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Abstract
In this paper we derive convergence rates for Q-learning. We show an interesting relationship

between the convergence rate and the learning rate used in Q-learning. For a polynomial learning
rate, one which is 1/tω at timet whereω ∈ (1/2,1), we show that the convergence rate is poly-
nomial in 1/(1− γ), whereγ is the discount factor. In contrast we show that for a linear learning
rate, one which is 1/t at timet, the convergence rate has an exponential dependence on 1/(1− γ).
In addition we show a simple example that proves this exponential behavior is inherent for linear
learning rates.

Keywords: Reinforcement Learning, Q-Learning, Stochastic Processes, Convergence Bounds,
Learning Rates.

1. Introduction

In Reinforcement Learning, an agent wanders in an unknown environment and tries to maximize its
long term return by performing actions and receiving rewards. The challenge is to understand how
a current action will affect future rewards. A good way to model this task is with Markov Decision
Processes (MDP), which have become the dominant approach in Reinforcement Learning (Sutton
and Barto, 1998, Bertsekas and Tsitsiklis, 1996).

An MDP includes states (which abstract the environment), actions (which are the available
actions to the agent), and for each state-action pair, a distribution of next states (the states reached
after performing the action in the given state). In addition there is a reward function that assigns
a stochastic reward for each state and action. Thereturn combines a sequence of rewards into a
single value that the agent tries to optimize. Adiscounted returnhas a parameterγ ∈ (0,1) where
the reward received at stepk is discounted byγk.

One of the challenges of Reinforcement Learning is when the MDP is not known, and we can
only observe the trajectory of states, actions and rewards generated by the agent wandering in the
MDP. There are two basic conceptual approaches to the learning problem. The first is model based,
where we first reconstruct a model of the MDP, and then find an optimal policy for the approximate
model. The second approach is implicit methods that update the information after each step, and
based on this derive an estimate to the optimal policy. The most popular of those methods is Q-
learning (Watkins, 1989).

Q-learning is an off-policy method that can be run on top of any strategy wandering in the
MDP. It uses the information observed to approximate the optimal function, from which one can
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construct the optimal policy. There are various proofs that Q-learning does converge to the optimal
Q function, under very mild conditions (Bertsekas and Tsitsiklis, 1996, Tsitsiklis, 1994, Watkins
and Dyan, 1992, Littman and Szepesvári, 1996, Jaakkola et al., 1994, Borkar and Meyn, 2000).
The conditions have to do with the exploration policy and the learning rate. For the exploration
one needs to require that each state action be performed infinitely often. The learning rate controls
how fast we modify our estimates. One expects to start with a high learning rate, which allows fast
changes, and lowers the learning rate as time progresses. The basic conditions are that the sum of the
learning rates goes to infinity (so that any value could be reached) and that the sum of the squares of
the learning rates is finite (which is required to show that the convergence is with probability one).

We build on the proof technique of Bertsekas and Tsitsiklis (1996), which is based on conver-
gence of stochastic iterative algorithms, to derive convergence rates for Q-learning. We study two
models of updating in Q-learning. The first is the synchronous model, where all state action pairs
are updated simultaneously. The second is the asynchronous model, where at each step we update
a single state action pair. We distinguish between two sets of learning rates. The most interesting
outcome of our investigation is the relationship between the form of the learning rates and the rate
of convergence. A linear learning rate is of the form 1/t at timet, and a polynomial learning rate,
which is of the form 1/tω, whereω ∈ (1/2,1) is a parameter.

We show for synchronous models that for a polynomial learning rate the convergence rate is
polynomial in 1/(1− γ), while for a linear learning rate the convergence rate is exponential in
1/(1− γ). We also describe an MDP that has exponential behavior for a linear learning rate. The
lower bound simply shows that if the initial value is one and all the rewards are zero, it takes
O((1/ε)1/(1−γ)) updates, using a linear learning rate, until we reach a value ofε.

The different behavior might be explained by the asymptotic behavior of∑t αt , one of the condi-
tions that ensure that Q-learning converges from any initial value. In the case of a linear learning rate
we have that∑T

t=1 αt = O(ln(T)), whereas using polynomial learning rate it behaves asO(T1−ω).
Therefore, using polynomial learning rate each value can be reached by polynomial number of steps
and using linear learning rate each value requires exponential number of steps.

The convergence rate of Q-learning in a batch setting, where many samples are averaged for
each update, was analyzed by Kearns and Singh (1999). A batch setting does not have a learning
rate and has much of the flavor of model based techniques, since each update is an average of many
samples. A run of a batch Q-learning is divided into phases, at the end of each phase an update is
made. The update after each phase is reliable since it averages many samples.

The convergence of Q-learning with linear learning rate was studied by Szepesvari (1998) for
special MDPs, where the next state distribution is the same for each state. (This setting is much
closer to the PAC model, since there is no influence between the action performed and the states
reached, and the states are i.i.d distributed). For this model Szepesvari (1998) shows a convergence
rate, which is exponential in 1/(1− γ). Beleznay et al. (1999) give an exponential lower bound in
the number of the states for undiscounted return.

2. The Model

We define a Markov Decision process (MDP) as follows

Definition 1 A Markov Decision process (MDP) M is a 4-tuple(S,U,P,R), where S is a set of the
states, U is a set of actions (U(i) is the set of actions available at state i), PM

i, j(a) is the transition
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probability from state i to state j when performing action a∈U(i) in state i, and RM(s,a) is the
reward received when performing action a in state s.

We assume thatRM(s,a) is non-negative and bounded byRmax, i.e.,∀s,a : 0≤RM(s,a)≤Rmax.
For simplicity we assume that the rewardRM(s,a) is deterministic, however all our results apply
whenRM(s,a) is stochastic.

A strategy for an MDP assigns, at each timet, for each statesa probability for performing action
a∈U(s), given a historyFt−1 = {s1,a1, r1, ...,st−1,at−1, rt−1} which includes the states, actions and
rewards observed until timet − 1. A policy is memory-less strategy, i.e., it depends only on the
current state and not on the history. A deterministic policy assigns each state a unique action.

While following a policyπ we perform at timet actionat at statest and observe a rewardrt

(distributed according toRM(s,a)), and the next statest+1 (distributed according toPM
st ,st+1

(at)). We
combine the sequence of rewards to a single value called the return, and our goal is to maximize
the return. In this work we focus ondiscounted return, which has a parameterγ ∈ (0,1), and the
discounted return of policyπ is Vπ

M = ∑∞
t=0 γt rt , wherert is the reward observed at timet. Since all

the rewards are bounded byRmax the discounted return is bounded byVmax= Rmax
1−γ .

We define a value function for each states, under policyπ, asVπ
M(s) = E[∑∞

i=0 riγi ], where the
expectation is over a run of policyπ starting at states. We define a state-action value function
Qπ

M(s,a) = RM(s,a)+ γ∑s̄PM
s,s̄(a)Vπ

M(s̄) , whose value is the return of initially performing actiona
at states and then following policyπ. Sinceγ < 1 we can define another parameterβ = (1− γ)/2,
which will be useful for stating our results. (Note that asβ decreasesVmax increases.)

Let π∗ be an optimal policy, which maximizes the return from any start state. (It is well known
that there exists an optimal strategy, which is a deterministic policy (Puterman., 1994).) This im-
plies that for any policyπ and any stateswe haveVπ∗

M (s)≥Vπ
M(s), andπ∗(s) = argmaxa(RM(s,a)+

γ(∑s′ P
M
s,s′(a)maxbQ(s′,b)). The optimal policy is also the only fixed point of the operator,(TQ)(s,a)=

RM(s,a)+ γ∑s′ Ps,s′(a)maxbQ(s′,b). We useV∗
M andQ∗

M for Vπ∗
M andQπ∗

M , respectively. We say that
a policyπ is anε-approximation of the optimal policy if‖V∗

M −Vπ
M‖∞ ≤ ε.

For a sequence of state-action pairs let thecovering time, denoted byL, be an upper bound on
the number of state-action pairs starting from any pair, until all state-action appear in the sequence.
Note that the covering time can be a function of both the MDP and the sequence or just of the
sequence. Initially we assume that from any start state, withinL steps all state-action pairs appear
in the sequence. Later, we relax the assumption and assume that with probability at least1

2, from
any start state inL steps all state-action appear in the sequence. In this paper, the underlying policy
generates the sequence of state action pairs.

The Parallel Sampling Model,PS(M), as was introduced by Kearns and Singh (1999). The
PS(M) is an ideal exploration policy. A single call toPS(M) returns for every pair(s,a) the next
states′, distributed according toPM

s,s′(a) and a rewardr distributed according toRM(s,a). The
advantage of this model is that it allows to ignore the exploration and to focus on the learning. In
some sensePS(M) can be viewed as a perfect exploration policy.

Notations: The notationg = Ω̃( f ) implies that there are constantsc1 and c2 such thatg ≥
c1 f lnc2( f ). All the norms‖ · ‖, unless otherwise specified, areL∞ norms, i.e.,‖(x1, . . . ,xn)‖ =
maxi xi .
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3. Q-learning

The Q-learning algorithm (Watkins, 1989) estimates the state-action value function (for discounted
return) as follows:

Qt+1(s,a) = (1−αt(s,a))Qt(s,a)+αt(s,a)(RM(s,a)+ γ max
b∈U(s′)

Qt(s′,b)), (1)

wheres′ is the state reached from states when performing actiona at time t. Let Ts,a be the
set of times, where actiona was performed at states, thenαt(s,a) = 0 for t /∈ Ts,a. It is known
that Q-learning converges toQ∗ if each state action pair is performed infinitely often andαt(s,a)
satisfies for each(s,a) pair: ∑∞

t=1 αt(s,a) = ∞ and∑∞
t=1 α2

t (s,a) < ∞ (Bertsekas and Tsitsiklis, 1996,
Tsitsiklis, 1994, Watkins and Dyan, 1992, Littman and Szepesvári, 1996, Jaakkola et al., 1994).

Q-learning is an asynchronous process in the sense that it updates a single entry each step.
Next we describe two variants of Q-learning, which are used in the proofs. The first algorithm is
synchronous Q-learning, which performs the updates by using thePS(M). Specifically:

∀s,a : Q0(s,a) = C

∀s,a : Qt+1(s,a) = (1−αω
t )Qt(s,a)+αω

t (RM(s,a)+ γ max
b∈U(s̄)

Qt(s̄,b)),

wheres̄ is the state reached from states when performing actiona andC is some constant. The
learning rate isαω

t = 1
(t+1)ω , for ω ∈ (1/2,1]. We distinguish between alinear learning rate, which

is ω = 1, and apolynomial learning rate, which isω ∈ (1
2,1).

Theasynchronous Q-learning algorithm, is simply regular Q-learning as define in (1), and we
add the assumption that the underlying strategy has a covering time ofL. The updates are as follows:

∀s,a : Q0(s,a) = C

∀s,a : Qt+1(s,a) = (1−αω
t (s,a))Qt(s,a)+αω

t (s,a)(RM(s,a)+ γ max
b∈U(s̄)

Qt(s̄,b))

wheres̄ is the state reached from states when performing actiona andC is some constant. Let
#(s,a, t) be one plus the number of times, until timet, that we visited states and performed action
a. The learning rateαω

t (s,a) = 1
[#(s,a,t)]ω , if t ∈ Ts,a andαω

t (s,a) = 0 otherwise. Again,ω = 1 is a

linear learning rate, andω ∈ (1
2,1) is a polynomial learning rate.

4. Our Main Results

Our main results are upper bounds on the convergence rates of Q-learning algorithms and showing
their dependence on the learning rate. The basic case is the synchronous Q-learning. We show that
for a polynomial learning rate we have a complexity, which is polynomial in 1/(1−γ) = 1/(2β). In
contrast, we show that linear learning rate has an exponential dependence on 1/β. Our results exhibit
a sharp difference between the two learning rates, although they both converge with probability one.
This distinction, which is highly important, can be observed only when we study the convergence
rate, rather than convergence in the limit.

The bounds for asynchronous Q-learning are similar. The main difference is the introduction of
a covering timeL. For polynomial learning rate we derive a bound polynomial in 1/β, and for linear
learning rate our bound is exponential in1

β . We also show a lower bound for linear learning rate,
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which is exponential in1
β . This implies that our upper bounds are tight, and that the gap between

the two bounds is real.
We first prove the results for the synchronous Q-learning algorithm, where we update all the

entries of the Q function at each time step, i.e., the updates are synchronous. The following theorem
derives the bound for polynomial learning rate.

Theorem 2 Let QT be the value of the synchronous Q-learning algorithm using polynomial learn-
ing rate at time T. Then with probability at least1−δ, we have that||QT −Q∗|| ≤ ε, given that

T = Ω





V2

maxln( |S| |A|Vmax
δβε )

β2ε2




1
ω

+
(

1
β

ln
Vmax

ε

) 1
1−ω




The above bound is somewhat complicated. To simplify, assume thatω is a constant and con-
sider first only its dependence onε. This gives usΩ((ln(1/ε)/ε2)1/ω + (ln(1/ε))1/(1−ω)), which
is optimized whenω approaches one. Considering the dependence only onβ, recall thatVmax =
Rmax/(2β), therefore the complexity is̃Ω(1/β4/ω + 1/β1/(1−ω)) which is optimized forω = 4/5.
The following theorem bounds the time for linear learning rate.

Theorem 3 Let QT be the value of the synchronous Q-learning algorithm using linear learning rate
at time T. Then for any positive constantψ with probability at least1−δ, we have||QT −Q∗|| ≤ ε,
given that

T = Ω


((2+ψ)

1
β ln(Vmax

ε )V
2
maxln( |S| |A|Vmax

δβψε )

(ψβε)2


 .

Next we state our results to asynchronous Q-learning. The bounds are similar to those of syn-
chronous Q-learning, but have the extra dependency on the covering timeL.

Theorem 4 Let QT be the value of the asynchronous Q-learning algorithm using polynomial learn-
ing rate at time T. Then with probability at least1−δ, we have||QT −Q∗|| ≤ ε, given that

T = Ω





L1+3ωV2

maxln( |S| |A|Vmax
δβε )

β2ε2




1
ω

+
(

L
β

ln
Vmax

ε

) 1
1−ω




The dependence on the covering time, in the above theorem, isΩ(L2+1/ω +L1/(1−ω)), which is
optimized forω ≈ 0.77. For the linear learning rate the dependence is much worse, since it has to
be thatL ≥ |S| · |A|, as is stated in the following theorem.

Theorem 5 Let QT be the value of the asynchronous Q-learning algorithm using linear learning
rate at time T. Then with probability at least1−δ, for any positive constantψ we have||QT−Q∗|| ≤
ε, given that

T = Ω


(L+ψL+1)

1
β ln Vmax

ε
V2

maxln( |S| |A|Vmax
δβεψ )

(ψβε)2



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The following theorem shows that a linear learning rate may require an exponential dependence
on 1/(2β) = 1/(1− γ), thus showing that the gap between linear learning rate and polynomial
learning rate is real and does exist for some MDPs.

Theorem 6 There exists a deterministic MDP, M, such that Q-learning with linear learning rate

after T = Ω((1
ε )

1
1−γ ) steps has‖QT −Q∗

M‖> ε.

5. Experiments

In this section we present experiments using two types of MDPs as well as one we callM0, which
is used in the lower bound example from Section 10. The two MDP types are the “random MDP”
and “line MDP”. Each type containsn states and two actions for each state.

We generate the “random MDP” as follows: For every statei, actiona and statej, we assign
a random numberni, j(a) uniformly from [0,1]. The probability of a transition from statei to state

j while performing actiona is pi, j(a) = ni, j (a)
∑k ni,k(a) . The rewardR(s,a) is deterministic and chosen at

random uniformly in the interval[0,10].
For the line MDP, all the states are integers and the transition probability from statei to statej

is proportional to 1
|i− j| , wherei 6= j. The reward distribution is identical to that of the random MDP.

(We implemented the random function using the function rand() in C.)
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Figure 1: Example of 100 states MDP (both line and random), where the discount factor isγ = 0.7.
We ran asynchronous Q-learning using a random exploration policy for 108 steps.

Figure 1 demonstrates the relation between the exponent of the learning rateω and the accuracy
of the model. The best experimental value forω is about 0.85. Note that whenω approaches one (a
linear learning rate), the precision deteriorates. This behavior coincides with our theoretical results
on two points. First, our theoretical results predict bad behavior when the learning rate approaches
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one (an exponential lower and upper bound). Second, the experiments suggest an optimal value for
ω of approximately 0.85. Our theoretical results derive optimal values of optimalω for different
settings of the parameters but most give a similar range. Furthermore, the two types of MDP have
similar behavior, which implies that the difference between linear and polynomial learning rates is
inherent to many MDPs and not only special cases (as in the lower bound example).
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Figure 2: Example of 10 state MDPs (both random and line) using two different learning rates
for Q-learning. Both use random exploration policy for 107 steps. The solid line is
asynchronous Q-learning usingω = 0.7; the dashed line is asynchronous Q-learning using
a linear learning rate (ω = 1.0).

Figure 2 demonstrates the strong relationship between discount factor,γ, and convergence rate.
In this experiment, we again see similar behavior in both MDPs. When the discount factor ap-
proaches one, Q-learning using linear learning rate estimation of theQ value becomes unreliable,
while Q-learning using learning rate ofω = 0.7 remains stable (the error is below 0.1).

Figure 3 compares two different learning ratesω = 0.6 andω = 0.9 for ten state MDPs (both ran-
dom and line) and finds an interesting tradeoff. For low precision levels, the learning rate ofω = 0.6
was superior, while for high precision levels the learning rate ofω = 0.9 was superior. An explana-
tion for this behavior is that the dependence in terms ofε is Ω((ln(1/ε)/ε2)1/ω +(ln(1/ε))1/(1−ω)),
which is optimized as the learning rate approaches one.

Our last experimental result isM0, the lower bound example from Section 10. Here the differ-
ence between the learning rates is the most significant, as shown in Figure 4.

6. Background from Stochastic Algorithms

Before we derive our proofs, we first introduce the proof given by Bertsekas and Tsitsiklis (1996) for
the convergence of stochastic iterative algorithms; in Section 7 we show that Q-learning algorithms
fall in this category. In this section we review the proof for convergence in the limit, and in the next
sections we will analyze the rate at which different Q-learning algorithms converge. (We will try
to keep the background as close as possible to the needs for this paper rather than giving the most
general results.)
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Figure 3: Random and Line MPDs (10 states each), where the discount factor isγ = 0.9. The
dashed line is synchronous Q-learning usingω = 0.9 and the the solid line is synchronous
Q-learning usingω = 0.6.

10
2

10
3

10
4

10
5

10
6

10
70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Steps number

pr
ec

is
io

n

Lower Bound Example MDP

Figure 4: Lower bound exampleM0, with discount factorγ = 0.9. Q-learning ran with two different
learning rates, linear (dashed line) andω = 0.65 (solid line).

This section considers a general type ofiterative stochastic algorithms, which is computed as
follows:

Xt+1(i) = (1−αt(i))Xt(i)+αt(i)((HtXt)(i)+wt(i)), (2)

wherewt is a bounded random variable with zero expectation, and eachHt is assumed to belong to
a family H of pseudo contraction mappings (See Bertsekas and Tsitsiklis (1996) for details).

Definition 7 An iterative stochastic algorithm is well-behaved if:
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1. The step sizeαt(i) satisfies (1)∑∞
t=0 αt(i) = ∞, (2) ∑∞

t=0 α2
t (i) < ∞ and (3)αt(i) ∈ (0,1).

2. There exists a constant A that bounds wt(i) for any history Ft, i.e.,∀t, i : |wt(i)| ≤ A.

3. There existsγ∈ [0,1) and a vector X∗ such that for any X we have||HtX−X∗|| ≤ γ||X−X∗||.

The main theorem states that a well-behaved stochastic iterative algorithm converges in the
limit.

Theorem 8 [Bertsekas and Tsitsiklis (1996)] Let Xt be the sequence generated by a well-behaved
stochastic iterative algorithm. Then Xt converges to X∗ with probability1.

The following is an outline of the proof given by Bertsekas and Tsitsiklis (1996). Without loss
of generality, assume thatX∗ = 0 and‖X0‖ ≤ A. The value ofXt is bounded since‖X0‖ ≤ A and for
any historyFt we have‖wt‖ ≤ A; hence, for anyt we have‖Xt‖ ≤ A.

Recall thatβ = 1−γ
2 . Let D1 = A andDk+1 = (1− β)Dk for k ≥ 1. Clearly the sequenceDk

converges to zero. We prove by induction that for everyk there exists some timeτk such that for
any t ≥ τk we have‖Xt‖ ≤ Dk. Note that this will guarantee that at timet ≥ τk for any i the value
‖Xt(i)‖ is in the interval[−Dk,Dk].

The proof is by induction. Assume that there is such a timeτk and we show that there exists a
time τk+1 such that fort ≥ τk+1 we have‖Xt‖ ≤ Dk+1. SinceDk converges to zero this proves that
Xt converges to zero, which equalsX∗. For the proof we define fort ≥ τ the quantity

Wt+1;τ(i) = (1−αt(i))Wt;τ(i)+αt(i)wt(i),

whereWτ;τ(i) = 0. The value ofWt;τ bounds the contributions ofwj(i), j ∈ [τ, t], to the value ofXt

(starting from timeτ). We also define fort ≥ τk,

Yt+1;τ(i) = (1−αt(i))Yt;τ(i)+αt(i)γDk

whereYτk;τk = Dk. Notice thatYt;τk is a deterministic process. The following lemma gives the
motivation for the definition ofYt;τk.

Lemma 9 [Bertsekas and Tsitsiklis (1996)] For every i, we have

−Yt;τk(i)+Wt;τk(i)≤ Xt(i)≤Yt;τk(i)+Wt;τk(i)

Next we use Lemma 9 to complete the proof of Theorem 8. From the definition ofYt;τ and the
assumption that∑∞

t=0 αt = ∞, it follows thatYt;τ converges toγDk ast goes to infinity. In addition
Wt;τk converges to zero ast goes to infinity. Therefore there exists a timeτk+1 such thatYt;τ ≤
(γ+ β

2)Dk, and|Wt;τk| ≤ βDk/2. This fact, together with Lemma. 9, yields that fort ≥ τk+1,

||Xt || ≤ (γ+β)Dk = Dk+1,

which completes the proof of Theorem 8.
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7. Applying the Stochastic Theorem to Q-learning

In this section we show that both synchronous and asynchronous Q-learning are well-behaved it-
erative stochastic algorithms. The proof is similar in spirit to the proof given by Bertsekas and
Tsitsiklis (1996) At the beginning we deal with synchronous Q-learning. First define operatorH as

(HQ)(i,a) =
n

∑
j=0

Pi j (a)(R(i,a)+ γ max
b∈U( j)

Q( j,b))

Rewriting Q-learning withH, we get

Qt+1(i,a) = (1−αt(i,a))Qt(i,a)+αt(i,a)((HQt)(i,a)+wt(i,a)).

Let ī is the state reached by performing at timet actiona in statei andr(i,s) is the reward observed
at timei; then

wt(i,s) = r(i,s)+ γ max
b∈U(ī)

Qt(ī,b)−
n

∑
j=0

Pi j (a)
(

R(i,a)+ γ max
b∈U( j)

Qt( j,b)
)

In synchronous Q-learning,H is computed simultaneously on all states actions pairs.

Lemma 10 Synchronous Q-learning is a well-behaved iterative stochastic algorithm.

Proof We know that for any historyFt E[wt(i,a)|Ft ] = 0 and|wt(i,a)| ≤Vmax. We also know that
for 1

2 < ω ≤ 1 we have that∑αt(s,a) = ∞, ∑α2
t (s,a) < ∞ andαt(s,a) ∈ (0,1).

We need only show thatH satisfies the contraction property.

|(HQ)(i,a)− (HQ̄)(i,a)| ≤
n

∑
j=0

Pi j (a)|γ max
b∈U( j)

Q( j,b)− γ max
b∈U( j)

Q̄( j,b)|

=
n

∑
j=0

Pi j (a)γ| max
b∈U( j)

Q( j,b)− max
b∈U( j)

Q̄( j,b)|

≤
n

∑
j=0

Pi j (a)γ max
b∈U( j)

|Q( j,b)− Q̄( j,b)|

≤ γ
n

∑
j=0

Pi j (a)‖Q− Q̄‖ ≤ γ‖Q− Q̄‖

Since we update all(i,a) pairs simultaneously, synchronous Q-learning is well-behaved stochas-
tic iterative algorithm.

We next show that Theorem 8 can be applied also to asynchronous Q-learning.

Lemma 11 Asynchronous Q-learning, where the input sequence has a finite covering time L, is a
well-behaved iterative stochastic algorithm.

Proof We defineHQ for every start statei and start timet1 of a phase (beginning of the covering
time) until the end of the phase (completing the covering time) at timet2, during which all state-
action pairs are updated. Since a state action can be performed more than once,HQ(i,a) can be

10
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performed more than once. We consider timet, in which the policy performs actiona at statei and
Qt is the vector. We have that

|(HQt)(i,a)− (HQ∗)(i,a)| ≤
n

∑
j=0

Pi j (a)|γ max
b∈U( j)

Qt( j,b)− γ max
b∈U( j)

Q∗( j,b)|

=
n

∑
j=0

Pi j (a)γ| max
b∈U( j)

Qt( j,b)− max
b∈U( j)

Q∗( j,b)|

≤
n

∑
j=0

Pi j (a)γ max
b∈U( j)

|Qt( j,b)−Q∗( j,b)|

≤ ∑
j∈A

Pi j (a)γ max
b∈U( j)

|Qt( j,b)−Q∗( j,b)|

+ ∑
j∈B

Pi j (a)γ max
b∈U( j)

|Qt( j,b)−Q∗( j,b)|

≤ γ‖Qt −Q∗‖,

whereA includes the states for which during(t1, t) all the actions inU(i) were performed, and
B = S−A. We conclude that‖Qt ′ −Q∗‖ ≤ ‖Qt ′−1−Q∗‖, since we only change at each time a sin-
gle state-action pair, which satisfies|HQt(i,a)−Q∗(i,a)| ≤ γ|Qt −Q∗|. We look at the operatorH
after performing all state-action pairs,‖HQ−Q∗‖ ≤ maxi,a|HQt(i,a)−Q∗(i,a)| ≤ γ‖Qt −Q∗‖ ≤
γ‖Q−Q∗‖.

8. Synchronous Q-learning

In this section we give the proof of Theorems 2 and 3. Our main focus will be the value ofrt =
‖Qt −Q∗‖, and our aim is to bound the time untilrt ≤ ε. We use a sequence of valuesDi , such
thatDk+1 = (1−β)Dk andD1 = Vmax. As in Section 6, we will consider timesτk such that for any
t ≥ τk we havert ≤Dk. We call the time betweenτk andτk+1 thekth iteration. (Note the distinction
between a step of the algorithm and an iteration, which is a sequence of many steps.)

Our proof has two parts. The first (and simple) part is bounding the number of iterations until
Di ≤ ε. The bound is derived in the following Lemma.

Lemma 12 For m≥ 1
β ln(Vmax/ε) we have Dm≤ ε.

Proof We have thatD1 = Vmax andDi = (1−β)Di−1. We want to find them that satisfiesDm =
Vmax(1−β)m≤ ε. By taking a logarithm over both sides of the inequality we getm≥ 1

β ln(Vmax/ε).

The second (and much more involved) part is to bound the number of steps in an iteration. We
use the following quantities introduced in Section 6. LetWt+1,τ(s,a) = (1−αω

t (s,a))Wt,τ(s,a)+
αω

t (s,a)wt(s,a), whereWτ;τ(s,a) = 0 and

wt(s,a) = R(s,a)+ γ max
b∈U(s′)

Qt(s′,b)−
|S|
∑
j=1

Ps, j(a)
(

R(s,a)+ γ max
b∈U( j)

Qt( j,b)
)

,

11
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wheres′ is the state reached after performing actiona at states. Let

Yt+1;τk(s,a) = (1−αω
t (s,a))Yt;τk(s,a)+αω

t (s,a)γDk,

whereYτk;τk(s,a) = Dk. Our first step is to rephrase Lemma 9 for our setting.

Lemma 13 For every state s action a and timeτk, we have

−Yt;τk(s,a)+Wt;τk(s,a)≤ Q∗(s,a)−Qt(s,a)≤Yt;τk(s,a)+Wt;τk(s,a)

The above lemma suggests (once again) that in order to bound the errorrt one can boundYt;τk

andWt;τk separately, and the two bounds imply a bound onrt . We first bound theYt term, which is
deterministic process, and then we bound the term,Wt;τ, which is stochastic.

8.1 Synchronous Q-learning using a Polynomial Learning Rate

We start with Q-learning using a polynomial learning rate and show that the duration of iterationk,
which starts at timeτk and ends at timeτk+1, is bounded byτω

k . For synchronous Q-learning with a
polynomial learning rate we defineτk+1 = τk + τω

k , whereτ1 will be specified latter.

Lemma 14 Consider synchronous Q-learning with a polynomial learning rate and assume that for
any t≥ τk we have Yt;τk(s,a)≤Dk. Then for any t≥ τk+τω

k = τk+1 we have Yt;τk(s,a)≤Dk(γ+ 2
eβ).

Proof Let Yτk;τk(s,a) = γDk +ρτk, whereρτk = (1− γ)Dk. We can now write

Yt+1;τk(s,a) = (1−αω
t )Yt;τk(s,a)+αω

t γDk = γDk +(1−αω
t )ρt ,

whereρt+1 = ρt(1−αω
t ). We would like to show that after timeτk+1 = τk + τω

k for anyt ≥ τk+1 we
haveρt ≤ 2

eβDk. By definition we can rewriteρt as

ρt = (1− γ)Dk

t−τk

∏
l=1

(1−αω
l+τk

) = 2βDk

t−τk

∏
l=1

(1−αω
l+τk

) = 2βDk

t−τk

∏
l=1

(1− 1
(l + τk)ω ),

where the last identity follows from the fact thatαω
t = 1/tω. Since theαω

t ’s are monotonically
decreasing

ρt ≤ 2βDk(1− 1
τω

k
)t−τk.

For t ≥ τk + τω
k we have

ρt ≤ 2βDk(1− 1
τω

k
)τω

k ≤ 2
e

βDk.

Hence,Yt;τk(s,a)≤ (γ+ 2
eβ)Dk.

Next we bound the termWt;τk by (1− 2
e)βDk. The sum of the bounds forWt;τk(s,a) andYt;τk(s,a)

would be(γ+β)Dk = (1−β)Dk = Dk+1, as desired.

Definition 15 Let Wt;τk(s,a) = (1−αω
t (s,a))Wt−1;τk(s,a)+αω

t (s,a)wt(s,a)
= ∑t

i=τk+1 ηk,t
i (s,a)wi(s,a) , whereηk,t

i (s,a)= αω
i+τk

(s,a)∏t
j=τk+i+1(1−αω

j (s,a)) and let Wl
t;τk

(s,a)=

∑τk+l
i=τk+1 ηk,t

i (s,a)wi(s,a).

12
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Note that in the synchronous modelαω
t (s,a) andηk,t

i (s,a) are identical for every state action pair.
We also note thatWt−τk+1

t;τk
(s,a) = Wt;τk(s,a). We have bounded the termYt;τk, for t = τk+1. This

bound holds for anyt ≥ τk+1, since the sequenceYt;τk is monotonically decreasing. In contrast, the
termWt;τk is stochastic. Therefore it is not sufficient to boundWτk+1;τk, but we need to boundWt;τk

for t ≥ τk+1. However, it is sufficient to considert ∈ [τk+1,τk+2]. The following lemma bounds the
coefficients in that interval.

Lemma 16 For any t∈ [τk+1,τk+2] and i∈ [τk, t], we haveηk,t
i = Θ( 1

τk
ω ),

Proof Sinceηk,t
i = αω

i+τk
∏t

j=τk+i+1(1−αω
j ),we can divideηk,t

t into two parts, the first oneαω
i+τk

and the second oneµ = ∏t
j=τk+i+1(1−αω

j ). We show that the first one isΘ( 1
τω

k
) and the second is

constant.
Sinceαω

i+τk
are monotonically decreasing we have for everyi ∈ [τk,τk+2] we haveαω

τk
≤ αω

i ≤ αω
τk+2

,
thus 1

τω
k
≤ αω

t ≤ 1
(τk+1+τω

k+1)
ω ≤ 1

(3τω
k +τk)ω < 1

4τω
k
. Next we boundµ. Clearlyµ is bounded from above

by 1. Alsoµ≥ ∏τk+2
j=τk

(1−α j)≥ (1− 1
τk

ω )3τk
ω ≥ 1

e3 . Therefore, we have that for everyt ∈ [τk,τk+2],

ηk,t
i = Θ( 1

τk
ω ).

We introduce Azuma’s inequality, which bounds the deviations of a martingale. The use of
Azuma’s inequality is mainly needed for the asynchronous case.

Lemma 17 (Azuma 1967)Let X0,X1, ...,Xn be a martingale sequence such that for each1≤ k≤ n,

|Xk−Xk−1| ≤ ck,

where the constant ck may depend on k. Then for all n≥ 1 and anyε > 0

Pr [|Xn−X0|> ε]≤ 2e
− ε

2∑n
k=1c2

k

Next we show that Azuma’s inequality can be applied toWl
t;τk

.

Lemma 18 For any t∈ [τk+1,τk+2] and1≤ l ≤ t we have that Wl
t;τk

(s,a) is a martingale sequence,
which satisfies

|Wl
t;τk

(s,a)−Wl−1
t;τk

(s,a)| ≤ Θ(
Vmax

τω
k

)

Proof We first note thatWl
t;τk

(s,a) is a martingale sequence, since

E[Wl
t;τk

(s,a)−Wl−1
t;τk

(s,a)|Fτk+l−1] = E[ηk,t
τk+l (s,a)wτk+l (s,a)|Fτk+l−1]

= ηk,t
τk+l E[wτk+l (s,a)|Fτk+l−1] = 0.

By Lemma 16 we have thatηk,t
l (s,a) = Θ(1/τω

k ), thus

|Wl
t;τk

(s,a)−Wl−1
t;τk

(s,a)|= ηk,t
τk+l (s,a)|wτk+l (s,a)| ≤ Θ(

Vmax

τω
k

).

The following lemma provides a bound for the stochastic error caused by the termWt;τk by using
Azuma’s inequality.

13
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Lemma 19 Consider synchronous Q-learning with a polynomial learning rate. With probability at
least1− δ

m we have|Wt;τk| ≤ (1− 2
e)βDk for any t∈ [τk+1,τk+2], i.e.,

Pr

[
∀t ∈ [τk+1,τk+2] : |Wt;τk| ≤ (1− 2

e
)βDk

]
≥ 1− δ

m

given thatτk = Θ((V2
maxln(Vmax|S| |A|m/(δβDk))

β2D2
k

)1/ω).

Proof By Lemma 18 we can apply Azuma’s inequality toWt−τk+1
t;τk

with ci = Θ(Vmax
τω

k
) (note that

Wt−τk+1
t;τk

= Wt;τk) . Therefore, we derive that

Pr [|Wt;τk(s,a)| ≥ ε̃ | t ∈ [τk+1,τk+2]] ≤ 2e
−2ε̃2

∑t
i=τk

c2
i ≤ 2e−cτω

k ε̃2/V2
max,

for some constantc > 0. Setδ̃k = 2e−cτω
k ε̃2/V2

max, which holds forτω
k = Θ(ln(1/δ̃)V2

max/ε̃2). Using
the union bound we have,

Pr [∀t ∈ [τk+1,τk+2] : Wt;τk(s,a)≤ ε̃]≤
τk+2

∑
t=τk+1

Pr [Wt;τk(s,a)≤ ε̃] ,

thus takingδ̃k = δ
m(τk+2−τk+1)|S||A| assures that with probability at least 1− δ

m the statement hold at
every state-action pair and timet ∈ [τk+1,τk+2]. As a result we have,

τk = Θ
(

(
V2

maxln(|S| |A| mτω
k /δ)

ε̃2 )1/ω
)

= Θ
(

(
V2

maxln(|S| |A| mVmax/δε̃)
ε̃2 )1/ω

)

Settingε̃ = (1−2/e)βDk gives the desire bound.

We have bounded for each iteration the time needed to achieve the desired precision level with
probability 1− δ

m. The following lemma provides a bound for the error in all the iterations.

Lemma 20 Consider synchronous Q-learning using a polynomial learning rate. With probability
at least1−δ, for every iteration k∈ [1,m] and time t∈ [τk+1,τk+2] we have Wt;τk ≤ (1− 2

e)βDk, i.e.,

Pr

[
∀k∈ [1,m], ∀t ∈ [τk+1,τk+2] : |Wt;τk| ≤ (1− 2

e
)βDk

]
≥ 1−δ,

given thatτ0 = Θ((V2
maxln(Vmax|S| |A|/(δβε))

β2ε2 )1/ω).

Proof From Lemma 19 we know that

Pr

[
∀t ∈ [τk+1,τk+2] : |Wt;τk| ≥ (1− 2

e
)βDk

]

= Pr

[
∀s,a∀t ∈ [τk+1,τk+2] :

t

∑
i=τk

wi(s,a)ηk,t
i ≥ ε̃

]
≤ δ

m

14
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Using the union bound we have,

Pr

[
∀s,a∀k≤ m,∀t ∈ [τk+1,τk+2]

t

∑
i=τk

wi(s,a)ηk,t
i ≥ ε̃

]

≤
m

∑
k=1

Pr

[
∀s,a∀t ∈ [τk+1,τk+2]

t

∑
i=τk

wi(s,a)ηk,t
i ≥ ε̃

]
≤ δ

whereε̃ = (1− 2
e)βDk.

We have bounded both the size of each iteration, as a function of its starting time, and the
number of the iterations needed. The following lemma solves the recurrenceτk+1 = τk + τω

k and
bounds the total time required (which is a special case of Lemma 32).

Lemma 21 Let

ak+1 = ak +aω
k = a0 +

k

∑
i=0

aω
i .

For any constantω ∈ (0,1), ak = O((a1−ω
0 +k)

1
1−ω ) = O(ao +k

1
1−ω )

The proof of Theorem 2 follows from Lemma 21, Lemma 20, Lemma 12 and Lemma 14.

8.2 Synchronous Q-learning using a Linear Learning Rate

In this subsection, we derive results for Q-learning with a linear learning rate. The proof is very
similar in spirit to the proof of Theorem 2 and we give here analogous lemmas to the ones in
Subsection 8.1. First, the number of iterations required for synchronous Q-learning with a linear
learning rate is the same as that for a polynomial learning rate. Therefore, we only need to analyze
the number of steps in an iteration.

Lemma 22 Consider synchronous Q-learning with a linear learning rate and assume that for any
t ≥ τk we have Yt;τk(s,a)≤Dk. Then for any t≥ (2+ψ)τk = τk+1 we have Yt;τk(s,a)≤Dk(γ+ 2

2+ψ β)

Proof Let Yτk;τk(s,a) = γDk +ρτk, whereρτk = (1− γ)Dk. We can now write

Yt+1;τk(s,a) = (1−αt)Yt;τk(s,a)+αtγDk = γDk +(1−αt)ρt ,

whereρt+1 = ρt(1−αt). We would like show that after time(2+ψ)τk = τk+1 for anyt ≥ τk+1 we
haveρt ≤ βDk. By definition we can rewriteρt as,

ρt = (1− γ)Dk

t−τk

∏
l=1

(1−αl+τk) = 2βDk

t−τk

∏
l=1

(1−αl+τk) = 2βDk

t−τk

∏
l=1

(1− 1
l + τk

),

where the last identity follows from the fact thatαt = 1/t. Simplifying the expression, and setting
t = (2+ψ)τk, we have

ρt ≤ 2Dkβ
τk

t
=

2Dkβ
2+ψ

15
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Hence,Yt;τk(s,a)≤ (γ+ 2
2+ψ β)Dk.

The following lemma enables the use of Azuma’s inequality.

Lemma 23 For any t≥ τk and1≤ l ≤ t we have that Wl
t;τk

(s,a) is a martingale sequence, which
satisfies

|Wl
t;τk

(s,a)−Wl−1
t;τk

(s,a)| ≤ Vmax

t

Proof We first note thatWl
t;τk

(s,a) is a martingale sequence, since

E[Wl
t;τk

(s,a)−Wl−1
t;τk

(s,a)|Fτk+l−1] = E[ηk,t
τk+l (s,a)wτk+l (s,a)|Fτk+l−1]

= ηk,t
τk+l E[wτk+l (s,a)|Fτk+l−1] = 0.

For linear learning rate we have thatηk,t
l+τk

(s,a) = 1/t, thus

|Wl
t;τk

(s,a)−Wl−1
t;τk

(s,a)|= wτk+l (s,a)
t

≤ Vmax

t
.

The following Lemma provides a bound for the stochastic termWt;τk.

Lemma 24 Consider synchronous Q-learning with a linear learning rate. With probability at least
1− δ

m, we have|Wt;τk| ≤ ψ
2+ψ βDk for any t∈ [τk+1,τk+2] and any positive constantψ, i.e.

Pr

[
∀t ∈ [τk+1,τk+2] : Wt;τk ≤

ψ
2+ψ

βDk

]
≥ 1− δ

m

given thatτk = Θ(V2
maxln(Vmax|S| |A|m/(ψδβDk))

ψ2β2D2
k

)

Proof By Lemma 23 for anyt ≥ τk+1 we can apply Azuma’s inequality toWt−τk+1
t;τk

with ci = Vmax
i+τk

(note thatWt−τk+1
t;τk

= Wt;τk). Therefore, we derive that

Pr[|Wt;τk| ≥ ε̃ | t ≥ τk+1]≤ 2e
−2ε̃2

∑t
i=τk

c2
i = 2e

−c t2ε̃2

(t−τk)V2
max ≤ 2e

−c t ε̃2

V2
max

for some positive constantc. Using the union bound we get

Pr [∀t ∈ [τk+1,τk+2] : |Wt;τk| ≥ ε̃] ≤ Pr [∀t ≥ (2+ψ)τk : |Wt;τk| ≥ ε̃]

≤
∞

∑
t=(2+ψ)τk

Pr [|Wt;τk| ≥ ε̃]

≤
∞

∑
t=(2+ψ)τk

2e
−c t ε̃2

V2
max = 2e

−c
((2+ψ)τk)ε̃2

V2
max

∞

∑
t=0

e
− t ε̃

V2
max

=
2e

−c
(2+ψ)τkε̃2

V2
max

1−e
−ε̃2

V2
max

= Θ(
e
− c′τkε̃2

V2
max V2

max

ε̃2 ),
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where the last equality is due to Taylor expansion andc′ is some positive constant. By setting

δ
m |S| |A| = Θ(e

− c′τkε̃2

V2
max V2

max
ε̃2 ), which holds forτk = Θ(V2

maxln(Vmax|S| |A|m/(δε̃))
ε̃2 ), andε̃ = ψ

2+ψ βDk assures us

that for everyt ≥ τk+1 (and as a result for anyt ∈ [τk+1,τk+2]) with probability at least 1− δ
m the

statement holds at every state-action pair.

We have bounded for each iteration the time needed to achieve the desired precision level with
probability 1− δ

m. The following lemma provides a bound for the error in all the iterations.

Lemma 25 Consider synchronous Q-learning using a linear learning rate. With probability1−δ,
for every iteration k∈ [1,m], time t∈ [τk+1,τk+2] and any constantψ > 0 we have|Wt;τk| ≤ ψβDk

2+ψ ),
i.e.,

Pr

[
∀k∈ [1,m], ∀t ∈ [τk+1,τk+2] : |Wt;τk| ≤

ψβDk

2+ψ

]
≥ 1−δ,

given thatτ0 = Θ(V2
maxln(Vmax|S| |A|m/(ψδβε))

ψ2β2ε2 ).

Proof From Lemma 19 we know that

Pr

[
∀t ∈ [τk+1,τk+2] : |Wt;τk| ≥

ψβDk

2+ψ

]
≤ δ

m

Using the union bound we have that,

Pr

[
∀k≤ m,∀t ∈ [τk+1,τk+2] : |Wt;τk| ≥

ψβDk

2+ψ

]

≤
m

∑
k=1

Pr

[
∀t ∈ [τk+1,τk+2] : |Wt;τk| ≥

ψβDk

2+ψ

]
≤ δ

The proof of Theorem 5 follows from Lemmas 25 and 22, 12 and the fact thatak+1 = (2+
ψ)ak = (2+ψ)ka1.

9. Asynchronous Q-learning

The major difference between synchronous and asynchronous Q-learning is that asynchronous Q-
learning updates only one state action pair at each time while synchronous Q-learning updates all
state-action pairs at each time unit. This causes two difficulties: the first is that different updates
use different values of the Q function in their update. This problem is fairly easy to handle given
the machinery introduced. The second, and more basic problem is that each state-action pair should
occur enough times for the update to progress. To ensure this, we introduce the notion of covering
time, denoted byL. We first extend the analysis of synchronous Q-learning to asynchronous Q-
learning, in which each run always has covering timeL, which implies that from any start state, in
L steps all state-action pairs are performed. Later we relax the requirement such that the condition
holds only with probability 1/2, and show that with high probability we have a covering time of
L logT for a run of lengthT. Note that our notion of covering time does not assume a stationary
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distribution of the exploration strategy; it may be the case that at some periods of time certain state-
action pairs are more frequent while in other periods different state-action pairs are more frequent.
In fact, we do not even assume that the sequence of state-action pairs is generated by a strategy—it
can be an arbitrary sequence of state-action pairs, along with their reward and next state.

Definition 26 Let n(s,a, t1, t2) be the number of times that the state action pair(s,a) was performed
in the time interval[t1, t2].

In this section, we use the same notations as in Section 8 forDk, τk, Yt;τk andWt;τk, with a different
set of values forτk. We first give the results for asynchronous Q-learning using polynomial learning
rate (Subsection 9.1); we give a similar proof for linear learning rates in Subsection 9.2.

9.1 Asynchronous Q-learning using a Polynomial Learning Rate

Our main goal is to show that the size of thekth iteration isLτω
k . The covering time property

guarantees that inLτω
k steps each pair of state action is performed at leastτω

k times. For this reason
we define for asynchronous Q-learning with polynomial learning rate the sequenceτk+1 = τk+Lτω

k ,
whereτ1 will be specified later. As in Subsection 8.1 we first bound the value ofYt;τk

Lemma 27 Consider asynchronous Q-learning with a polynomial learning rate and assume that for
any t≥ τk we have Yt;τk(s,a)≤Dk. Then for any t≥ τk+Lτω

k = τk+1 we have Yt;τk(s,a)≤D(γ+ 2
eβ)

Proof For each state-action pair(s,a) we are assured thatn(s,a,τk,τk+1)≥ τω
k , since the covering

time isL and the underlying policy has madeLτω
k steps. Using the fact that theYt;τk(s,a) are mono-

tonically decreasing and deterministic, we can apply the same argument as in the proof of Lemma
14.

The next Lemma bounds the influence of each samplewt(s,a) onWt;τk(s,a).

Lemma 28 Let w̃t
i+τk

(s,a) = ηk,t
i (s,a)wi+τk(s,a) then for any t∈ [τk+1,τk+2] the random variable

w̃t
i+τk

(s,a) has zero mean and bounded by(L/τk)ωVmax.

Proof Note that by definitionwτk+i(s,a) has zero mean and is bounded byVmax for any history and
state-action pair. In a time interval of lengthτ, by definition of the covering time, each state-action
pair is performed at leastτ/L times; therefore,ηk,t

i (s,a) ≤ (L/τk)ω. Looking at the expectation of
w̃i+τk(s,a) we observe that

E[w̃t
i+τk

(s,a)] = E[ηk,t
i (s,a)wi+τk(s,a)] = ηk,t

i (s,a)E[wi+τk(s,a)] = 0

Next we prove that it is bounded as well:

|w̃t
i+τk

(s,a)| = |ηk,t
i (s,a)wi+τk(s,a)|

≤ |ηk,t
i (s,a)|Vmax

≤ (L/τk)ωVmax

Next we defineWl
t;τk

(s,a)= ∑l
i=1 w̃t

i+τk
(s,a) and prove that it is martingale sequence with bounded

differences.
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Lemma 29 For any t∈ [τk+1,τk+2] and1≤ l ≤ t we have that Wl
t;τk

(s,a) is a martingale sequence,
which satisfies

|Wl
t;τk

(s,a)−Wl−1
t;τk

(s,a)| ≤ (L/τk)ωVmax

Proof We first note thatWl
t;τk

(s,a) is a martingale sequence, since

E[Wl
t;τk

(s,a)−Wl−1
t;τk

(s,a)|Fτk+l−1] = E[w̃t
l+τk

(s,a)|Fτk+l−1] = 0.

By Lemma 28 we have that ˜wt
l+τk

(s,a) is bounded by(L/τk)ωVmax, thus

|Wl
t;τk

(s,a)−Wl−1
t;τk

(s,a)|= w̃t
l+τk

(s,a)≤ (L/τk)ωVmax.

The following Lemma bounds the value of the termWt;τk.

Lemma 30 Consider asynchronous Q-learning with a polynomial learning rate. With probability
at least1− δ

m we have for every state-action pair|Wt;τk(s,a)| ≤ (1− 2
e)βDk for any t∈ [τk+1,τk+2],

i.e.

Pr

[
∀s,a∀t ∈ [τk+1,τk+2] : |Wt;τk(s,a)| ≤ (1− 2

e
)βDk

]
≥ 1− δ

m

given thatτk = Θ((L1+3ωV2
maxln(Vmax|S| |A|m/(δβDk))

β2D2
k

)1/ω).

Proof For each state-action pair we look onWl
t;τk

(s,a) and note thatWt;τk(s,a) = Wt−τk+1
t;τk

(s,a). Let
` = n(s,a,τk, t), then for anyt ∈ [τk+1,τk+2] we have that̀ ≤ τk+2− τk ≤ Θ(L1+ωτω

k ). By Lemma
29 we can apply Azuma’s inequality toWt−τk+1

t;τk
(s,a) with ci = (L/τk)ωVmax. Therefore, we derive

that

Pr[|Wt;τk(s,a)| ≥ ε̃ | t ∈ [τk+1,τk+2]] ≤ 2e
−ε̃2

2∑t
i=τk+1,i∈Ts,a c2

i ≤ 2e
−c

ε̃2τ2ω
k

`V2
maxL2ω

≤ 2e
−c

ε̃2τω
k

L1+3ωV2
max,

for some constantc> 0. We can set̃δk = 2e−cτω
k ε̃2/(L1+3ωV2

max), which holds forτω
k = Θ(ln(1/δ̃k)L1+3ωV2

max/ε̃2).
Using the union bound we have

Pr [∀t ∈ [τk+1,τk+2] : Wt;τk(s,a)≤ ε̃]≤
τk+2

∑
t=τk+1

Pr [Wt;τk(s,a)≤ ε̃] ,

thus takingδ̃k = δ
m(τk+2−τk+1)|S||A| assures a certainty level of 1− δ

m for each state-action pair. As a
result we have

τω
k = Θ(

L1+3ωV2
maxln(|S| |A| mτω

k /δ)
ε̃2 ) = Θ(

L1+3ωV2
maxln(|S| |A| mVmax/(δε̃))

ε̃2 )

Settingε̃ = (1−2/e)βDk give the desired bound.

We have bounded for each iteration the time needed to achieve the desired precision level with
probability 1− δ

m. The following lemma provides a bound for the error in all the iterations.
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Lemma 31 Consider asynchronous Q-learning using a polynomial learning rate. With probability
1−δ, for every iteration k∈ [1,m] and time t∈ [τk+1,τk+2] we have|Wt;τk(s,a)| ≤ (1− 2

e)βDk, i.e.,

Pr

[
∀k∈ [1,m], ∀t ∈ [τk+1,τk+2], ∀s,a : |Wt;τk(s,a)| ≤ (1− 2

e
)βDk

]
≥ 1−δ,

given thatτ0 = Θ((L1+3ωV2
maxln(Vmax|S| |A|m/(δβε))

β2ε2 )1/ω).

Proof From Lemma 30 we know that

Pr

[
∀t ∈ [τk+1,τk+2] : |Wt;τk| ≥ (1− 2

e
)βDk

]
≤ δ

m

Using the union bound we have that

Pr [∀k≤ m,∀t ∈ [τk+1,τk+2] |Wt;τk| ≥ ε̃] ≤
m

∑
k=1

Pr [∀t ∈ [τk+1,τk+2] |Wt;τk| ≥ ε̃]≤ δ,

whereε̃ = (1− 2
e)βDk

The following lemma solves the recurrence∑m−1
i=0 Lτω

i + τ0 and derives the time complexity.

Lemma 32 Let

ak+1 = ak +Laω
k = a0 +

k

∑
i=0

Laω
i

Then for any constantω ∈ (0,1), ak = O((a1−ω
0 +Lk)

1
1−ω ) = O(a0 +(LK)

1
1−ω )).

Proof We define the following series

bk+1 =
k

∑
i=0

Lbω
i +b0

with an initial condition
b0 = L

1
1−ω .

We show by induction thatbk ≤ (L(k+1))
1

1−ω for k≥ 1. Fork = 0

b0 = L
1

1−ω (0+1)
1

1−ω ≤ L
1

1−ω

We assume that the induction hypothesis holds fork−1 and prove it fork,

bk = bk−1 +Lbω
k−1 ≤ (Lk)

1
1−ω +L(Lk)

ω
1−ω ≤ L

1
1−ω k

ω
1−ω (k+1)≤ (L(k+1))

1
1−ω

and the claim is proved.
Now we lower boundbk by (L(k+1)/2)1/(1−ω). Fork = 0

b0 = L
1

1−ω ≥ (
L
2
)

1
1−ω
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Assume that the induction hypothesis holds fork−1 and prove fork,

bk = bk−1 +Lbω
k−1 = (Lk/2)

1
1−ω +L(Lk/2)

ω
1−ω = L

1
1−ω ((k/2)

1
1−ω +(k/2)

ω
1−ω )

≥ L
1

1−ω ((k+1)/2)
1

1−ω .

Fora0 > L
1

1−ω we can view the series as starting atbk = a0. From the lower bound we know that
the start point has movedΘ(a1−ω

0 /L). Therefore we have a total complexity ofO((a1−ω
0 +Lk)

1
1−ω ) =

O(a0 +(LK)
1

1−ω )).

The proof of Theorem 4 follows from Lemmas 27, 31,12 and 32. In the following lemma we relax
the condition of the covering time.

Lemma 33 Assume that from any start state with probability1/2 in L steps we perform all state
action pairs. Then with probability1− δ, from any start state we perform all state action pairs in
L log2(1/δ) steps, for a run of length[L log2(1/δ)].

Proof The proof follows from the fact that afterk intervals of lengthL (wherek is a natural num-
ber), the probability of not visiting all state action pairs is 2−k. Since we havek = [log2(1/δ)] we
get that the probability of failing isδ.

Corollary 34 Assume that from any start state with probability1/2 in L steps we perform all state
action pairs. Then with probability1− δ, from any start state we perform all state action pairs in
L log(T/δ) steps, for a run of length T .

9.2 Asynchronous Q-learning using a Linear Learning Rate

In this section we consider asynchronous Q-learning with a linear learning rate. Our main goal is
to show that the size of thekth iteration isL(1+ ψ)τk, for any constantψ > 0. The covering time
property guarantees that in(1+ψ)Lτk steps each pair of state action is performed at least(1+ψ)τk

times. The sequence of times in this case isτk+1 = τk +(1+ ψ)Lτk, where theτ0 will be defined
latter. We first boundYt;τk and then bound the stochastic termWt;τk.

Lemma 35 Consider asynchronous Q-learning with a polynomial learning rate and assume that
for any t≥ τk we have Yt;τk(s,a)≤Dk. Then for any t≥ τk+(1+ψ)Lτk = τk+1 we have Yt;τk(s,a)≤
(γ+ 2

2+ψ β)Dk

Proof For each state-action pair(s,a) we are assured thatn(s,a,τk,τk+1)≥ (1+ψ)τk , since in an
interval of(1+ψ)Lτk steps each state-action pair is visited at least(1+ψ)τk times by the definition
of the covering time. Using the fact that theYt;τk(s,a) are monotonically decreasing and determin-
istic (thus independent), we can apply the same argument as in the proof of Lemma 22.

The following Lemma enables the use of Azuma’s inequality.
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Lemma 36 For any t≥ τk and1≤ l ≤ t we have that Wl
t;τk

(s,a) is a martingale sequence, which
satisfies

|Wl
t;τk

(s,a)−Wl−1
t;τk

(s,a)| ≤ Vmax

n(s,a,0, t)

Proof We first note thatWl
t;τk

(s,a) is a martingale sequence, since

E[Wl
t;τk

(s,a)−Wl−1
t;τk

(s,a)|Fτk+l−1] = E[ηk,t
τk+l (s,a)wτk+l (s,a)|Fτk+l−1]

= ηk,t
τk+l E[wτk+l (s,a)|Fτk+l−1] = 0.

For a linear learning rate we have thatηk,t
τk+l (s,a) = 1/n(s,a,0, t), thus

|Wl
t;τk

(s,a)−Wl−1
t;τk

(s,a)|= ηk,t
τk+l (s,a)|wτk+l (s,a)| ≤ Vmax

n(s,a,0, t)
.

The following lemma bounds the value of the termWt;τk.

Lemma 37 Consider asynchronous Q-learning with a linear learning rate. With probability at
least1− δ

m we have for every state-action pair|Wt;τk(s,a)| ≤ ψ
2+ψ βDk for any t≥ τk+1 and any

positive constantψ, i.e.

Pr

[
∀t ∈ [τk+1,τk+1] : Wt;τk(s,a)≤ ψ

2+ψ
βDk

]
≥ 1− δ

m

given thatτk ≥ Θ((V2
maxln(Vmax|S| |A|m/(δβDkψ))

ψ2β2D2
k

)).

Proof By Lemma 36 we can apply Azuma’s inequality onWt−τk+1
t;τk

(We note thatWt−τk+1
t;τk

= Wt;τk)
with ci = Θ( Vmax

n(s,a,0,t ) for anyt ≥ τk+1. Therefore, we derive that

Pr[|Wt;τk| ≥ ε̃] ≤ 2e
−2ε̃2

∑t
i=τk,i∈Ts,a c2

i ≤ 2e
−c

n(s,a,τk,t)ε̃2

V2
max ,

for some positive constantc. Let us define the following variable

ζt(s,a) =
{

1, αt(s,a) 6= 0
0, otherwise

Using the union bound and the fact in an interval of length(1+ ψ)Lτk each state-action pair is
visited at least(1+ψ)τk times, we get

Pr [∀t ∈ [τk+1,τk+2] : |Wt;τk(s,a)| ≥ ε̃] ≤ Pr [∀t ≥ ((1+ψ)L+1)τk : |Wt;τk(s,a)| ≥ ε̃]

≤
∞

∑
t=((1+ψ)L+1)τk

Pr [|Wt;τk(s,a)| ≥ ε̃]
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≤
∞

∑
t=((1+ψ)L+1)τk

ζt(s,a)2e
−cn(s,a,0,t)ε̃2

V2
max

≤ 2e
−c

((1+ψ)τk)ε̃2

V2
max

∞

∑
t=0

e
− t ε̃2

2V2
max

=
2e

−c
(1+ψ)τkε̃2

V2
max

1−e
−ε̃2

V2
max

= Θ(
e
− c′τkε̃2

V2
max V2

max

ε̃2 ),

for some positive constantc′. Setting δ
m |S| |A| = Θ(e

− c′τkε̃2

V2
max V2

max
ε̃2 ), which hold forτk = Θ(V2

maxln(Vmax|S| |A|m/(δε̃))
ε̃2 ),

andε̃ = ψ
2+ψ βDk assures us that for everyt ≥ τk+1 (and as a result for anyt ∈ [τk+1,τk+2]) with prob-

ability at least 1− δ
m the statement holds at every state-action pair.

We have bounded for each iteration the time needed to achieve the desired precision level with
probability 1− δ

m. The following lemma provides a bound for the error in all the iterations.

Lemma 38 Consider synchronous Q-learning using a linear learning rate. With probability1−δ,
for every iteration k∈ [1,m], time t∈ [τk+1,τk+2] and any constantψ > 0 we have|Wt;τk| ≤ ψβDk

2+ψ ,
i.e.,

Pr

[
∀k∈ [1,m], ∀t ∈ [τk+1,τk+2] : |Wt;τk| ≤

ψβDk

2+ψ

]
≥ 1−δ,

given thatτ0 = Θ(V2
maxln(Vmax|S| |A|m/(δβεψ))

ψ2β2ε2 ).

Proof From Lemma 37 we know that

Pr

[
∀t ∈ [τk+1,τk+2] : |Wt;τk| ≥

ψβDk

2+ψ

]
≤ δ

m

Using the union bound we have that,

Pr

[
∀k≤ m,∀t ∈ [τk+1,τk+2] |Wt;τk| ≥

ψβDk

2+ψ

]

≤
m

∑
k=1

Pr

[
∀t ∈ [τk+1,τk+2] |Wt;τk| ≥

ψβDk

2+ψ

]
≤ δ

Theorem 5 follows from Lemmas 35, 38, 12 and the fact thatak+1 = ak +(1+ψ)Lak = a0((1+
ψ)L+1)k.
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10. Lower Bound for Q-learning using a Linear Learning Rate

In this section we show a lower bound for Q-learning with a linear learning rate, which isO((1
ε )

1
1−γ ).

We consider the following MDP, denotedM0, that has a single states, a single actiona, and a
deterministic rewardRM0(s,a) = 0. Since there is only one action in the MDP we denoteQt(s,a) as
Qt(s). We initializeQ0(s) = 1 and observe the time untilQt(s)≤ ε.

Lemma 39 Consider running synchronous Q-learning with linear learning rate on MDP M0, when

initializing Q0(s) = 1. Then there is a time t= c(1
ε )

1
1−γ for some constant c> 0, such that Qt ≥ ε.

Proof First we prove by induction ont that

Qt(s) =
t−1

∏
i=1

i + γ
i +1

.

Fort = 1 we haveQ1(s) = (1−1/2)Q0(s)+(1/2)γQ0(s) = (1+γ)/2. Assume the hypothesis holds
for t−1 and prove it fort. By definition,

Qt(s) = (1− 1
t
)Qt−1(s)+

1
t

γQt−1(s) =
t−1+ γ

t
Qt−1(s).

In order to help us estimate this quantity we use theΓ function. Let

Γ(x+1,k) =
1·2· · ·k

(x+1) · (x+2) · · · · (x+k)
kx

The limit of Γ(1+x,k), ask goes to infinity, is constant for anyx. We can rewriteQt(s) as

Qt(s) =
1

Γ(γ+1, t)
tγ

t +1
= Θ(tγ−1)

Therefore, there is a timet = c(1
ε )

1
1−γ , for some constantc > 0, such thatQt(s)≥ ε.
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