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Abst rac t .  Valiant (1984) and others have studied the problem of learning various 
classes of Boolean functions from examples. Here we discuss incremental learning of 
these functions. We consider a setting in which the learner responds to each example 
according to a current hypothesis. Then the learner updates the hypothesis, if necessary, 
based on the correct classification of the example. One natural measure of the quality of 
learning in this setting is the number of mistakes the learner makes. For suitable classes 
of functions, learning algorithms are available that make a bounded number of mistakes, 
with the bound independent of the number of examples seen by the learner. We present 
one such algorithm that learns disjunctive Boolean functions, along with variants for 
learning other classes of Boolean functions. The basic method can be expressed as a 
linear-threshold algorithm. A primary advantage of this algorithm is that the number 
of mistakes grows only logarithmically with the number of irrelevant attributes in the 
examples. At the same time, the algorithm is computationally efficient in both time and 
space. 

1. Introduct ion 

In this paper, we consider learning from examples in a situation in which 

the goal of the learner is simply to make few mistakes. The task is to induce 

a concept that can be described by a Boolean function; that is, the informa- 

tion received in each example is a list of Boolean attributes and the correct 

response is a Boolean function of the attributes. We are interested in cases 

where the correct-response function depends on only a small proportion of 

the attributes present in each example. For example, this case may occur 

in pattern recognition tasks; feature detectors may extract a large number 

of features for the learner's consideration, not knowing which few will prove 

useful. For another example, consider an environment in which the learner 
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builds new concepts as Boolean functions of old concepts (Banerji, 1985; 
Valiant, 1984). Here the learner may need to sift through a large library of 
available concepts to find the suitable ones to use in expressing each new 
concept. In a special case of this situation, one may design a library of con- 
cepts specifically to ease learning of a certain class of complex functions. 
In this case one chooses concepts for the library that allow representation 
of any function in the class as a simple function of the library concepts. In 
the context of this paper, the concepts in the library will just be Boolean 
functions themselves. For example, consider k-DNF, the class of Boolean 
functions that can be represented in disjunctive normal form with no more 
than k literals per term (Valiant, 1985). If one has available intermediate 
concepts that include all conjunctions of no more than k literals, then any 
k-DNF function can be represented as a simple disjunction of these con- 
cepts. We will return to this idea at the end of the paper, presenting an 
algorithm for learning k-DNF. 

Our main result is an algorithm that deals efficiently with large num- 
bers of irrelevant attributes. If desired, it can be implemented within a 
neural net framework (Rumelhart & McClelland, 1986) as a simple linear- 
threshold algorithm. The method learns certain classes of functions that 
can be computed by a one-layer linear-threshold network; these include, 
among other functions, disjunctions, conjunctions, and r-of-k threshold 
flmctions (Hampson & Volper, 1986; Kearns, Li, Pitt, & Valiant, 1987a). 
(The latter functions are true if at least r out of k designated variables are 
true.) Preproeessing techniques can be used to extend the algorithm to 
classes of Boolean functions that are not linearly separable, such as k-DNF 
(for fixed k). When our algorithm is applied to k-DNF formulas with few 
terms, it makes significantly fewer mistakes than the algorithm presented 
by Valiant (1984, 1985). The algorithm is similar to classical perceptron 
algorithms, but it uses a multiplieative weight-update scheme that permits 
it to do much better than classical perceptron training algorithms when 
many attributes are irrelevant. 

We study learning in an on-line setting. By this we mean that there 
is no separate set of training examples. The learner attempts to predict 
the appropriate response for each example, starting with the first exam- 
ple received. After making this prediction, the learner is told whether the 
prediction was correct, and then uses this information to improve its hy- 
pothesis. The learner continues to learn as long as it receives examples; 
that is, it continues to examine the information it receives in an effort to 
improve its hypothesis. In this setting, it is advantageous to use an algo- 
rithm that computes successive hypotheses incrementally, saving work that 
would be required to calculate every hypothesis from scratch from stored 
input examples. Our algorithm is incremental in this sense. 
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We evaluate the algorithm's learning behavior by counting the worst- 
case number of mistakes that it will make while learning a function from 
a specified class of flmctions. We also consider computational complexity. 
We will prove that the mistake bound of our algorithm is within a con- 
stant factor of optimal when the algorithm is applied to certain classes of 
functions. The method is also computationally time and space efficient. 

Before we present the algorithm we will discuss some properties of ntis- 
take bounds for concept classes, including general lower bounds. We will 
also demonstrate a close relationship between exact identification with 
equivalence queries, as presented by Anghfin (1987). and learning with 
a bounded nmnber of mistakes. 

The mistake bounds that we present are strong in the sense that they 
do not depend on any assumption about which examples the learner sees 
or the order in which it sees them: the selection and ordering can be done 
by an adversary. However, due to the freedom given the adversary, we 
cannot say how early the learner will make the mistakes. For example, a 
single instance could be repeated arbitrarily many times at the beginning 
of the sequence of trials and then followed by other instances for which the 
learner does not yet know how to respond. 

One (:an adapt mistake-bounded algorithms to work well according to 
criteria that are useful in other settings. For example, consider a setting in 
which the learning process is separated into two phases: a training phase 
and a subsequent working phase. Learning occurs only during the training 
phase; mistakes are counted only during the working phase. Thus the only 
important hypothesis is the one formed by the learner at the conclusion of 
the training phase. One useful model in this context is the probabilistic 
model introduced by Valiant (1984) and discussed by Blumer, Ehrenfeucht. 
Haussler, and Warmuth (1987a, 1987b) and Angluin (1987). Starting with 
a lnistake-bounded algorithm, one can derive an algorithm that does well 
under the criteria of this probabilistie model. We mention one indirect way 
to do this, using Anghfin's (1987) results. Kearns, Li, Pitt, and Valiant 
(1987b) have mentioned a related technique. 

Another change that one might make to the learning model involves 
keeping the on-line setting, but analyzing it with probabilistic instead of 
worst-case assumptions. One can use the probabilistic model mentioned 
above to this end. Haussler, Littlestone, and Warmuth (1987) discuss a 
related model developed particularly for this setting. 

It is interesting to compare our main algorithm to similar classical meth- 
ods for perceptron training. Hampson and Volper (1986) present empirical 
evidence that, for one classical perceptron algorithm, the number of mis- 
takes grows linearly with the number of irrelevant attributes. This is in 
keeping with theoretical bounds from the perceptron convergence theorem 
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(Hampson & Volper, 1986; Duda & Hart, 1973; Nilsson, 1965). We know 
of no evidence that  any other s tandard perceptron algorithm does better. 
In contrast, we will prove that  the number of mistakes that  our algorithm 
makes grows only logarithmically with the number of irrelevant attributes. 

Others have looked at the problem of dealing efficiently with irrelevant 
attributes in the context of learning Boolean functions. Haussler (1986) 
mentions two algorithms for learning disjunctive functions in the context 
of Valiant's learning model. One of them is designed to learn rapidly in the 
presence of irrelevant attributes. However, that  algorithm is not naturally 

incremental, and thus is significantly less time and space efficient than 
ours when used in an on-line setting. Valiant (1984, 1985) introduces a 
mechanism by which a friendly and knowledgeable teacher can help the 
learner by indicating which attr ibutes are relevant. Hampson and Volper 

(1986), in addition to their study of classical perceptron algorithms, have 
experimented with new algorithms that  use conditional probabilities in 
an effort to reduce the cost of irrelevant attributes. They do not present 

theoretical bounds for these algorithms. 

The mistake-counting model that  we use is essentially the same as a 

model discussed in Barzdin and Freivald (1972). See Angluin and Smith 
(1983) for a survey that  compares a number of learning models. 

2. T h e  s e t t i n g  

In this section we will describe in more detail the learning environment 
that  we consider and the classes of functions that  our algorithm can learn. 

We assume that  learning takes place in a sequence of trials. The order of 
events in a trial is as follows: 

(1) The learner receives some information about the world, correspond- 

ing to a single example. This information consists of the values of n 
Boolean attributes, for some n that  remains fixed. We think of the in- 

formation received as a point in {0, 1} n. We call this point an instance 
and we call {0, 1} n the instance space. 

(2) The learner makes a response. The learner has a choice of two re- 

sponses, labeled 0 and 1. We call this response the learner's prediction 
of the correct value. 

(3) The learner is told whether or not the response was correct. This 
information is called the reinforcement. 

Each trial begins after the previous trim has ended. 

We assume that  for the entire sequence of trials, there is a single function 
f : {0, 1} n --* {0, 1} which maps each instance to the correct response to 
that  instance. We call this function the target function or target concept. 
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We call an algorithm for learning in this setting an algorithm for on-line 
learning from examples. When we speak of learning algorithms without fur- 
ther qualification we refer to algorithms for on-line learning from examples. 
For this paper we restrict our attention to deterministic algorithms. 

We will present mistake bounds as worst case bounds over some class of 
possible target functions, which we will call the target class. 

3. T h e  n a t u r e  of  a b s o l u t e  mi s take  b o u n d s  

In this section we give some general results about mistake bounds for on- 
line learning from examples. We present upper and lower bounds on the 
number of mistakes in the case where one ignores issues of computational 
efficiency. The instance space can be any finite space X, and the target 
class is assumed to be a collection of functions, each with domain X and 

range {0, 1}. The results also apply to infinite X, provided that the target 
class remains finite. However, computability issues may arise in this case, 
and we do not consider them here. 

For any learning algorithm A and any target function f,  let MA(f) be 
the maximum over all possible sequences of instances of the number of 
mistakes that algorithm A makes when the target function is f .  For any 
learning algorithm A and any non-empty target class C, let MA(C) = 
maxfec MA(f). 1 Define MA(C) = - 1  if C is empty. Any number greater 
than or equal to MA(C) will be called a mistake bound for algorithm A 
applied to class C. 

Def in i t ion  1 The optimal mistake bound for a target class C, denoted 
opt(C), is the minimum over all learning algorithms A of MA(C). This 
minimum is taken over all algorithms regardless of their computational 
efficiency. An algorithm A is called optimal for class C if MA(C) = opt(C). 
Thus opt(C) represents the best possible worst case mistake bound for any 
algorithm learning C. 

If computational resources are no issue, there is a straightforward learn- 
ing algorithm that has excellent mistake bounds for many classes of func- 
tions. This algorithm uses the idea of repeated halving of the set of plausi- 
ble hypotheses. This idea appears in various forms in Barzdin and Freivald 
(1972), Mitchell (1982), and Angluin (1987). We restate it in the current 
context because it gives an upper limit on the mistake bound and because it 
suggests strategies that one might explore in searching for computationally 
efficient algorithms. 

1Some algorithms that  we will describe are general algorithms whose functioning 
depends on knowledge of the part icular  target class for which they are being used. For 
such an algorithm A, we will use MA(C) to denote max fee  MA(f)  when A is told that  
the target class is C. 
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Algorithm 1 (halving algorithm) 

The halving algorithm can be applied to any finite class C of functions 

taking values in {0, 1}. It maintains a list of all of the functions in the 

class that  agree with the target function on all past instances. We will call 

the functions on this list the consistent functions. In the terminology of 

Mitchell (1982), the consistent flmctions form the current version space of 

the algorithm, hfitially the list contains all of the flmctions in the class. 

To respond to a new instance, the algorithm computes the values of all 

consistent fimctions at the new instance, and makes the prediction that  

agrees with the majority (or either possibility in case of a tie). Following 

each trial, the algorithm updates the list of consistent functions. 

We will now give a second description of the halving algorithm to intro- 

duce notation that  we will use later. Given a target class C and a point 

z in the associated instance space X, let (0(C, z) denote the subset of C 

containing those functions that are 0 at z, and let ~1(C. z) denote those 

fimctions in C that  arc 1 at z. 

The halving algorithm maintains a variable CONSIST whose value is 

a set containing all functions in C that are consistent with all past in- 

stances. Initially CONSIST = C. When the halving algorithm receives an 

instance, it determines the sets @(CONSIST, x) and (~(CONSIST, x). If 

1~1 (CONSIST, x)l > I@ (CONSIST. x)l then the algorithm predicts 1; oth- 

erwise it predicts 0. When the algorithm receives the reinforcement, it sets 

CONSIST accordingly: if the correct response to z is 0 then it sets CON- 

SISTto (o( CONSIST, z); otherwise it sets CONSIST to (~(CONSIST, "z). 
Let M~rALWNC(C) denote the maximum number of mistakes that the al- 

gorithm will make when it is run for the target class C (i.e., its initial list 

of functions consists of C) and the target flmction in fact comes from C. 

Theorem 1 For any non-empty target cla,v8 C, MHALVING(C) < log2 IC]. 

PROOF: Since there are only two possible predictions, the learner will 

always be able to choose a prediction agreed to by at least half of the 

current list of consistent functions. Whenever a mistake occurs, those 

functions that  agree with the prediction of the learner will be eliminated 

from the list of consistent functions; these functions constitute at least half 

of the list. Thus at each mistake the size of tile list will be divided by at 

least two. Since we have assumed that the target function is in the initial 

class of functions, there will always be at least one consistent function. 

Thus the method can make at most log 2 IC[ mistakes. I 

The theorem above also holds for a modified version of the halving algo- 

ri thm in which CONSIST is only changed following trials in which mistakes 
occur. The same proof applies in this case. The halving algorithm imme- 

diately gives us the following theorem: 
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T h e o r e m  2 For any finite target class C, opt(C) < log 2 1(71. 

E x a m p l e  1 Note that  for some classes of functions this bound is not tight. 

For example, for x e {0, 1} ~ let g, : {0, 1} ~ + {0, 1} be the function that  

is l at z and 0 elsewhere. Then one can easily verify that  the halving 

algorithm applied to the class of functions {g,},~{o,1}" will make at most 

one mistake. 

Now we will study opt(C) more closely. To do this we need the following 

definitions. 

De f in i t i on  2 A mistake tree for a target class C over an instance space X 

is a binary tree each of whose nodes is a non-empty subset of C and each 

of whose internal nodes is labeled with a point of X. which satisfies tile 

following: 

(1) The root of the tree is C. 

(2) Given any internal node C' labeled with x, the left child of ( ; ,  if 

present, is ~0(C', z), and the right child, if present, is ~1(C', x). 

For example, Figure 1 shows the mistake tree for C when X = {0, 1} 5 and 

C consists of the functions fi(xl . . . .  , x~) = zi, for i = 1 . . . . .  5. 

A complete k-mistake tree is a mistake tree that  is a complete binary tree 

of height k. We define the height of a tree to be the length in edges of the 

longest path  from the root. The tree above is a complete 2-mistake tree. 

These trees provide a way to characterize the number of mistakes made by 

an optimal learning algorithm. We will present an optimal algorithm, and 

then discuss the number of mistakes that  it makes. 

For any non-empty finite target class C, let K(C) equal the largest inte- 

ger k such that  there exists a complete k-mistake tree for C. The definition 

of mistake trees guarantees a finite upper bound to k. Let K(O) = -1 .  

Algorithm 2 (standard optimal algorithm) 

The standard optimal algorithm is similar to tile halving algorithm. It 

maintains the variable CONSIST in the same manner, and like the halving 

algorithm examines ~o(CONSIST, x) and E1 (CONSIST, z) to determine its 

prediction. The only difference from the halving algorithm lies in the rule 

it uses to choose its prediction. Instead of predicting according to which 

of these sets of flmetions is larger, it compares K(@(CONSIST, x)) with 

K(~(CONSIST,  x)). If K(~I(CONSIST, x)) > K(~o(CONSIST, x)) then 
the algorithm responds 1; otherwise it responds 0. Thus whenever a mis- 

take occurs, the remaining consistent functions have the smaller maximal 
complete mistake tree. 
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{/1, f3, fb} 
label (0,0,1,1,1) 

{fl,f } {f3,f4,fb} 
label (0,1,0,0,0) label (0,0,0,1,1) 

{I1} {f3} {f4, 

Figure 1. A complete 2-mistake tree. 

T h e o r e m  3 Let X be any instance space. Let SOA denote the standard 

optimal algorithm defined above, and let C be any finite class of functions 
with domain X and range {01 1}. Then 

opt(C) : MSoA(C ) : K(C). 

We will prove this theorem using the following two lemmas: 

L e m m a  1 For any target class C, 

opt(C) > K(c). 

PROOF: This follows trivially from the definition if C is empty. Assume 

C is non-empty, and let k = K(C). Saying that  opt(C) > k is equivalent 

to saying that  for any deterministic learning algorithm A, there exists a 

function f C C and a sequence of instances such that  A makes at least 
k mistakes when presented with that  sequence of instances. Given an al- 

gorithm A, we will show how an adversary can choose a function and a 
sequence of instances such that  A makes at least k mistakes. The adver- 

sary keeps track of a current mistake tree. Initially this is a complete k 
mistake tree for C. If k = 0, the lemma follows trivially. Otherwise, the 

first instance chosen by the adversary is the label of the root of the tree. 
Whatever the algorithm predicts, the adversary tells the algorithm that  its 
prediction is wrong. This response of the adversary eliminates some func- 
tions as possible target functions. The remaining candidate functions are 
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either the class @(C, x) or the class ~ (C ,  x), depending on the algorithm's 

prediction and the adversary's response to it. One of the two subtrees of 

the root of the adversary's current mistake tree is a complete k - 1 mistake 

tree for the remaining candidate functions. The adversary sets its current 

mistake tree to that  subtree. It chooses the next instance to be the label of 

the root of the new current tree. The adversary continues in this manner, 

forcing the algorithm to be wrong at each instance. After j mistakes, the 

adversary's current tree is a complete k - j mistake tree for the remaining 

candidate target functions. As long as j < k, the root of the current tree 

has two children corresponding to non-empty subclasses of C; thus the ad- 

versary can choose a point (the label of the root) at which it can force the 

algorithm to make a mistake. When j = k, k mistakes have been made, as 

desired. The target function chosen by the adversary can be any candidate 

remaining after the last mistake was made. • 

L e m m a  2 Let C be a finite non-empty target class. Suppose that SOA 

is run to learn some function in C and that the sequence of instances it 

receives is x l , . . . ,  xt. Consider the variable CONSIST maintained by SOA. 

Let CONSISTi denote the value of CONSIST at the start of trial i. For 

any k > 0 and i in {1 , . . . ,  t}, if K(CONSISTi)  = k, then SOA will make 

at most k mistakes during trials i, . . . , t. 

PROOF: We prove this by induction on k, taking k = 0 to be the base 

case. By the construction of SOA, the target function will always be in 

CONSISTi. If K(CONSISTi)  = 0 then CONSISTi can contain only the 

target function. (If there are two fmlctions in CONSISTi, then any instance 

on which they differ is the label of the root of a complete l-mistake tree 

for CONSISTi.) The definition K(0) = - 1  ensures that  SOA will always 

respond correctly when CONSISTi contains only the target function. This 

proves the base case of the induction. 

Now we will prove the lemma for arbitrary k > 0, assuming that it holds 

for k - 1. If SOA makes no mistakes during trials i , . . . ,  t - 1 then we are 

done. Otherwise, let j be the number of the first trial among trials i , . . . ,  t -  

1 at which SOA makes a mistake. If there are complete k-mistake trees 

for both ~o(CONSISTj, xj) and ~I(CONSISTj, xj), then we can combine 

them into a complete k + l  mistake tree for CONSISTj; we add a root node 

labeled with xj. Since CONSISTj C_ CONSISTi it is easy to transform this 

into a complete k + l-mistake tree for CONSISTi. But we have assumed 

that  there does not exist a complete k+l -mis take  tree for CONSISTi. Thus 

at least one of K(@(CONSISTj ,x j ) )  and K(~I(CONSISTj,  xj)) must be 
less than k. Since the response of SOA corresponded to the larger of these 

two values for K,  and since SOA was wrong, CONSISTj+I will have the 

property that  K(CONSISTj+I) < k. By the induction hypothesis, SOA 
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Table I. Values of nine funct ions  in Example  2, 

f l  f2 fa f4 f5 f6 f7 fs f~ 

al 1 0 0 0 0 0 0 0 0 

a2 0 1 0 0 0 0 0 0 0 

aa 0 0 1 0 0 0 0 0 0 

a4 0 0 0 1 0 0 0 0 0 
a5 0 0 0 0 1 0 0 0 0 

a6 0 0 0 0 0 1 1 1 1 

a7 0 0 0 0 0 0 0 1 1 

as 0 0 0 0 0 0 1 0 1 

will make at most k - 1 mistakes during trials j + 1 , . . . ,  t. This gives the 

desired result. • 

PROOF OF THEOREM 3: If we set k = K(C) and i = 1 in Lemma 2 

we get MSoA(C ) < K(C). Lemma 1 states K(C) <_ opt(C). From the 

definition of opt(C) we have opt(C) <_ MSoA(C ). The theorem follows. • 

One of the consequences of this theorem is that we could use opt instead 

of K in the description of SOA and obtain the same algorithm. 

Note that Example 1 shows that there are arbitrarily large target classes 

C for which opt(C) = 1. Using this, one can construct a target class C for 

which there is some point x such that 

but 

I,Io(C, x)l > 

opt( o(C, x)) < opt(6(c, 

For such a target class, if the point x is the first instance, then the standard 

optimal algorithm and the halving algorithm will make different predictions 

for x. Let us consider an example of such a target class for which the halving 

algorithm is not optimal, 

E x a m p l e  2 Let the instance space X be an eight element set {al , . .  •, as}. 

Let the target class C consist of nine functions f l , .  • •, f9, with values shown 

in Table 1. If the first three instances received by the halving algorithm 

are a6, aT, as in that order, then there is some target function for which 

the halving algorithm will make three mistakes. (If we use the version 

of the halving algorithm that chooses 0 in case of a tie, then the halving 

algorithm will make three mistakes for target function fg-) On tile other 

hand, there is no sequence of points and target function for which SOA will 

make more than 2 mistakes. One can see this by considering each point 

of the instance space in turn. For every x E X either opt(@(C,x)) 5 1 
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or opt(~l(C, x)) < 1. Thus no matter  on which instance SOA makes its 

first mistake, its prediction will have been chosen so that  the remaining 

consistent functions have an optimal mistake bound of at most one. Hence 

the halving algorithm is not optimal for this target class. 

Now we give a lower bound for opt(C) in terms of the Vapnik-Chervonen- 

kis (Vapnik & Chervonenkis, 1971) dimension of C, which is a combinato- 

rial parameter that  has proven useful in other studies of learning (Vapnik, 

1982; Blumer et al., 1987a; Haussler, Littlestone, & Warmuth,  1987). 2 To 

define the Vapnik-Chervonenkis dimension, we use the notion of a shattered 
set. 

De f in i t i on  3 A set S _c X is shattered by a target class C if for every 

U c S there exists a function f E C such that  f is 1 on U and 0 on S - U. 

De f in i t i on  4 The Vapnik-Chervonenkis dimension of a non-empty target 

class C is the cardinality of the largest set that  is shattered by C. We will 

denote this VCdim(C). We will define VCdim(O) = -1.  

T h e o r e m  4 For any target class C, VCdim(C) <_ opt(C). 

PROOF: Let k = VCdim(C). Choose any set {Vl , . . . ,vk} C_ X that  is 

shattered by C. Then we can construct a complete k-mistake tree for C 

with all internal nodes at depth j labeled with vj+l for j = 0, 1 , . . . ,  k - 1. 

The nodes are chosen to be subclasses of C as required in the definition of 

a mistake tree. These subclasses will be all non-empty (as required by the 

definition) by virtue of the fact that  {Vl , . . . ,  vk} is shattered by C. • 

The Vapnik-Chervonenkis dimension will prove to be a useful lower 

bound on opt(C) for concept classes that  we will consider in later sec- 

tions of the paper. However, there are also concept classes for which the 

Vapnik-Chervonenkis dimension is a very weak lower bound. In fact, as 

the following example shows, opt(C) can be arbitrarily large for classes for 

which VCdim(C) = 1. 

E x a m p l e  3 For n > 0, take X = { 1 , . . . , 2  n -  1}. For e a c h j  E { 1 , . . . , 2  n} 

let f j :  X --~ {0, 1} be the function such that  fj(x) = 1 if and only if x < j .  

Let C = { f j :  1 < j < 2n}. Then YCdim(C) = 1 but  opt(C) = n. To see 

this, first note that  for any f E C if f(x) = 1 then for all y < x, f(y) = 1. 
Thus no set of size 2 is shattered and VCdim(C) = 1. Also, by Theorem 

2, opt(C) < log 21CI = n. To see that  opt(C) > n we can construct a 
complete n-mistake tree. Label the root with the point 2 n-1. We have 

~0(C, 2 n - l )  = { f l , . . . , f 2~- l }  and ~1(C, 2 n - l )  = {f2,~-1+1,..., f2~}. Each 
of these two subclasses is similar to the original class but half as large. 

2In Vapnik "1982), the Vapnik-Chervonenkis dimension is called the capacity. 
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It is easy to see that  points can be found to be the labels of the children 

of the root tha t  will split each of the subclasses exactly in two. This line 

of reasoning can be formalized to yield an inductive construction of the 

mistake tree. 

4. General  transformat ions  

There is a close relationship between learning algorithms of the type that  

we have been considering and those that  exactly identify a target function 

using a bounded number  of equivalence queries, as described by Angluin 

(1987). An equivalence query is a request by an algorithm that  asks if 

the target function matches some function described in the query. When- 

ever an algorithm receives a negative answer to an equivalence query, it 

also receives a counterexample, i.e., a point at which the target function 

and the proposed function disagree. The equivalence query algorithms 

that  we consider here receive no examples as input other than the coun- 

terexamples to the queries. In this section, we will use the term "query 

algorithm" to refer to an algorithm that  learns using equivalence queries, 

and the terms "on-line learning algorithm", "mistake-bounded algorithm", 

and "algorithm for learning from examples" to refer to algorithms of the 

type discussed elsewhere in this paper. 

To describe the relationship between equivalence query algorithms and 

our model, we must define the notion of the current hypothesis of an algo- 

r i thm for on-line learning from examples. The current hypothesis is defined 

initially and between trials, and is a function from the instance space to 

{0, 1}. Its value at any instance x is defined to be the response that  the 

algorithm would give at the next trial if the instance received in the next 

trial were x. This is well-defined for any deterministic algorithm. If we 

copy the state of an algorithm at the conclusion of a trial, then we can use 

the copy of the state to determine (by simulating the algorithm) what pre- 

diction the algorithm would make for any new instance, without sending 

that  instance to the running version of the algorithm. Thus the state can 

be considered a representation of the current hypothesis of the algorithm. 

(Often a portion of the state will suffice.) Using this representation to 

represent the functions appearing in queries, an algorithm that  learns from 

examples can be transformed into a query algorithm. We will show that  

the number of queries needed will be at most  one more than the number 

of mistakes that  the learning-from-examples algorithm would make. a 

SNore that for most of Angluin's results, the queries are restricted to use only functions 
from the target class in question. For the conversion here, the flmctious used in the 
queries must be allowed to come from the class of flmctions that the original algorithm 
uses for its hypotheses. Also note that with this transformation, the functions used in 
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The inverse transformation is also possible: a query algorithm can be 
transformed into an algorithm that learns from examples making a bounded 
number of mistakes. The efficiency of the transformed algorithm will de- 
pend on the difficulty of evaluating the functions given in the queries. The 
number of mistakes made by the transformed algorithm is bounded by the 
number of queries used by the query algorithm. We now give the details 
of these transformations. 

Algorithm transformation 1 Given a mistake-bounded learning algo- 

rithm A, this transformation yields a query algorithm B for the same target 
class. The first query of the derived algorithm B is the initial hypothesis 
of algorithm A. Algorithm B waits for a response to this query and then 
repeats the following for the first response and the response to each subse- 
quent query: if the response indicates that the query specified the correct 
target function, then algorithm B halts and reports the correct target func- 
tion; otherwise, the response to the latest query includes a counterexample. 
The derived algorithm gives this instance to algorithm A. After receiving 
A's prediction, it tells A that the prediction was incorrect. (Algorithm B 

knows that A will be wrong here, since the last query was just the current 
hypothesis of A, and by definition the current hypothesis tells how A will 
respond to the next instance. ) Algorithm B takes the new hypothesis of 
algorithm A and uses it as the next query, continuing in this fasl~ion until 
it determines the correct target function. 

Since every query after the first results from a mistake of A, we have the 

following theorem: 

T h e o r e m  5 The number of queries needed by the derived algorithm to 
exactly identify target function f is bounded by MA(f) + 1. • 

Algorithm transformation 2 Now suppose we are given a query algo- 
rithm A that achieves exact identification of every function in some target 
class C with a bounded number of queries. This transformation yields 
a mistake-bounded learning algorithm B for the same target class. The 
initial hypothesis of algorithm B is the hypothesis output by the query 
algorithm as its initial query. Algorithm B uses this hypothesis to respond 
to all instances that are received until it is told that it has made a mistake. 
Until the first mistake, algorithm A receives no response to its first query. 
At the time of the first mistake, algorithm B gives algorithm A a response 
to its query: it tells A that its hypothesis was wrong, and reports that the 

the queries will not necessarily be given a compact symbolic representation. However, 
if the query algorithm is derived from a computationally efficient algorithm for on-line 
learning from examples, then the query functions will be represented in a form that  can 
be efficiently evaluated. 
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instance at which a mistake was made is a counterexample. Algorithm B 
now waits to make any further predictions until A either makes another 

query or halts and reports the correct target function. Since A achieves 
exact identification, one of these events will occur. The hypothesis given 
in the Pnew query (or the reported target function) becomes the new cur- 
rent hypothesis of algorithm B. The derived algorithm B proceeds in this 
manner indefinitely. 

The next theorem follows immediately. 

T h e o r e m  6 For any target function f E C, the number of mistakes made 
by the derived algorithm in learning f is bounded by the number of queries 
needed by algorithm A to exactly identify f.  • 

One can also convert a mistake-bounded algorithm into an algorithm that 

learns effectively in the probabilistic model introduced by Valiant (1984) 
and described by Blumer et al. (1987a, 1987b). Angluin (1987) refers to 
this model as pac-learning, where pac stands for "probably approximately 

correct." One way to perform the conversion essentially follows a method 
discussed by Kearns, Li, Pitt, and Valiant (1987b) for using failure bounds 
to derive probabitistic learning results. Alternatively, one can use an indi- 
rect route: one can convert a mistake-bounded algorithm into an algorithm 
for exact identification using equivalence queries, and then use a conversion 
described by Angluin (1987) to obtain an algorithm for the probabilistic 
setting. 

Other general algorithm transformations are possible. Sometimes it is 
useful to have an algorithm that changes its hypothesis only when a mistake 

occurs; Haussler (1985) has referred to such methods as conservative. One 
can transform a mistake-bounded algorithm into a conservative algorithm 
with the same mistake bound. Haussler (1985) has referred to such methods 
as failure-bounded. One way to convert a mistake-bounded algorithm to a 
conservative algorithm is to use the above transformations to convert it first 
to an equivalence query algorithm and thence back to a mistake-bounded 
algorithm. The mistake bound increases by one if the above theorems 
about the transformations are applied as they stand. With more careful 
analysis of the double conversion, the increase disappears. The conversion 
to a conservative algorithm is also straightforward to perform directly. 

5. The linear-threshold algorithm 

Now we describe our main algorithm, first describing the classes of target 
functions. We will consider linearly-separable Boolean functions, which 
are those functions that can be computed by a one-layer linear-threshold 
network such as a perceptron. A function from {0, 1} n to {0, 1} is said to 
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be linearly separable if there is a hyperplane in R n separating the points 

on which the function is 1 from the points on which it is 0. Monotone 

disjunctions constitute one class of linearly-separable functions. 

De f in i t i on  5 A monotone disjunction is a disjunction in which no literal 

appears negated, that  is, a function of the form 

f ( x l  . . . .  ,xn) = xil V . . .  V xik. 

The hyperplane given by xil + ""  + xik = 1/2 is a separating hyperplane 

for f ( x l , . . . ,  xn) = xil V . . .  V xik. We will present two variants of our algo- 

rithm. The first variant, which we now present, is specialized for learning 

monotone disjunctions. We will later describe a simple transformation to 

remove the monotone restriction. 

A l g o r i t h m  3 (WINNOW1) 

We call this algorithm "WINNOW" because it has been designed for 

efficiency in separating relevant from irrelevant attributes. We will present 

the algorithm as a linear-threshold algorithm. The instance space is X = 

{0, 1 }". The algorithm maintains non-negative real-valued weights w~, . . . ,  

Wn, each having 1 as its initial value. The algorithm also makes use of a 

real number 0, which we call the threshold. When the learner receives an 

instance ( x l , . . . ,  Xn), the learner responds as follows: 
n 

• If ~ wix i > 0, then it predicts 1; 
i=1 

n 

• If ~ wixi <_ 0, then it predicts 0. 
i=1 

n 

The choice of prediction when ~ wixi = 0 is not critical for our results. 
i=1 

The weights are changed only if the learner makes a mistake, and then 

only the weights corresponding to non-zero xi are changed. The amount 

by which the weights are changed depends on a fixed parameter a > 1. 

Good bounds are obtained if 0 is set to n/2  and a is set to 2. We will 

say more about the values of a and 0 later. Table 2 describes the changes 

made to the weights in response to different combinations of prediction and 

reinforcement. The threshold is left fixed. 

Note in Table 2 that  we have given each type of update action a name; 

each mistake corresponds to a single promotion step or to a single elimi- 

nation step. The space needed (without counting bits per weight) and the 

sequential time needed per trial are both clearly linear in n. Note that  the 

non-zero weights are powers of a. We will prove that  the weights are at 

most a0. Thus if the logarithms (base a) of the weights are stored, only 
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Table 2. WINNOW 1 's response to mistakes. 

learner's correct update update 
prediction response action name 

1 0 wi := 0 if x~ = 1 elimination 
wi unchanged if xi = 0 step 

0 1 wi := c~ • wi if xi = 1 promotion 
wi unchanged if xi = 0 step 

O(logz log~ O) bits per  weight are needed. The running time needed to cal- 

culate predictions and changes to the weights could be reduced greatly by 

parallel implementation, such as with an appropriately constructed neural 

net. For a mistake bound  we give the following theorem. 

T h e o r e m  7 Suppose that the target function is a k-literal monotone dis- 

junction given by f ( x l , . . . ,  Xn) = xil V " "  V xik. If WINNOW1 is run with 

c~ > 1 and 0 > 1ICY, then for any sequence of instances the total number of 
mistakes will be bounded by c~k(log a 0 + 1) + 9" 

For example, if 0 = n and c~ = 2 then the mistake bound is 2k(log 2 n + 

n the bound  simplifies to c~k log a n + a. For c~ = 2 1 ) + 1 .  If we s e t 0 = ~ ,  

this gives a bound of 2k log 2 n + 2. The dominating first term is minimized 
C for c~ = e; the bound  then becomes lo-~2 e k log 2 n + e < 1.885k log 2 n + e. 

We will prove this theorem by finding bounds  on the number  of promo- 

tion and elimination steps that  occur. First  we give three lemmas used in 

tile proof. 

Let u be the number  of promotion steps that  have occurred by the end 

of some sequence of trials and let v be the number  of elimination steps that  

have occurred by the end of the same sequence of trials. 

L e m m a 3  v < ~ + ( a - 1 ) u .  

n 
PROOF: Consider how the sum ~i=1 wi changes over time. Initially the 

sum is n; promotion and elimination steps cause it to change. Each pro- 

motion steps increases this sum by at most  (a - 1)0, since when a promo- 

tion step occurs we have ~ilz~=l wi <_ O. Each elimination step decreases 

~ =1  wi by at least 0. Since the sum is never negative we have 

o <_ w i  <_ n + - 1 ) u  - 0v ,  

i=1 

giving the desired result. • 
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L e m m a  4 For all i, wi G c~O. 

PROOF: Since 0 > 1/c~, the weights are initially less than or equal to c~0. 

For any j ,  the value of wj is only increased during a trial in which xj = 1 

and ~ ]  WiX i ~ O. These conditions can only occur together if wj < 0 

immediately prior to the promotion. Thus wj <_ c~O after the promotion. • 

L e m m a  5 After u promotion steps and an arbitrary number of elimination 

steps, there exists some i for which logc~ wi >_ u/k .  

PROOF: Let R = { ia , . . . , i k } .  We look at how the product  yIiffRV.;i is 
changed by elimination and promotion steps. Note that  f ( x l , . . . ,  xn) = 0 

if and only if xi -= 0 for all i E R. Elimination steps occur only when 

f ( x~ , . . . ,Xn )  = 0; promotion steps occur only when f ( x l , . . . , x n )  = 1. 

Thus l-IieR wi is unchanged by elimination steps and is increased by a 

factor of at least c~ by each promotion step. Initially l-[ieR wi = 1. Thus 

after u promotion steps ]-IieR wi >_ a ~', giving ~ i e R  l°ga wi >_ u. Since 

IR[ = k, for some i E R we have log awi > u/k ,  as desired. • 

Note that  only the last of these lemmas depends on the form of the target 

function and it is only there that  k appears. 

PROOF OF THEOREM 7: The total number of mistakes made during a 

run of the algorithm is equal to the number of promotion steps, u, plus 

the number of elimination steps, v. We bound u using the last two lemmas 

and then use the first lemma to bound v. Combining lemmas 4 and 5 we 

see that 

u / k  < log~ wi <_ logo 0 + l, 

or 

Lemma 3 now gives 

u < k(log  0 + 1), 

n 
v < ? + - 1)k(log  0 + 1). 

Adding the bounds on u and v leads to the desired bound on the total 

number of mistakes. • 

Note that  the above algorithm does not depend on k. Thus the algorithm 

can learn the entire target class of monotone disjunctions without modifi- 

cation. The mistake bound depends on the number of literals in the actual 

target concept. Now for 1 _< k _< n, let Ok denote the class of k-literal 
monotone disjunctions, and let Ck denote the class of all those monotone 
disjunctions that  have at most k-literals. Suppose one wants to specialize 
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the algori thm to learn the target  class Cko efficiently for a part icular  k0. If 

one chooses 0 = 5~ko, then  the mistake bound  becomes 

It  n 

.k  log. V0 + ~k0 _< -k0(1 + log~ V00 ) 

when the target  function is a k-literal monotone  disjunction in Cko. For 
n c~ = 2 this gives a bound  of 2ko(1 + log 2 Vo)" For c~ = e we obtain the 

bound ko(e + 1.8851og 2 n)ko" 

We now give a lower bound  on the number  of mistakes needed to learn 

Ck and Ck. 

Theorem 8 (lower bound) For 1 <_ k < n, opt(Ck) 

k[log 2 ~J. For n > 1 we also have opt(Ck) >_ ~(1 + log 2 -~). 

>_ opt(dl~) > 

The  second form gives a formula directly comparable  to the upper  bound  

above. When  the above a lgor i thm is specialized for a part icular  Ck and 

when n > 1, the a lgori thm is within a constant  factor of being optimal.  

PROOF: Since Ca C Ck, it is clear tha t  opt(Ck) >_ opt(Ok). By Theorem 

4, any a lgor i thm to learn a concept class will have a mistake bound at. least 

equal to the Vapnik-Chervonenkis  dimension of the concept class. In the 

following lemma we show tha t  the Vapnik-Chervonenkis  dimension of Ck 

is bounded  below by k[log 2 ~J. This gives the first par t  of the theorem. 

We will split the derivation of the second formula from the first into two 

cases, depending  on whether  or not k < ~ If k < n then log s ~ > 1. Thus  _~- .  _-ff  ~ _  

n k n n - 1 )  > k ( 2 + l o g 2  n - 1 )  > ~ ( l + l o g  2 n k[log2 ~J > ~(2Llog2 ~J +log2 ~ _ ~ ~ _ ~) 

as desired. If n > k > ~, then opt(Ck) > opt(C[_}j ) since CI~ j _c Ck. (Here 

we use the assumpt ion  tha t  n > 1.) We have 

n 

opt(dt~ ~) >_ L2JLlog2 k-~-J >~ [~]Llog22J 

We also have 

L~J n i 
~ . 

-2 2 

-k(1 + log2- ) < log 2) = - 
8 - 4 

n _ 1 giving the desired result. • For n > 2, this is less than or equal to 

We will prove a more general lemma than  is needed here, since it will give 

us results tha t  will be useful later. Note tha t  k-literal monotone  conjunc- 

tions are just  1-term monotone  k-DNF formulas. Also/- l i tera l  monotone  

disjunctions a r e / - t e r m  monotone  1-DNF formulas. 
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L e m m a  6 For 1 < k < n and 1 < l < (~), let C be the class of functions 

expressible as l-term monotone k - D N F  formulas and let m be any integer, 
n k <_ m < such that ('k > l. Then VCdim(C) > kl[log2 

Note in particular that  if l is 1 then we can take m to be k and if k is 1 

then we can take m to be I. 

PROOF: Let r = [log 2 n j .  If r = 0, then the theorem follows trivially, 

since C is non-empty. Assume r > 0. Let s = 2 r. Note that  ms ~_ n. We 

will construct  a set S c {0, 1} n containing klr points tha t  is shat tered by 

C. To describe the construction we will need to refer to an enumeration 

of the (~) ways to choose k distinct integers from the set {1 , . . . ,  m}. Let 

{ (~; j l , . . . ,  ~Cjk)}, where j runs from 1 through (~n), be such an enumeration. 

(The values of the aji are the chosen integers.) We will construct  S as the 

union of sets @i for i = 1 , . . . ,  k and J' = 1 , . . . , l .  Each set Sji contains 

r points and each point has n coordinates. Split these coordinates into 

groups so that  there are m disjoint groups of s coordinates each. There  

may be some coordinates left over; we will not make them a part  of any 

group. Number  the groups from 1 through m. Fix attention on some i and 

j .  Let all coordinates of each point in Sji be 0 except for coordinates in 

the groups numbered tgjl through njk. Let the coordinates in groups ~;j~ 

through n3k be 1 except for those in group ~ji. The coordinates in group 

gji are used to distinguish the points within set @i. Set the coordinates in 

this group to 0 or 1 in such a manner  that  for each subset. V _ @i, there 

is a corresponding coordinate in group gji that  is 1 at points in V and 0 

at points in Sji - V. This is possible since there are 2 r subsets of S~i and 

there are 2 r coordinates in the group. For example, suppose n = 24, k = 2, 

and l = 3. If we take m -- 3, then we get r = 3. Picking (1, 2), (1, 3), (2, 3) 

as the enumerat ion of the three ways to choose two integers from {1, 2, 3}, 

we can take the sets Sji as shown in Table 3. 

Now we show how to construct  a n / - t e r m  k-DNF formula that  is 1 exactly 

on some arbitrary subset U C_ S. Each of the I terms of this formula will 

have length exactly k, and no literal will be negated. Let Uji = U ~ Sji. 

We will express the formula in terms of n variables, with one variable 

corresponding to each coordinate. This gives m groups of variables, corre- 

sponding to the m groups of coordinates. The j t h  term will contain one 

variable from each of the groups ~ j l , . . . ,  ~jk. We choose the i th variable 

in the j t h  term from group ~cji so that  it is 1 at all of the points in Uji and 

0 at points in Sji - Uji. This is possible due to the way the sets @i were 

constructed. 

To see that  this formula is 1 on U and 0 on S - U, consider any point 

x E S. This point will be in Sji for some i and j .  The coordinates of 

the point, will be 0 except in groups ~;j l , - . - ,  ~cj~. Thus every term but the 
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Table 3. An example of the sets Sji. 

Su = {(o,o,o,0,1,1,1,1, 
(0,0,1,1,0,0,1,1, 
(0,1,0,1,0,1,0,1, 

S12 = {(1,1,1,1,1,1,1,1, 
(1,1,1,1,1,1,1,1, 
(1,1,1,1,1,1,1,1, 

$2~ = {(0,0,0,0,1,1,1,1, 
(0,0,1,1,0,0,1,1, 
(0,1,0,1,0,1,0,1, 

$22 = {(1,1,1,1,1,1,1,1, 
(1,1,1,1,1,1,1,1, 
(I,I,I,I,i,i,I,1, 

$3~ = {(o,o,o,0,0,0,0,0, 
(0,0,0,0,0,0,02, 
(0,0,o,o,0,0,o,o, 

832 = {(0,o,o,o,0,0,0,0, 
(0,0,0,0,0,0,0,0, 
(o,o,o,o,o,o,o,o, 

1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1, 

0,0,0,0,1,1,1,1, 
0,0,1,1,0,0,1,1, 
0,1,0,1,0,1,0,1, 

0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0, 

0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0, 

0,0,0,0,1,1,1,1, 
0,0,1,1,0,0,1,1, 
0,1,0,1,0,1,0,1, 

1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1, 

o,o,o,o,o,o,o,o), 
o,o,o,o,o,o,o,o), 
o,o,o,o,o,o,o,o)} 
o,o,o,o,o,o,0,o), 
o,o,o,o,o,o,o,o), 
o,o,o,o,o,o,o,o)} 
1,1,1,1,1,1,1,1), 
1,1,1,1,1,1,1,1), 
1,1,1,1,1,1,1,1)} 

0,0,0,0,1,1,1,1), 
o,o,1,1,o,o,1,1), 
O,l,O,l,O,l,O,1)} 
1,1,1,1,1,1,1,1), 
1,1,1,1,1,1,1,1), 
1,1,1,1,1,1,1,1)} 

0,0,0,0,1,1,1,1), 
o,o,1,1,o,o,1,1), 
0,1,0,1,0,1,0,1)} 

j t h  will contain at least one variable that is 0 at x. Therefore the formula 
will be 1 if and only if the j t h  term is 1. The coordinates of x will be 1 

in groups Kj l , . . . ,  ~;jk, except possibly in group gji. Hence all variables in 
the j th  term will be 1, except possibly for the ith variable. Therefore the 
value of the formula at x will match the value of the ith variable of the j t h  
term. This variable will be 1 if z E Uji and 0 if x E Sji - Uii, as desired. • 

The algorithm can be modified to work on larger classes of Boolean 
functions. For any instance space X C_ {0, 1} n, and for any 6 satisfying 
0 < 6 _< 1 let F ( X ,  6) be the class of functions from X to {0, 1} with the 
following property: for each f E F (X ,  6) there exist / ~ , . . . ,  #,~ > 0 such 
that for all (Z l , . . . , xn )  E X 

and 

n 

I~iXi > 1 if f ( x ~ , . . . ,  Xn) = 1 (1) 
i=1 

n 

t a x i  < - 6 i f  = O, (2)  

i=1 

In other words, the inverse images of 0 and 1 are linearly separable with a 
minimum separation that depends on & We will present a second variant 
of  WINNOW that can handle target classes of this form. 
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Table  4. WINNOW2's response to mistakes. 

learner 's  correct  u p d a t e  upda te  

pred ic t ion  response  act ion n a m e  

1 0 wi := w i / a  if xi = 1 demotiml 
wi unchanged if xi = 0 step 

0 1 wi := a • wi if xi = 1 promotion 
wi unchanged if xi = 0 step 

The mistake bound that  we derive will be practical only for those linearly- 

separable functions for which 5 is sufficiently large. For example, these 

include the Boolean r - o f &  threshold functions. Let X = {0, 1} '~. An r - o f &  

threshold function f ( x l , . . . ,  xn)  is defined by selecting a set of k significant 

variables. The value of f is 1 whenever at least r of these k variables are 

1. If the k selected variables are x i , , . . . , x i ~ ,  then f is 1 exactly when 

xi~ + • •. + xik > r. Equivalently, f is 1 when 

1 1 
- -~i l  -t- "'" -'~ - x i  k >_ 1. 
r r 

The value of f is 0 when no more than r - 1 of the selected variables are 

1. In this case 
1 1 1 

+ ' " + - xik < 1 - - .  
r x i l  r -- r 

Thus the r - o f &  threshold functions are contained in F({0, l} n, ~). 

There exist other classes of linearly-separable Boolean functions for which 

! grows exponentially with n when the instance space is {0, 1} n (Muroga, 5 
1971; Hampson & Volper, 1986). One example of a set of functions with 

exponentially small 5 consists of 

f ( x l , . . . , x ~ )  = m, V (x~ A (xa V (m4 A . . . x ~ ) ) . . . )  

as n varies. For such functions, the mistake bound that  we will derive grows 

exponentially with n. We now give a description of the second variant of 

WINNOW. 

A l g o r i t h m  4 (WINNOW2) 

The only change to WINNOW 1 involves the amount  by which the weights 

are changed when a mistake is made. In a promotion step, as before, we 

multiply the weights by a fixed a > 1. But now, instead of setting weights 

to zero in an elimination step, we divide them by a. (We now call this a 

d e m o t i o n  step.) We must now be more careful in our choice of c~. For the 
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mistake bound that  we derive below, we use a = 1 + 5/2 for learning a 
target function in F(X,  8). 

Table 4 describes WlNNOW2's responses to different types of mistakes. 

Space and time requirements for WINNOW2 are similar to those for WIN- 

NOW 1. However, more bits will be needed to store each weight, perhaps as 

many as the logarithm of the mistake bound. The following theorem gives 
a mistake bound for WINNOW2. 

T h e o r e m  9 For 0 < 5 < 1, if the target function is in the class F(X,  8) 

for X C_ {0, 1} ~, if p l , . . . , # n  have been chosen so that the target function 
satisfies the inequalities (1) and (2), and if Algorithm 4 i8 run with a = 

1 + ~ and 0 > 1 and the algorithm receives instances from X,  then the 
number of mistakes will be bounded by 

8 n 5 141n0).-~. n~,. 
+ + - W -  

z = l  

Before proving this theorem, we will state and prove three lemmas anal- 

ogous to the lemmas used to prove Theorem 7. We define u and v in the 

same manner as for those lemmas. The current lemmas do not depend on 

the particular choice of a given in Theorem 9. 

Lemma 7 
O~ n 

v<_ - - - + a u .  
a - l O  

PROOF: We will examine how the weights are changed by promotion and 

demotion steps. We will use Wi,bef tO denote weights at the beginning of 
a trial in which a promotion or demotion occurs, and Wi,af t to denote the 

weights resulting from the promotion or demotion. For a promotion step, 
we can write the update  rule as 

Wi,aft = Wi,bef  + (OZ - -  1)XiWi,bef f o r  i = 1 , . . . ,  n .  

Since a promotion step only occurs when ~ i n t  Wi,befX i <~ O, we have 

n n 

i=1 i=1 

for a promotion step. For a demotion step, we have 

Wi,aft = Wi,bef - -  (1 - 1--)xiWi,bd for i = 1 , . . . ,  n. 
(~ 
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A demotion step only occurs when ~ = 1  Wi,befZi > O. Thus 

7"/ n 

Z Wi,aft ~ ~ Wi,bef -- (1 - l / s ) 0 .  

i=1 i=1 

Initially, the sum of the weights is n; hence after u promotions and v 
demotions, 

n 

w i  <_ + - 1 ) 0  - v ( 1  - l / s ) 0 .  

i=l  

Since the weights are never negative, we must have n + u(a  - 1)0 - v(1 - 

_ n u ( s  1), giving v < h-~-l~ + su,  as l / s ) 0  > 0. Thus v(1 l / s )  < g +  - 

desired. • 

L e m m a  8 For all i, wi <_ sO. 

PROOF: Since 0 > 1 and s > 1, the weights are initially less than or 

equal to sO. For any j ,  the value of wj is only increased during a trial in 

which xj = 1 and ~ n  wixi <_ O. These conditions can only occur together 
if wj <_ 0 immediately prior to the promotion. Thus wj < sO after the 

promotion. • 

L e m m a  9 After u promotion step8 and v elimination steps, there exi2ts 

8ome i for which 

log wi > u - (1 - ~i)v log s.  
n 

~i=1 m 

PROOF: We will use the symbols Wi,be f and wi ,~  as in the proof of Lemma 

7. This time we look at what  happens to ~i~__1 #i log wi. We can write the 
promotion update rule as 

Wi,af t =- sXiwi,bef .  

Taking the logarithm and multiplying by #i, we get 

~i log Wi,af t = ~i log Wi,be f + ]AiX i log s .  

A promotion step only occurs when n ~i=l #iXi ~ 1. Thus, at a promotion 
step we have 

n n 

/~i log wi,aft ~ ~ #i log Wi,be f + log a. 
i=1 i=1 
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At a demotion step we have 

Wi,a f t  ~ O~-xiWi,bef. 

Thus 

#i log Wi,aft = #i log W i , b e  f - -  ~iXi log a.  

n For a demotion step to occur, we must  have ~ i = ;  #ixi <_ 1 - 6. Thus, at a 

demotion step we have 

n 

#~ log ~ , ~  > ~ #~ log ~,bof - (1 - ~) log ~. 
i=1 i=1 

Initially, n ~ i=1 #i log wi = 0. After u promotion steps and v demotion steps, 

we have 
n 

~ #i log wi >_ u l o g ~ -  (1 - 6 )v log a. 
i=1 

Since the #i are non-negative, we get 

n 

( max log wi) E #¢ > [u - (1 - 5)v] log c~, 
i= l , . . . , n  

i=1 

and dividing by ~ pi gives the desired result. 

PROOF OF THEOREM 9" From lemmas 8 and 9 we get 

u - (1 - 5)v log a <_ log a + log O. 

E?=l #~ 

Since c~ > 1 and the #i are non-negative, we can rewrite this inequality as 

logo n 

i=1 

A second inequality involving u - (1 - 6)v results from using Lemma 7 to 

eliminate v from the expression. This gives us 

C~ n 

- (a - ~)v >_ ~ - (1 - ~ ) (7c-~-  1 ~ + a~)' 

and using the value for c¢ given in the theorem, we get 

~ - ( 1 - 6 ) v  > ~ - ( 1 - 6 )  2 + 6 n ( 1 - 6 ) ( 1 + ~ ) ~  .6 62. ( 1 -  6)(2 + 6) 

- ~ o = ~ + T  )~ ~ 
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Combining the two inequalities involving u - (1 - 5)v, we get 

log 0 n 6 (52 ( 1 - 5 ) ( 2  +5) n < (1 + )~--~. pi, 

(5 + 5 . >  - 5 0 - log(~ + ~) ,.=~ 

and therefore 

n (5 < ( 1 - 5 ) ( 2 + 5 ) ~  logo ) ) Z u i  

~u _ 5 0 + (1 + log(1 + ~ i=1 

From Taylor's formula with remainder, we get 

(5 5 ((5/2) 2 ~ 6 
In(~ + 5) > 2 2 - (1 - a),  

and since 5 < 1 we get 
(5 

ln(1 + 5) > 3(5/8. 

Thus, since we have assumed that  0 _> 1, 

5 (1 - 6)(2 + (5) n 
- U  < 

2 - 5 0 

n 
ln0 .~-,  

+ (1 + a77g/s/~ ui. 

From Lemma 7, we have a bound on the total number of mistakes: 

OL n 
u+v < ~ -  + ( a +  1)u. 

- a - 1 0  

Thus 

2+5n 4+52 (i- a)(2 +5) n 

~+v<_ - g - ~  + - 5 - ~ [  5 
ln0 . ,--L, n 

= ( ( 2 + 5 ) 6 + ( 4 + 5 ) ( 1 - 5 ) ( 2 + 5 ) 5  2 )~n + ---~-- ( 1 4 + 5  + -~)~_..,#i.8 In 0 "-%n 

i=1 

Using 0 < 5 <_ 1, we can simplify the upper bound to get 

8 n 5 14 In 0.,2-, n 

i=1 

as desired. [] 
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For the earlier example involving r-of-k threshold functions, we have 
6 =  71 and ~ = 1  #i -7"- k Thus we get a mistake bound for r-of-k threshold 

functions for a = 1 + ~r and 0 = n of 8r 2 + 5k + 14kr Inn. We do not know 
lower bounds for this concept class which are comparable to this upper 
bound. Note that 1-of-k threshold functions are just k-literal monotone 
disjunctions. Thus if a = 3/2, WINNOW2 will learn monotone disjunctions. 

The mistake bound is similar to the bound for WINNOW1, though with 
larger constants. 

6. Transformat ions  to other target  classes  

Various transformations are possible that let one apply the above al- 
gorithms to other classes of functions. One can think of these transfor- 
mations as letting one derive a new learning algorithm from an existing 
one. The transformations that we will describe here take the form of map- 
pings applied to the instances and predictions. If the instance space of 
the derived algorithm is X1 and that of the original algorithm is Xs, then 

the transformations will take the form of functions Ti : X1 ~ X2 and 
Tp : {0, 1} ~ (0, 1}. We will always take Tp to be either the identity or 
the function that interchanges 0 and 1 (negation); thus Tp will be invert- 

ible. When the derived algorithm receives an instance x E X1, it sends the 
instance T/(x) to the original algorithm, which generates the prediction 
y. The derived algorithm then generates the prediction Tp(y). Finally, to 
conclude the trial, when a reinforcement is received, the derived algorithm 
sends it to the original algorithm. (The reinforcement is passed along with- 
out transformation since we view it as a message saying "right" or "wrong" 
rather than as a message containing the value of the correct response). 

Suppose we start with an original algorithm A and we want to derive 
an algorithm to learn some target class C. What we seek is a target class 
Co that can be learned by A and mappings T~- and Tp such that for every 
g c C, there exists an f E Co such that T p o f o T i  = g. We have the 
following theorem. 

Theorem 10 Suppose we are given transformation Ti : X1 --~ Xs,  in- 

vertible transformation Tp : (0, 1} ~ (0, 1}, an original algorithm A that 

can accept instances from X2, and a derived algorithm B constructed from 

these a8 described above. Suppose that we wish algorithm B to learn a tar- 

get function g : X1 ~ (0, 1}. If f : X2 ~ (0, 1} is a function that can be 

learned by A with a bounded number of mistakes, and if Tp o f o Ti = g, 

then algorithm B will learn g making at most MA( f )  mistakes. 

PROOF: Let y be the prediction that the derived algorithm B makes in 
response to some instance x. For algorithm B to make this prediction, 
algorithm A must have made the prediction Tp-l(y) in response to the 
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instance Ti(x). We have Tp-l(y)  = f (Ti(x))  if and only if y = g(x). 
Algorithm A is told that  it has made a mistake when the derived algorithm 

makes a mistake. From the above we see that  this happens exactly when 

the response of A to an instance Ti(x) is not equal to f(Ti(x)).  This can 

happen at most MA( f )  times. • 

These transformations are similar in effect to the substitutions described 

by Kearns, Li, Pitts,  and Valiant (1987a). 

Now we consider some examples of ways that  these transformations can 

be used to extend the classes of flmctions learnable using WINNOWl and 

WINNOW2. For each example, we show that  the transformation satisfies 

the condition given in Theorem 10, namely that  for any desired target 

function g, there exists a function f in a target class that  can be learned 

by W1NNOWl or WINNOW2 and for which Tp o f o Ti = g. Note that  in 

any case in which we use WINNOW1, WINNOW2 could also be used. 

E x a m p l e  4 Learning arbitrary disjunctions. This is an example of one 

way to learn disjunctions that  are not necessarily monotone. Arbi t rary 

disjunctions are also special cases of tile classes discussed in Examples 6 

and 7 below. We will use W/NNOWl, but  the learner does not send the 

first instances to WINNOW1. Instead, the learner just responds 1 until 

the first mistake is made. This will be an extra  mistake, not counted 

in the bound for WINNOW l. Then the learner starts using WINNOW1, 

using transformations defined as follows. Suppose (Zl . . . .  , z~) is the first 

instance on which a mistake is made. Then we let Ti : {0, 1} n ~ {0, l} n 

be the function given by 

T i ( X l , . . . ,  Xn) ~- (Xl -]- Zl . . . . .  Xn ~- Zn), 

where the addition is modulo 2. We let Tp be the identity. 

To construct  the function f of Theorem 10, write the target function g 

as 

g( z l , . . . ,Xn )  = zi~ V ' "  V xi~ V 2j~ V ' "  V 2j,, 

for some l and m. Since g( z l , . . . ,  zn) = 0 we must have zi~ = . . . .  zi~ = 0 

and zj, . . . .  = zj,~ = 1. Let 

f ( x l , . . . , x n )  = xi~ V . . .  Vxi~ Vx j ,  V . . .  Vxj,,~. 

Then 

f oTi(xl . . . .  , X,n) : X~I V' ."  V Zil V (Xjl -~ 1) V ' "  V (:cjm 4- 1) = g ( x l , . . . ,  xn), 

as desired. The mistake bound for learning non-monotone disjunctions 

with this method  is one more than the corresponding mistake bound for 

monotone disjunctions. 
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E x a m p l e  5 Learning k-literal monotone conjunctions. We use WINNOW 1. 

Let T i ( x i , . . . , x n )  = ( 1 - x l , . . . , 1 - x n )  and Tp(r) = 1 - r .  If one thinks of 

0 and 1 as false and true, then  the t ransformations Ti and Tp just  negate all 

of their arguments .  Thus  if the target function g ( x l , . . . ,  Xn) = xi~ "'" xik 

(i.e., the conjunct ion of these k variables) and if we let f ( x l , . . . , X n )  = 

xi~ V .. .  V xik, then  Tp o f o Ti = g by de Morgan's  law. Using WIN- 

and (~ = 2, the nmnber  of mistakes will be bounded  by NOW 1 wi th  0 = 

2k log2 n + 2. 

E x a m p l e  6 Learning linearly-separable Boolean functions with weights that 
vary in sign. For X C {0,1} n and 0 < 6 _< 1, let G(X, 6) be the class 

of functions g • X ~ {0,1} for which there exist v l , . . . ,L ' n  _> 0 and 

t ) l , . . .  ,~n >_ 0 depending  on g such tha t  for all ( x l , . . .  ,xn) E X, 

n 

~(L ' i x i  + 5i(1 - xi)) >__ 1 

i - - 1  

if g ( x l , . . . , x ~ )  = 1 

and 
n 

1 - 6  

i=1 

We will first give a t ransformat ion to learn G(X,  5), and then  demonst ra te  
tha t  any linearly-separable Boolean function with domain  X is in G(X,  5) 

for some 6. To learn functions in G(X, 6), we use WINNOW2 and the 

t ransformat ion 7~ : {0, 1} n --* {0, 1} 2" given by 

Ti (x l , . . . ,Xn )  - -  (Xl ,X2, . . . ,Zn,  l - X l , 1  - x 2 , . . . , 1  - Z n ) .  

We let Tp be the identity. For any function g ~ G(X,  5) we can find a 
function f E F(Ti(X) ,  5) for which Tp o f o Ti = g, satisfying the condit ion 

of Theorem 10. To define f ,  let ~,~,.. . ,  ~'n and 5 1 , . . . ,  9n be as above. Let 
pi = L,i for i = 1 , . . . ,  n, and let #i = ~i-n for i = n + 1 , . . . ,  2n. Then  the 

function f t ha t  is 1 if and only if 2~ ~i=1 P t i Z i  ~ 1 is the desired function. 

The  mistake bound  of Theorem 9 applies, except tha t  n mus t  be replaced 

with 2n, and the sum ~ i ~ l  Pi with ~i';l(~,i + ;'i). 

Now we show tha t  any linearly-separable Boolean function f is in G(X,  5) 
for some 6. To see this, first observe tha t  the function tha t  is identically 

1 on X is in G(X,  1); we can take vi = ~i = 1 for i = 1 , . . . , n .  Now take 
g to be any linearly-separable Boolean function which is not  identically 1. 

We can find P l , . . . , # ~ ,  0 and 0' < 0 such tha t  for all ( x l , . . . , x ~ )  E X,  

n 

ttixi >_ 6 
i=1 

if g ( x l , . . . , x n )  = 1 
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and 
n 

Pixi<_O' ifg(:cl . . . .  ,xr~)=0.  

i=1 

Here we allow the ¢i to vary in sign. Now for each i choose ~+, #~- > 0 

such that  #i = #+ - # [  and either p+ or #[  is 0. Then 

n ~ n 

i = l  i=1 i-~l 

Thus 

n ?L 

i=1 i=1  

if g(xt, . . . .  x n ) = l  

and 

n n 

i=1  i=1 

if g(x l , . . .  ,x~) = O. 

We will next divide each of these inequalities by 0 + ~in=l # [ .  Note that  

since g is not identically 1, we have 

n n 

<0 .  

Hence 0' + ~ n  n i=1 ]Ai ~ 0 and 0 + ~i=1 ~? ~> 0. We obtain the inequalities 

~=1 o + E L ,  ~/- x,: + o + E?:I ~ -  

i f  g ( x l , . . . ,  Xn) = 1: a n d  

/Z/n+ - x i  
i=1 0 + ~ , : = ~  + O + E  '~ i--1 v,[ 

if g(xl, .. ., Xn) = 0. Thus g is in G(X,  ~+~i=1°-°"~ ~ ). 

E x a m p l e  7 Learning k -DNF for fixed k. This transformation demon- 
strates the use of WINNOW 1 to learn functions that  are not linearly sep- 

arable. The class k-DNF consists of functions that  can be expressed in 
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disjunctive normal form with at most k literals per term. Valiant (1985) 
and Kearns et al. (1987a) have studied this class. To learn k-DNF, we let 

k i 
n2 = Ei=0 2 (~). Let 

T i ( X l , . . . , X n l  ) : ( C l ( X l , . . . , X n l ) , c 2 ( x l , . . . , X n l ) , . . . , C n 2 ( X l  . . . .  ,Xnl)  ) 

where tile c i (x l , . . . ,  xn~ ) range over all conjunctions that form valid terms 
of a k-DNF formula, i.e., all conjunctions of no more than k literals. We let 
Tp be the identity. For any k-DNF target function g with 1 terms, there exist 

i l , . . . , i t  such that g (x l , . . . , xn )  is the disjunction of c i l ( z l , . . . ,Xn) , . . . ,  
Ci~(Xl,...,Xn). Let f "  {0,1} n2 --* {0,1} be defined by I(Yl, . . . ,Yn2) = 
Yil V ' "  V yi~. Then g = f o Ti as desired. 

One can show that n2 _< (2n) k + 1. To WINNOWl, it will appear that 
the function being learned is an/-literal monotone disjunction. Thus if the 
target concept has l terms, WINNOW 1 will make O(l log n k) = O(kl log n) 
mistakes. By contrast, the algorithm for learning k-DNF and similar classes 
presented by Valiant (1984, 1985) can be forced to make (~) - 1 mistakes, 

which is roughly n k mistakes when 1 is small. Lemma 6 gives a lower 
bound on the Vapnik-Chervonenkis dimension of the class of /-term k- 

DNF formulas. This is also a lower bound on the mistake bound. In that 
lower bound, take m = [kll/k]. We have 

>_ >_ l, 

as required. Thus a lower bound on the mistake bound, in the case that 
kl 1/k < n, is 

?2 
klklog2 

If we know 1 and run WINNOW1 with c~ = 2 and a = ~ ,  then the number 
of mistakes made by the derived algorithm will be bounded by 

(2n) k + 1 ~ 2n 
2l(1 + log2 1 ) <-2l(2+1°g2 ~ )  =41+2kll°g211/t:" 

For fixed k, this is similar in form to the lower bound. 

7. C o n c l u s i o n  

This paper divides into two parts. The first part contains general results 
about how many mistakes an effective learner might make if computational 
complexity were not an issue. The second portion describes an efficient 
algorithm for learning specific target classes. The general results of the 
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first part lead to the inequalities: 

VCdim(C) <_ opt(C) <_ MHALVING(C) <_ log2(JCI) 

for any non-empty target class C. Examples in Section 3 demonstrate 
that VCdim(C) can be 1 for classes for which opt(C) is large, and that 

MHALVING(C ) c a n  be 1 for classes for which iog~(ICI) is large. Example 2 
also shows that opt and MHALV[N G c a n  differ. There also exist classes C 
for which VCdim(C) = log2(ICI), making all of the above inequalities into 
equalities. (This is true of any class that contains exactly those concepts 
required to shatter some particular finite subset of the domain.) 

When we turn to efficient algorithms, we find that WINNOW1, WIN- 
NOW2, and their transformations do very well for certain concept classes. 
These include disjunctions, conjunctions, r-of-k threshold flmctions, other 
classes of linearly-separable functions with sufficiently large separation, and 
some classes of non-linearly-separable functions, such as k-DNF for fixed 
small k. 

The results here contrast with those of Kearns et al. (1987a), who have 
demonstrated that if P ¢ NP and if the learner is required to choose 
hypotheses from the target class, then r-of-k threshold functions are not 
polynomially learnable in the Valiant learning model. Using methods that 
we mentioned in Section 3, WINNOW2 (which learns r-of-k threshold func- 
tions) can be converted into a polynomial learning algorithm in the Valiant 
model. This algorithm succeeds in efficiently learning r-of-k threshold 
functions by choosing hypotheses from a larger class of Boolean functions. 
WINNOW 1 and WINNOW2 are natural algorithms for parallel implementa- 
tion; Slade (1987) has implemented WINNOW on the Connection Machine. 

A key advantage of WINNOWl and WINNOW2 is their performance 
when few attributes are relevant. If we define the number of relevant 
variables needed to express a function in the class F({0, 1} n, ~) to be the 
least nmnber of strictly positive weights needed to describe a separating 
hyperplane, then the bounds for WINNOWl and WINNOW2 tell us that 
the target class F({0, 1} ~, 6) for n > 1 can be learned with a number of 

mistakes bounded by a constant times ~ when the target function can 5~ 
be expressed with k relevant variables. (This follows from the bound given 
in Theorem 9 using the observation that, in the inequalities (1) and (2) 
in the definition of F(X, 5), any #i larger than 1 can be set to 1 without 
changing the function.) 

Note that WINNOWl (for the target class F(X, 1)) and WINNOW:2, 
achieve this bound without necessarily producing a hypothesis expressed 
with few significant weights. For example, if several attributes match each 
other in every instance, then their weights will always match, and a hy- 
pothesis making significant use of any of them will make use of all. 
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One theme that  recurs in this paper is transformation from one algorithm 

to another. We have discussed transformations of several kinds, including: 

• transformations from algorithms for one target class to algorithms for 

another target class; 

• transformations between mistake-bounded algorithms and query algo- 

rithms; 

• transformations from mistake-bounded algorithms to algorithms that  

provably perform well in a probabilistic learning model; 

• transformations from arbitrary mistake-bounded algorithms to "nor- 

realized" nlistake-bounded algorithms (e.g., the transformation to a 

conservative algorithm). 

Transformations can also be used with the hope of improving the behavior 

of an algorithm for a target class it is already capable of learning. In this 

regard, notice that  monotone conjunctions can be learned by WINNOW2 

with or without the use of the transformation described in Example 5. A 

k-literal monotone conjunction is just  a k-of-k threshold flmction. Using 

WINNOW2 to learn a k-of-k threshold function, we have a mistake bound 

of 5k + (8 + 141nn)k 2, which applies when c~ = 1 + ~ and 0 = n. If 

we use the transformation of Example 5, we end up using WIBINOW2 to 

learn a derived 1-of-k threshold function. In this case, the mistake bound 
is 8 + (5 + 141nn)k with c~ = 3 and 0 = n, which is better  by a factor 

of k than the bound without the transformation. It is not clear to what 

extent this difference is an artifact of our analysis. However, note that  to 

express a 1-of-k threshold function, any set of weights will work, as long 

as the weight of each relevant variable is above the threshold and the sum 

of all other weights is below the threshold. There are tighter constraints 

on weights used to represent a k-of-k threshold function. The sum of all 

weights, omitting only that  of any single relevant variable, must be below 

the threshold, whereas the weights of the relevant variables must have a 

sum above the threshold. This suggests that  a k-of-k threshold function 

might indeed be harder for WINNOW2 to learn than a 1-of-k threshold 

function. 

Though we have shown that  WINNOW2 is within a constant factor of 
optimal for some classes of functions, the ratio of the mistake bound to the 

opt imum grows as 5 shrinks. The number of Iinearly-separable Boolean 

functions of n attributes is at most 2 '~2 for n > 1 (Blumer et al., 1987a; 

Muroga, 1971). Thus the halving algorithm would make no more than n 2 
mistakes learning any such function. The bound for WINNOW2 grows in 
proportion to 1/52, and there exist classes for which 1/5 grows exponen- 

tially with n. Are there efficient algorithms that  close this gap? 



LEARNING QUICKLY 317 

One advantage of WINNOWl and WINNOW2 is that they perform well 
for functions with few relevant attributes without needing to know the 
number of relevant attributes in advance. This is not true with respect to 
the separation parameter ~ which affects the choice of the multiplier used 
by WINNOW2. For practical problems, it would be useful to have a version 
of WINNOW2 that could function without needing to know 5. 

We have mentioned that any mistake-bounded algorithm can be trans- 

formed into an algorithm that provably performs well in a probabilistic 
learning model. One can also run a mistake-bounded algorithm without 
transformation but assume that the instances are chosen randomly, and 
then examine its behavior in probabilistic terms. It would be interesting 
to understand the behavior of WINNOW 1 and WINNOW2 in such a setting. 

Finally, when the input data to the learner contains errors, WINNOW 1 is 
not robust: if a weight is mistakenly set to zero, the mistake will never be 
undone. WINNOW2 can learn all concept classes learnable by WINNOW l,  
and it is more robust. We are currently studying its performance when 
there are errors in the input data. 
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