘‘recycled’’ neurons. Such neuronal substrate supports flexible cogni-

tive control, too. Modules are seen as interpreters of behaviors having controlling input parameters, or programs that

encode structures of networks to be interpreted. Flexible cognitive control can be exerted by a programmer module
feeding the interpreters with appropriate input parameters, without modifying connectivity. Our results in a multiple T -

maze robotic scenario show how this computational framework provides a robust, scalable and flexible scheme that can

be iterated at different hierarchical layers permitting to learn, encode and control multiple qualitatively different
behaviors.

Keywords

Programming neural networks, hierarchical organization, distributed representation, neuronal reuse, cognitive control

1 Introduction

Converging evidences in literature indicate that the cap-

abilities of human and artificial agents to learn and

control complex skilled behaviors are grounded on

some mechanisms of compositionality of primitives.

According to this view, almost all behaviors (including

complex actions such as playing table tennis) can essen-

tially be generated by combining simpler motor acts

(primitives) which are picked out from a predetermined

set of primitives by following rules. One can isolate

three principles involved in the definition/comprehen-

sion of this mechanism as discussed in the following.

Reusable and adaptable primitives. Primitives can

flexibly be used and re-used in order to construct differ-

ent sequences of actions (d’Avella, Portone, Fernandez,

& Lacquaniti, 2006; Thoroughman & Shadmehr, 2000).

For example, the action of eating an apple can be

broken down into a combination of multiple motor pri-

mitives. Some motor primitives would be responsible

for reaching for the apple, some for grasping it and

some for moving the apple toward one’s own mouth.

In other words, each primitive can be used (and re-

used) in different tasks with the ability to adapt to the

specific task ‘‘on the fly’’ (Pezzulo, Donnarumma,

1Institute of Cognitive Sciences and Technologies, National Research

Council of Italy, Italy
2Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione,

Università degli Studi di Napoli Federico, Napoli
3KTH Royal Institute of Technology, Sweden
4Institut Neuroscience Cognition, Université Paris Descartes, France

Corresponding author:

Francesco Donnarumma, Institute of Cognitive Sciences and

Technologies, National Research Council of Italy, Via San Martino della

Battaglia, 44 Rome 00185, Italy.

Email: francesco.donnarumma@istc.cnr.it

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


Iodice, Prevete, & Dindo, 2015) and this mechanism is

thought to be at the basis of a shared representation

enabling social interaction with conspecifics (Candidi,

Curioni, Donnarumma, Sacheli, & Pezzulo, 2015;

Pezzulo, Donnarumma, & Dindo, 2013). Consequently,

each primitive does not have to be interpreted as a spe-

cific sequence of motor commands, but rather as a

behavior, i.e. it should be ‘‘fluid’’ and context depen-

dent (Tani, Nishimoto, & Paine, 2008).

Distributed representation. One can individuate two

kinds of behavior representation: local and distributed

representation of behavioral modules (Paine & Tani,

2005). In the first case, the acquisition of novel beha-

viors consists of adding novel, single-purpose modules,

each implementing one specific behavior (Haruno,

Wolpert, & Kawato, 2003; Igari & Tani, 2009). This

strong modularization of the behaviors (i.e. the fact

that each behavior is essentially represented in a differ-

ent module) provides flexible control and avoids prob-

lems of interference. By contrast, the distributed

representation consists of generalizing the function of

(at least some of) the modules. This idea is developed,

for example, in a number of Artificial Neural Network

(ANN) models (see e.g. Agmon & Beer, 2013; Araújo,

Diniz, Passos, & Davids, 2014; Paine & Tani, 2005;

Tani, Ito, & Sugita, 2004; Woodman, Perdikis, Pillai,

Dodel, Huys, Bressler, & Jirsa, 2011), which can embed

multiple behaviors in a single, multi-purpose neural net-

work module. Importantly, recent theories of brain

functioning provide support for the existence of a

neural substrate which could implement such function-

alities; they suggest that skilled behaviors can be gener-

ated by combining functional different primitives

embedded in ‘‘reusable’’ (see Anderson, 2010) areas of

‘‘recycled’’ (Dehaene, 2005) neurons. In addition, a

number of neurophysiological evidence suggests the

presence of neural modules which exhibit drastic, rapid

and reversible changes of behaviors (Bargmann, 2012;

Park & Friston, 2013).

Hierarchical organization. Converging evidence in

neuroscience indicates that the behavioral repertoire of

living organisms is hierarchically organized and

includes multiple levels of control, spanning from sim-

ple spinal reflexes, spinal cord and brainstem, up to

sensory motor cortex and prefrontal cortex

(Donnarumma, Prevete, Chersi, & Pezzulo, 2015b;

Graziano, 2006; Hamilton & Grafton, 2007; Kelly,

1991). This hierarchical organization is widely believed

to support the flexible selection, sequencing and recom-

bination of the primitives (Flash & Hochner, 2005).

For example, concerning the premotor area of monkey

(and human) brains, they are (partially) organized in

hierarchies, with multiple levels of representations (e.g.

effector-dependent and effector-independent actions)

(Fogassi, Ferrari, Chersi, Gesierich, Rozzi, &

Rizzolatti, 2005). From a theoretical perspective, hier-

archical control has been described in terms of

(hierarchical) Bayesian systems and predictive coding

(Friston, 2003; Haruno et al., 2003). In the Artificial

Neural Network (ANN) literature, a somewhat simpler

control scheme is usually adopted, in which hierarchies

are implemented as two-level ANNs. Numerous studies

have addressed the learning of action primitives (Hioki,

Miyazaki, & Nishii, 2013; Paine & Tani, 2004; Tani,

Nishimoto, & Paine, 2008; Yamauchi & Beer, 1994),

the acquisition of multi-level control hierarchies for

robot navigation (Chersi, Donnarumma, & Pezzulo,

2013; Tani, 2003; Tani, Nishimoto, & Paine, 2008; Tani

& Nolfi, 1999) and the acquisition of sub-goals (Bakker

& Schmidhuber, 2004; Dindo, Donnarumma, Chersi,

& Pezzulo, 2015; Maisto, Donnarumma, & Pezzulo,

2015; Mcgovern & Barto, 2001; Mussa-Ivaldi & Bizzi,

2000; Thoroughman & Shadmehr, 2000).

Despite progress in understanding and defining the

capabilities of human and artificial agents to learn and

control complex skilled behaviors, still many aspects

remain unclear, such as for instance how multiple

motor primitives are encoded in the (same areas of the)

brain, what neural substrate permits their learning

without catastrophic forgetting, what the organizing

principle of control hierarchies is, how cognitive control

is exerted, or how parts of the brain can control other

parts of the brain and permit to rapidly (i.e. without re-

learning) change behavior and follow rule-like regulari-

ties. The novel hypothesis gaining ground on the neural

realization of motor primitives envisages neural circuits

capable of changing their behaviors rapidly and reversi-

bly, thus without modifying their structure or modify-

ing (re-learning) synaptic connectivity (Bargmann,

2012). Building on this, a control theory of ANN mod-

ules was developed that could express different dynami-

cal behaviors by switching among them by means of a

set of controlling input parameters (Donnarumma,

Prevete, Chersi, & Pezzulo, 2015b; Donnarumma,

Prevete, & Trautteur, 2010, 2012; Eliasmith, 2005;

Eliasmith & Anderson, 2004; Montone, Donnarumma,

& Prevete, 2011). In particular, in Donnarumma et al.

(2015b, 2012) this type of control is interpreted in terms

of the concept of programming as it is defined in the

context of computer science.

In this paper, we take a computational perspective

and propose a novel view on hierarchical organization

and control in the brain including all three properties

discussed previously. Our starting point is the approach

proposed in Donnarumma et al. (2015b, 2012), on the

basis of which we propose a Hierarchical Programmable

Neural Network Architecture (HPNNA). In particular,

we expected that learning and switching among beha-

vior codes is a ‘‘simpler’’ task if compared with learning

behavior dynamics as a whole. To this aim, here, we

extensively test the learning ability of this architecture

with respect to standard neural network approaches,

and deeply investigate the possibility to obtain multiple

programmable levels in a hierarchical fashion. HPNNA

28 Adaptive Behavior 24(1)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


is based on fixed-weight Continuous Time Recurrent

Neural Networks (CTRNNs), which are plausible

(though highly simplified) computational models of bio-

logical neuronal networks. In keeping with the neural

evidence reviewed so far, we assume that multiple primi-

tives could be encoded in the same neural structures,

with higher neural levels exerting control over behavior

by biasing the selection among these primitives.

Compared to existing theoretical and computational

proposals, our work elaborates on the concept of pro-

grammability of neural networks, which entails two

novel proposals: a novel way to encode multiple motor

primitives in multi-purpose and reusable neural net-

works, and a novel control scheme for exerting cognitive

control. We test our approach in a Robotic scenario: a

multiple T -maze with eight possible different goals.

Firstly, our experimental scenario starts with a compari-

son of the learning capability of standard non-

programmable approach versus the HPNNA in an idea-

lization of eight different sub-tasks. Then we test the

overall HPNNA, implementing on the lower layer an

interpreter of motor primitives, receiving commands

from a higher level interpreter layer capable of sequen-

cing the low-level primitives in order to achieve the

proper task. The proposed computational scheme is

compared with a non-organized architecture (NOA), i.e.

a neural network without a structure explicitly subsum-

ing neither program nor a hierarchical organization,

and results in a robust, scalable and flexible scheme able

to successfully decompose the desired task. Because of

these features, ours results in an appealing proposal to

explain brain function and hierarchical control organi-

zation. Furthermore, this computational scheme pro-

vides many advantages from a learning perspective,

including the possibility to learn novel primitives incre-

mentally without disrupting the existing functionalities,

to flexibly reassemble and off-line learning novel beha-

vioral sequences using feedback signals generated by the

existing motor primitives and to build modular net-

works (interpreters) splitting the task space into more

manageable (learnable) parts.

2 Hierarchical programmable neural

network architecture

Our proposed architecture takes as its starting point

the programmable neural network (PNN) architecture

introduced by Donnarumma et al. (2012). This neural

model is endowed with a programming capability. The

term programmability is not intended in a metaphorical

sense but in a precise computational sense, as a general-

ization of the concept of programming to dynamical

systems (Trautteur & Tamburrini, 2007). Following this

work, a system can be considered endowed with pro-

grammability if three conditions are satisfied:

(a) there exists an effective encoding of the structure of

the single systems into patterns of input, output,

and internal variables;

(b) the codes provided by such encoding can be applied

to specific systems of the class, interpreters, realiz-

ing the behavior of the coded system;

(c) the codes can be processed by the systems of the

class on a par with the input, output, and internal

variables.

Ensuring those requirements, a PNN realizes a virtual

machine resulting in an interpreter of a finite set of

neural networks, or in other words it can simulate a well-

defined (finite) set of neural networks. In other words, a

PNN realizes a neural sub-system fully controllable (pro-

grammable) behavior without changing connectivity and

efficacies associated with the synaptic connections.

Moreover, a distributed representation scheme is also

ensured, as multiple motor primitives can be embedded

in the same (fixed-structured) neural population.

At a computational level, this can be achieved by

the presence of multiplicative sub-networks that enable

a first (programmer) network to provide input values

to a second (interpreter) network through auxiliary

input lines. More in detail, the dynamic behavior of an

artificial neural network can be defined as an output yi
based on the sums of the products between connection

weights wij and neuron output signals xj

yi = f
X

j

wij � xj
 !

From a mathematical point of view, one can ‘‘pull

out’’ the multiplication operation wij � xj by means of a

multiplication (mul) sub-network that can compute the

result of the multiplication between the output and the

weight, inputs to the mul sub-network

yi = f
X

j

mul wij, xj
� �

 !

This procedure (called w-substitution in

Donnarumma et al. (2012)) is at the basis of the con-

struction of a PNN with a line of auxiliary inputs capa-

ble of modulating its behavior ‘‘as if ’’ the synaptic

efficacies were varied (see Figure 1). As a consequence,

a PNN gets the results of receiving two kinds of input

lines: auxiliary (or programming) input lines and stan-

dard data input lines. The newly introduced program-

ming inputs are meant to be fed with a code, or

program, describing the network to be ‘‘simulated’’.

In principle, a PNN architecture can be implemen-

ted using several kinds of recurrent neural networks.

Here we introduce an implementation of PNN

using Continuous Time Recurrent Neural Networks

Donnarumma et al. 29

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


(CTRNNs), which are generally considered to be biolo-

gically plausible networks of neurons and are described

by equation (1) (Beer, 1995; Hopfield & Tank, 1986)

ti
dyi

dt
= � yi +s

X

N

j= 1

wijyj + ui + Iei (t)

 !

ð1Þ

where i 2 {1, ., N} and N is the total number of the

neurons in the network. Thus, for each neuron i:

� ti is the membrane time constant;
� yi is the mean firing rate;
� ui is the threshold (or bias);
� s(x) is the standard logistic activation function, i.e.

s(x)= 1

1+ e�x ;

� Iei =
PQ

j= 1
wi, j+N � xj is a weighted external input

current coming from Q external sources xj;
� wij is the synaptic efficacy (weight) of the connection

coming from the neuron j or external sources xj to

the neuron i.

The equation (1) has a solution of y(t) = (y1(t), .,

yN(t)) describing the dynamics of the neurons of the

network. In general such a solution cannot be found

exactly and an approximation of it can be computed by

numerical integration.

Following Donnarumma et al. (2015b, 2012) it is

possible to build a PNN, in the CTRNN framework,

that is able to simulate (behaving like an interpreter)

the behavior of the encoded CTRNN networks on the

data coming from the standard input lines when vary-

ing the programming input line.

To this aim, the first step is to build a mul network in

the CTRNN framework. A mul can be written as

mul[

(

um _mm =mul a, bð Þ= � mm +s

Cma+
X

M

j= 1

C0
mjmj +C00

mb

 !

: ð2Þ

with m 2 {1, ., M}. Equation (2) describes a network

of M neurons receiving two inputs, a and b; the m-th

neuron has time constant thetam, mean firing rate mm,

C0
mj is the weight value of the connection coming from

the j-th neuron. Cm and C00
m weight the input a and b,

respectively. The connection of the mul network, Cm,

C0
mj and C00

m are tuned in order that solutions of equation

(2), m(t) = (m(t),., mM(t)) are constrained to satisfy

lim
t!‘

mM (t)’ a � b ð3Þ

8a, b 2 (0, 1). In Donnarumma et al. (2012) an

approximated mul solution is found for M = 3, (the

same that we used in Section 3) by means of an evolu-

tionary approach. Note that larger M values, while

improving the behavior of mul networks, on the other

hand increase the cost of computational simulation. By

means of mul networks it is possible to construct a hier-

archy of PNN layers with the higher level programming

the lower in an increasing complexity of programs. In a

first approximation, each layer is composed of the

interaction of slower neurons (with higher time con-

stants) whose activity is denoted with yn, and faster

neurons (with smaller time constants) with activity mm,

belonging to the mul networks. To show how this is

achieved, we first construct a layer Ll (1, 1), i.e. with

one slow neuron and one input source. It is described

by the following system

Ll 1, 1ð Þ[

t1 _y
(l)
1
= � y

(l)
1
+s ŵ � m1

M (l) +m2

M (l)

� �

+ ~w � y
(l)
1
+ x

(l)
1

� �� �

u1m _m1

m =mul y
(l)
1
, y

(l+ 1)
1

� �

m 2 f1, . . . ,M (l)g

u2m _m2

m =mul x
(l)
1
, y

(l+ 1)
2

� �

m 2 f1, . . . ,M (l)g

8

>

>

>

<

>

>

>

:

ð4Þ

A depiction of the system of equations (4) is given in

Figure 2. The Layer is a PNN composed of a slow neu-

ron of activity y
(l)
1

and receiving an input x
(l)
1

and two

programming inputs y
(l+ 1)
1

and y
(l+ 1)
2

from the higher

level (the superscript indicates the belonging to l-th

level). The first mul network mul
(l)
1
=mul(y

(l)
1
, y

(l+ 1)
1

)

connects y
(l)
1

with the programming input y
(l+ 1)
1

coming

from the layer l+1. In the same way, the second mul

network mul
(l)
2
=mul(x

(l)
1
, y

(l+ 1)
2

) modulates by means

Figure 1. The ‘‘pulling out’’ of the multiplication (on top)

performed by means of the w-substitution procedure. Distinct

mul networks ‘‘break’’ weights in order to effectively implement

a PNN that acts as an interpreter of neural programs.

30 Adaptive Behavior 24(1)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


of the programming input y
(l)
1

contribute of the input

source x
(l)
1

to y
(l)
1

activation. ŵ weights the connection

from neurons m1

M of the mul
(l)
1

networks to the slow

neuron y
(l)
1
, and ~w weights the self-connection of y

(l)
1
.

Equation (4) can be straightforwardly generalized to

accomplish N(l) slow neurons and Q(l) input sources

Ll(N
(l),Q(l))[

tn _y
(l)
n = � y(l)n +s ŵ

PT (l)�n+ 1

h= T (l)�(n�1)+ 1
mh
M (l) + ~w

PT (l)

j= 1
y
(l)
j

� �

n 2 f1, . . . ,N (l)g

ukm _mk
m =mul y

(l)
k , y

(l+ 1)
k

� �

m 2 f1, . . . ,M (l)g, k 2 f1, . . . ,N (l)(l)g

8

<

:

ð5Þ

where

� we set yN lð Þ + j = xj and T (l) = N (l) + Q(l);
� mk

m is the activation of the m-th (fast) neuron of the

k-th mul network;
� y(l)n is the activation of the n-th slow neuron;
� the condition on the time constants ukm � min tnf g is

imposed in order that the mul networks have faster

dynamics with respect to the slow neurons y(l)n ;
� ŵ weights the connections from neurons mk

M the mul

networks to the slow neurons y(l)n ;
� ~w weights the connections among slow neurons y(l)n .

The output of a PNN can be redirected as an input

of a new PNN, i.e. this computational scheme can eas-

ily be iterated at multiple hierarchical layers, with the

result that a network playing the role of programmer

relative to a lower-level interpreter can also play the

role of an interpreter relative to a higher-level program-

mer, providing a homogeneous hierarchical organizing

principle that extends over an indefinite number of

layers (see Figure 3).

Notice that for an ideal mul, the solution of Ll (N
(l),

Q(l)) restricted to the slow neurons

y(l)(t)= y(l)n (t; x(l); y(lþ1)Þ; . . . ; yðlÞ
N ðlÞðt; xðlÞ; yðlþ1ÞÞ

� �

ð6Þ

when varying the programming inputs y
(l+ 1)
j , can

approximate solutions y tð Þ= ðfynðt;W , xif gQi= 1
:gNn= 1

Þ
of an ‘‘ordinary’’ CTRNN of equation (1) when

N(l) = N, xi = x(l+1). Or more formally, 8e.0, 8t

y(t)= y1(t; x;WÞ; . . . ; yN ðt; x;WÞÞð ð7Þ

In other words, a PNN system performs a substitu-

tion of variables which lets the programming inputs

vary the system in the same way the changing of

weights does in an ‘‘ordinary’’ CTRNN. When an

approximated mul is given, however, it is a difficult

task to formally establish an e bound for large net-

works (Donnarumma, Murano, & Prevete, 2015a),

thus the fine-tuning of the system relies on experimen-

tal considerations and can be improved in a way to sat-

isfy Condition (3): (a) by increasing the ‘‘speed’’ of the

mul networks tuning the setting of time constants in

order to improve the approximation ukm � min tnf g
and (b) by refining its output response increasing the

size M of the mul networks.

Finally, we stress that in our modelization, all the

connections of the layers are fixed connections and

thus, the dynamic behaviors they exhibit are completely

due only to the change of their input, i.e. data input x
(l)
i

and programs from the upper layer determined by the

activation y
(l+ 1)
j . In other words, the layer Ll+1 may

Figure 3. Hierarchical multi-layer architecture of the

programmable neural network (PNN) architecture. In the

proposed scheme, the upper layers send programs to the lower

ones that act, in their turn, as a neural interpreter.

Figure 2. Depiction of a Layer Ll(1, 1) described in the system

of equations (4). The Layer is a PNN composed of one slow

neuron yl1 and two mul networks. It receives an input x
(l)
1 and

two programming inputs y
(l+ 1)
1 and y

(l+ 1)
2 from the higher level.

In particular, the network mul
(l)
1 =mul(y

(l)
1 , y

(l+ 1)
1 ) connects y

(l)
1

with the programming input y
(l+ 1)
1 and the network

mul
(l)
2 =mul(x

(l)
1 , y

(l+ 1)
2 ) connects y

(l)
1 with the input source x

(l)
1 .

Donnarumma et al. 31

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


eventually fall into attractor states ‘‘readable’’ on its

neurons y
(l+ 1)
i . These values form the programming

inputs sent to the layer Ll, which consequently rapidly

changes its behavior dynamics. This means that the

changes of behavior we model are qualitatively differ-

ent from learning, because they do not involve synaptic

weight changes. Moreover they are reversible, because

previous enacted dynamic behaviors can be elicited

whenever suitable programming inputs to the layer are

sent.

3 Experiments

We present a Hierarchical Programming Neural

Network Architecture (HPNNA) built for a robotic

scenario. We considered an agent learning eight differ-

ent tasks corresponding to eight different goals in a

T -maze environment (see Figure 6), starting from a

fixed start location. The HPNNA is composed of two

interpreters of networks (PNNs): a (higher) level L2

and a (lower) level L1 (see Figure 4).

L2 receives reach-goal codes on the programming

input lines T and trigger inputs on the data input lines

from L1. L1 receives motor-primitive codes, from L2, on

the programming input lines and sensor data on the

data input lines and outputs the control signals that

govern the agent in the environment. L1 can be pro-

grammed to implement different motor primitives when

its programming input lines are fed with suitable codes.

The trigger signal encodes the completion of a motor

primitive. L2 can be programmed to implement differ-

ent sequences of motor-primitive codes when its pro-

gramming input lines are fed with suitable codes.

The programming input learning is achieved by a

two-step learning strategy which can be described as

follows;

1. In the first step we sought 23 reach-goal codes for

the programming input lines of L2. The learning

ensures that when L2 is fed with one of these codes,

the agent is able to perform a sequence of three con-

secutive motor primitive programs constituting the

reach-goal program. The switch between the motor

primitive programs occurs when L2 detects a T-inter-

section by means of the trigger signal coming from

L1.

2. In the second step we sought two different lower

level programs, Right-Wall Follower (Pr) and Left-

Wall Follower (Pl), which encode the basic motor

primitives of our control architecture. The agent

exhibits two different behaviors in the environment

according to two different codes Pr and Pl. When L1

Figure 4. The hierarchical programmable neural network

architecture built for the robotic scenario. Two layers of

interpreters (PNNs) are present: a (higher) level L2 and a

(lower) level L1. L2 receives reach-goal codes on the

programming input lines and trigger signals on the data input

lines. L1 receives motor-primitive codes, from L2, on the program

input lines and sensor data on the data input lines and outputs

the control signals which govern the robot in the environment.

Figure 5. General presentation of sought L2 module. Its output

controls the activation of the proper motor primitive Pl or Pr. It

has two inputs, a reach-goal code on which the coded task is

presented, and a Trigger input, carrying the information on

when the proper primitive should be enacted.

Figure 6. The multiple T-maze scenario used in the

experiments. The starting position of the agent is indicated by a

gray circle at the bottom of the maze. Each corridor of the maze

has the same length d. G1,., G8 are the eight possible goal

positions corresponding to the given task T1,.,T8.

32 Adaptive Behavior 24(1)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


is fed with the programming input Pr or Pl the robot

follows the wall to its right or its left, respectively.

In Subsection 3.1 we show the first learning step,

preparing a synthetic dataset, in which the stimuli and

the programs are simplified in order to study the differ-

ent learning properties of the proposed architecture

versus a non-programmable one. The second step is

presented in Subsection 3.2 where the primitives are

actually learned in a simulated robotic environment

and then the overall architecture is tested in the multi-

ple T-maze simulated robotic scenario.

3.1 Learning motor primitives composition -

HPNNA versus NOA

The task of this section is the learning phase of the

L2 PNN module. The aim of the learning is to endow

L2 with the capability of driving the agent in a multiple

T-maze environment by sequencing specific motor

primitives (see Figure 5).

Following from Yamauchi and Beer (1994), we

sought a network capable of changing its state when an

external trigger is given. Let us suppose we have a net-

work that selects the two programs Pr and Pl by means

of the output of one of its neurons. A high value of this

neuron selects the program Pr while a low value selects

the program Pl.

In order to test how able the proposed architecture is

to learn different programs, in this section we prepare a

synthetic dataset in order to capture the stylized differ-

ent tasks in a multiple T-maze code. We compare our

HPNNA versus a traditional non-organized architec-

ture (NOA, see below) showing how learning multiple

behaviors is computationally more difficult with respect

to learning multiple behavior codes. In this experimental

scenario we imagined an agent exploring a multiple

T-maze (see Figure 6). In the considered mazes each

corridor has the same length d. This d parameter is an

environment variable we varied during the experiments.

Accordingly with our strategy, the control module

of HPNNA, sequencing primitives, L2 has two kinds of

input lines:

� the data input line is fed with the external trigger;
� the programming input line encodes the different

sequences that constitute our high level program.

Thus, given the fixed structure interpreter L2, we

learn the structure of a neural network memorizing the

input codes to be sent to L2, testing our HPNNA

approach. As a comparison a similar learning is per-

formed on a CTRNN layer that it is not structured as

in equation (5) but follows the ordinary CTRNN equa-

tion (1); we refer to this module as a non-organized

architecture (NOA).

By means of layer L2, the agent is supposed to con-

trol two different low-level primitives:

� Left-Wall Follower denoted with Pl, i.e. the beha-

vior ‘‘follow the wall on the left’’;
� Right-Wall Follower denoted with Pr, i.e. the beha-

vior ‘‘follow the wall on the right’’.

We assume to learn a control module of an agent,

with two inputs, a task-input T and a trigger-input ID,

plus a motor-output U calling the two primitives, Pl or

Pr. The agent is supposed to move inside the maze per-

ceiving it with sensors able to detect walls. When it

reaches a T-cross, the trigger-input is activated and the

agent consequently moves in order to regain the wall

performing respectively a left-turn or a right-turn

depending on the input task the agent receives.

Each of the eight tasks T1,., T8 corresponds to the

successful reaching of one of the goals G1,., G8 in the

maze (see Figure 7). Each task of the agent can be

decomposed into a sequence of three low-level primi-

tives [P1P2P3] with Pi = Pr or Pl. Each sequence is

recalled by the corresponding task-input T sent to L2,

i.e.

½ Pl Pl Pl � ! T1 = 0 0 0½ �
½ Pl Pl Pr � ! T2 = 0 0 1½ �
½ Pl Pr Pl � ! T3 = 0 1 0½ �
½ Pl Pr Pr � ! T4 = 0 1 1½ �
½ Pr Pl Pl � ! T5 = 1 0 0½ �
½ Pr Pl Pr � ! T6 = 1 0 1½ �
½ Pr Pr Pl � ! T7 = 1 1 0½ �
½ Pr Pr Pr � ! T8 = 1 1 1½ �

Therefore each program corresponds to a high level

representation of the possible agent’s behaviors.

Ideally, at the end of the learning phase, by selecting a

task-input Ti, the agent is asked to assume the behavior

that allows it to reach the corresponding goal Gi in the

maze. It is important to stress that this program forma-

lization does not point at any specific trajectory, but at

a sequencing of low-level primitives.

In this test, the trigger-input ID(t) 2 {0, 1} is the

idealization of a time varying input signal: it is high

(ID = 1) when the agent is turning (i.e. the agent is at

the end of the corridor) and low (ID = 0) when the

agent moves forward along the corridors of the maze.

In other words, the trigger tells the controlling unit

when the robot turns left or right and, therefore, when

it is necessary to select the next primitive from the pro-

gram sequence ‘‘stored’’ in Ti.

In this first experiment we assume the agent moves

at constant velocity vA. Consequently, the duration

DTlow of the low trigger-input can be considered pro-

portional to the length d of any of the corridors, while

the duration DThigh of the high trigger-input is consid-

ered proportional to the time spent in the turning at

Donnarumma et al. 33

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


each T-cross and is assumed constant across maze

dimensions.

Given these conditions, it is possible to define a para-

meter l

l=
DTlow

DThigh
=

d

vA � DThigh
) l} d ð8Þ

which corresponds to the size of a chosen labyrinth,

with respect to the trigger inputs to the controlling unit.

We build two different synthetic datasets, D1 and D2:

� D1represents a single multiple T-maze with l = 2,

i.e. a maze with a single d length of the corridor;

Figure 7. A depiction of the eight goal-reach tasks T1,., T8 defined for the experimental scenario. They are composed of a series

of three motor primitives and correspond to the reaching of the corresponding goals G1,., G8 in the maze.

34 Adaptive Behavior 24(1)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


� D2 represents three different multiple T-mazes, with

l = 2, l = 3 and l = 4, respectively, i.e. three

mazes with three different d lengths of the corridor.

By means of the parameter l this information is

implicitly stored in the trigger-input signal. The corre-

sponding Target output O(t) is consequently created in

order to create datasets of input-output couples. The

aim of learning is to replicate this target on the network

output U(t) at each time step. A number of ten target

sequences for programs has been created for each

maze. A reference sequence is about 40 time steps

t = (1/5) �t, where t is the time constant unit used for

the neural network modules. This means that dataset

D1 has 80 sample input-target sequences, while D2 has

240 sequences.

3.1.1 Learning a control module by differential evolution. We

adopt a learning algorithm based on an evolutionary

approach, Differential Evolution (DE) Algorithm (De

Falco, Della Cioppa, Donnarumma, Maisto, Prevete,

& Tarantino, 2008; Price, Storn, & Lampinen, 2005).

DE is an evolutionary population based algorithm

proved to be very efficient in the continuous domain,

fitting the case of learning of parameters of neural net-

works (De Falco et al., 2008). DE addresses a generic

optimization problem with m real parameters by start-

ing with a randomly initialized population consisting of

n individuals, each made up of m real values. The pop-

ulation is updated from one generation to the next by

means of many different transformation schemes com-

monly named as strategies (Price et al., 2005). In all of

these strategies DE generates new individuals by add-

ing to an individual a number of weighted difference

vectors between couples of population individuals.

In this experiment the HPNNA learning is assigned

an architecture based on equation (5), which is a fixed

structure neural network (no synaptic connections are

learned for this module), and an input module, that is a

neural network that has to ‘‘memorize’’ the different

codes allowing the different task. The aim of the learn-

ing is to find the programming inputs able to let

HPNNA solve the task. The NOA architecture is a

full-connected CTRNN of equation (1), without any

particular internal structure. In this case, the aim of the

learning is to find suitable CTRNN weights able to let

NOA solve the presented task. To keep the comparison

fair, we keep a similar number of parameters during

the experiments. Thus, for both the compared architec-

tures, DE performs a search for solutions in a para-

meter space S � R
24 (see Table 1).

The learning procedure is described in detail in

Algorithm 1. There is an outer loop which iterates the

procedure for Imax. Each program is evaluated separately

with a fitness function which is proportional to the dis-

tance between the target output Ok of the corresponding

program selected by the task input Tk, from the motor

output of the control module Uk(t) = U(Tk(t), ID(t)).

Thus the fitness value is computed on the set of sequences

relative to the program Tk

Fk =
X

Tk

X

t

Uk(t)� Ok(t)ð Þ2 ð9Þ

The function selectSamples is a function that selects

sequences corresponding to which a program is going

to be evaluated, allowing DE to move population

towards a better solution of the parameter space.

Samples related to programs that have been correctly

learned can be excluded from learning. However, this

option can be selected only for HPNNA architecture,

because for NOA architecture, if this option is selected,

the change in the synaptic weights would cause the

well-known effect of catastrophic forgetting of previous

learned behaviors, so that the learned module would at

last collapse to learn only the last program selected.

The results of the tests are evaluated by comparing

20 learning-runs for each architecture, HPNNA and

NOA. It is possible to see that HPNNA is able to

achieve solutions that correctly perform eight out of

eight programs. We show:

Algorithm 1 Control Module Learning D,M, opt,b, Imaxð Þ.

Require: Dataset D, Architecture Model M, optimum fitness threshold opt,
DE parameters b, Maximum number of total iterations Imax.

Ensure: Model Parameters u
1: initialize Model Parameters u(M)
2: set Fitness Values Fk = +N for each Task Tk 2 TaskSet
3: set iteration i = 0
4: while Fk . opt for all Tasks Pk2TaskSet and i\ Imax do
5: select samples to learn selectSamples DT = Dð Þ
6: execute Differential Evolution step DE (DT ,b)
7: update Architecture Model best parameters u
8: update Fitness Values Fk
9: update iteration number i
10: end while

Donnarumma et al. 35

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


� results in learning D1 dataset, with samples from a

maze with single d length (see Paragraph 3.1.2);
� results in learning D2 dataset, with samples from

three mazes with three different d lengths (see

Paragraph 3.1.3);
� testing in maze of d lengths different from the one

seen during the learning phase (see Paragraph

3.1.4).

3.1.2 Learning D1 dataset – single maze size. Table 2 and

Table 3 detail the final fitness value for NOA and

HPNNA. For dataset D1 HPNNA is able to learn all

programs in the 40% of learning-runs. In the remaining

60% of learning-runs, HPNNA learns at least seven

out of eight programs. On the other hand NOA archi-

tecture is able to learn only a maximum of five out of

eight programs (see Table 5). Notice that a NOA with

the selectSamples catastrophically forgets previous pro-

grams and is able to learn only the last seen program

(see Table 5). On the other hand, learning HPNNA is

more computationally efficient if counting the number

of total steps required while it is able to learn all pro-

grams with a smaller number of iterations (see Table

4). In Figures 8 and 9 sample executions for NOA and

HPNNA are shown.

3.1.3 D2 dataset – three different maze sizes. The dataset

D2 is built with sequences by different d lengths, varied

Figure 8. NOA sample outputs for Dataset D1.

36 Adaptive Behavior 24(1)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


by means of the parameter l. The parameter values are

l = 2, l = 3 and l = 4. HPNNA was able to learn

all eight programs (see Table 9), while NOA was not

able to learn more than five programs. Table 4 also

shows that a smaller number of iterations is needed to

learn HPNNA. In Figures 13 to 15 sample HPNNA

executions are shown while in Figures 10 to 12 sample

NOA executions are shown. Overall the results speak

about better performances for HPNNA capable of

learning programs in different maze sizes.

3.1.4 Testing on unknown maze sizes. We test all the

learned instances of the previous subsections in

sequences subsuming mazes of never seen size. This is

to verify the generalization capabilities of the

architectures. We choose test mazes with l = 2.4 and

l = 3.6 (see equation (8)). For both the architectures

we test best and worst cases learned in datasets D1 and

D2. Though, as expected, modules learned in dataset

D1 perform worse (HPNNA could not execute all pro-

grams (see Table 10)), modules learned in dataset D2

generalize very well on new unseen dimensions

(HPNNA can successfully execute all eight programs

(see Table 10)).

3.2 HPNNA in a simulated robotic environment

In the previous section we made the hypothesis of hav-

ing ideal motor primitives, in order to build a control

module L2 with suitable inputs to guide the agent

Figure 9. HPNNA sample outputs for Dataset D1.

Donnarumma et al. 37

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


towards the desidered goal. In this section we actually

implement a lower level interpreter L1 of motor primi-

tives (see Figure 16) in order to complete the HPNNA

architecture and show its performance in a simulated

robotic environment. Robot simulations were carried

out using the open source software project Player-

Stage (Gerkey, Vaughan, & Howard, 2003) to simulate

a Pioneer 3DX robot (see Figure 17). The robot is

Table 1. Experimental parameters for the Primitive Sequencing learning task.

Network parameters b Time constants
Minimum weight value wmin

Maximum weight value wmax

Integration step Dt

8

>

>

<

>

>

:

5t
�5

+ 5
0:2

Fitness optimum value opt 0.99
Maximum number of iterations Imax 20000

DE parameters u Population number
Parameter space size

Step size
Cross� over probability

Strategy

8

>

>

>

>

<

>

>

>

>

:

100
24

0:7
0:8
DE=RAND=1=BIN

Table 4. Iterations for HPNNA learning-runs in D1. The table shows mean, standard deviation, maximum and minimum of the

number of iterations in the 20 runs. The avoiding of catastrophic forgetting effect allows to skip learning of programs for which Fk is

less than the opt value. We stress that for NOA, it is always necessary to execute a number of iterations equal to Imax = 20 000.

HPNNA Learning iterations per task Total iterations

T1 T2 T3 T4 T5 T6 T7 T8

Mean 50 192 3760 390 72 780 860 50 6155
Standard deviation 3 78 1946 1087 25 199 1037 3 2269
Maximum 52 400 5000 5000 100 1100 5000 52 12 500
Minimum 48 100 600 50 50 450 250 49 2450

Table 3. D1 Dataset results for HPNNA on 20 learning-runs. Fitness value Fk (mean, standard deviation, maximum and minimum)

and success rate are shown for each task Tk. The best HPNNA was able to execute eight out of eight programs. A high standard

deviation in some cases underlines that the respective programs are more difficult to be learned than others (T3 and T7); this can

also be noticed from the corresponding success rate values.

T1 T2 T3 T4 T5 T6 T7 T8

Mean Fk 0.005 0.080 8.210 0.100 0.038 0.058 0.773 0.005
Standard deviation \ 1023 0.014 7.379 0.217 0.019 0.013 3.147 \ 1023

Maximum 0.005 0.100 15.155 1.020 0.092 0.088 14.145 0.005
Minimum 0.005 0.051 0.059 0.029 0.018 0.040 0.025 0.005
Success rate 100% 100% 45% 100% 100% 100% 95% 100%

Table 2. D1 Dataset results for NOA on 20 learning-runs. Fitness value Fk (mean, standard deviation, maximum and minimum) and

success rate are shown for each Task Tk. The best NOA was not able to learn all programs. The low standard deviation suggests that

similar results are expected if further runs were made.

T1 T2 T3 T4 T5 T6 T7 T8

Mean Fk 0.004 8.212 13.945 2.956 1.280 15.205 11.125 0.005
Standard deviation 0.001 5.919 3.739 2.447 0.971 0.225 5.375 0.003
Maximum 0.009 14.149 15.168 10.119 3.043 16.160 14.148 0.016
Minimum 0.003 1.028 2.050 0.028 0.022 15.153 1.110 0.003
Success rate 100% 55% 10% 95% 100% 0% 25% 100%

38 Adaptive Behavior 24(1)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


equipped with ten sonars placed on the frontal and the

lateral parts of the robot (s1,.,s10 in Figure 17b.)

Note that L1 governs the robot by setting its angular

and linear velocity corresponding to the output of two

neurons belonging to L1. During this learning phase,

the environment is a single T-maze consisting of corri-

dors of fixed length and three times as wide as the robot

size.

Table 5. Dataset D1 success percentage. The comparison summarizes successful results for the architectures HPNNA and NOA. In

this table we show also the NOA learning results, when excluding samples from the dataset by the selectSamples procedure. In this

case NOA meets the well-known catastrophic forgetting effect.

Learned programs HPNNA (% on 20 runs) NOA (% on 20 runs) NOA Catastrophic forgetting (% on 20 runs)

1/8 100 100 100
2/8 100 100 0
3/8 100 100 0
4/8 100 100 0
5/8 100 85 0
6/8 100 0 0
7/8 100 0 0
8/8 40 0 0

Table 8. Iterations for HPNNA learning-runs in D2. The table shows mean, standard deviation, maximum and minimum of the

number of iterations in the 20 runs. The avoiding of catastrophic forgetting effect allows to skip learning of programs for which Fk is

less than the opt value. We stress that for NOA, it is always necessary to execute a number of iterations equal to Imax = 20 000.

HPNNA Learning iterations per task Total iterations

T1 T2 T3 T4 T5 T6 T7 T8

Mean 50 693 2070 148 65 953 1218 50 5245
Standard deviation 4 825 769 73 24 352 864 3 1472
Maximum 52 2500 2500 400 100 1600 2500 53 7700
Minimum 47 150 550 50 50 450 150 48 2800

Table 7. D2 Dataset results for HPNNA on 20 learning-runs. Fitness value Fk (mean, standard deviation, maximum and minimum)

and success rate are shown for each Task Tk. The best HPNNA was able to execute eight out of eight programs. A high standard

deviation in some cases underlines that the respective programs are more difficult to be learned than others (T2, T3 and T7); this can

also be noticed from the corresponding success rate values.

T1 T2 T3 T4 T5 T6 T7 T8

Mean Fk 0.014 3.493 39.818 0.195 0.178 0.203 11.945 0.014
Standard deviation \ 1023 12.759 29.087 0.057 0.097 0.076 23.423 \ 1023

Maximum 0.014 57.584 60.614 0.329 0.351 0.412 57.584 0.014
Minimum 0.014 0.177 0.277 0.093 0.055 0.125 0.102 0.014
Success rate 100% 95% 35% 100% 100% 100% 80% 100%

Table 6. D2 Dataset results for NOA on 20 learning-runs. Fitness value Fk (mean, standard deviation, maximum and minimum) and

success rate are shown for each Task Tk. The best NOA was not able to learn all programs. The low standard deviation suggests that

similar results are expected if further runs were made.

T1 T2 T3 T4 T5 T6 T7 T8

Mean Fk 0.016 36.360 45.518 9.205 2.661 60.918 57.583 0.012
Standard deviation 0.013 23.197 21.472 5.500 2.975 0.934 0.004 0.002
Maximum 0.056 57.585 60.675 17.422 9.110 63.657 57.591 0.017
Maximum 0.010 2.484 6.158 0.087 0.076 60.610 57.580 0.010
Success rate 100% 35% 30% 95% 100% 0% 0% 100%

Donnarumma et al. 39

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


The L1 module should realize an interpreter on which

two motor-primitive programs are learned: Right-Wall

Follower (Pr) and Left-Wall Follower (Pl). According

to Section 2, this module has two kinds of input lines: a

data input line and a programming input line.

The data input line consists of three inputs {I1, I2, I3}

that are the weighted sum of three sonars facing right,

the three in which basic motor-primitives are learned

facing left and two frontal sonars, respectively, as in the

following equations

I1 = 0:2 � S2 + 0:4 � S3 + 0:4 � S4
I2 = 0:2 � S9 + 0:4 � S8 + 0:4 � S7
I3 = 0:5 � S5 + 0:5 � S6

ð10Þ

Figure 10. NOA sample outputs for Dataset D2 and l = 2.

Table 9. Dataset D2 success percentage. The comparison

summarizes successful results for the architectures HPNNA and

NOA.

Learned programs HPNNA
(% on 20 runs)

NOA
(% on 20 runs)

1/8 100 100
2/8 100 100
3/8 100 100
4/8 100 100
5/8 100 70
6/8 100 0
7/8 85 0
8/8 25 0

40 Adaptive Behavior 24(1)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


Thus, two neuron outputs of the L1 module control

the robot. In particular the activation of one neuron is

devoted to the control of the linear speed of the robot,

while another neuron controls the robot’s angular

velocity.

The neurons of the module share the same value of

the characteristic time t, that is of an order of magni-

tude bigger than the characteristic time of the multipli-

cative networks u.

Then, by means of the w-substitution we construct

the fixed structure interpreter L1 made of 39 neurons

with two kinds of input lines:

� a data input line that consists of the three inputs

from the sonars;

� a programming input line that consists of inputs

that codify the different structures simulated by the

interpreter.

Consequently, we evolved a vector of 12 parameters

in order to find the suitable programs able to let the net-

work control the robot and perform the correct motor

primitives. In our approach, given the fixed structure

interpreter L1, we used Algorithm 1 to learn the suitable

motor-primitive codes. This is done by building suitable

fitness functions, one for Right-Wall Follower Pr primi-

tive, and a second one for the Left-Wall Follower Pl.

Note that, in contrast with other approaches, it is possi-

ble to do this because the network structure is fixed and

we do not evolve weights. Thus, we can divide the

Figure 11. NOA sample outputs for Dataset D2 and l = 3.

Donnarumma et al. 41

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


learning into two epochs without erasing previously

learned capabilities.

For each epoch we initialized a population of 20 ele-

ments controlled by networks with codes randomly

chosen in the range [25, 5]. Each controller obtained is

evaluated with a fitness function specific for each pro-

gram, i.e. FR and FL, while performing the task of

behaving as a right or as a left follower, respectively. A

new population is obtained using the best element of

the previous population. In our training we used a

crossover coefficient (CR 2 [0, 1]) of 0.8 and a step-size

coefficient (F 2 [0, 1]) of 0.85, this means that our algo-

rithm builds the next generation preserving the archi-

tecture of the best element of the previous generation

(the value of the crossover coefficient is low), but even

preserving the variance of the previous generation (the

value of the step-size coefficient is high). The task used

to evaluate the robot is structured as follows. We used

a T-maze as the learning environment (see Figure 17b).

Each robot is placed at the beginning of each cross-

roads and it is free to run for about 30 seconds. The

final evaluation of the ‘‘life’’ of a robot is the product of

the evaluations obtained in each of the distinct simula-

tions. The fitness function that evaluates the robot in

every crossroad is made of two components. The first

component FM is derived from the one proposed by

Floreano and Mondada (1994) and consists of a reward

for straight, fast movements and obstacle avoidance.

This component is the same in the left and the right-

follower task. The second component changes between

the two epochs; in the right-follower training it rewards

the robot that turns right at a crossroads (FR), in the

Figure 12. NOA sample outputs for Dataset D2 and l = 4.

42 Adaptive Behavior 24(1)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


left-follower training it rewards the robot that turns left

(FL). In equation (11)�V is the average speed of the

robot, VA is the average angular speed. Smin is the value

of the shortest distance measured from an obstacle dur-

ing the task period

FM = �V � (1�
ffiffiffiffiffiffi

VA

p
) � Smin VA 2 ½0, 1�, Smin 2 ½0, 1�;

ð11Þ

FR = �S1 + �S2 � �S9 � �S10 FL = �S9 + �S10 � �S1 � �S2:

ð12Þ

In FR the average measure of the left sonars over the

task period is subtracted from the average measure of

the right ones, the opposite happens in FL.

In Figure 18 we show the mean fitness evolution per

step of the motor primitives. The interpreter L1 fed with

the best evolved code programs was tested placing the

robot in ten different positions in the maze and obser-

ving the robot behavior while driving through the cross-

roads three times. The positions were chosen in such a

way that the robot starts its test in the middle of a corri-

dor, oriented with its lateral part parallel to the wall.

We tested one code at a time for each execution without

dynamically changing the values. In these conditions

the interpreter L1 fed with Pr and Pl was successful in

all the trials, showing the appropriate behavior in each

of the corridors: L1 was able to control the robot with-

out crashing and preserving the right motor primitive.

Finally, we show the results of the whole HPNNA

control framework in mazes of the kind of Figure 6, for

Figure 13. HPNNA sample outputs for Dataset D2 and l = 2.

Donnarumma et al. 43

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


all possible programs learned in the exploring behavior

experiments. The trigger signal for the higher level

interpreter is for simplicity derived from the output of

the angular velocity neuron of the first interpreter (how-

ever clever triggering signals from the interpreter could

be imagined). We tested it on mazes with different sizes

(l 2 2, 3, 4). This is to stress that what we learned is

not a particular trajectory in an environment but a high

level goal encoded by the program and not influenced

by moderate changing in the environment. A test is con-

sidered successful if the distance from the goal is under

a certain threshold and the robot does not crash. Thus,

if the robot reaches a place different from the one ‘‘pro-

grammed’’ the test fails. Moreover, we stressed the

robustness of the programs learned by applying a rela-

tive error e on each learned parameter p during the

execution in the maze environment. These noisy para-

meter values were drawn from a Gaussian distribution

centred in the parameter value p and with a standard

deviation of e = k�w/100 where k 2 {10, 15, 20}.

Table 13 shows the results. The small decrease in per-

formance for shorter corridor lengths is mainly due to

the shorter duration of the trigger on the higher level net-

work. High values of relative error make the probability

of failure increase in the maze exploring. However even a

relative error of 15% does not erase the behavior of the

HPNNA preserving a high success rate.

4 Conclusions

We have proposed a hierarchical programmable neural

network architecture, HPNNA, composed of a

Figure 14. HPNNA sample outputs for Dataset D2 and l = 3.

44 Adaptive Behavior 24(1)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


hierarchy of modules where each module can be viewed

both as an interpreter network capable of running dif-

ferent programs without modifying its synaptic connec-

tions and as programmer network capable of

controlling the behavior of the lower modules. This

implies that the same neuronal substrate can encode

multiple motor primitives. Furthermore, the motor pri-

mitives can be learned incrementally by increasingly

adding more programs to the interpreter network. The

learning of primitives in a lower level is transferred to

the higher level; new primitives can be added in a fixed

lower level by searching for the corresponding pro-

gramming inputs that the higher level should send. We

explored the parameter space resulting from this mode-

lization by means of an evolutionary-based learning

approach. The programming inputs of a higher level

are fixed with respect to the dynamics of its correspond-

ing lower level, thus learning multiple behavior codes

(programs) resulted in being computationally simpler

with respect to learning dynamics of multiple beha-

viors. We successfully tested the performance of the

HPNNA architecture in tasks of increasing complexity.

Our proposal has implications from both neuroscienti-

fic and computational perspectives as we discuss below.

4.1 Neuroscientific perspectives

From a neuroscientific perspective, we present a novel

proposal on (hierarchical) action organization and con-

trol by the brain, which can be summarized as an

Figure 15. HPNNA sample outputs for Dataset D2 and l = 4.

Donnarumma et al. 45

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


interpreter-programmer computational scheme. The

interpreter network is able to store multiple action pri-

mitives within a common neural substrate. Not only is

this encoding scheme parsimonious, avoiding the short-

comings of strong modularity, but it also affords flex-

ible and plausible cognitive control by the programmer

network. The programmer network can enforce rule-

like behaviors by instantaneously instructing the inter-

preter network, without the necessity of re-learning.

Such fast switches of behavior are the hallmark of cog-

nitive control.

The system learns to represent goals (encoded in the

programming input), not trajectories in the environ-

ment; this affords the flexible adaptation to changing

environmental conditions (e.g. moderate changes of

dimensions and sensory cues in a maze). Furthermore,

the proposed computational scheme can be iterated to

realize hierarchies having increasing levels of complex-

ity (as a network playing the role of programmer rela-

tive to a lower-level interpreter can also play the role of

an interpreter relative to a higher-level programmer).

This provides a novel organizing principle for cortical

hierarchies and their role in supporting goal-directed

actions.

Overall, the proposed interpreter-programmer

scheme is consistent, on the one hand, with the idea of

multiple motor primitives in (pre)motor areas

(Rizzolatti, Camarda, Fogassi, Gentilucci, Luppino, &

Matelli, 1988), and on the other hand with control- and

information-theoretic approaches to prefrontal cortex

(Koechlin & Summerfield, 2007), and with its role in

biasing (instantaneously) behavior (Miller & Cohen,

2001). At the same time, it goes beyond theoretical pro-

posals on executive functions and suggests a plausible

neural mechanism (programmability) for exerting cog-

nitive control, which is based on the idea of ‘‘reusable’’

or ‘‘recycled’’ neuronal networks (Anderson, 2010;T
a
b
le

1
0
.
G
e
n
er
al
iz
at
io
n
ca
p
ab
ili
ti
e
s
o
f
H
P
N
N
A
an
d
N
O
A
w
h
e
n
tr
ai
n
ed

w
it
h
d
at
as
et

D
1
(l

=
2
).
T
h
e
ar
ch
it
ec
tu
re
s
w
er
e
te
st
ed

fo
r
tw

o
u
n
kn
o
w
n
n
ew

m
az
e
si
ze
s
co
rr
es
p
o
n
d
in
g
to

l
=
2
.4
an
d
l
=
3
.6
.

l
A
rc
h
it
ec
tu
re

B
/W

ca
se

Fi
tn
es
s
va
lu
e
(n
u
m
b
er

o
f
co
rr
ec
t
tu
rn
s)
p
er

ta
sk

Ta
sk

su
cc
es
s

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

2
.4

N
O
A

B
es
t

0
.0
0
3
(3
/3
)

1
6
.1
6
5
(2
/3
)

3
.0
5
5
(3
/3
)

1
.0
3
4
(3
/3
)

1
.0
3
3
(3
/3
)

1
7
.1
7
7
(2
/3
)

1
6
.1
6
3
(2
/3
)

0
.0
0
3
(3
/3
)

5
/8

W
or
st

0
.0
0
3
(3
/3
)

1
6
.1
6
4
(2
/3
)

1
7
.1
7
3
(2
/3
)

0
.0
4
8
(3
/3
)

0
.0
2
4
(3
/3
)

1
7
.1
7
4
(2
/3
)

1
6
.1
6
4
(2
/3
)

0
.0
0
3
(3
/3
)

4
/8

H
P
N
N
A

B
es
t

0
.0
0
5
(3
/3
)

7
.1
3
7
(3
/3
)

0
.0
6
5
(3
/3
)

0
.0
4
5
(3
/3
)

0
.0
2
8
(3
/3
)

1
.0
6
4
(3
/3
)

2
.0
8
8
(3
/3
)

0
.0
0
5
(3
/3
)

8
/8

W
or
st

0
.0
0
5
(3
/3
)

3
.1
0
9
(3
/3
)

1
7
.1
7
5
(2
/3
)

0
.0
8
5
(3
/3
)

0
.0
9
9
(3
/3
)

0
.0
5
4
(3
/3
)

0
.0
9
8
(3
/3
)

0
.0
0
5
(3
/3
)

7
/8

3
.6

N
O
A

B
es
t

0
.0
0
3
(3
/3
)

2
2
.2
2
6
(2
/3
)

3
.0
6
2
(3
/3
)

1
.0
3
7
(3
/3
)

1
.0
3
6
(3
/3
)

2
3
.2
3
7
(2
/3
)

2
2
.2
2
3
(2
/3
)

0
.0
0
3
(3
/3
)

5
/8

W
or
st

0
.0
0
3
(3
/3
)

2
2
.2
2
4
(2
/3
)

2
3
.2
3
3
(2
/3
)

1
.0
6
0
(3
/3
)

0
.0
2
7
(3
/3
)

2
3
.2
3
4
(2
/3
)

2
2
.2
2
4
(2
/3
)

0
.0
0
4
(3
/3
)

4
/8

H
P
N
N
A

B
es
t

0
.0
0
5
(3
/3
)

1
6
.2
1
5
(2
/3
)

0
.0
7
1
(3
/3
)

0
.0
4
8
(3
/3
)

0
.0
3
1
(3
/3
)

2
3
.2
5
4
(2
/3
)

7
.1
4
2
(3
/3
)

0
.0
0
5
(3
/3
)

6
/8

W
or
st

0
.0
0
5
(3
/3
)

2
0
.2
5
8
(2
/3
)

2
3
.2
3
5
(2
/3
)

0
.1
0
3
(3
/3
)

0
.1
2
2
(3
/3
)

0
.0
6
5
(3
/3
)

6
.1
4
9
(3
/3
)

0
.0
0
5
(3
/3
)

6
/8

Figure 16. General presentation of the sought L1 module. Its

output controls the Pioneer 3DX angular and linear velocity. It

has two inputs, a motor-primitive code and the sonars.

46 Adaptive Behavior 24(1)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


Dehaene, 2005) (and is therefore alternative to the idea

of ‘‘gates’’ and of strongly modular networks). Further

studies are of course necessary to evaluate the merits of

this proposal, but it has to be noted that its computa-

tional parsimony, robustness and scalability (compared

to alternative proposals) could offer advantages from

an evolutionary viewpoint.

4.2 Computational perspectives

From a computational perspective, this architecture has

numerous advantages. Concerning learning, the frame-

work permits incremental learning and the separation

of learning phases in different epochs. In fact, it is cer-

tainly possible to learn the same behavior in a ‘‘classi-

cal’’ way, by learning the weights of a network that at

the same time receives the trigger and a program. In

that case, one can apply two different strategies: (a) to

train a single network able to exhibit all the behaviors;

(b) to train one specific network for each behavior so as

to obtain eight networks performing the desired beha-

viors. However, in both cases it is not trivial to

accomplish this kind of training. In the first case,

because one should be forced to learn all behaviors at

the same time, which results in increasing difficulty as

soon as the number of behaviors increases. In the sec-

ond case, the drawback is the necessity of constructing

a single network that combines different special pur-

pose networks and switches among their output when-

ever it is needed. Moreover, in both cases it is difficult

to add new behaviors to the learned system. Thus, our

architecture suggests a promising neural network

approach for these kinds of issues (Umedachi, Ito, &

Ishiguro, 2015).

Furthermore, the possibility to steer goal sequences

entails flexible behavioral control in the face of uncer-

tain and (moderately) changing environments.

Robustness of control is also advantageous to scale up

the architecture hierarchically. As moderate errors in

program values do not change the overall architecture

behavior, programs can be used as outputs of other

network modules, realizing hierarchies of control.

When a hierarchical organization is built, higher-level

modules are necessarily slower than lower-level ones, as

they need to guide the realization of sequences of

actions (Paine & Tani, 2004).

4.3 Open issues

Finally, the proposed architecture can further be

improved in a number of directions. Firstly, in our

approach the discovery of new input programs lets the

level exhibit novel primitive patterns, without having to

relearn already acquired behavior (i.e. incrementally).

However, this incremental learning may eventually suf-

fer limitations, for two main reasons;

1. Each hierarchical level has a fixed level complexity,

i.e. can simulate networks of a finite size. If the pri-

mitive to be learned has a larger complexity, it

Figure 17. Pioneer 3DX simulation in Player-Stage environment.

Figure 18. Mean cost evolution per step in Motor-Primitive

code learning in the simulated robotic environment.

Donnarumma et al. 47

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


cannot be added without increasing the size of

‘‘slow’’ neurons of the level.

2. Each hierarchical level is affected by an intrinsic

‘‘precision error’’ because of the presence of the mul

approximation that crucially relies on the settings of

the time constants and on a finite number of neu-

rons M. In other words, an output noise on the mul

networks is present that could prevent the learning

from adding the wanted novel primitive behavior.

In both cases, the changing of a hierarchical level

structure exposes the cost of potentially disrupting all

previously learned primitives. A future modeling

improvement would be to add a mechanism capable of

augmenting the structure without disrupting the exist-

ing programs.

Moreover, in our hierarchical scheme implementa-

tion, each level receives a ‘‘standard’’ data input that

can be an external sensory input (as in our tests with

sonars in L1). In principle, the L2 data input could rely

on some other sensor output, however in our tests we

showed that, as a matter of fact, the trigger information

on T -intersection detection is already contained in the

outputs of L1. As a general consideration, in our

scheme, it is a good idea to include, on the data input

line, a feedback input coming from the lower level that

could bring information on the timing of the task.T
a
b
le

1
1
.
G
e
n
er
al
iz
at
io
n
ca
p
ab
ili
ti
e
s
o
f
H
P
N
N
A
an
d
N
O
A
w
h
e
n
tr
ai
n
ed

w
it
h
d
at
as
et

D
2
(l

2
{2
,
3
,
4
})
.
T
h
e
ar
ch
it
ec
tu
re
s
ar
e
te
st
ed

fo
r
tw

o
n
ew

m
az
e
si
ze
s
co
rr
es
p
o
n
d
in
g
to

l
=
2
.4

an
d
l
=
3
.6
.

l
A
rc
h
it
e
cu
re

B
/W

ca
se

Fi
tn
e
ss

va
lu
e
(n
u
m
b
er

o
f
co
rr
ec
t
tu
rn
s)
p
er

ta
sk

Ta
sk

su
cc
es
s

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

2
.4

N
O
A

B
es
t

0
.0
1
3
(3
/3
)

2
.1
3
4
(3
/3
)

1
7
.1
7
8
(2
/3
)

0
.1
0
2
(3
/3
)

1
.0
3
6
(3
/3
)

1
7
.1
7
4
(2
/3
)

1
6
.1
6
4
(2
/3
)

0
.0
0
4
(3
/3
)

5
/8

W
or
st

0
.0
0
3
(3
/3
)

1
6
.1
6
4
(2
/3
)

1
7
.1
7
9
(2
/3
)

1
.0
6
6
(3
/3
)

0
.0
3
6
(3
/3
)

1
7
.1
7
5
(2
/3
)

1
6
.1
6
3
(2
/3
)

0
.0
0
3
(3
/3
)

4
/8

H
P
N
N
A

B
es
t

0
.0
0
5
(3
/3
)

0
.0
5
2
(3
/3
)

0
.0
8
3
(3
/3
)

0
.0
6
1
(3
/3
)

0
.0
5
9
(3
/3
)

0
.0
6
2
(3
/3
)

0
.1
6
4
(3
/3
)

0
.0
0
5
(3
/3
)

8
/8

W
or
st

0
.0
0
5
(3
/3
)

0
.1
0
7
(3
/3
)

1
7
.1
7
5
(2
/3
)

0
.0
5
9
(3
/3
)

0
.1
0
6
(3
/3
)

0
.0
4
5
(3
/3
)

1
6
.1
6
5
(2
/3
)

0
.0
0
5
(3
/3
)

6
/8

3
.6

N
O
A

B
es
t

0
.0
1
7
(3
/3
)

3
.1
7
6
(3
/3
)

2
3
.2
4
0
(2
/3
)

1
.1
2
7
(3
/3
)

1
.0
4
0
(3
/3
)

2
3
.2
3
4
(2
/3
)

2
2
.2
2
5
(2
/3
)

0
.0
0
4
(3
/3
)

5
/8

W
or
st

0
.0
0
3
(3
/3
)

2
2
.2
2
4
(2
/3
)

2
3
.2
4
0
(2
/3
)

0
.0
8
2
(3
/3
)

0
.0
4
1
(3
/3
)

2
3
.2
3
5
(2
/3
)

2
2
.2
2
3
(2
/3
)

0
.0
0
3
(3
/3
)

4
/8

H
P
N
N
A

B
es
t

0
.0
0
5
(3
/3
)

0
.0
6
6
(3
/3
)

0
.1
0
2
(3
/3
)

0
.0
7
1
(3
/3
)

0
.0
7
8
(3
/3
)

0
.0
6
8
(3
/3
)

0
.2
2
1
(3
/3
)

0
.0
0
5
(3
/3
)

8
/8

W
or
st

0
.0
0
5
(3
/3
)

0
.1
4
1
(3
/3
)

2
3
.2
3
5
(2
/3
)

0
.0
6
9
(3
/3
)

0
.1
2
8
(3
/3
)

0
.0
4
8
(3
/3
)

2
2
.2
2
5
(2
/3
)

0
.0
0
5
(3
/3
)

6
/8

Table 12. Experimental parameters for the Motor Primitives

learning task.

Network
parameters b

Time constants
Minimum weight value wmin

Maximum weight value wmax

Integration step Dt

8

>

>

<

>

>

:

2t
�5

5
0:2

Fitness optimum value opt 2
Maximum number of iterations Imax 1000

DE
parameters u

Population number
Parameter space size

Step size
Crossover probability

Strategy

8

>

>

>

>

<

>

>

>

>

:

20
12

0:85
0:8

DE=BEST=
2=BIN

Table 13. Results of the HPNNA control in T-mazes in tests

with three different sizes and with different relative errors on

the programs. For each test the success rate is reported.

Maze Type Success Rate

l = 3 100%
l = 4 99%
l = 2 94%
l = 3, 10% error 98%
l = 3, 15% error 77%
l = 3, 20% error 68%

48 Adaptive Behavior 24(1)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


However, possibly other (probably lower) levels could

bring essential information for the ‘‘current level’’, so

this choice could be somewhat limiting. On the other

hand, to include all the levels as a possible input con-

nection would increase computational cost especially

for ‘‘deep’’ hierarchies. One line of research would be

to add this input choice at a learning level, letting the

system decide on the input (coming from the available

levels) that maximizes the primitive learning and conse-

quently adapt its connections.

Another open issue is how and where to store the

program values in a neural system so that they will be

available when needed. This might be met using some

reverberant scheme, which in the end will probably

require appealing again to synaptic plasticity in ancil-

lary networks. Finally, two lines for future research are

assessing the biological plausibility of the proposed

model, and advancing more detailed proposals (at the

neuronal level) of its mechanisms of learning and recall

of the programs.

Acknowledgement

The authors would like to thank Giuseppe Trautteur for the

inspiring discussions and comments that greatly contributed

to improve the paper.

Funding

The present research is funded by the Human Frontier

Science Program (HFSP), award number RGY0088/2014, by

the EU’s FP7 under grant agreement no FP7-ICT-270108

(Goal-Leaders). The GEFORCE Titan used for this research

was donated by the NVIDIA Corporation.

References

Agmon, E., & Beer, R. D. (2013). The evolution and analysis

of action switching in embodied agents. Adaptive Behavior,

22(1), 3–20.

Anderson, M. L. (2010). Neural re-use as a fundamental orga-

nizational principle of the brain. Behavioral and Brain

Sciences, 33(04), 245–266.

Araújo, D., Diniz, A., Passos, P., & Davids, K. (2014). Deci-

sion making in social neurobiological systems modeled as

transitions in dynamic pattern formation. Adaptive Beha-

vior, 22(1), 21–30.

Bakker, B., & Schmidhuber, J. (2004). Hierarchical reinforce-

ment learning based on subgoal discovery and subpolicy

specialization. In: F. Groen, N. Amato, A. Bonarini,

E. Yoshida, & B. Krose (Eds.), Proceedings of the 8th Con-

ference on Intelligent Autonomous Systems, IAS-8 (pp.

438–445). Amsterdam, The Netherlands.

Bargmann, C. I. (2012). Beyond the connectome: How neuro-

modulators shape neural circuits. Bioessays, 34, 485–65.

Beer, R. D. (1995). On the dynamics of small continuous-time

recurrent neural networks. Adaptive Behavior, 3(4),

469–509.

Candidi, M., Curioni, A., Donnarumma, F., Sacheli, L. M.,

& Pezzulo, G. (2015). Interactional leader–follower

sensorimotor communication strategies during repetitive

joint actions. Journal of The Royal Society Interface,

12(110), 453–467.

Chersi, F., Donnarumma, F., & Pezzulo, G. (2013). Mental

imagery in the navigation domain: A computational model

of sensory-motor simulation mechanisms. Adaptive Beha-

vior, 21(4), 251–262.

d’Avella, A., Portone, A., Fernandez, L., & Lacquaniti, F.

(2006). Control of fast-reaching movements by muscle

synergy combinations. The Journal of Neuroscience,

26(30), 7791–7810.

De Falco, I., Della Cioppa, A., Donnarumma, F., Maisto, D.,

Prevete, R., & Tarantino, E. (2008). CTRNN parameter

learning using differential evolution. In: M. Ghallab, C.

D. Spyropoulos, N. Fakotakis, & N. Avouris (Eds.), ECAI

2008, 18th European Conference on Artificial Intelligence

(pp. 783–784). Patras, Greece: IOS Press.

Dehaene, S. (2005). Evolution of human cortical circuits for

reading an arithmetic: The ‘‘Neuronal Recycling’’ hypoth-

esis. From Monkey Brain to Human Brain: A Fyssen Foun-

dation Symposium (pp. 133–157). Bradford, USA: MIT

Press.

Dindo, H., Donnarumma, F., Chersi, F., & Pezzulo, G.

(2015). The intentional stance as structure learning: A

computational perspective on mindreading. Biological

Cybernetics, 109(4), 453–467.

Donnarumma, F., Murano, A., & Prevete, R. (2015a).

Dynamic network functional comparison via approxi-

mate-bisimulation. Control & Cybernetics, 44(1), 99–127.

Donnarumma, F., Prevete, R., Chersi, F., & Pezzulo, G.

(2015b). A programmer–interpreter neural network archi-

tecture for prefrontal cognitive control. International Jour-

nal of Neural Systems, 25(6), 1550017 (16 pages).

Donnarumma, F., Prevete, R., & Trautteur, G. (2010). How

and over what timescales does neural reuse actually occur?

Commentary on ‘‘Neural re-use as a fundamental organi-

zational principle of the brain’’, by Michael L Anderson.

Behavioral and Brain Sciences, 33(04), 272–273.

Donnarumma, F., Prevete, R., & Trautteur, G. (2012). Pro-

gramming in the brain: A neural network theoretical

framework. Connection Science, 24(2–3), 71–90.

Eliasmith, C. (2005). A unified approach to building and con-

trolling spiking attractor networks. Neural Computation,

17(6), 1276–1314.

Eliasmith, C., & Anderson, C. H. (2004). Neural engineering:

Computation, representation, and dynamics in neurobiologi-

cal systems. Cambridge, MA: The MIT Press.

Flash, T., & Hochner, B. (2005). Motor primitives in verte-

brates and invertebrates. Current Opinion in Neurobiology,

15(6), 660–666.

Floreano, D., & Mondada, F. (1994). Automatic creation of

an autonomous agent: Genetic evolution of a neural-

network driven robot. In: Proceedings of the Conference on

Simulation of Adaptive Behavior (pp.421–430). Cambridge,

MA: MIT Press.

Fogassi, L., Ferrari, P., Chersi, F., Gesierich, B., Rozzi, S., &

Rizzolatti, G. (2005). Parietal lobe: From action organiza-

tion to intention understanding. Science, 308, 662–667.

Friston, K. (2003). Learning and inference in the brain.

Neural Networks, 16(9), 1325–1352.

Gerkey, B., Vaughan, R., & Howard, A. (2003). The player/

stage project: Tools for multi-robot and distributed sensor

Donnarumma et al. 49

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


systems. In: International Conference on Advanced Robotics

(ICAR) (pp. 317–323). Coimbra, Portugal: IEEE Press.

Graziano, M. (2006). The organization of behavioral reper-

toire in motor cortex. Annual Review of Neuroscience, 29,

105–134.

Hamilton, A. F. d. C., & Grafton, S. T.2007. The motor hier-

archy: From kinematics to goals and intentions. In:

P. Haggard, Y. Rossetti, & M. Kawato (Eds.), Sensorimo-

tor foundations of higher cognition (pp. 381–408 ). Oxford:

Oxford University Press.

Haruno, M., Wolpert, D., & Kawato, M. (2003). Hierarchical

MOSAIC for movement generation. In: T. Ono,

G. Matsumoto, R. Llinas, A. Berthoz, H. Norgren, &

R. Tamura (Eds.), Excepta Medica International Coun-

gress Series (pp. 575–590). Amsterdam, The Netherlands:

Elsevier Science.

Hioki, T., Miyazaki, Y., & Nishii, J. (2013). Hierarchical con-

trol by a higher center and the rhythm generator contri-

butes to realize adaptive locomotion. Adaptive Behavior,

21(2), 86–95.

Hopfield, J. J., & Tank, D. W. (1986). Computing with neural

circuits: A model. Science, 233, 625–633.

Igari, I., & Tani, J. (2009). Incremental learning of sequence

patterns with a modular network model. Neurocomputing,

72(7–9), 1910–1919.

Kelly, J. P. (1991). The neural basis of perception and move-

ment. Principles of Neural Science (3rd ed., pp. 283–295).

New York, NY: Elsevier.

Koechlin, E., & Summerfield, C. (2007). An information theo-

retical approach to prefrontal executive function. Trends in

Cognitive Science, 11(6), 229–235.

Maisto, D., Donnarumma, F., & Pezzulo, G. (2015). Divide

et impera: Subgoaling reduces the complexity of probabil-

istic inference and problem solving. Journal of The Royal

Society Interface, 12(104), 20141335.

Mcgovern, A., & Barto, A. G. (2001, June 18–22). Accelerat-

ing reinforcement learning through the discovery of useful

subgoals. In: Proceedings of the 6th International Sympo-

sium on Artificial Intelligence, Robotics, and Automation in

Space: i-SAIRAS, Canadian Space Agency (pp. 13–18).

Montreal, Canada: Electronically Published.

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of

prefrontal cortex function. Annual Review on Neuroscience,

24, 167–202.

Montone, G., Donnarumma, F., & Prevete, R. (2011). A

robotic scenario for programmable fixed-weight neural

networks exhibiting multiple behaviors. In: Adaptive and

Natural Computing Algorithms (pp. 250–259). Heidelberg,

Germany: Springer Berlin.

Mussa-Ivaldi, F. A., & Bizzi, E. (2000). Motor learning

through the combination of primitives. Philosophical

Transactions of the Royal Society of London. Series B: Bio-

logical Sciences, 355(1404), 1755–1769.

Paine, R. W., & Tani, J. (2004). Motor primitive and sequence

self-organization in a hierarchical recurrent neural net-

work. Neural Networks, 17(8–9), 1291–1309.

Paine, R. W., & Tani, J. (2005). How hierarchical control self-

organizes in artificial adaptive systems. Adaptive Behavior,

13(3), 211–225.

Park, H.-J., & Friston, K. (2013). Structural and functional

brain networks: From connections to cognition. Science,

342(6158), 1238411.

Pezzulo, G., Donnarumma, F., & Dindo, H. (2013). Human

sensorimotor communication: A theory of signaling in

online social interactions. PLoS ONE, 8(11), e79876.

Pezzulo, G., Donnarumma, F., Iodice, P., Prevete, R., &

Dindo, H. (2015). The role of synergies within generative

models of action execution and recognition: A computa-

tional perspective: Comment on grasping synergies: A

motor-control approach to the mirror neuron mechanism

by A D’Ausilio et al. Physics of Life Reviews, 12, 114–117.

Price, K. V., Storn, R. M., & Lampinen, J. A. (2005). Differ-

ential evolution: A practical approach to global optimization.

Natural Computing Series. Springer-Verlag.

Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M.,

Luppino, G., & Matelli, M. (1988). Functional organiza-

tion of inferior area 6 in the macaque monkey. II. Area F5

and the control of distal movements. Experimental brain

research, 71(3), 491–507.

Tani, J. (2003). Learning to generate articulated behavior

through the bottom-up and the top-down interaction pro-

cesses. Neural Networks, 16(1), 11–23.

Tani, J., Ito, M., & Sugita, Y. (2004). Self-organization of dis-

tributedly represented multiple behavior schemata in a

mirror system: Reviews of robot experiments using

RNNPB. Neural Networks, 18(1), 103–104.

Tani, J., Nishimoto, R., & Paine, R. W. (2008). Achieving

‘‘organic compositionality’’ through self-organization:

Reviews on brain-inspired robotics experiments. Neural

Networks, 21(4), 584–603.

Tani, J., & Nolfi, S. (1999). Learning to perceive the world as

articulated: An approach for hierarchical learning in

sensory-motor systems. Neural Networks, 12(7), 1131–1141.

Thoroughman, K. A., & Shadmehr, R. (2000). Learning of

action through adaptive combination of motor primitives.

Nature, 407(6805), 742–747.

Trautteur, G., & Tamburrini, G. (2007). A note on discrete-

ness and virtuality in analog computing. Theoretical Com-

puter Science, 371, 106–114.

Umedachi, T., Ito, K., & Ishiguro, A. (2015). Soft-bodied

amoeba-inspired robot that switches between qualitatively

different behaviors with decentralized stiffness control.

Adaptive Behavior, 3(2), 97–108.

Woodman, M., Perdikis, D., Pillai, A. S., Dodel, S., Huys,

R., Bressler, S., & Jirsa, V. (2011). Building neurocognitive

networks with a distributed functional architecture.

Advances in Experimental Medicine and Biology, 718, 101–

109. doi:10.1007/978-1-4614-0164-3_9

Yamauchi, B. M., & Beer, R. D. (1994). Sequential behavior

and learning in evolved dynamical neural networks. Adap-

tive Behavior, 2(3), 219–246.

50 Adaptive Behavior 24(1)

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


About the Authors

Francesco Donnarumma (MSc in physics, PhD in computer and information science) has been

a research fellow at ISTC-CNR since 2011. His research focuses on computational modelling of

cognitive brain functions by the developing of biologically inspired models investigating social

interactions and studying multi-purpose interpreter architectures based on dynamical neural

networks.

Roberto Prevete (MSc in physics, PhD in information science) is an Assistant Professor of

Computer Science at the Dept.of Electrical Engineering and Information Technologies (DIETI),

University of Naples Federico II, Italy. Director of the laboratory for Computational Vision and

Neural Networks (ViNe) at DIETI. His current research interests include computational models

of brain mechanisms, machine learning and artificial neural networks and their applications.

Andrea de Giorgio is currently working on his final thesis in machine learning as a master stu-

dent at KTH, Royal Institute of Technology in Stockholm, Sweden. In 2013 he received his

bachelor’s degree in electronic engineering at the University of Naples Federico II, Italy. His

research interests focus on deep learning and modeling of brain functions.

Guglielmo Montone (MSc in physics, PhD in computer and information science) is a postdoc-

toral researcher at LPP, UniversitÃl’ Paris Descartes. His research focuses on artificial neural net-

works and their applications in artificial intelligence. His current research is about the

development of the concept of space in simple and biologically plausible agents.

Giovanni Pezzulo (MSc and PhD in cognitive psychology) is a researcher at the Institute of

Cognitive Sciences and Technologies, National Research Council, Rome, Italy. His main research

interests are prediction, goal-directed behaviour, internally generated neuronal activity and joint

action in living organisms and robots. His current research interests are focused on the realization

of biologically realistic cognitive models for decision making and planning.

Donnarumma et al. 51

 at Kungl Tekniska Hogskolan / Royal Institute of Technology on February 6, 2016adb.sagepub.comDownloaded from 

http://adb.sagepub.com/

