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§1. Introduction

In this paper we consider the least-square regularized algorithm for the regression

problem. The main results will be satisfactory learning rates.

Let (X, d) be a compact metric space and Y = IR. Let ρ be a probability distribution

on Z := X × Y . The error (or generalization error) for a function f : X → Y is defined as

E(f) :=
∫

Z

(
f(x)− y

)2
dρ. (1.1)

The function that minimizes the error is called the regression function. It is given by

fρ(x) =
∫

Y

ydρ(y|x), x ∈ X (1.2)

where ρ(·|x) is the conditional probability measure at x induced by ρ.

The target of the regression problem is to learn the regression function or find good

approximations from random samples.

The least-square regularized algorithm for the regression problem is a discrete least-

square problem associated with a Mercer kernel.

Let K : X × X → IR be continuous, symmetric and positive semidefinite, i.e., for

any finite set of distinct points {x1, · · · , x`} ⊂ X, the matrix (K(xi, xj))`
i,j=1 is positive

semidefinite. Such a function is called a Mercer kernel.

The Reproducing Kernel Hilbert Space (RKHS) HK associated with the kernel K is

defined (see [3]) to be the closure of the linear span of the set of functions {Kx := K(x, ·) :

x ∈ X} with the inner product 〈·, ·〉HK
= 〈·, ·〉K satisfying 〈Kx,Ky〉K = K(x, y). That is,

〈∑i αiKxi
,
∑

j βjKyj
〉K =

∑
i,j αiβjK(xi, yj). The reproducing property takes the form

〈Kx, f〉K = f(x), ∀ x ∈ X, f ∈ HK .

Denote C(X) as the space of continuous functions on X with the norm ‖ · ‖∞. Let

κ = supx∈X

√
K(x, x). Then the above reproducing property tells us that

‖f‖∞ ≤ κ‖f‖K , ∀ f ∈ HK . (1.3)
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Now the least-square regularized algorithm for the regression problem associated with

the Mercer kernel K is defined to be the minimizer of the following least-square opti-

mization problem involving a set of random samples z := {zi}m
i=1 = {(xi, yi)}m

i=1 ∈ Zm

independently drawn according to ρ:

fz = fz,λ := arg min
f∈HK

{
1
m

m∑

i=1

(
f(xi)− yi

)2 + λ‖f‖2K
}

. (1.4)

Here λ ≥ 0 is a constant called the regularization parameter. Usually it is chosen to depend

on m: λ = λ(m), and lim
m→∞

λ(m) = 0.

Throughout this paper, we assume that for some M ≥ 0, ρ(·|x) is almost everywhere

supported on [−M, M ], that is, |y| ≤ M almost surely (with respect to ρ). It follows from

the definition (1.2) of fρ that |fρ(x)| ≤ M .

The efficiency of the algorithm (1.4) is measured by the difference between fz and

the regression function fρ. Because of the least-square nature, the measurement is the

weighted L2 metric in L2
ρX

defined as ‖f‖ρ = ‖f‖L2
ρX

:=
(∫

X
|f(x)|2dρX

)1/2, where ρX is

the marginal distribution of ρ on X. One can see [8] that

‖fz − fρ‖2ρ = E(fz)− E(fρ). (1.5)

Estimating the error (1.5) for the least-square regression algorithm (1.4) by means of

properties of ρ and K is our goal. In particular, we shall show how the choice of the

regularization parameter λ = λ(m) in the algorithm affects the learning rates.

Set the empirical error as

Ez(f) :=
1
m

m∑

i=1

(
f(xi)− yi

)2
.

It is a discretization of the error E(f). Since the scheme (1.4) can be written as

fz = arg min
f∈HK

{Ez(f) + λ‖f‖2K
}

, (1.6)

we would expect that the minimizer of the regularized empirical error, fz, is a good ap-

proximation of the minimizer fρ of the error E(f), as m → ∞ and λ = λ(m) → 0. This
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is actually true if fρ can be approximated by functions from HK , measured by the decay

(to 0 as λ becomes small) of the regularization error of the scheme (1.6) defined as

D(λ) := inf
f∈HK

{‖f − fρ‖2ρ + λ‖f‖2K
}

. (1.7)

Since the minimization (1.6) is taken for the discrete quantity Ez, the approximation

of fρ by fz involves the capacity of the function space HK . Here the capacity is measured

by the covering number of the balls BR (considered as a subset of C(X))

BR := {f ∈ HK : ‖f‖K ≤ R}.

Definition 1. For a subset F of a metric space and η > 0, the covering number N (F , η)

is defined to be the minimal integer ` ∈ IN such that there exist ` disks with radius η

covering F .

Denote the covering number of B1 in C(X) with the metric ‖ · ‖∞ by N (η).

Definition 2. We say that the Mercer kernel K has polynomial complexity exponent

s > 0 if

logN (η) ≤ C0 (1/η)s
, ∀η > 0. (1.8)

The covering number N (η) has been extensively studied, see e.g. [5, 29, 30]. It was

shown in [30] that (1.8) holds if K is C2n/s on a subset X of IRn. In particular, for a C∞

kernel (such as Gaussians), (1.8) is valid for any s > 0.

Let us state our main result on the error analysis.

Theorem 1. Let fz be defined by (1.4). Assume (1.8) and that fρ is not identically zero.

For any 0 < ζ < 1
1+s , 0 < δ < 1 and m ≥ mδ,ζ , with confidence 1− δ we have

‖fz − fρ‖2ρ ≤
C̃

‖fρ‖2ρ
log

(
2
δ

)
D (

m−ζ
)
, by taking λ = m−ζ (1.9)

where mδ,ζ and C̃ are constants depending on C0, s, ζ, κ, M , and mδ,ζ also on δ.

The above two constants mδ,ζ and C̃ will be explicitly given in the proof of Theorem

1 in Section 5. The assumption that fρ is not identically zero is necessary: otherwise
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fρ ≡ 0 would imply D(λ) ≡ 0 which cannot bound ‖fz − fρ‖2ρ (a quantity depending on

the variance of ρ).

The bound in (1.9) contains the quantity ‖fρ‖2ρ in the denominator of the constant

term. It cannot be removed as shown by an example in Section 5. However, a modified

bound, without ‖fρ‖2ρ, with C̃
‖fρ‖2ρD

(
m−ζ

)
replaced by C̃

(
D (

m−ζ
)

+ 2m− 1
1+s

)
will be

illustrated by Theorem 2 in Section 5.

When s < 1, the learning rates derived from Theorem 1 are better than those in

the literature of regularization schemes where the best kernel independent learning rate

is
(

1
m

) 1
2 . For detailed comparisons, see Section 6. The rates are achieved by an iteration

technique which may be useful for studying other algorithms in learning theory. The

following example is a special case of Corollary 6.2 with r = 1/2.

Proposition 1.1. Let fz be defined by (1.4). Assume K is C∞ on X ⊂ IRn and fρ ∈ HK .

Take λ = λ(m) = m2ε−1 with ε > 0. Then for any 0 < δ < 1, with confidence 1− δ

‖fz − fρ‖2ρ ≤ C̃ log
(2
δ

) (
1
m

)1−ε

for m ≥ mδ,ε, where the constants mδ,ε C̃ are independent of m.

For the error analysis, we use a regularization approach which we introduced in [25].

To estimate E(fz) − E(fρ), we introduce a regularizing function f̃λ ∈ HK . It is

arbitrarily chosen and depends on λ. A standard choice is

fλ := arg min
f∈HK

{‖f − fρ‖2ρ + λ‖f‖2K
}

. (1.10)

Proposition 1.2. Let f̃λ ∈ HK , and fz be defined by (1.6). Then E(fz) − E(fρ) ≤
E(fz)− E(fρ) + λ‖fz‖2K which can be bounded by

{
E(f̃λ)− E(fρ) + λ‖f̃λ‖2K

}
+

{
E(fz)− Ez(fz) + Ez(f̃λ)− E(f̃λ)

}
. (1.11)

Proof. Write E(fz)− E(fρ) + λ‖fz‖2K as
{
E(fz)− Ez(fz)

}
+

{(Ez(fz) + λ‖fz‖2K
)−

(
Ez(f̃λ) + λ‖f̃λ‖2K

)}

+
{
Ez(f̃λ)− E(f̃λ)

}
+

{
E(f̃λ)− E(fρ) + λ‖f̃λ‖2K

}
.
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The expression (1.6) tells us that the second term is at most zero since f̃λ ∈ HK . Hence

E(fz)− E(fρ) + λ‖fz‖2K is bounded by (1.11).

The first term in (1.11) is called the regularization error [19]. It can be expressed as

a K-functional, since for any measurable function f : X → IR, there holds

‖f − fρ‖2ρ = E(f)− E(fρ). (1.12)

Definition 3. The regularization error for a regularizing function f̃λ ∈ HK is defined as

D̃(λ) := E(f̃λ)− E(fρ) + λ‖f̃λ‖2K . (1.13)

According to (1.12), the regularization error D̃(λ) for the special regularizing function

fλ becomes the regularization error D(λ) of the scheme (1.6), defined by (1.7).

The regularization error for the least-square error is well understood [20, 18]. The

rate of the regularization error is not only important for bounding the first term in (1.11),

but also crucial for bounding the second term called the sample error. The decay of

λ = λ(m) (as m → ∞) determines the size of the hypothesis space and hence the sample

error estimates. Therefore, we need to understand the choice of the parameter λ from the

bound for D̃(λ).

Write the sample error in (1.11) as

E(fz)−Ez(fz)+Ez(f̃λ)−E(f̃λ) =
{

E(ξ1)− 1
m

m∑

i=1

ξ1(zi)
}

+
{

1
m

m∑

i=1

ξ2(zi)−E(ξ2)
}

, (1.14)

where

ξ1 :=
(
fz(x)− y

)2 − (
fρ(x)− y

)2
, ξ2 :=

(
f̃λ(x)− y

)2 − (
fρ(x)− y

)2
. (1.15)

In (1.15), ξ2 is a fixed random variable on (Z, ρ) with mean E(ξ2) = E(fλ) − E(fρ). But

ξ1 is not a single random variable on Z, it depends not only on the variable z ∈ Z, but

also on the sample z. We have abused the notion E(ξ1) =
∫

Z
ξ1(x, y)dρ = E(fz)− E(fρ).

The last term of (1.14) is a typical quantity that can be estimated by probability

inequalities. We shall bound this term by a Bernstein inequality in Section 2.

The function fz changing with the sample z runs over a set of functions, and should

not be considered as a fixed function. In Section 3 we shall bound the sample error part

involving ξ1 in (1.14). To this end, we shall use the covering number N (η) of the unit ball

B1 of HK .
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§2. Part of the Sample Error Involving the Regularizing Function

In this section we bound the last term of (1.14): 1
m

∑m
i=1 ξ2(zi) − E(ξ2). Here we

apply the one-side Bernstein inequality:

Let ξ be a random variable on a probability space Z with mean E(ξ) = µ, variance

σ2(ξ) = σ2, and satisfying |ξ(z)− E(ξ)| ≤ Mξ for almost all z ∈ Z. Then for all ε > 0,

Probz∈Zm

{
1
m

m∑

i=1

ξ(zi)− µ ≥ ε

}
≤ exp

{
− mε2

2
(
σ2 + 1

3Mξε
)
}

.

Proposition 2.1. For every 0 < δ < 1, with confidence at least 1− δ, there holds

1
m

m∑

i=1

ξ2(zi)− E(ξ2) ≤ D̃(λ)
(

1 +
4κ2 log

(
1/δ

)

mλ

)
+

36M2 log
(
1/δ

)

m
.

Proof. From the definition of D̃(λ), we know that

λ‖f̃λ‖2K ≤ E(f̃λ)− E(fρ) + λ‖f̃λ‖2K = D̃(λ).

It follows from (1.3) that

‖f̃λ‖∞ ≤ κ‖f̃λ‖K ≤ κ

√
D̃(λ)/λ.

Observe that

ξ2 =
(
f̃λ(x)− fρ(x)

){(
f̃λ(x)− y

)
+

(
fρ(x)− y

)}
.

Since |fρ(x)| ≤ M almost everywhere, we have

|ξ2| ≤
(‖f̃λ‖∞ + M

)(‖f̃λ‖∞ + 3M
) ≤ c :=

(
κ

√
D̃(λ)/λ + 3M

)2
.

Hence |ξ2(z)− E(ξ2)| ≤ Mξ2 := 2c. Moreover, E(ξ2
2) equals

E

((
f̃λ(x)− fρ(x)

)2{(
f̃λ(x)− y

)
+

(
fρ(x)− y

)}2
)
≤ ‖f̃λ − fρ‖2ρ

(‖f̃λ‖∞ + 3M
)2

which implies that σ2(ξ2) ≤ E(ξ2
2) ≤ cD̃(λ).
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Now we apply the one-side Bernstein inequality to ξ2. It asserts that for any t > 0,

1
m

m∑

i=1

ξ2(zi)− E(ξ2) ≤ t

with confidence at least

1− exp

{
− mt2

2
(
σ2(ξ2) + 1

3Mξ2t
)
}
≥ 1− exp

{
− mt2

2c
(D̃(λ) + 2

3 t
)
}

.

Choose t∗ to be the unique positive solution of the quadratic equation

− mt2

2c
(D̃(λ) + 2

3 t
) = log δ.

Then with confidence 1− δ, there holds 1
m

∑m
i=1 ξ2(zi)− E(ξ2) ≤ t∗. But

t∗ =
(

2c

3
log

(
1/δ

)
+

√(2c

3
log

(
1/δ

))2 + 2cm log
(
1/δ

)D̃(λ)
)

/m

≤ 4c log
(
1/δ

)

3m
+

√
2c log

(
1/δ

)D̃(λ)/m ≤ 4c log
(
1/δ

)

3m
+ D̃(λ) +

c log
(
1/δ

)

2m
.

Recall c = (κ
√
D̃(λ)/λ + 3M)2. It follows that

t∗ ≤ D̃(λ)
(

1 +
4κ2 log

(
1/δ

)

mλ

)
+

36M2 log
(
1/δ

)

m
.

This implies the desired estimate.

§3. Part of the Sample Error Involving fz

In this section we estimate the first part of (1.14). It is more difficult to deal with

because ξ1 involves the sample z through fz. We will use the idea of empirical risk mini-

mization [22, 12, 5, 8, 23] to bound this term by means of a covering number.

The following ratio probability inequality (stated in Lemmas 3.1 and 3.2) is a standard

result in learning theory (e.g. [14, 8, 26]). It deals with variances for a function class, since

the Bernstein inequality takes care of the variance well only for a single random variable

(see Proposition 2.1). Our current form was motivated by sample error estimates for the

square loss [4, 5, 8, 14, 7].
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Lemma 3.1. Suppose a random variable ξ on Z satisfies µ = E(ξ) ≥ 0, and z = (zi)m
i=1

are independent samples. If |ξ − µ| ≤ B almost everywhere and E(ξ2) ≤ cξE(ξ) for some

cξ ≥ 0, then for every ε > 0 and 0 < α ≤ 1, there holds

Probz∈Zm

{
µ− 1

m

∑m
i=1 ξ(zi)√

µ + ε
≥ α

√
ε

}
≤ exp

{
− α2mε

2cξ + 2
3B

}
.

For a function g on Z, denote E(g) =
∫

Z
g(z)dρ.

Lemma 3.2. Let G be a set of functions on Z such that for some cρ ≥ 0, |g −E(g)| ≤ B

almost everywhere and E(g2) ≤ cρE(g) for each g ∈ G. Then for every ε > 0 and

0 < α ≤ 1,

Probz∈Zm

{
sup
g∈G

E(g)− 1
m

∑m
i=1 g(zi)√

E(g) + ε
≥ 4α

√
ε

}
≤ N (G, αε) exp

{
− α2mε

2cρ + 2
3B

}
.

We apply Lemma 3.2 to a set of functions FR with R > 0, where

FR =
{(

f(x)− y
)2 − (

fρ(x)− y
)2 : f ∈ BR

}
. (3.1)

Proposition 3.1. For all ε > 0 and R ≥ M ,

Probz∈Zm

{
sup

f∈BR

E(f)− E(fρ)−
(Ez(f)− Ez(fρ)

)
√E(f)− E(fρ) + ε

≤ √
ε

}

≥ 1−N
(

3ε

4(κ + 3)2R2

)
exp

{
− 3mε

160(κ + 3)2R2

}
.

Proof. Consider the set FR. Each function g ∈ FR has the form g(z) =
(
f(x) − y

)2 −
(
fρ(x)−y

)2 with f ∈ BR. Hence E(g) = E(f)−E(fρ) ≥ 0, 1
m

∑m
i=1 g(zi) = Ez(f)−Ez(fρ),

and

g(z) = (f(x)− fρ(x))
{(

f(x)− y
)

+
(
fρ(x)− y

)}
.

Since ‖f‖∞ ≤ κ‖f‖K ≤ κR and |fρ(x)| ≤ M almost everywhere, we find that

|g(z)| ≤ (
κR + M

)(
κR + 3M

) ≤ cR := (κR + 3M)2.

So we have |g(z)− E(g)| ≤ B := 2cR almost everywhere.
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Also,

E(g2) = E

[
(f(x)− fρ(x))2

{(
f(x)− y

)
+

(
fρ(x)− y

)}2
]
≤ (

κR + 3M
)2‖f − fρ‖2ρ.

Thus E(g2) ≤ cR‖f − fρ‖2ρ = cRE(g) for each g ∈ FR.

Applying Lemma 3.2 with α = 1
4 to the function set FR, we deduce that

sup
f∈BR

E(f)− E(fρ)−
(Ez(f)− Ez(fρ)

)
√E(f)− E(fρ) + ε

= sup
g∈FR

E(g)− 1
m

∑m
i=1 g(zi)√

E(g) + ε
≤ √

ε

with confidence at least

1−N (FR, ε/4) exp
{
− mε/16

2cR + 2
3B

}
≥ 1−N (FR, ε/4) exp

{
− 3mε

160(κ + 3)2R2

}
.

Here we have used the expressions for cR, B = 2cR and the restriction R ≥ M .

What is left is to bound the covering number N (FR, ε/4). To do so, note that

∣∣(f1(x)− y
)2 − (

f2(x)− y
)2∣∣ = ‖f1 − f2‖∞

∣∣(f1(x)− y
)

+
(
f2(x)− y

)∣∣.

But |y| ≤ M almost surely and ‖f‖∞ ≤ κR for each f ∈ BR. Therefore,

∣∣(f1(x)− y
)2 − (

f2(x)− y
)2∣∣ ≤ 2

(
M + κR

)‖f1 − f2‖∞, ∀f1, f2 ∈ BR.

Since an η
2(MR+κR2) -covering of B1 yields an η

2(M+κR) -covering of BR, and vice versa, we

see that for any η > 0, an η
2(MR+κR2) -covering of B1 provides an η-covering of FR. Thus

N (FR, η) ≤ N
(

η

2(MR + κR2)

)
, ∀η > 0.

But R ≥ M and 8(1 + κ) ≤ 4
3 (κ + 3)2. So our desired estimate follows.

§4. Error Bounds in a Weak Form

In this section we derive some weak error bounds in order to illustrate the idea by a

simple procedure.

10



Proposition 4.1. Suppose the kernel K satisfies (1.8), and D(λ) ≤ C1λ
β for some 0 <

β ≤ 1 and C1 > 0. For any 0 < δ < 1, with confidence 1− δ, there holds

‖fz − fρ‖2ρ ≤ C̃ log
(
2/δ

)( 1
m

) β
(1+β)(1+s)

, by taking λ = λ(m) = m− 1
(1+β)(1+s) .

The proof of Proposition 4.1 follows from Corollary 4.1 and Proposition 4.3 below.

Note the power β
(1+β)(1+s) for the learning rate is less than 1/2. Thus the estimate is weak.

Strong error bounds will be given in the next section by more complicated arguments.

For the sample error estimates, we shall require the confidence N (η) exp
{−mη

40

}
to

be δ. So we define the following quantity to realize this confidence.

Definition 4. Let g = gK,m : IR+ → IR be the function given by

g(η) = logN (η)− mη

40
.

For 0 < δ < 1, we denote v∗(m, δ) as the unique solution to the equation

g(η) = log δ. (4.1)

The function g is strictly decreasing in (0,+∞) with g(0) = +∞ and g(+∞) = −∞.

Also, g(κ) = −mκ/40. Therefore, the equation (4.1) has a solution for any 0 < δ < 1.

Moreover,

lim
m→∞

v∗(m, δ) = 0.

More quantitative decay estimates for v∗(m, δ) will be given at the end of this section.

Now we can derive the error bounds. For R > 0, denote

W(R) = {z ∈ Zm : ‖fz‖K ≤ R}. (4.2)

Proposition 4.2. For all 0 < δ < 1 and R ≥ M , there is a set VR ⊆ Zm with ρ(VR) ≤ δ

such that for all z ∈ W(R) \ VR, the regularized error E(fz)− E(fρ) + λ‖fz‖2K is bounded

by

3(κ + 3)2R2v∗(m, δ/2) + D̃(λ)
(

4 +
8κ2 log

(
2/δ

)

mλ

)
+

72M2 log
(
2/δ

)

m
.

Proof. Note that
(√E(f)− E(fρ) + ε

)(√
ε
) ≤ 1

2

(E(f)−E(fρ)
)
+ε. Our statement follows

directly via Propositions 1.2, 2.1, and 3.1 after replacing δ by δ/2.

Finally we need an R satisfying W(R) = Zm.
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Lemma 4.1. For all λ > 0 and almost all z ∈ Zm,

‖fz‖K ≤ M√
λ

.

Proof. The definition of fz tells us that for f = 0,

λ‖fz‖2K ≤ Ez(fz) + λ‖fz‖2K ≤ Ez(0) + 0 =
1
m

m∑

i=1

(yi − 0)2 ≤ M2

the last almost surely. Therefore, ‖fz‖K ≤ M/
√

λ for almost all z ∈ Zm.

Lemma 4.1 says that W(M/
√

λ) = Zm. Take R := M/
√

λ ≥ M when 0 < λ ≤ 1.

Then the following error bound follows from Proposition 4.2.

Corollary 4.1. Let 0 < λ ≤ 1, f̃λ ∈ HK and fz be defined by (1.4). Then for any

0 < δ < 1, with confidence 1− δ, we have

‖fz − fρ‖2ρ ≤ 3(κ + 3)2M2 v∗(m, δ/2)
λ

+ D̃(λ)
(

4 +
8κ2 log

(
2/δ

)

mλ

)
+

72M2 log
(
2/δ

)

m
.

Learning rates in weak forms can be obtained from Corollary 4.1 and quantitative

decay estimates for v∗(m, δ). The following estimate is essentially presented in [9]. For

completeness, we give a proof.

Proposition 4.3. If the kernel K satisfies (1.8), then

v∗(m, δ) ≤ max
{

80 log(1/δ)
m

,
(
80C0/m

)1/(1+s)
}

.

Proof. Observe that g(η) ≤ h(η) := C0(1/η)s − mη
40 . Then

log δ = g(v∗(m, δ)) ≤ h(v∗(m, δ)).

Since h is also strictly decreasing, we know that v∗(m, δ) ≤ ∆ where ∆ is the unique

positive solution of the equation h(t) = log δ. This new equation can be expressed as

t1+s − 40 log(1/δ)
m

ts − 40C0

m
= 0.

Then Lemma 7 from [9] yields ∆ ≤ max
{ 80 log(1/δ)

m ,
(
80C0/m

)1/(1+s)}. This verifies the

bound for v∗(m, δ).

12



§5. Strong Estimates by Iteration

In this section we improve the error estimate stated in Corollary 4.1. Our main result

here can be stated as the following theorem which will be proved after two lemmas.

Theorem 2. Let fz be defined by (1.4). Assume (1.8). Set C2 = (2κ+6)
(
80C0

)1/(2+2s) +

1. Take λ = mε− 1
1+s with 0 < ε ≤ 1

1+s . For any 0 < δ < 1 and m ≥ mδ,ε, with confidence

1− δ there holds

‖fz − fρ‖2ρ ≤ Cε log
(2
δ

) (
D(λ) +

2
m1/(1+s)

)

where mδ,ε and Cε are constants given by

mδ,ε = max
{

80

C
1/s
0

(
log

2
δ

+ log
1 + ε(1 + s)

ε(1 + s)

)1+1/s

,

(
1

2C2

)2/ε}
,

Cε = log
1 + ε(1 + s)

ε(1 + s)

{
12(κ + 3)2

(
6M + MC

1
ε(1+s)
2 + 2κ + 2

)2

(80C0)
1

1+s

+ 4 + 8κ2 + 72M2

}
.

The method in the previous section was rough because we used the bound ‖fz‖K ≤
M/

√
λ shown in Lemma 4.1. This is much worse than the bound for fλ derived from

the proof of Proposition 2.1, namely, ‖fλ‖K ≤
√
D(λ)/

√
λ. Yet, we expect fz to be a

good approximation of fλ. In particular, one would expect ‖fz‖K to be bounded as well

by, essentially,
√
D(λ)/

√
λ. We shall prove that this is the case with high probability

by applying Proposition 4.2 iteratively. As a consequence, we will obtain strong error

estimates. The iteration technique was introduced in [16] and improved in [24] for the

purpose of support vector machine classification algorithms. Our iteration technique here

refines and is different from the previous ones. In particular, the method in [16] requires a

polynomial decay of the regularization error D(λ) = O(λβ) with some 0 < β ≤ 1. Similar

ideas of norm reduction also appear in [13] for the purpose of bounding the risk of function

learning.

Recall the set W(R) defined by (4.2). Proposition 4.2 immediately yields the following

relation, since λ‖fz‖2K is bounded by the regularized error E(fz)− E(fρ) + λ‖fz‖2K .
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Lemma 5.1. For any 0 < δ < 1 and R ≥ M , there is a set VR ⊆ Zm with ρ(VR) ≤ δ such

that

W(R) ⊆ W(amR + bm) ∪ VR,

where am, bm are independent of R and given by am := (2κ + 6)
√

v∗(m, δ/2)/λ,

bm :=
(2κ

√
2 log

(
2/δ

)
√

mλ
+ 2

)√
D̃(λ)/λ +

6M
√

2 log
(
2/δ

)
√

mλ
.

Let us describe our iteration procedure briefly. According to Proposition 4.3, when

(1.8) is valid, v∗(m, δ/2) ≤ (
80C0/m

)1/(1+s) for sufficiently large m (depending on δ).

Thus if we choose λ = mε− 1
1+s in Lemma 5.1, am = O(m−ε/2) and Lemma 5.1 ensures a

reduction of the norm ‖fz‖K : the set W(R) coincides with W(R′) with a smaller radius

R′ = O

(
m−ε/2R +

√
D̃(λ)/λ

)
, up to a small set VR of measure at most δ. Therefore,

starting with W(R(0)) = Zm and R(0) = M/
√

λ proved in Lemma 4.1, we iterate the

above reduction procedure J times and can find that up to a set of measure at most

Jδ, the sets Zm = W(R(0)) and W(R(J)) coincide. The radius R(J) can be bounded by

O

(
m−Jε/2R(0) +

√
D̃(λ)/λ

)
= O

(
m−Jε/2−ε/2+1/(2+2s) +

√
D̃(λ)/λ

)
. Hence the choice

J ≥ 1
ε(1+s) − 1 ensures the essential bound R(J) of ‖fz‖K to be

√
D̃(λ)/λ with probability

at least 1− Jδ.

Lemma 5.2. Assume (1.8). Take λ = mε− 1
1+s with 0 < ε ≤ 1

1+s . For any 0 < δ < 1 and

m ≥ m′
δ, with confidence 1− δ

ε(1+s) there holds

‖fz‖K ≤
(

6M + MC
1

ε(1+s)
2 + 2κ + 2

) √
2 log

(
2/δ

) (√
D̃(λ)/λ + 1

)
.

Here m′
δ := max

{
80

C
1/s
0

(
log(2/δ)

)1+1/s
,
(
1/(2C2

)2/ε
}

.

Proof. By Proposition 4.3, when m ≥ 80

C
1/s
0

(
log(2/δ)

)1+1/s, there holds

v∗(m, δ/2) ≤ (
80C0/m

)1/(1+s)
. (5.1)

It follows that

am ≤ (2κ + 6)
(
80C0

)1/(2+2s)
m−ε/2 ≤ C2 m−ε/2.
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If m satisfies a second restriction m ≥ (
1/(2C2)

)2/ε, we have am ≤ 1/2. Thus,

am ≤ C2 m−ε/2 ≤ 1/2, ∀m ≥ m′
δ. (5.2)

Define a sequence {R(j)}j∈IN by R(0) = M/
√

λ and, for j ≥ 1,

R(j) = amR(j−1) + bm.

Then Lemma 4.1 proves W(R(0)) = Zm, and Lemma 5.1 asserts that for each j ≥ 1,

W(R(j−1)) ⊆ W(R(j)) ∪ VR(j−1) with ρ(VR(j−1)) ≤ δ. Apply this inclusion for j =

1, 2, . . . , J , with J satisfying 1
ε(1+s) − 1 ≤ J ≤ 1

ε(1+s) . We see that

Zm = W(R(0)) ⊆ W(R(1)) ∪ VR(0) ⊆ · · · ⊆ W(R(J)) ∪
(J−1⋃

j=0

VR(j)

)
.

It follows that the measure of the set W(R(J)) is at least 1 − Jδ ≥ 1 − δ
ε(1+s) . By the

definition of the sequence, we have

R(J) = aJ
mR(0) + bm

J−1∑

j=0

aj
m.

By (5.2), am ≤ 1/2, hence
∑J−1

j=0 aj
m ≤ 1. The bound am ≤ C2m

−ε/2 in (5.2) and

R(0) = M/
√

λ = Mm
1

2+2s− ε
2 yield

aJ
mR(0) ≤ CJ

2 m−Jε/2Mm
1

2+2s− ε
2 = CJ

2 Mm
1

2+2s− ε
2− Jε

2 .

But J ≥ 1
ε(1+s) − 1 which implies 1

2+2s − ε
2 − Jε

2 ≤ 0. Hence aJ
mR(0) ≤ CJ

2 M .

Since mλ ≥ 1, bm can be bounded as

bm ≤
√

2 log
(
2/δ

) (
(2κ + 2)

√
D̃(λ)/λ + 6M

)
.

Therefore

R(J) ≤
(

6M + MCJ
2 + 2κ + 2

)√
2 log

(
2/δ

)(√D̃(λ)/λ + 1
)
.

This proves our statement.

We are in a position to prove our main results.
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Proof of Theorem 2. Choose f̃λ = fλ. Then D̃(λ) = D(λ). For 0 < δ < 1, let

δ̃ := ε(1+s)
1+ε(1+s)δ ∈ (0, 1) and mδ,ε = m′

δ̃
be as in Lemma 5.2. Take

R =
(

6M + MC
1

ε(1+s)
2 + 2κ + 2

) √
2 log

(
2/δ̃

) (√
D(λ)/λ + 1

)
.

Let m ≥ mδ,ε. Lemma 5.2 tells us that the measure of the set W(R) is at least

1− δ̃
ε(1+s) .

Applying Proposition 4.2 to the above R, we know that for each z ∈ W(R) \ VR,

E(fz)− E(fρ) ≤ 12(κ + 3)2
(

6M + MC
1

ε(1+s)
2 + 2κ + 2

)2

log
(2
δ̃

) (D(λ)
λ

+ 1
)

v∗(m,
δ̃

2
)

+D(λ)
(

4 +
8κ2 log

(
2/δ̃

)

mλ

)
+

72M2 log
(
2/δ̃

)

m
.

Since the measure of VR is at most δ̃, we know that the above error bound holds for

z ∈ W(R) \VR which has measure at least 1− δ̃
ε(1+s) − δ̃ = 1− δ. Putting the bound (5.1)

into the above error estimate and noting that log
(
2/δ̃

) ≤ log
(
2/δ

)
+ log 1+ε(1+s)

ε(1+s) , we see

our conclusion.

Now we can prove Theorem 1 stated in the introduction.

Proof of Theorem 1. Take ε = 1
1+s − ζ. Then λ = mε− 1

1+s , and the conclusion of

Theorem 2 holds.

When fρ is not identically zero, then ‖fρ‖ρ > 0. It follows from (1.3) that

D(λ) ≥ inf
f∈HK

{
‖f − fρ‖2ρ +

λ

κ2
‖f‖2ρ

}
≥ λ

4κ2
‖fρ‖2ρ.

Therefore,
2

m1/(1+s)
≤ 2λ ≤ 8κ2

‖f‖2ρ
D(λ).

Let mδ,ζ := mδ,ε be given in Theorem 2. Note that ‖fρ‖ρ ≤ M . The error bound in

Theorem 2 tells us that for m ≥ mδ,ζ there holds

‖fz − fρ‖2ρ ≤ Cε log
(2
δ

)(
1 +

8κ2

‖f‖2ρ
)D(λ) ≤ Cε

‖f‖2ρ
(
M2 + 8κ2

)
log

(2
δ

)D(λ)

with confidence 1− δ. This proves Theorem 1 with C̃ =
(
M2 + 8κ2

)
Cε.

To show that the constant term in (1.9) depends on ‖fρ‖2ρ, we consider an example

with the simplest Mercer kernel (K ≡ 1).
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Example. Let K ≡ 1 and fz be defined by (1.4). If fρ(x) ≡ µρ for some µρ ∈ (−M, M),

then D(λ) = λ
1+λµ2

ρ and

Ez∈Zm

(‖fz − fρ‖2ρ
)

=
E(fρ)

(1 + λ)2m
+

λ2

(1 + λ)2
µ2

ρ.

Proof. The space HK consists of constant functions f ≡ c with ‖f‖K = |c|. Then

Ez(f) + λ‖f‖2K = 1
m

∑m
i=1 y2

i − 2c
m

∑m
i=1 yi + (1 + λ)c2 and

fz ≡ 1
(1 + λ)m

m∑

i=1

yi.

Since fρ(x) ≡ µρ, we have E(y) = µρ and E{(y − µρ)2} = E(fρ). It follows that

Ez∈Zm

(‖fz − fρ‖2ρ
)

= Ez∈Zm

{( 1
(1 + λ)m

m∑

i=1

(yi − µρ)− λ

1 + λ
µρ

)2
}

verifying the desired expected value.

For any λ > 0, we have D(λ) = infc∈IR

{
(c− µρ)2 + λc2

}
= λ

1+λµ2
ρ.

In the above example, (1.8) holds for any s > 0. If we take λ = m−ζ with 0 < ζ < 1,

we have
Ez∈Zm

(‖fz − fρ‖2ρ
)

D(λ)
≥ E(fρ)mζ−1

2‖fρ‖2ρ
, ∀m ∈ IN.

In particular, when E(fρ) > 0 and mδ,ζ , C̃ are constants depending only on C0, s, ζ, κ, M

and δ, by letting ‖fρ‖2ρ = µ2
ρ → 0 we see that the bound (1.9) without the denominator

‖fρ‖2ρ in the constant term cannot be true for all m ≥ mδ,ζ .

§6. Deriving Learning Rates

Our main result, Theorem 1, on the error analysis yields learning rates.

Define an integral operator LK : L2
ρX
→ L2

ρX
by

LK(f)(x) =
∫

X

K(x, y)f(y)dρX(y), x ∈ X.

Its range is in HK . The operator LK can also be defined as a self-adjoint operator on

HK or on L2
ρX

. We shall use the same notion LK for these operators defined on different

domains.

It was shown in [8, Theorem 3] and [20, (7.11)] that when L−r
K fρ ∈ L2

ρX
for some

0 < r ≤ 1/2, there holds D(λ) ≤ λ2r‖L−r
K fρ‖2ρ. This in connection with Theorem 1 verifies

the following.
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Corollary 6.1. Let fz be defined by (1.4). Assume (1.8). If L−r
K fρ ∈ L2

ρX
for some

0 < r ≤ 1/2, then for any 0 < ζ < 1
1+s , 0 < δ < 1 and m ≥ mδ,ε, with confidence 1− δ

‖fz − fρ‖2ρ ≤ C̃ log
(

2
δ

)
m−2rζ

where mδ,ε and C̃ are constants independent of m.

In particular, when K is C∞ on X ⊂ IRn, we know from [30] that (1.8) holds for any

s > 0. As a consequence of Corollary 6.1, we see the following learning rates.

Corollary 6.2. Let fz be defined by (1.4). If K is C∞ on X ⊂ IRn and L−r
K fρ ∈ L2

ρX
for

some 0 < r ≤ 1/2, then for any ε > 0, 0 < δ < 1, with confidence 1− δ there holds

‖fz − fρ‖2ρ ≤ C̃ log
(2
δ

) (
1
m

)2r−ε

for m ≥ mδ,ε and λ = λ(m) = m2ε−1, where mδ,ε and C̃ are constants independent of m.

When r = 1/2, fρ ∈ HK , the learning rates in Corollary 6.2 is arbitrarily close to 1,

which was stated in Proposition 1.1.

Let us compare our learning rates with the existing results.

In [6, 28], a leave-one-out technique was used to derive the expected value of learning

schemes. For the scheme (1.4), the result in [28] can be expressed as

Ez∈Zm

(E(fz)
) ≤

(
1 +

2κ2

mλ

)2

inf
f∈HK

{
E(f) +

λ

2
‖f‖2K

}
.

In terms of the regularization error, it can be restated as

Ez∈Zm

(∥∥fz − fρ

∥∥2

ρ

) ≤ D(
λ/2

)
+

(
E(fρ) +D(

λ/2
)){

4κ2

mλ
+

(
2κ2

mλ

)2}
.

Choosing λ = 1/
√

m, the derived learning rate is
(

1
m

) 1
2 in expectation when fρ ∈ HK and

E(fρ) > 0. By the Markov inequality, ‖fz − fρ

∥∥2

ρ
≤ C

δ

(
1
m

) 1
2 with confidence 1− δ.

In [11], a functional analysis approach was employed for the error analysis of the

scheme (1.4). The main result asserts that for any 0 < δ < 1, with confidence 1− δ,

∣∣E(fz)− E(fλ)
∣∣ ≤ Mκ2

√
mλ

(
1 +

κ√
λ

)(
1 +

√
2 log

(
2/δ

))
.
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The corresponding learning rate [11, Corollary 1] is the following: when fρ lies in the range

of LK , i.e., L−1
K fρ ∈ L2

ρX
, for any 0 < δ < 1, with confidence 1− δ, there holds

∥∥fz − fρ

∥∥2

ρ
≤ C

( log
(
2/δ

)

m

) 2
5 , if λ =

( log
(
2/δ

)

m

) 1
5 .

Thus the confidence is improved from 1/δ to log(2/δ), while the rate is weakened to
(

1
m

) 2
5 .

In [20], a modified McDiarmid inequality was used to improve the kernel independent

error bounds. If fρ is in the range of LK , then for any 0 < δ < 1, with confidence 1 − δ

there hold

‖fz − fρ‖2K ≤ C̃

((
log

(
4/δ

))2

m

) 1
3

by taking λ =
((

log
(
4/δ

))2

m

) 1
3

(6.1)

and

‖fz − fρ‖2ρ ≤ C̃
log

(
4/δ

)
√

m
by taking λ =

((
log

(
4/δ

))2

m

) 1
4

, (6.2)

Thus the confidence for the learning rate m− 1
2 is improved. Moreover, the error in the

space HK can be estimated.

All the above results are kernel independent error bounds. When fρ ∈ HK and s < 1,

the learning rate given by Corollary 6.1 with r = 1/2 is better than existing results. In

particular, this is the case [30] when the kernel K is Cp, with p > 2n, on X ⊂ IRn.

Classical results [17, 14, 2, 8] on analysis of empirical risk minimization (ERM)

schemes give error bounds between the empirical target function (over a bounded hy-

pothesis space of functions) and the regression function. In particular, learning rates of

type m−ζ with ζ arbitrarily close to 1 can be achieved by ERM schemes. See e.g. [14, 2,

8]. However, the ERM setting is different from the one on Tikhonov regularization. How

to choose the regularization parameter λ = λ(m), depending on the sample size m, is the

essential difficulty for the regularization scheme, even when fρ lies in HK .

§7. Extensions: Projection, Empirical Covering, and Multi-kernel Learning

Our error analysis can be extended in different settings.

The first extension is to use the projection. By our assumption, fρ(x) ∈ [−M, M ].

Thus, it’s natural for us to restrict approximating functions onto those supported also on

[−M, M ].
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Definition 5. The projection operator πM is defined on the space of measurable functions

f : X → IR as

πM (f)(x) =





M, if f(x) > M ,
−M, if f(x) < −M ,
f(x), if −M ≤ f(x) ≤ M .

(7.1)

The idea of projections appeared in margin-based bound analysis, e.g. [5, 15]. We

introduced the above form of the projection operator π1 for the purpose of bounding

misclassification and generalization errors in [7], and used it for error analysis of linear

programming support vector machine classification algorithms [26].

Now we take πM (fz) as our empirical target function. Then (1.11) still holds after

replacing fz by πM (fz):

E(πM (fz))− E(fρ) + λ‖fz‖2K ≤
{
E(f̃λ)− E(fρ) + λ‖f̃λ‖2K

}

+
{
E(πM (fz))− Ez(πM (fz)) + Ez(f̃λ)− E(f̃λ)

}
.

Then our analysis can be done in the same way. The projection helps us to get sharper

bounds of the sample error: probability inequalities are applied to random variables in-

volving functions πM (fz) (bounded by M), not fz (the corresponding bound increases to

infinity as λ becomes small, as shown in Lemmas 4.1 or 5.2). We omit details for deriving

learning rates.

The second extension is to use empirical covering numbers, not the uniform covering

numbers.

Definition 6. Let F be a class of functions on X and x = {x1, · · · , xm} ⊂ X. For

1 ≤ p ≤ ∞, define

dp,x(f, g) =
{ 1

m

m∑

i=1

|f(xi)− g(xi)|p
}1/p

.

For every ε > 0, the covering number of F associated to dp,x is

Np,x(F , ε) = min
{

` ∈ IN : ∃{fj}`
j=1 such that F =

⋃̀

j=1

{f ∈ F : dp,x(f, fj) ≤ ε}
}

.

The p-empirical covering number of F is then defined by

Np(F , ε) = sup
m∈IN,x∈Xm

Np,x(F , ε).
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The mostly used cases in learning theory are p = 1, 2 and ∞. One can easily see that

N1(F , ε) ≤ N2(F , ε) ≤ N∞(F , ε) ≤ N (F , ε).

Hence one may expect to use empirical covering numbers to get better bounds for the

sample error and hence sharper learning rates. In particular, when p = 2, one may use

techniques from empirical process theory such as a chaining argument and Dudley’s en-

tropy integral and other probability inequalities such as Talagrand’s inequality to have

better estimates for the sample error (e.g. [24]). Moreover, the covering number of the

reproducing kernel Hilbert space satisfies logN2(B1, ε) ≤ c(1/ε)s with 0 < s ≤ 2 (see e.g.

[21]). Actually, there holds
∫ 1

0

√
logN2(B1, ε)dε < ∞. When s tends to the extremal case

2, learning rates obtained by these techniques can be arbitrarily close to those deduced by

kernel independent bounds based on the leave-one-out analysis.

On the other hand, Mercer kernels may have logarithmic complexity exponent s ≥ 1:

for some C3 > 0, there holds

logN (η) ≤ C3 (log(1/η))s
, ∀η > 0. (7.2)

This is better than (1.8). In particular, for convolution type kernels K(x, y) = k(x − y)

generated by real even functions k having exponentially decaying Fourier transform, (7.2)

holds. As an example, consider the Gaussian kernel K(x, y) = exp{−|x − y|2/σ2} with

σ > 0. If X ⊂ [0, 1]n and 0 < η ≤ exp{90n2/σ2 − 11n − 3}, then (7.2) is valid [29] with

s = n + 1. A lower bound [30] holds with s = n
2 , which shows the upper bound is almost

sharp.

When the kernel has logarithmic complexity exponent s ≥ 1 with (7.2) satisfied, then

v∗(m, δ) ≤
(

40 log(1/δ) + 40C3

(
log m

)s + 1
)

/m.

To see this, we use the same procedure as Proposition 4.3. Take h̃(η) := C3

(
log 1

η

)s− mη
40 .

Then v∗(m, δ) ≤ ∆ where ∆ is any positive number satisfying h̃(∆) ≤ log δ. We can easily

check that

h̃

((
40 log(1/δ) + 40C3

(
log m

)s + 1
)
/m

)
≤ C3

(
log m

)s − C3

(
log m

)s − log
1
δ

= log δ.
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Then the bound for v∗(m, δ) follows. The small capacity kernels (7.2) yield learning rates

of the type O((log m)s/m). This can be derived by a refined iteration, which is presented

in this paper.

The third extension is the multi-kernel setting. In this case, a set of kernels are used

instead of only one kernel. Let Σ be an index set and {Kσ}σ∈Σ a set of Mercer kernels.

The multi-kernel regularized learning scheme is defined as

fz = fz,λ := arg min
σ∈Σ

min
f∈HKσ

{
Ez(f) + λ‖f‖2Kσ

}
.

Particular examples of kernel sets include Gaussians (see [27]) with flexible variances
{
Kσ

}
0<σ<∞, Kσ(x, y) = exp

{− |x−y|2
σ2

}
, and polynomial kernels (see [32]) with varying

degrees {Kd}d∈IN, Kd(x, y) = (1 + x · y)d. The main advantage of this multi-kernel algo-

rithm is to improve the regularization error by using varying hypothesis spaces (see [31,

16, 32]). The error analysis for this multi-kernel setting can be done in the same way if the

covering number of
⋃

σ∈Σ

{
f ∈ HKσ : ‖f‖Kσ ≤ 1

}
satisfies (1.8). But the index s may be

large s > 2, due to the multi-kernels. It’s unknown whether the empirical covering number

or some other data dependent capacity measurements [17, 1] can be used in this setting.
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