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Abstract

In this paper we derive convergence rates for Q-learning. We show an interesting relationship
between the convergence rate and the learning rate used in Q-learning. For a polynomial learning
rate, one which is A® at timet wherew € (1/2,1), we show that the convergence rate is poly-
nomial in /(1 —vy), wherey is the discount factor. In contrast we show that for a linear learning
rate, one which is At at timet, the convergence rate has an exponential dependencgda ¥).

In addition we show a simple example that proves this exponential behavior is inherent for linear
learning rates.

Keywords: Reinforcement Learning, Q-Learning, Stochastic Processes, Convergence Bounds,
Learning Rates.

1. Introduction

In Reinforcement Learning, an agent wanders in an unknown environment and tries to maximize its
long term return by performing actions and receiving rewards. The challenge is to understand how
a current action will affect future rewards. A good way to model this task is with Markov Decision
Processes (MDP), which have become the dominant approach in Reinforcement Learning (Sutton
and Barto, 1998, Bertsekas and Tsitsiklis, 1996).

An MDP includes states (which abstract the environment), actions (which are the available
actions to the agent), and for each state-action pair, a distribution of next states (the states reached
after performing the action in the given state). In addition there is a reward function that assigns
a stochastic reward for each state and action. rEh@n combines a sequence of rewards into a
single value that the agent tries to optimize di&counted returthas a parametere (0,1) where
the reward received at stégs discounted by.

One of the challenges of Reinforcement Learning is when the MDP is not known, and we can
only observe the trajectory of states, actions and rewards generated by the agent wandering in the
MDP. There are two basic conceptual approaches to the learning problem. The first is model based,
where we first reconstruct a model of the MDP, and then find an optimal policy for the approximate
model. The second approach is implicit methods that update the information after each step, and
based on this derive an estimate to the optimal policy. The most popular of those methods is Q-
learning (Watkins, 1989).

Q-learning is an off-policy method that can be run on top of any strategy wandering in the
MDP. It uses the information observed to approximate the optimal function, from which one can
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construct the optimal policy. There are various proofs that Q-learning does converge to the optimal
Q function, under very mild conditions (Bertsekas and Tsitsiklis, 1996, Tsitsiklis, 1994, Watkins
and Dyan, 1992, Littman and Szepéasgy 1996, Jaakkola et al., 1994, Borkar and Meyn, 2000).

The conditions have to do with the exploration policy and the learning rate. For the exploration
one needs to require that each state action be performed infinitely often. The learning rate controls
how fast we modify our estimates. One expects to start with a high learning rate, which allows fast
changes, and lowers the learning rate as time progresses. The basic conditions are that the sum of the
learning rates goes to infinity (so that any value could be reached) and that the sum of the squares of
the learning rates is finite (which is required to show that the convergence is with probability one).

We build on the proof technique of Bertsekas and Tsitsiklis (1996), which is based on conver-
gence of stochastic iterative algorithms, to derive convergence rates for Q-learning. We study two
models of updating in Q-learning. The first is the synchronous model, where all state action pairs
are updated simultaneously. The second is the asynchronous model, where at each step we update
a single state action pair. We distinguish between two sets of learning rates. The most interesting
outcome of our investigation is the relationship between the form of the learning rates and the rate
of convergence. A linear learning rate is of the foryt &t timet, and a polynomial learning rate,
which is of the form ¥t®, wherew € (1/2,1) is a parameter.

We show for synchronous models that for a polynomial learning rate the convergence rate is
polynomial in /(1 —y), while for a linear learning rate the convergence rate is exponential in
1/(1—vy). We also describe an MDP that has exponential behavior for a linear learning rate. The
lower bound simply shows that if the initial value is one and all the rewards are zero, it takes
O((1/¢)Y(A-Y)) updates, using a linear learning rate, until we reach a valae of

The different behavior might be explained by the asymptotic behavipy @f, one of the condi-
tions that ensure that Q-learning converges from any initial value. In the case of a linear learning rate
we have thaty{_; oy = O(In(T)), whereas using polynomial learning rate it behave®@s'—®).
Therefore, using polynomial learning rate each value can be reached by polynomial number of steps
and using linear learning rate each value requires exponential number of steps.

The convergence rate of Q-learning in a batch setting, where many samples are averaged for
each update, was analyzed by Kearns and Singh (1999). A batch setting does not have a learning
rate and has much of the flavor of model based techniques, since each update is an average of many
samples. A run of a batch Q-learning is divided into phases, at the end of each phase an update is
made. The update after each phase is reliable since it averages many samples.

The convergence of Q-learning with linear learning rate was studied by Szepesvari (1998) for
special MDPs, where the next state distribution is the same for each state. (This setting is much
closer to the PAC model, since there is no influence between the action performed and the states
reached, and the states are i.i.d distributed). For this model Szepesvari (1998) shows a convergence
rate, which is exponential in/11—y). Beleznay et al. (1999) give an exponential lower bound in
the number of the states for undiscounted return.

2. The Model

We define a Markov Decision process (MDP) as follows

Definition 1 A Markov Decision process (MDP) M is a 4-tufdl8 U, P,R), where S is a set of the
states, U is a set of actions (U is the set of actions available at state |)'VJ‘ R is the transition
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probability from state i to state j when performing actioredJ (i) in state i, and [ (s,a) is the
reward received when performing action a in state s.

We assume tha&y (s,a) is non-negative and bounded By,ax i.€.,Vs,a: 0 < Rw(S,a) < Rmax
For simplicity we assume that the rewaRg (s,a) is deterministic, however all our results apply
whenRy (s,a) is stochastic.

A strategy for an MDP assigns, at each timir each state a probability for performing action
acU(s), given a historyr_1 = {s1,a1,r1,...,S-1,&-1,—1} Which includes the states, actions and
rewards observed until time— 1. A policy is memory-less strategy, i.e., it depends only on the
current state and not on the history. A deterministic policy assigns each state a unique action.

While following a policy twe perform at time actiona; at states and observe a rewang
(distributed according t&y (s,a)), and the next statg; (distributed according t@é\r’fs‘ﬂ(at)). We
combine the sequence of rewards to a single value called the return, and our goal is to maximize
the return. In this work we focus adiscounted returnwhich has a parametgre (0,1), and the
discounted return of policyis Vi = z{ioy‘rt, wherer; is the reward observed at tinheSince all

the rewards are bounded By, .« the discounted return is boundedWyax = Ffja\‘lx

We define a value function for each stateinder policyr, asVyi(s) = E[S{,riy], where the
expectation is over a run of policy starting at states. We define a state-action value function
Qi (s.a) = Ru(s.a) + vy sPi(a)Vi(5) , whose value is the return of initially performing actian
at states and then following policyrt. Sincey < 1 we can define another parameffes (1—vy)/2,
which will be useful for stating our results. (Note thafladecrease¥mnax increases.)

Let 1 be an optimal policy, which maximizes the return from any start state. (It is well known
that there exists an optimal strategy, which is a deterministic policy (Puterman., 1994).) This im-
plies that for any policytand any statewe haveVjf (s) > VJi(s), andrt*(s) = argmax, (Ru (s, a) +
V(3¢ PM,(a)max, Q(s, b)). The optimal policy is also the only fixed point of the operat®iQ) (s, a) =
Ru(S @) +Y¥ ¢ Pse(a) max, Q(s, b). We usevy; andQy, for Vi andQfy, respectively. We say that
a policytis ane-approximation of the optimal policy ifVy; —Vyjllo < €.

For a sequence of state-action pairs letd¢beering time denoted by, be an upper bound on
the number of state-action pairs starting from any pair, until all state-action appear in the sequence.
Note that the covering time can be a function of both the MDP and the sequence or just of the
sequence. Initially we assume that from any start state, witlsteps all state-action pairs appear
in the sequence. Later, we relax the assumption and assume that with probability ét fearst
any start state ih steps all state-action appear in the sequence. In this paper, the underlying policy
generates the sequence of state action pairs.

The Parallel Sampling ModeRSM), as was introduced by Kearns and Singh (1999). The
PSM) is an ideal exploration policy. A single call 8SM) returns for every pai(s,a) the next
states, distributed according t@s':"s,(a) and a reward distributed according t&y(s,a). The
advantage of this model is that it allows to ignore the exploration and to focus on the learning. In
some sensBSM) can be viewed as a perfect exploration policy.

Notations: The notationg = fz(f) implies that there are constartts and ¢, such thatg >
c1fIn®(f). All the norms|| - ||, unless otherwise specified, dtg norms, i.e.,||(X1,...,X))| =
max X .
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3. Q-learning

The Q-learning algorithm (Watkins, 1989) estimates the state-action value function (for discounted
return) as follows:

QH—l(S’ a') - (1_ Qt (87 a))Qt(S7 a') + at(s7 a)(RM(57 a) +ybgljja(.;() Qt(sl7 b))? (1)

wheres is the state reached from statevhen performing actiora at timet. Let TS2 be the

set of times, where actioa was performed at statg thena;(s,a) = 0 fort ¢ TS2. It is known

that Q-learning converges Q" if each state action pair is performed infinitely often angs, a)

satisfies for eacts, a) pair: 51, 0¢(s,a) = © andy; ; 02(s,a) < o (Bertsekas and Tsitsiklis, 1996,

Tsitsiklis, 1994, Watkins and Dyan, 1992, Littman and Szepes¥996, Jaakkola et al., 1994).
Q-learning is an asynchronous process in the sense that it updates a single entry each step.

Next we describe two variants of Q-learning, which are used in the proofs. The first algorithm is

synchronous Q-learningvhich performs the updates by using th§M). Specifically:

Vs,a @ Qo(s,a)=C

vsa @ Qua(sa) = (1-op)Q(sa) +a’(Ru(s.a) + Y, max Q(s,b)),

wheres is the state reached from statevhen performing actiom andC is some constant. The

learning rate s’ = ﬁ for w e (1/2,1]. We distinguish betweenlaear learning rate which

is w= 1, and gpolynomial learning ratewhich isw € (%, 1).
Theasynchronous Q-learning algorithiis simply regular Q-learning as define in (1), and we
add the assumption that the underlying strategy has a covering timd e updates are as follows:

Vs,a @ Qo(s,a)=C
vs,a Qt+1(s,a)=(1—Gt‘°(s,a))Qt(s,a)+0(¥"(S,a)(Rm(S,a)+vbr€nuaz>s_<th(STb))

wheres is the state reached from stat@vhen performing actiom andC is some constant. Let
#(s,a,t) be one plus the number of times, until timehat we visited state and performed action
a. The learning ratei’(s,a) = m if t € T> andaf’(s,a) = 0 otherwise. Againp=1is a
linear learning rate, ana € (%, 1) is a polynomial learning rate.

4. Our Main Results

Our main results are upper bounds on the convergence rates of Q-learning algorithms and showing
their dependence on the learning rate. The basic case is the synchronous Q-learning. We show that
for a polynomial learning rate we have a complexity, which is polynomia)/iiity) =1/(2p). In
contrast, we show that linear learning rate has an exponential dependen@ @Qutresults exhibit
a sharp difference between the two learning rates, although they both converge with probability one.
This distinction, which is highly important, can be observed only when we study the convergence
rate, rather than convergence in the limit.

The bounds for asynchronous Q-learning are similar. The main difference is the introduction of
a covering time.. For polynomial learning rate we derive a bound polynomial/ifi,Jand for linear
learning rate our bound is exponentialén We also show a lower bound for linear learning rate,
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which is exponential ir%. This implies that our upper bounds are tight, and that the gap between
the two bounds is real.

We first prove the results for the synchronous Q-learning algorithm, where we update all the
entries of the Q function at each time step, i.e., the updates are synchronous. The following theorem
derives the bound for polynomial learning rate.

Theorem 2 Let Qr be the value of the synchronous Q-learning algorithm using polynomial learn-
ing rate at time T. Then with probability at leakt- 8, we have that|Qr — Q*|| < €, given that

1
2 IS |A[Vinax © 1
T _ Q Vmaxln( 6[35 ) + <l Vmax) 1-w

—1In
8282

B

The above bound is somewhat complicated. To simplify, assumeuttsaé constant and con-
sider first only its dependence @n This gives usQ((In(1/¢)/e2)Y/® + (In(1/¢))Y1-9)), which
is optimized wherw approaches one. Considering the dependence onf; oecall thatVinax =
Rmax/(2B), therefore the complexity i€(1/B%® + 1/pY/(1-%) which is optimized forw = 4/5.
The following theorem bounds the time for linear learning rate.

Theorem 3 Let Qr be the value of the synchronous Q-learning algorithm using linear learning rate
attime T. Then for any positive constajntvith probability at leastl — 6, we haveg|Qr — Q*|| <&,

given that
110 Vinay Vi In(MWmaX)
T (((Zw)m ST

Next we state our results to asynchronous Q-learning. The bounds are similar to those of syn-
chronous Q-learning, but have the extra dependency on the covering.time

Theorem 4 Let Qr be the value of the asynchronous Q-learning algorithm using polynomial learn-
ing rate at time T. Then with probability at leakt- 6, we have|Qr — Q|| < g, given that

1
AVmax © =
T=0 (L1+3W”2’axln( - ‘6&8 )) + (E In Vmax) -

p2e? B e

The dependence on the covering time, in the above theore®{l &1/ 4+ L1/(1-9)) which is
optimized forw = 0.77. For the linear learning rate the dependence is much worse, since it has to
be thatl > |S - |A|, as is stated in the following theorem.

Theorem 5 Let Qr be the value of the asynchronous Q-learning algorithm using linear learning
rate attime T. Then with probability at leakt- 8, for any positive constam we have|Qr — Q*|| <
€, given that

AlVimax
\@ Vr%axln( ‘ﬂé‘ﬁ‘gwma )

(WBe)?

T=0|(L+yL+1)i"
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The following theorem shows that a linear learning rate may require an exponential dependence
on 1/(2B) = 1/(1—vy), thus showing that the gap between linear learning rate and polynomial
learning rate is real and does exist for some MDPs.

Theorem 6 There exists a deterministic MDP, M, such that Q-learning with linear learning rate
1
after T=Q((1)™7) steps haglQr — Q|| > €.

5. Experiments

In this section we present experiments using two types of MDPs as well as one Wiy cahich
is used in the lower bound example from Section 10. The two MDP types are the “random MDP”
and “line MDP”. Each type containsstates and two actions for each state.
We generate the “random MDP” as follows: For every statctiona and statej, we assign
a random numbem; j(a) uniformly from [0,1]. The probability of a transition from staid¢o state

j while performing actiorais p; j(a) = z:ﬂ&g. The rewardR(s,a) is deterministic and chosen at
random uniformly in the intervgD, 10].

For the line MDP, all the states are integers and the transition probability from $tes¢ate]
is proportional toﬁ wherei # j. The reward distribution is identical to that of the random MDP.

(We implemented the random function using the function rand() in C.)
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Figure 1: Example of 100 states MDP (both line and random), where the discount factofig.
We ran asynchronous Q-learning using a random exploration policy fost&ps.

Figure 1 demonstrates the relation between the exponent of the learningaatkthe accuracy
of the model. The best experimental valuedois about 085. Note that whew approaches one (a
linear learning rate), the precision deteriorates. This behavior coincides with our theoretical results
on two points. First, our theoretical results predict bad behavior when the learning rate approaches
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one (an exponential lower and upper bound). Second, the experiments suggest an optimal value for
w of approximately B5. Our theoretical results derive optimal values of optimdbr different

settings of the parameters but most give a similar range. Furthermore, the two types of MDP have
similar behavior, which implies that the difference between linear and polynomial learning rates is
inherent to many MDPs and not only special cases (as in the lower bound example).

Random MDP Line MDP
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Figure 2: Example of 10 state MDPs (both random and line) using two different learning rates

for Q-learning. Both use random exploration policy for’ ieps. The solid line is
asynchronous Q-learning using= 0.7; the dashed line is asynchronous Q-learning using

a linear learning rateuf = 1.0).

Figure 2 demonstrates the strong relationship between discount fa@ad convergence rate.
In this experiment, we again see similar behavior in both MDPs. When the discount factor ap-
proaches one, Q-learning using linear learning rate estimation @ tredue becomes unreliable,
while Q-learning using learning rate af= 0.7 remains stable (the error is below 0.1).

Figure 3 compares two different learning raies 0.6 andw = 0.9 for ten state MDPs (both ran-
dom and line) and finds an interesting tradeoff. For low precision levels, the learning cate 06
was superior, while for high precision levels the learning rate ef 0.9 was superior. An explana-
tion for this behavior is that the dependence in termsiefQ((In(1/£)/e2)Y° + (In(1/g))Y (=),
which is optimized as the learning rate approaches one.

Our last experimental result Mo, the lower bound example from Section 10. Here the differ-
ence between the learning rates is the most significant, as shown in Figure 4.

6. Background from Stochastic Algorithms

Before we derive our proofs, we first introduce the proof given by Bertsekas and Tsitsiklis (1996) for
the convergence of stochastic iterative algorithms; in Section 7 we show that Q-learning algorithms
fall in this category. In this section we review the proof for convergence in the limit, and in the next
sections we will analyze the rate at which different Q-learning algorithms converge. (We will try

to keep the background as close as possible to the needs for this paper rather than giving the most
general results.)
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dashed line is synchronous Q-learning using 0.9 and the the solid line is synchronous
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Figure 4: Lower bound examphdy, with discount factoy = 0.9. Q-learning ran with two different
learning rates, linear (dashed line) and- 0.65 (solid line).

This section considers a general typdtefative stochastic algorithmavhich is computed as
follows:

Xe1(1) = (L= (1)) X (i) + e (1) (HeX) (1) +-we (1)), ()
wherew; is a bounded random variable with zero expectation, and dashassumed to belong to
a familyH of pseudo contraction mappings (See Bertsekas and Tsitsiklis (1996) for details).

Definition 7 An iterative stochastic algorithm is well-behaved if:
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1. The step sizey(i) satisfies (L o0 (i) = o, (2) 31 002(i) < w0 and (3)a (i) € (0,1).
2. There exists a constant A that boundsi Wor any history F, i.e.,vt,i: |w(i)| <A.

3. There existg € [0,1) and a vector X such that for any X we haygH; X — X*|| <y||X — X*||.

The main theorem states that a well-behaved stochastic iterative algorithm converges in the
limit.

Theorem 8 [Bertsekas and Tsitsiklis (1996)] Let Ke the sequence generated by a well-behaved
stochastic iterative algorithm. Then Bonverges to Xwith probability 1.

The following is an outline of the proof given by Bertsekas and Tsitsiklis (1996). Without loss
of generality, assume thXt' = 0 and|| Xo|| < A. The value ofX; is bounded sincéXo|| < Aand for
any historyR we have||w; | < A; hence, for any we have||X;|| < A.

Recall that = 1—;\’ Let D1 = A andDg;1 = (1—PB)Dx for k > 1. Clearly the sequendgy
converges to zero. We prove by induction that for evetiiere exists some tinm such that for
anyt > 1 we have||X;|| < Dk. Note that this will guarantee that at tihe> 1y for anyi the value
|I%(1)|| is in the interval—Dy, D].

The proof is by induction. Assume that there is such a tigy@nd we show that there exists a
time Ty 1 such that fot > 1,1 we have||X;|| < Dg;1. SinceDg converges to zero this proves that
X; converges to zero, which equad$. For the proof we define fdr> t the quantity

Wiz (1) = (1 — 0 (i)W (1) + 0 (D we (i),

whereW;: (i) = 0. The value ofM;; bounds the contributions afj(i), j € [1,t], to the value o
(starting from timer). We also define for > 1,

Yerp(i) = (1= 0 (i)Yo () + 0 (1) YDx

whereY;,r, = Dx. Notice thatY:;, is a deterministic process. The following lemma gives the
motivation for the definition o¥;.r, .

Lemma 9 [Bertsekas and Tsitsiklis (1996)] For every i, we have
—Yiu (1) + W (1) < X (i) < Y (1) +Wer, (1)
Next we use Lemma 9 to complete the proof of Theorem 8. From the definitidf @nd the

assumption thay - ,a; = oo, it follows thatY;;; converges tgDy ast goes to infinity. In addition
W, converges to zero asgoes to infinity. Therefore there exists a timg1 such thatY;; <

(Y+ %)Dk, and|W., | < BDx/2. This fact, together with Lemma. 9, yields that for 1y, 1,

[I%|] < (V+B)Dx = Diy1,

which completes the proof of Theorem 8.
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7. Applying the Stochastic Theorem to Q-learning

In this section we show that both synchronous and asynchronous Q-learning are well-behaved it-
erative stochastic algorithms. The proof is similar in spirit to the proof given by Bertsekas and
Tsitsiklis (1996) At the beginning we deal with synchronous Q-learning. First define opkrat®r

n

(HQ)(i,a) = Z)P.j(a)(R(i@ +vbr€rbe}>j<)Q<J,b))

J:
Rewriting Q-learning wittH, we get
Q[+1(i,a) = (1_at(iaa))Qt(iaa) +O(t(i,a)((HQ[)(i,a) +\Nt(|7a))
Leti is the state reached by performing at titraetiona in statei andr (i, s) is the reward observed

at timei; then

(1.9 =r(1.9+y max %P., ) (R +ymax (i)

beU (i

In synchronous Q-learningf is computed simultaneously on all states actions pairs.
Lemma 10 Synchronous Q-learning is a well-behaved iterative stochastic algorithm.

Proof We know that for any historfz E[w(i,a)|R] = 0 and|w;(i,a)| < Vinax We also know that
for 3 < w< 1 we have thay a:(s,a) = », 3 aZ(s,a) < » andai(s,a) € (0,1).
We need only show th&d satisfies the contraction property.

|(HQ)(i,a) — (HQ)(i,a)| < J;)F’.j(a)lvb@u%Q(Lb)—vbrEnU%Q(Lb)\

— P i.b) — b
,;) J(a)vlbrgU%Q(J ) maxQ(J )i

beU (j

n

I:>I' 'ab - o) .ab
< ,Zo J<a)vbgba}>j<)lQ(J ) —Q(j,b)]
< v R@IQ-a) <vio-0l
3P

Since we update afl,a) pairs simultaneously, synchronous Q-learning is well-behaved stochas-
tic iterative algorithm. [ |

We next show that Theorem 8 can be applied also to asynchronous Q-learning.

Lemma 11 Asynchronous Q-learning, where the input sequence has a finite covering time L, is a
well-behaved iterative stochastic algorithm.

Proof We defineHQ for every start stateand start time; of a phase (beginning of the covering
time) until the end of the phase (completing the covering time) at timeéuring which all state-
action pairs are updated. Since a state action can be performed more thakl @ce) can be

10
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performed more than once. We consider timie which the policy performs actioaat statd and
Q is the vector. We have that

[(HQ)(i,8) — (HQ)(i,a)| < Z)PIJ IvmaXQt(J b) — VbFGTE%Q*(J,b)I

beU (j

= ,;) ()IbgU%Qt(j,b) maxQ(J b)|

n

= cU(j)

,;P'" (a)vbg% |Qe(j,b) —Q*(j,b)|
+ 3 Pu(@y,max|Q(1.b) ~ Q'(j.b)
< VI —Ql,

IN

IN

whereA includes the states for which duririgy,t) all the actions inJ (i) were performed, and
B = S— A. We conclude thatQy — Q|| < ||Qv_1— Q*||, since we only change at each time a sin-
gle state-action pair, which satisfig$Q;(i,a) — Q*(i,a)| <Vy|Q: — Q*|. We look at the operatd
after performing all state-action paifiQ — Q*[| < maxa|HQ(i,a) — Q*(i,a)| < V[|Q — Q*[| <
vIQ—Q']. =

8. Synchronous Q-learning

In this section we give the proof of Theorems 2 and 3. Our main focus will be the valye-of
|Q: — Q*||, and our aim is to bound the time untjl < . We use a sequence of valugs such
thatDy.1 = (1— B)Dx andD1 = Vimax. As in Section 6, we will consider timeag such that for any
t > 1x we haver; < Dg. We call the time betweery andty, 1 thekth iteration. (Note the distinction
between a step of the algorithm and an iteration, which is a sequence of many steps.)

Our proof has two parts. The first (and simple) part is bounding the number of iterations until
D; < ¢&. The bound is derived in the following Lemma.

Lemma 12 Form> iIn

5 (Vmax/€) we have [ < €.

Proof We have thaD; = VinaxandD; = (1—)Di_1. We want to find them that satisfieD, =
Vimax(1—B)™ < €. By taking a logarithm over both sides of the inequality werget % IN(Vmax/€). A

The second (and much more involved) part is to bound the number of steps in an iteration. We
use the following quantities introduced in Section 6. W\f1(s,a) = (1—a{’(s,a))W (s,a) +
of(s,a)w(s,a), whereW(s,a) = 0 and

beU (s

wt(s,a):R(sa)ermaths'b ZPSJ ( (s,a) +ymath(J b))

11
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wheres is the state reached after performing actiomt states. Let
Yir1m (S,@) = (1—a{(s,@)) Ve, (S,@) +0°(S, @) YDk,
whereYy,.r, (S,a) = Dk. Our first step is to rephrase Lemma 9 for our setting.
Lemma 13 For every state s action a and timg we have
Vi (s,8) + W (s,8) < Q'(s,a) — Qi(s @) < Vg (Sa) +Wn (@)

The above lemma suggests (once again) that in order to bound theiesra can boundt.r,
andW., separately, and the two bounds imply a boundoWe first bound thé; term, which is
deterministic process, and then we bound the t&4n, which is stochastic.

8.1 Synchronous Q-learning using a Polynomial Learning Rate

We start with Q-learning using a polynomial learning rate and show that the duration of itdgation
which starts at timey and ends at timex1, is bounded byr’. For synchronous Q-learning with a
polynomial learning rate we defing,; = 1 + 1, wherety will be specified latter.

Lemma 14 Consider synchronous Q-learning with a polynomial learning rate and assume that for
any t> 1 we have ¥;,(s,a) < Dx. Then for any t 1+ 1° = k1 We have ¥, (s,a) < Dy(y+ %B).

Proof Let Yyt (S @) = YDk + pr,, Wherepy, = (1—y)Dg. We can now write
Yir17.(5 @) = (1—af’) Yy (s,@) + aP’yDy = yDx + (1— af’)pr,

wherep;1 = pr(1—af®). We would like to show that after timg1 = 1« + 1 for anyt > 14,1 we
havep; < %BDk. By definition we can rewritg; as

t—Tk t—1k t—Tk 1

pr = (1—-y)Dx r!(l— A’ y,) = 28Dk H(l— A’ y,) = 2BDk D(l— i

v +Tk>w),

where the last identity follows from the fact thaf® = 1/t®. Since thea{”’s are monotonically

decreasing

1
Pt < 2BDy(1- @)Hk'

Fort > 1¢ + 1> we have
1 .0 2
Pt < 2BDy(1— =)™ < —BDx.
T e
Hence Y., (s.a) < (y+ 2B)Dx. u

Next we bound the termt.,, by (1— %)BDk. The sum of the bounds fot ¢, (s,a) andY;.¢ (s, @)
would be(y+ )Dx = (1— B)Dk = D1, as desired.

Definition 15 Let W.r, (s,a) = (1 —a’(s,a)\W_11,(S,a) + 0{’(s, )W (S, a)

— Z}:rwl r]!"t (s,a)wi(s,a), wheren!"t (s,a) = afirk(s, a) ﬂtj:tk+i+1(1_ cx‘j*’(s, a)) and IetV\I;Tk(s, a)=
k

SH N (s awi(s a).

12
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Note that in the synchronous modgP(s, a) andn!"t(s, a) are identical for every state action pair.
We also note th t;{krk*l(s, a) =Wy, (s,a). We have bounded the terf,, for t = T 1. This
bound holds for any > 1,1, since the sequendgy, is monotonically decreasing. In contrast, the
termW, is stochastic. Therefore it is not sufficient to botvg, , ¢, but we need to bound,
fort > 1¢1. However, it is sufficient to considere [tk 1, Tks2]. The following lemma bounds the

coefficients in that interval.

Lemma 16 For any te [Ty 1, Tki2] and i€ [ty t], we haven!"t = G)(Tkiw),

e |‘|tj:Tk+i+1(l— af),we can dividenf! into two parts, the first onef
and the second one= ﬂtj:tk+i+l(1_ af). We show that the first one @(%) and the second is
constant.

Sincea(},, are monotonically decreasing we have for eviefy[tk, Tk 2] we haveay, <o <o

1 w
thus@ <op < i

Proof Sincen = a®

w
Tyt2!

. Next we boundu Clearlyu is bounded from above

1 1 1
Tt 0 = @ege © 4P

by 1. Alsop> 1742 (1—aj) > (1— %)% > 4. Therefore, we have that for everg [T, Tky2),

i =O(5h). u

W9
We introduce Azuma'’s inequality, which bounds the deviations of a martingale. The use of
Azuma’s inequality is mainly needed for the asynchronous case.
Lemma 17 (Azuma 1967)Let X, Xy, ..., Xy be a martingale sequence such that for edghk < n,
’Xk - Xk—l’ S Ck7

where the constanianay depend on k. Then for albnl and anye > 0

Pr{|X,— Xo| > €] < 2e #ka%
Next we show that Azuma’s inequality can be applietig, .

Lemma 18 For any te [Tyy1, k2] @and1 <1 <t we have that \A{k(s, a) is a martingale sequence,

which satisfies

W (s.2) ~Wii(sa) < e<";“—§x>

Proof We first note thaw';Tk(s, a) is a martingale sequence, since
- K,
E[\MI;Tk (S’ a) - I;Tkl(s’ a‘) ’ FTk+| *1] = Emr:H (57 a-)er+| (S, a) | Frk+| ,1]
k
= ' Ewgi(s.8)|Fy-1] =0.

By Lemma 16 we have thal™' (s, a) = ©(1/1®), thus

- : Vi
W, (8:8) W (. 2)] = 5L (5.2 W (8.2)] < O

The following lemma provides a bound for the stochastic error caused by th&\e[iy using
Azuma’s inequality.

13
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Lemma 19 Consider synchronous Q-learning with a polynomial learning rate. With probability at
leastl— 2 we haveWy, | < (1— 2)BDy for any te€ [ti:1,Tks2), i€,
2 0
Privt & [Tees Ter2] - e < (1= )BDk| 21~ —

B2Dg
Proof By Lemma 18 we can apply Azuma’s inequality\tﬂpﬁr‘;k*l with ¢ = G)(VT"?kA,ﬂX) (note that
L =Wy, ) . Therefore, we derive that

—282

~ st 2 g
PriWz (s, a)[ = €t € [Tirr, Tkeal] < 2™t < 2gCWE Mo

for some constant > 0. Setdy = 2e~ & /Miex, which holds fort® = ©(In(1/8)V2,,/€2). Using
the union bound we have,

Privt € [Tkie, Tkr2] @ Whr (s,@) <E] < z Pr W, (s,a) <,
t=Tk41

thus takingSk = m assures that with probability at Ieast—]%1 the statement hold at

every state-action pair and tinhe [Tk 1, Tk12]. As a result we have,

=0 ((Vnzwaxln(|8|§2A| ”“?/5) )1/(0) -0 ((Vr%axln<‘s| ’A’ mV‘maX/5§) )1/co>

g2

Settingé = (1— 2/e)BDx gives the desire bound. [ |

We have bounded for each iteration the time needed to achieve the desired precision level with
probability 1— % The following lemma provides a bound for the error in all the iterations.

Lemma 20 Consider synchronous Q-learning using a polynomial learning rate. With probability
atleastl— 9, for every iteration ke [1,m] and time t€ [Ti:1, Tky2] We have W, < (1— %)BDK, ie.,

2
Pr [Vke [1, m], YVt e [Tk+1,Tk+z] : |\M;1-k| < (1— é>BDk:| >1-79,

given thattg = @((Vrﬁaxln(VmEx\jzlA\/(?SBS)) YL/,

Proof From Lemma 19 we know that
2
Pr Y € (s, Tz ks > (1 2)BDK

t
. kt x| _ O
= Pr [VS,&V'[ € [Tkt Tepo) : Z wi(s,a)nt > s] <

14



LEARNING RATES FORQ-LEARNING

Using the union bound we have,

Pr le,aVKg m,Vt € [Tks1, Tks2) Z w; (s, a)r]!‘*t > €

m t
< z Pr [Vs,th € [Tkt1, Tkr2) z w; (s, a)r]:"t > s] <9d
K=1 i=

|
—
=

where€ = (1— 2)BDy. u

We have bounded both the size of each iteration, as a function of its starting time, and the
number of the iterations needed. The following lemma solves the recurtgnce- 1 + 1 and
bounds the total time required (which is a special case of Lemma 32).

Lemma 21 Let

k
&1 =a+a =a+ %eq‘*’.
i=
For any constant € (0,1), a = O((ag ©+ k)ﬁ) =O(ap+ kﬁ)
The proof of Theorem 2 follows from Lemma 21, Lemma 20, Lemma 12 and Lemma 14.

8.2 Synchronous Q-learning using a Linear Learning Rate

In this subsection, we derive results for Q-learning with a linear learning rate. The proof is very
similar in spirit to the proof of Theorem 2 and we give here analogous lemmas to the ones in
Subsection 8.1. First, the number of iterations required for synchronous Q-learning with a linear
learning rate is the same as that for a polynomial learning rate. Therefore, we only need to analyze
the number of steps in an iteration.

Lemma 22 Consider synchronous Q-learning with a linear learning rate and assume that for any
t > 1 we have ¥, (s,a) < Dx. Then for any & (2-+ )Tk = Tk, 1 We have ¥, (s,a) < Dk(y+ ﬁ B)

Proof Let Yyt (S @) = YDk + pr,, Wherep;, = (1—y)Dg. We can now write

Yir1n(S,@) = (1—0)Yer (S,8) + 0 yDi = YDk + (1 — ap)py,
wherepi;+1 = pt(1— at). We would like show that after timg + )tk = Tx4+1 for anyt > 141 we

havep; < BDy. By definition we can rewrit@; as,

t—1k [ t—Tk 1

Pt = (1—y)Dk ﬂ(l— 0j4r,) = 2BDx ﬂ(l— aj4r,) = 2BDxk H(l—

|+Tk)’

where the last identity follows from the fact that = 1/t. Simplifying the expression, and setting
t = (24 )1k, we have

T 2DkB
< 2DB— =
Pt < 2Dy t 210

15
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Hence Y:.r,(s,8) < (Y+ 5258)Dk "

The following lemma enables the use of Azuma’s inequality.

Lemma 23 For any t> 1¢ and1 < | <t we have that Wk(S, a) is a martingale sequence, which
satisfies

W, (5:2) ~ Wi (s.2) < T
Proof We first note thaW';Tk(s, a) is a martingale sequence, since
EW., (s8) -~ W l(s.a)[Fya1] = ENE (52w (s.8)Fy-1)
= N EWge (s,8)|Fyi—1] = 0.
For linear learning rate we have thﬁ‘tjrk(s, a) = 1/t, thus

Wi+ (s,a) <Vmax
t -t

|V\4I;rk(sa a) - I;rll(sv a)‘ =

The following Lemma provides a bound for the stochastic tégr).

Lemma 24 Consider synchronous Q-learning with a linear learning rate. With probability at least
1- 2, we havgWy, | < %BDk for any te [Ty, 1, Tks2] and any positive constant, i.e.

o)
Pr iVt € [Tke1, Tka2] 1 W, < 2+wBDk Zl—ﬁ

. 2
given thatry = @(me'n<vma$§ﬁ|%?/<waﬁok>>)

Proof By Lemma 23 for any > Ty1 we can apply Azuma’s inequality ', Tk“ with ¢; = I\%‘:

(note tha t Tk” =W ). Therefore, we derive that

282 282 22
~ T2 C——o— c
Pr{[[Wer, | > & [t > Tipq] < 267-%T = 2e (- WVhax < 2 Vhax

for some positive constart Using the union bound we get

Privt € [tkee, Twz] - W | > €] < Privt > (24 @)t Wy | > €]

< Pr{W, | > €]
t=(2+y) 1
o o2 _ol2rm e @ g
< 2e Viax — 2e Vifiax Z}e Viax
t=(2+yP) 1 t=
_C(2+L11)'[k§2 B &2
_ 2e Viax _ G)( e Viax Vr%ax>
- —§2 - 82 )
1 — eVfax
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where the last equality is due to Taylor expansion a@hié some positive constant. By setting
c’rks
V2.
T = @(%) which holds fort = @( Yaad" (e A/ (%)) and = 715 BDk assures us
that for everyt > 1.1 (and as a result for arntye [Tk+1,1'k+2]) with probability at least 1 % the
statement holds at every state-action pair. |

We have bounded for each iteration the time needed to achieve the desired precision level with
probability 1— % The following lemma provides a bound for the error in all the iterations.

Lemma 25 Consider synchronous Q-learning using a linear learning rate. With probalilityd,
for every iteration ke [1,m], time t€ [Tk, 1, Tky2] and any constanp > 0 we haveW.q, | < ‘WDK)

21
ie.,

llJBDk} >1-s,

2+

Pr [Vk € [1,m], vt € [Tks1, Tkez]  Whp | <

given thattg = e(vmax (Vmax‘SB‘A‘m/(wéﬁe)))

Proof From Lemma 19 we know that

<8
m

D
Pr |:Vt S [Tk+1,Tk+2] ‘\M Tk’ = qJB k:|

2+

Using the union bound we have that,

D
Pr [Vk <MV € [Tkea, Thy2) o Wy | > LZIJE_ L||j]

lIJBDk] <5
2+ | —

m
Z [Vt € [Tke1, Tky2) - Wt | >

The proof of Theorem 5 follows from Lemmas 25 and 22, 12 and the facathat= (2+
Wak = (2+ P)Kay.

9. Asynchronous Q-learning

The major difference between synchronous and asynchronous Q-learning is that asynchronous Q-
learning updates only one state action pair at each time while synchronous Q-learning updates all
state-action pairs at each time unit. This causes two difficulties: the first is that different updates
use different values of the Q function in their update. This problem is fairly easy to handle given
the machinery introduced. The second, and more basic problem is that each state-action pair should
occur enough times for the update to progress. To ensure this, we introduce the notion of covering
time, denoted by.. We first extend the analysis of synchronous Q-learning to asynchronous Q-
learning, in which each run always has covering timevhich implies that from any start state, in

L steps all state-action pairs are performed. Later we relax the requirement such that the condition
holds only with probability 12, and show that with high probability we have a covering time of
LlogT for a run of lengthT. Note that our notion of covering time does not assume a stationary

17
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distribution of the exploration strategy; it may be the case that at some periods of time certain state-
action pairs are more frequent while in other periods different state-action pairs are more frequent.
In fact, we do not even assume that the sequence of state-action pairs is generated by a strategy—it
can be an arbitrary sequence of state-action pairs, along with their reward and next state.

Definition 26 Letn(s,a,t1,t2) be the number of times that the state action gaia) was performed
in the time intervalts, to].

In this section, we use the same notations as in Section Bfori, Y:.r, andW.,, with a different
set of values fory. We first give the results for asynchronous Q-learning using polynomial learning
rate (Subsection 9.1); we give a similar proof for linear learning rates in Subsection 9.2.

9.1 Asynchronous Q-learning using a Polynomial Learning Rate

Our main goal is to show that the size of tkih iteration isLty. The covering time property
guarantees that ity steps each pair of state action is performed at gasimes. For this reason
we define for asynchronous Q-learning with polynomial learning rate the sequence 1+ LT},
wheret; will be specified later. As in Subsection 8.1 we first bound the valog ©f

Lemma 27 Consider asynchronous Q-learning with a polynomial learning rate and assume that for
any t> 1, we have ¥, (s,a) < Dx. Then for any t T+ LT{ = Ty.1 e have ¥, (s,a) < D(y+ 2p)

Proof For each state-action pd, a) we are assured thats, a, Ty, Tk+1) > T, Since the covering

time isL and the underlying policy has matlg}’ steps. Using the fact that thgy, (s, a) are mono-
tonically decreasing and deterministic, we can apply the same argument as in the proof of Lemma
14. [ |

The next Lemma bounds the influence of each sanvlg a) onW., (s, a).

Lemma 28 LetW, ., (s,a) = n!"t(s, a)Wiiq, (S, a) then for any te [Tx:1, Tky2] the random variable

W ., (s,@) has zero mean and bounded (hy Tx) “Vinax

Proof Note that by definitiom, +i(s,a) has zero mean and is boundedMsx for any history and

state-action pair. In a time interval of lengthby definition of the covering time, each state-action
. . . kit w ; i

pair is performed at least/L times; thereforen;” (s,a) < (L/1x)®. Looking at the expectation of

Wi, (S, @) we observe that

E[W,+, (5.8)] = EINf (s, @)W (5,8)] = 0 (5. @) E[Wi 1, (5,2)] = 0
Next we prove that it is bounded as well:

W (5.8)]

K (s, )W v, (5,8)]
Nt (s, @) [Vimax
(L/Tk)w\/max

IN A

Next we defineM';Tk(s, a)= g!zl\KI}HK(S, a) and prove that it is martingale sequence with bounded
differences.

18
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Lemma 29 For any te [Tyy1,Tki2] @and1 <1 <t we have that \Nk(s, a) is a martingale sequence,
which satisfies
‘\MI;TK<37 a) - I;TT}(& a)’ < (L/Tk)wvmax

Proof We first note thaw';rk(s, a) is a martingale sequence, since
E[\Ml;tk(sv a) _V\él;t_kl(g a)|FTk+|—1] = E[\KI}+Tk(S, a)‘FTk‘H—ﬂ =0.

By Lemma 28 we have tha\l}J:Tk(s, a) is bounded by(L /Tk)“Vmax thus

|V\4I;Tk(sa a) - I;a(l(sa a)‘ = VNV}—Hk(Sv a) < (L/Tk)w\/max-

The following Lemma bounds the value of the teivy, .

Lemma 30 Consider asynchronous Q-learning with a polynomial learning rate. With probability

at leastl — % we have for every state-action paw.. (s,a)| < (1— %)BDK for any te [Tis1, Tke2),

ie. ) 5
Pr |Vs,avt € [Tki1, Tke2) @ (W (S,@)] < (1— E)BD" >1-— -

given thatr, = O(( LWV"Z‘“'”(VE%? A/ (OBDK)) ) 1/3)

Proof For each state-action pair we look @4, (s,a) and note thai\;;, (s,a) = t;T_ka“(s, a). Let
¢ =n(s,a,Tk,t), then for anyt € [Tyy1,Tks2] we have that < Ty, 2 — Tk < @(L”‘*’r‘l;’). By Lemma
29 we can apply Azuma’s inequality t;;ktk“(s, a) with ¢ = (L/tk)“Vimax. Therefore, we derive
that
—§2 g2
PrMie, (5,8)] > B[t € [Trir, Tero)] < 267wctier % < 2g ifai
521.0)

k
—C
S 2e Ll+3mezax7

for some constart> 0. We can s, = 2 W&/ (L *Miad, which holds for® = ©(In(1/8,) L1392, /82),
Using the union bound we have

Privt € [Tki1, Tki2] - Wy (s,@) <E] < Z Pr W, (s,a) <,

t=Tk+1

thus takingE')k = m assures a certainty level of—1§1 for each state-action pair. As a

-5
Tk+2*Tk+1)‘a‘A|
result we have

Ll+3w\/n21axln(|8| |Al MVinax/ (G€))

L2, In(|S) A meg/8)
o 5 )

)
T, = =
k g2

) =6(

Settinge = (1— 2/e)BDx give the desired bound. [ |

We have bounded for each iteration the time needed to achieve the desired precision level with
probability 1— % The following lemma provides a bound for the error in all the iterations.
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Lemma 31 Consider asynchronous Q-learning using a polynomial learning rate. With probability
1, for every iteration ke [1,m| and time t€ [Tk, 1, Tky2] We havgWq, (s,a)] < (1— %)BDK, ie.,

Pr [Vk € [1,m], Vt € [Tks1, Tke2), VS,a: Wy (S,@)] < (1— E)BD"} >1-9,

given thatty = O(( LHSQ’Vr%ax'n(VEZaSX\ZS |AIm/ (3Be)) )l/u)).

Proof From Lemma 30 we know that

2 )
Pr vt € [sa. Tz ksl > (1 2)B0x <
Using the union bound we have that
~ m ~
Privk < mWt € [ti1, Tera] M| 28] < 5 Privt € [T, Tia] Mg | > €] <5,
K=1
where€ = (1— 2)BDy n

The following lemma solves the recurrengf ' Lt + 1o and derives the time complexity.

Lemma 32 Let )
a1 =ak+Llad=ap+ Z}La‘*’
i=

Then for any constamb € (0,1), & = O((a ™+ Lk)ﬁo) =O(ap+ (LK)ﬁ)).
Proof We define the following series
k
bk+1 = Lb® 4 bg

2"

with an initial condition .
bg=L%7o.
We show by induction that < (L(k+ 1))ﬁ fork>1. Fork=0
bo = L=a(0+1)s < Lra

We assume that the induction hypothesis holdgkferl and prove it fok,

1

b = b1 +Lb® | < (Lk) T8 + L(LK) =6 < Lrakes(k+1) < (L(k+1))Ts

and the claim is proved.
Now we lower boundy by (L(k+1)/2)Y(1-®) Fork =0

L. s

bo = LT5 (E)m

v
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Assume that the induction hypothesis holdsKer1 and prove fok,

by = bk—1+Lb(|2)_1:(Lk/z)ﬁ—l-L(Lk/Z)ﬁ:Lﬁ((k/z)ﬁ_i_(k/z)ﬁ)
> Lo ((k+1)/2)s.

Forag > L5 we can view the series as startindat= ag. From the lower bound we know that
the start point has movegi(ag®/L). Therefore we have a total complexity®f (a5 “+ Lk)ﬁ) =
1
O(ao+ (LK) ==)).
|

The proof of Theorem 4 follows from Lemmas 27, 31,12 and 32. In the following lemma we relax
the condition of the covering time.

Lemma 33 Assume that from any start state with probabilli§2 in L steps we perform all state
action pairs. Then with probability — 6, from any start state we perform all state action pairs in
Llog,(1/d) steps, for a run of lengtfLlog,(1/9)].

Proof The proof follows from the fact that aftérintervals of lengthL (wherek is a natural num-
ber), the probability of not visiting all state action pairs is2Since we havé = [log,(1/8)] we
get that the probability of failing i8. [ |

Corollary 34 Assume that from any start state with probabiliA? in L steps we perform all state
action pairs. Then with probabilit§ — &, from any start state we perform all state action pairs in
Llog(T /d) steps, for a run of length T.

9.2 Asynchronous Q-learning using a Linear Learning Rate

In this section we consider asynchronous Q-learning with a linear learning rate. Our main goal is
to show that the size of thih iteration isL(1+ @)1k, for any constant) > 0. The covering time
property guarantees that (fh+ )Lt steps each pair of state action is performed at lgasty)ty

times. The sequence of times in this cas&is = Tk + (1+ Y)Ltk, where thetg will be defined

latter. We first bound;.;, and then bound the stochastic teva, .

Lemma 35 Consider asynchronous Q-learning with a polynomial learning rate and assume that
for any t> 1 we have ¥;, (s,a) < Dx. Then for any © 1+ (14 )LTk = Tkr1 We have ¥, (s,a) <

(Y+ 225B)Dk

Proof For each state-action pds, a) we are assured thats, a, Tk, Tk+1) > (1+ Y)Tk , Since in an
interval of (1+ )Ltk Steps each state-action pair is visited at l€ast )tk times by the definition

of the covering time. Using the fact that thg, (s,a) are monotonically decreasing and determin-
istic (thus independent), we can apply the same argument as in the proof of Lemma 22. B

The following Lemma enables the use of Azuma'’s inequality.
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Lemma 36 For any t> 1¢ and1 < | <t we have that Wk(s, a) is a martingale sequence, which

satisfies
Vmax

| -1
- (s,a) —W. (s a)| < ————
‘V\é,'[k( ) ) Tk ( " )’ = n(S,a,o,t)
Proof We first note thaW';Tk(s, a) is a martingale sequence, since
- kit
By, (s,2) ~Wir (s.8)[Funa] = E (Nt (S @)Wy 41 (S, @) P11
K,
= nTgt-i-IE[WTk-H (s,a)|Fg41-1] =0.

For a linear learning rate we have trnﬁffJrI (s,a) =1/n(s,a,0,t), thus

| -1 k,t VmaX
|\M;Tk (S’ a) - Tk (57 a) | = r-].l-—k""I (S’ a) |er+| (57 a) | S n(s7 a7 Oyt) '

The following lemma bounds the value of the teWy, .

Lemma 37 Consider asynchronous Q-learning with a linear learning rate. With probability at
leastl — % we have for every state-action pdiM., (s,a)| < %BDk for any t> 14,1 and any
positive constand, i.e.

U} 0

Privte |t T : o(sa) < ——BDy| >1—
€ [Tkt1, Ty V\er(7)_2+wl3 K| =1-—

. 2
given thatty > @((Vmax'”(VmaalgB\zAtl;g/ (3BD)) )

Proof By Lemma 36 we can apply Azuma’s inequality‘ﬂﬁ{kaJrl (We note tha t;{kT“*l =W, )
with ¢ = O(%) for anyt > T1. Therefore, we derive that

=2
—2 n(sat e

. -,
PriW, | > € < 2e5=wi<Ts*T <2e 7 Vhax |

for some positive constauot Let us define the following variable

[ 1, a(s,@) #0
G(sa) _{ 0, otherwise

Using the union bound and the fact in an interval of lendth- @)Lty each state-action pair is
visited at least1+ )t times, we get

PrIvt € [Tesn,Tere) | M (8.)| 28] < Privt> (1 W)L+ 1T Mg (5.8)] >

Pr{|Wer (s, )| > €]
t=((14g)L+1)1¢

IN
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© - n(sa,O,t)EZ
< {i(s,@)2e ~ Vhax
t=((1+yP)L+1)tx

oAt e w2

< 2e Viiax %e Mdax
t=

_ oo _irzlé )
_ 2e Vifiax _ O(e Vifiax VmaX)
- g2 g2 ’

1 — eVinax

C/Tkéz
Y7 ~
for some positive constant Setting— ‘é’ = (& Vmgzx V"%aX), which hold fort, = G)(V"z’ﬁ‘x'n(Vr”a‘xg4 Am/(EE),
ande = %BDk assures us that for everry 11 (and as a result for artye [Ty 1, Tks-2]) with prob-

ability at least 1- % the statement holds at every state-action pair.

We have bounded for each iteration the time needed to achieve the desired precision level with
probability 1— % The following lemma provides a bound for the error in all the iterations.

Lemma 38 Consider synchronous Q-learning using a linear learning rate. With probalilityd,
for every iteration ke [1,m], time te [Ty 1, Tks2] and any constand > 0 we haveW.q, | < YO

. 24y
i.e.,
D
Pr [Vke [1,m], Vt € [Tkp1, Tha2] 0 [Whp, | < giljﬂ >1-9,
. 2
Proof From Lemma 37 we know that
PBDxk )
P : ol > < —
r {Vt € [Tket, Tg2) o Whig | > 21w Sm
Using the union bound we have that,
WBD«k
Pr [Vk < m, Wt | >
s m e fren i) Mg > S0
m
PBDk
<) Pr [Vt € [Tke1, Teg2) Wy, | > ] <d
kzl T 2+y

Theorem 5 follows from Lemmas 35, 38, 12 and the fact#hat = ax+ (1+ Y)Lax = ap((1+
W)L+ 1)k,
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10. Lower Bound for Q-learning using a Linear Learning Rate

In this section we show a lower bound for Q-learning with a linear learning rate, wl‘ﬁa(hj%s) l%v).

We consider the following MDP, denotddy, that has a single stat a single actiora, and a
deterministic rewardRy, (s,a) = 0. Since there is only one action in the MDP we der@es, a) as
Q:(s). We initializeQp(s) = 1 and observe the time un@k(s) < €.

Lemma 39 Consider running synchronous Q-learning with linear learning rate on MDRWhen
1
initializing Qo(s) = 1. Then there is a time+ c(%)lfv for some constant & 0, such that @> ¢.

Proof First we prove by induction onthat

tfli_i_y

Qt(s):iEliJrl'

Fort =1 we haveQ(s) = (1—1/2)Qo(s)+ (1/2)yQo(S) = (1+Y)/2. Assume the hypothesis holds
fort — 1 and prove it fot. By definition,

1

Q(9) = (1~ 1)Q 1(8)+ 1¥Q 1(9

Ct—14y
ot

Qt_]_(S).

In order to help us estimate this quantity we useltienction. Let

1.2...k
(X+1)- (X+2)---- (x+Kk)

X

M(x+1,k) =

The limit of ' (1+ x, k), ask goes to infinity, is constant for any We can rewrite; (s) as

Q9 = mr g = O
CT(y+Ltt+1
Therefore, there is a tinte= c(%)ﬁ, for some constart > 0, such that)(s) > €. [
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