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Learning Recursive Functions FromApproximations�John CaseyUniversity of Delaware Susanne KaufmannzUniversit�at Karlsruhe E�m KinberxSacred Heart UniversityMartin Kummer{Universit�at KarlsruheAbstractInvestigated is algorithmic learning, in the limit, of correct programs forrecursive functions f from both input/output examples of f and several in-teresting varieties of approximate additional (algorithmic) information aboutf . Speci�cally considered, as such approximate additional information aboutf , are Rose's frequency computations for f and several natural generalizationsfrom the literature, each generalization involving programs for restricted treesof recursive functions which have f as a branch. Considered as the types oftrees are those with bounded variation, bounded width, and bounded rank.For the case of learning �nal correct programs for recursive functions, EX-learning, where the additional information involves frequency computations,an insightful and interestingly complex combinatorial characterization of learn-ing power is presented as a function of the frequency parameters. For EX-learning (as well as for BC-learning, where a �nal sequence of correct programsis learned), for the cases of providing the types of additional information consid-ered in this paper, the maximal probability is determined such that the entireclass of recursive functions is learnable with that probability.�An extended abstract of this paper appeared in: Computational Learning Theory{Second Euro-pean Conference, EuroCOLT'95. Editor: Paul Vit�anyi. Lecture Notes in Arti�cial Intelligence 904,pp. 140{153, Springer-Verlag, Berlin, 1995.yDepartment of Computer and Information Sciences, University of Delaware, Newark, Delaware19176, USA, (Email: case@cis.udel.edu).zInstitut f�ur Logik, Komplexit�at und Deduktionssysteme, Universit�at Karlsruhe, D-76128 Karls-ruhe, Germany, (Email: kaufmann@ira.uka.de). Supported by the Deutsche Forschungsgemein-schaft (DFG) Grant Me 672/4-2.xComputer Science, Sacred Heart University, 5151 Park Avenue, Fair�eld, CT 06432-1000, USA,(Email: kinber@shu.sacredheart.edu).{Institut f�ur Logik, Komplexit�at und Deduktionssysteme, Universit�at Karlsruhe, D-76128 Karls-ruhe, Germany, (Email: kummer@ira.uka.de). 1



1 IntroductionIn the traditional setting of inductive inference the learner receives input/output ex-amples of an unknown recursive function f and has to learn a program for f . In reallife a learner usually has \additional information" available. There are several ap-proaches in the literature to incorporate this fact into the learning model, for instanceby providing an upper bound for the size of the minimal program which computes f(Freivalds, Wiehagen [16]), by providing a higher-order program for f (Baliga, Case[3]), by allowing access to an oracle (Fortnow et al. [14]), by answering questions aboutf formulated by the learner in some �rst-order language (Gasarch, Smith [18]), bypresenting \training sequences" (Angluin et al. [2]).In this paper we follow a di�erent route, we provide additional information in formof algorithms that approximate f . In the context of robot planning, Drew McDermott[34] says, \Learning makes the most sense when it is thought of as �lling in thedetails in an algorithm that is already nearly right." As will be seen, the particularapproximations we consider can be thought of as algorithms that are nearly rightexcept for needing details to be �lled in. The notions of approximation which weconsider are also of interest in complexity theory [6] and recursion theory [4].A classical approximation notion is (m;n)-computation (also called frequency com-putation) introduced by Rose [39] and �rst studied by Trakhtenbrot [42]. Here theapproximating algorithm computes, for any n pairwise di�erent inputs x1; : : : ; xn,a vector (y1; : : : ; yn) such that at least m of the yi are correct, i.e., are such thatyi = f(xi).EX-style learning [9] requires of each function in a class learned that, in the limit,a single correct program be found. In Section 3 below we provide a combinatorialcharacterization of all m;n;m0; n0 such that every class which can be EX-learnedfrom (m;n)-computations can also be EX-learned from (m0; n0)-computations. Thecombinatorial conditions for this characterization turn out to be interestingly complex.In this same section we also prove an interesting duality result comparing the learningof programs from (m;n)-computations with the learning of (m;n)-computations.In Section 4 we determine the maximal probability p > 0 such that the class ofall recursive functions is learnable with probability p from (m;n)-computations by aprobabilistic inductive inference machine. We show that for m � n=2 there is no suchprobabilistic machine; whereas, for m > n=2, that p = 1=(n�m+1) is the maximal psuch that there is a probabilistic inductive inference machine which infers all recursivefunctions with probability p from (m;n)-computations. BC-style learning [9] requiresof each function in a class learned that, in the limit, an in�nite sequence of correctprograms be found. Our results of this section hold for both EX- and BC-learning.Providing an (m;n)-computation for f can be considered as a special case ofproviding a partial �rst-order speci�cation of f (see the discussion at the beginningof Section 5 below). The idea is that the set of all solutions of a partial �rst-orderspeci�cation can be pictured as the set of all branches of a recursive tree. Thus it isalso natural to look at approximative information in the form of a recursive tree Tsuch that f is a branch of T .In this regard we consider several classes of recursive trees parameterized by nat-ural numbers: trees of bounded variation, bounded width, or bounded rank. These2



classes are known from the literature, and they have the pleasing property that all thebranches of their trees are recursive (see [21]). In Section 5 below, for each of theseclasses of approximate additional information, we determine the maximal probabilityp such that all recursive functions are learnable. In contrast to the special case offrequency computations, a higher maximal probability is obtained in many cases forBC than for EX.2 Notation and De�nitionsThe recursion theoretic notation is standard and follows [35, 41].! = f0; 1; 2; : : :g. 'i is the i-th partial recursive function in an acceptable enu-meration, and Wi � ! is the i-th associated r.e. set (i.e., Wi = dom('i)). Let RECdenote the class of all total recursive functions, and let REC0;1 be the class of allf0; 1g-valued functions in REC.For functions f and g let f =� g denote that f and g agree almost everywhere,i.e., (9x0)(8x � x0)[f(x) = g(x)]. f � y denotes the restriction of f to argumentsx < y. �A is the characteristic function of A � !. We identify A with �A, e.g., wewrite A(x) instead of �A(x).!� is the set of �nite sequences of natural numbers. � is the empty string. j�jdenotes the length of string �. For instance, j�j = 0. For strings � and � we write� � � if � is an initial segment of � . Let �(x) = b if x < j�j and b is the (x + 1)-th symbol of �. For �; � 2 !n, � =e � means that � and � disagree in at most ecomponents. The concatenation of � and � is denoted by � ? � . We often identifystrings with their coding number, e.g., we may regard Wi as the i-th r.e. set of strings.A tree T is a subset of !� which is closed under initial segments. � 2 T is calleda node of T . T is r.e. if Wi = f� : � 2 Tg for some i. Such an i is called a �1-indexof T . T is recursive if �T is a recursive function, in which case i is called a �0-indexof T if 'i = �T . f 2 f0; 1g! is a branch1 of T if every �nite initial segment of f is anode of T . We also say that A � ! is a branch of T if �A is a branch of T . [T ] is theset of all branches of T . Let T [�] = f� 2 T : � � �g, the subtree of T below �.An inductive inference machine (IIM) M is a recursive function from !� to !. MEX-infers f 2 REC if limnM(f � n) exists and is a '-index of f . For S � REC,S 2 EX if there is an IIM which EX-infers all f 2 S.For a 2 !, M BC-infers f if there is an n0 such that for all n � n0, 'M(f�n) = f .For S � REC, S 2 BC if there is an IIM which BC-infers all f 2 S. See [9, 36] forbackground on these de�nitions.In this paper we consider IIMs which receive additional information on f codedinto a natural number. In this case an IIM is a recursive function from ! � !� to !.M EX-infers f 2 REC from additional information e 2 !, if limnM(e; f � n) existsand is an index of f ; similarly for BC-inference.As is well-known, every IIM M can be replaced by a primitive recursive (or evenpolynomially time bounded) machine M 0 which infers the same set of functions (see1We could consider branches f 2 !! , but, as we shall see in Section 5 below, for this paper, thatwill not be necessary. 3



[36]). M 0 just performs a slow simulation of M . Let fMege2! be an e�ective listingof all primitive recursive IIMs.3 The Power of Learning from Frequency Com-putationsIn this section we determine the relative power of inductive inference from frequencycomputations. We give a combinatorial characterization of the parametersm;n;m0; n0such that every class which can be learned from (m;n)-computations can also belearned from (m0; n0)-computations. Our criterion was previously considered for theinclusion problem of frequency computation [13, 23, 28] where it is su�cient but notnecessary, and for the inclusion problem of parallel learning where it is necessary butnot su�cient [27].Let us �rst recall the formal de�nition of (m;n)-computation which was introducedby Rose [39] and �rst studied by Trakhtenbrot [42].De�nition 3.1 Let 0 � m � n. A function f : ! ! ! is (m;n)-computable i� thereis a recursive function F : !n ! !n such that for all x1 < � � � < xn,(f(x1); : : : ; f(xn)) =n�m F (x1; : : : ; xn);i.e., F has at least m correct components. In this context, we call F an \(m;n)-operator" and say that f is (m;n)-computable via F .Trakhtenbrot [42] proved the classical result that, for m > n=2, all (m;n)-computablefunctions are recursive. He also proved that this is optimal, i.e., there exist nonrecur-sive (n; 2n)-computable functions. See [19] for a recent survey of these and relatedresults.In our new learning theoretic notion, the learner receives input/output examples off and an index of an (m;n)-operator for f . If m > n=2, then any two functions whichare (m;n)-computable via the same (m;n)-operator di�er in at most 2(n�m) places.However, the (m;n)-operator does not reveal too much information about f , even ifm = n � 1: Kinber [22] proved that there is no uniform procedure to compute froman index of an (n � 1; n)-operator a program which computes, up to �nitely manyerrors, a function which is (m;n)-computable via this operator. This was recentlygeneralized in [21].De�nition 3.2 Let 0 � m � n. A class S � REC belongs to (m;n)EX i� there isan inductive inference machine M such that for every f 2 S and every index e of an(m;n)-operator for f , limtM(e; f � t) exists and is an index of f . Similarly, (m;n)BCis de�ned.Remark: Note that (0; n)EX = EX. Thus the new notion (m;n)EX generalizesEX-inference. On the other hand, it can also be considered as a special case of EX-inference: For every S � REC let ~Sm;n = ff : �x: f(x + 1) 2 S ^ f(0) is an indexof an (m;n)-operator for �x: f(x+ 1)g. Then, S � (m;n)EX i� ~Sm;n � EX.4



Our next goal is a combinatorial characterization of the parameters m;n;m0; n0 suchthat (m;n)EX � (m0; n0)EX. To this end we consider (m;n)-computations on �nitedomains. This is a local combinatorial version of (m;n)-computation. It was �rststudied by Kinber [23] and Degtev [13].De�nition 3.3 Let ` � n � m � 0. A set V � !` is called (m;n)-admissiblei� for every n numbers xi (1 � x1 < � � � < xn � `) there exists a vector b 2 !nsuch that (8v 2 V )[v[x1; : : : ; xn] =n�m b]. In other words, there exists a functionG : f1; : : : ; `gn ! !n such that v[x1; : : : ; xn] =n�m G(x1; : : : ; xn) for all 1 � x1 <� � � < xn � `. Here v[x1; : : : ; xn] denotes the projection of v on the componentsx1; : : : ; xn.It is decidable whether for given m;n;m0; n0 and ` = max(n; n0), every (m;n)-admissible set V � !` is (m0; n0)-admissible. One has to check for allG : f1; : : : ; `gn !f1; : : : ; n�ǹ�gn whether there is H : f1; : : : ; `gn0 ! f1; : : : ; n�ǹ�gn0 such that for allv 2 !`, if fvg is (m;n)-admissible via G, then it is (m0; n0)-admissible via H. Also, ifthere is an (m;n)-admissible set V � !` which is not (m0; n0)-admissible, then thereis a �nite such V .The following characterization says roughly that (m;n)EX � (m0; n0)EX i� ev-ery �nite (m0; n0)-operator can be transformed into an (m;n)-operator, i.e., (m0; n0)-computations can be locally replaced by (m;n)-computations.Theorem 3.4 Let 0 � m � n; 0 � m0 � n0; ` = max(n; n0). Then (m;n)EX �(m0; n0)EX i� every (m0; n0)-admissible set V � !` is (m;n)-admissible.Proof: (() : If every (m0; n0)-admissible set V � !` is (m;n)-admissible, then wecan compute from any index of an (m0; n0)-operator H in a uniform way an index ofan (m;n)-operator ~H such that every recursive function which is (m0; n0)-computablevia H is (m;n)-computable via ~H.More formally, ~H is computed as follows: Given x1 < � � � < xn, let xn+1 =xn + 1; : : : ; x` = xn + `� n. The setV = fv 2 !` : (81 � i1 < � � � < in0 � `)[v[i1; : : : ; in0 ] =n0�m0 H(xi1 ; : : : ; xin0 )]gis (m0; n0)-admissible. By hypothesis there is a functionG : f1; : : : ; `gn ! !n such thatV is (m;n)-admissible via G and, by the remarks above, such a G can be computedfrom H. Let ~H(x1; : : : ; xn) = G(1; : : : ; n).It easily follows that (m;n)EX � (m0; n0)EX: Suppose the IIM M (m;n)-infersS � REC. Given the index i of an (m0; n0)-operator for f 2 S we �rst compute anindex i0 of an (m;n)-operator for f and then simulate M with inputs i0 and f .()) : For the converse, assume that there is an (m0; n0)-admissible set V � !`which is not (m;n)-admissible. By the remarks above, V can be chosen as a �niteset, say V = fv1; : : : ; vkg. W.l.o.g., v1(1) 6= v2(1). Fix G : f1; : : : ; `gn0 ! !n0 suchthat V is (m0; n0)-admissible via G. Recall that fMege2! is an e�ective listing of allprimitive recursive IIMs. For each e we de�ne a function fe 2 REC and an index iof a recursive function Fe : !n0 ! !n0 such that fe is (m0; n0)-computable via Fe, but5



Me(i; fe) does not infer fe. Thus S = ffe : e � 0g 62 (m0; n0)EX. But we take carethat S 2 (m;n)EX.The basic idea for constructing fe is standard. We try to build an increasingsequence �0 � �1 � � � �, each time forcing an incorrect guess or a new mindchange,i.e., for each t we want that either 'Me(i;�t)(j�tj) 6= �t+1(j�tj) (this corresponds tocondition (1.2) below) or Me(i; �t) 6= Me(i; �) for some � with �t � � � �t+1 (thiscorresponds to condition (1.3) below). If this succeeds we let fe = limt �t. If we getstuck after building �t we let fe = �t ? 0!.In the construction below we have a variable mc in which we count the currentnumber of errors enforced by the above actions.The main new ingredient is that we simultaneously try to diagonalize against all(m;n)-operators, i.e., for each j we try to ensure that fe is not (m;n)-computablevia 'j (this corresponds to condition (1.1) below). However, the diagonalization isallowed only if more than j errors have been enforced. In the variable L we record allj such that 'j has been diagonalized.The goal of the additional diagonalization is that fe becomes inferable from anyindex j of an (m;n)-operator for fe: To this end one simulates the construction below.As long as mc � j it is assumed that fe =� 0!. When mc > j the inference algorithmuses the fact that 'j is never diagonalized. This means that mc goes to in�nity andhence fe = limt �t. Thus, as soon as mc > j the algorithm can simply output aprogram for limt �t.The following construction depends on the parameters e; i. We de�ne a sequence�0; �1; : : :, a function f , and an (m;n)-operator F . Formally all of these objects dependon e; i. To keep the notation simple we omit these additional indices and assume thate; i are �xed. By the recursion theorem we will later obtain a recursive function hsuch that i = h(e) is an index of Fe;i.Construction of the � -sequence:Stage 0: Let t = 0, �0 = (e);mc = 0; L = ;.Stage s+ 1: Let I = fj�tj; : : : ; j�tj+ ` � 1g.1.) Check whether one of the following conditions is satis�ed.(1.1) There is j < mc, j 62 L such that 'j;s(x1; : : : ; xn) #2 !nfor all x1; : : : ; xn 2 I with x1 < � � � < xn.(1.2) There is b 2 f1; 2g such that 'c;s(j�tj) #6= vb(1) for c = Me(i; �t).(1.3) There is � such that �t ? v1 � � � �t ? v1 ? 0s and Me(i; �) 6=Me(i; �t).2.) If none of the conditions holds, then go to stage s+ 2. Otherwise choose the �rstcondition (1.a) which holds, perform step (2.a), and go to stage s+ 2.(2.1) Choose the least j such that (1.1) holds. Compute q, 1 � q � k, such thatthere are x1; : : : ; xn 2 I with x1 < � � � < xn and 'j(x1; : : : ; xn) agrees withvq in at most m� 1 components. (Note that q exists, since otherwise 'jwitnesses that V is (m;n)-admissible.)Let �t+1 = �t ? vq ? 0s; t = t+ 1; L = L [ fjg.(2.2) Choose b as in (1.2) and let �t+1 = �t ? vb ? 0s; t = t+ 1; mc = mc+ 1.(2.3) Let �t+1 = �t ? v1 ? 0t; t = t+ 1; mc = mc+ 1.End of construction. 6



De�nition of f :If t is incremented only �nitely often, then let t0 denote its maximal value and de�nef = �t0 ? v1 ? 0!. Otherwise de�ne f = limt �t.De�nition of F :We de�ne F (y1; : : : ; yn0) = (b1; : : : ; bn0) as follows for y1 < � � � < yn0 :Let s = yn0 and let t0 denote the value of t at the end of stage s+1. Choose z1; : : : ; zn0such that 1 � z1 < � � � < zn0 � ` and fyj : 1 � j � n0 ^ j�t0j � yj < j�t0j + `g �fj�t0j+ zj � 1 : 1 � j � n0g.If yj < j�t0j, then let bj = �t0(yj).If yj � j�t0j+ `, then let bj = 0.If yj = j�t0j+ zj0 � 1 for some 1 � j 0 � n0, then let bj = G(z1; : : : ; zn0)[j 0].Note that the de�nition of F is uniform in e; i and that F is de�ned for all n0-tuplesy1 < � � � < yn0 . The de�nition of f is non-uniform, but f is in any case a total recursivefunction.Claim 0: f is (m0; n0)-computable via F .Proof: Consider y1 < � � � < yn0 and let s; t0; z1; : : : ; zn0; b1; : : : ; bn0 be as above. Ifyj < j�t0j, then bj = �t0(yj) = f(yj) since �t0 � f . If yj � j�t0j+ `, then bj = 0 = f(yj)since �t0 ? v ? 0s � f for some v 2 V . Otherwise, j�t0j � yj < j�t0j + `. Suppose thatthere are a such yj's. Since the other n0� a components are correct, we need to showthat at least m0 � (n0 � a) of the corresponding bj's are correct. Note that the bj'sare components of a projection of G(z1; : : : ; zn0) on a set of size a. By construction,G(z1; : : : ; zn0) =n0�m0 (f(j�t0j+ z1 � 1); : : : ; f(j�t0j+ zn0 � 1)). Thus any projection ona components has at least m0 � (n0 � a) correct components. 2Claim 1: Me(i; f) does not converge to an index of f .Proof: a.) Suppose that t is incremented only �nitely often and reaches its maximalvalue t0 at stage s0. Then conditions (1.2) and (1.3) do not hold at any later stage.Thus 'Me(i;�t0)(j�t0j) is unde�ned and Me(i; �t0) = Me(i; �t0 ? v1 ? 0s) for all s, i.e.,Me(i; f) converges to an index of a non-total function.b.) If t is incremented in�nitely often, then also mc is incremented in�nitely often.(Ifmc does not change, then t can be incremented only via (1.1). But this can happenat mostmc times.) Thus,Me(i; f) makes in�nitely many mindchanges or for in�nitelymany � � f we have 'Me(i;�)(j� j) 6= fe(j� j). In particular, Me(i; f) does not convergeto an index of f . 2De�nition of fe; Fe, and S:Let Fe;i; fe;i denote the recursive functions F; f in the construction with parameterse; i. Since the construction of Fe;i is uniform in e; i, there is a recursive function gsuch that Fe;i = 'g(e;i). By the recursion theorem with parameters there is a recursivefunction h such that 'h(e) = 'g(e;h(e)) for all e. Let Fe = Fe;h(e), fe = fe;h(e), andS = ffe : e � 0g.Claim 2: h(e) is an index of an (m0; n0)-operator for fe.Proof: By Claim 0, Fe is an (m0; n0)-operator of fe. By de�nition of h, h(e) is anindex of Fe. 2Claim 3: S 62 (m0; n0)EX.Proof: Suppose that S 2 (m0; n0)EX. Then there is an e such that Me infers S. By7



Claim 1, Me(h(e); fe) does not converge to an index of fe. Since, by Claim 2, h(e) isan index of an (m0; n0)-operator for fe, we obtain a contradiction. 2Claim 4: S 2 (m;n)EX.Proof: The following algorithm infers S: Given f 2 S and an index j of an (m;n)-operator for f . First obtain e = f(0) and compute i = h(e). Then simulate theconstruction of the � -sequence with parameters e; i. As long as mc � j assume thatfe =� 0! and perform identi�cation by enumeration. If it is discovered that mc > j,then output a program which computes limt �t.It remains to show that this algorithm is correct. If at each stage mc � j, thent is incremented only �nitely often and fe =� 0!. If mc > j and t is incrementedonly �nitely often, then there is a stage at which j is the least number for which (1.1)holds, so 'j would be diagonalized which contradicts the hypothesis that 'j is an(m;n)-operator for fe. Thus, t is incremented in�nitely often and fe = limt �t, i.e.,the �nal guess of the algorithm is correct. 2Remarks: a.) As f0; 1gn is (trivially) (0; n)-admissible, but not (1; n)-admissible,it follows that EX � (1; n)EX for all n � 1. This shows that even if very weakoperators are provided, one can still learn more than without them.b.) In the proof of ()) we construct recursive functions such that every (m;n)-operator of f has high running time. Indeed, in the simulation one uses the running-time of the program which computes the operator rather than the extensional infor-mation provided by the operator. This is inevitable: Suppose S 2 (1; n)EX and everyf 2 S is (1; n)-computable by an operator which is easily computable, say primitiverecursive. Then S 2 EX, since we can successively try all primitive recursive (1; n)-operators as additional inputs, until we settle down on one which is consistent withf . | Note however, that even if we restrict all operators to be computable in poly-nomial time, they can still (n� 1; n)-compute arbitrarily complex recursive functions(see [1, 22]).It is also natural to de�ne a notion of inference where we want to learn an approxima-tion of f instead of f , i.e., a program of an (m;n)-operator for f instead of a programfor f . Call this notion EX(m;n). We get the following interesting and nontrivialduality between both notions.Theorem 3.5 EX(m;n) � EX(m0; n0) i� (m0; n0)EX � (m;n)EX.Proof sketch: We use the characterization of Theorem 3.4.If (m0; n0)EX � (m;n)EX, then every (m;n)-operator can be uniformly trans-formed into an (m0; n0)-operator; hence, if we can learn an (m;n)-operator for f wecan also learn an (m0; n0)-operator.For the other direction, if (m0; n0)EX 6� (m;n)EX, then there is an (m;n)-admissible �nite set V which is not (m0; n0)-admissible. We can use V to diagonalizeover machines which learn (m0; n0)-operators while constructing an (m;n)-operator.This is formally similar to (but easier than) the proof of Theorem 3.4 ()). The detailsare left to the reader. 8



A couple of explicit results on (m;n)-admissible sets are listed in [27, Section 3.3](see also [21, Section 5]). For instance, Kinber [23] showed that, for n � 2, every(n; n+ 1)-admissible set is (n+1; n+ 2)-admissible. If n�m > n0�m0, then the setof all binary vectors with at most n �m ones is (m;n)-admissible but not (m0; n0)-admissible. The set f1`; 2`; : : : ; n`g is (1; n)-admissible but not (m0; n0)-admissible for` = max(n; n0) and m0=n0 > 1=n. Hence, we get the following corollary.Corollary 3.6a.) (n; n+ 1)EX = (n+ 1; n + 2)EX for all n � 2.b.) (m;n)EX � (m+ 1; n)EX for all 1 � m < n.In particular, REC 62 (n� 1; n)EX.c.) (m0; n0)EX 6� (1; n)EX if 1=n < m0=n0.4 Probabilistic Learning from Frequency Compu-tationsWe have shown that REC is not inferable by an IIM even if (n�1; n)-computations off are provided. In this section we answer the question whether REC is inferable from(m;n)-computations by a probabilistic IIM with positive probability. We show thatthis is indeed the case if m=n > 1=2. Further, we determine the maximal p = p(m;n)such that REC can be learned from (m;n)-computations with probability p.We �rst recall some notation and results from [38]. Let EXprob (p) denote the setof all S � REC that can be EX-inferred by a probabilistic IIM with probability atleast p. Let EX[k] denote the set of all S which can be EX-inferred by a team of kIIMs. The same notation is used for BC instead of EX. Pitt [38] proved the followingsurprising connection between probabilistic inference and team inference.Proposition 4.1 [38] For all natural numbers k � 1 and all real numbers p 2 (0; 1]:EXprob (p) � EX[b1=pc] ^ EX[k] � EXprob (1=k):The same holds for BC instead of EX.Using Smith's team hierarchy result [40] that EX[k] � EX[k + 1] and BC[k] �BC[k+ 1] for all k � 1, Pitt concluded that the probabilistic classes form an in�nitediscrete hierarchy with breakpoints of the form 1=k.Proposition 4.2 [38, 40] For all natural numbers k � 1 and all real numbers p 2(0; 1]: EXprob (p) = EX[k] () 1k + 1 < p � 1k () BCprob(p) = BC[k]:In particular, REC 62 EXprop(p). 9



These notions can be transferred in a straightforward way to our setting:Let (m;n)EXprob(p) denote the set of all S � REC such that there is a proba-bilistic IIM M such that for every f 2 S and every index e of an (m;n)-operator off , M(e; f) converges to an index of f with probability at least p.Let (m;n)EX[k] denote the set of all S � REC such that there is a team of kIIMs M1; : : : ;Mk such that for every f 2 S and every index e of an (m;n)-operatorfor f there is i; 1 � i � k such that limtMi(e; f � t) exists and is an index of f . Theclasses (m;n)BCprob(p) and (m;n)BC[k] are de�ned analogously.The proof of Pitt's Proposition 4.1 can be straightforwardly transferred and yieldsthe following.Proposition 4.3 For all natural numbers k;m; n, with k � 1, and all real numbersp 2 (0; 1]:(m;n)EXprob(p) � (m;n)EX[b1=pc] ^ (m;n)EX[k] � (m;n)EXprob(1=k):The same holds for BC instead of EX.Our �rst result shows that no probabilistic IIM can infer REC with positive proba-bility from frequency computations with frequency less than or equal to 1=2.Theorem 4.4 If 0 � m � n2 and 0 < p � 1, then REC0;1 62 (m;n)BCprob(p).Proof: Let C � REC0;1 be the set of all recursive functions g such that there isa sequence a0; a1; : : : with g the characteristic function of fha0; : : : ; aii : i � 0g. It iseasy to see that there is a (1; 2)-operator F such that every g 2 C is (1; 2)-computablevia F . It follows that for every m;n with m=n � 1=2 there is a �xed (m;n)-operatorFm;n such that every g 2 C is (m;n)-computable via Fm;n.Suppose for a contradiction that C 2 (m;n)BCprob(p) with p 2 (0; 1]. Let k =b1=pc. Then, by Proposition 4.3, C 2 (m;n)BC[k]. Let e be an index of Fm;n. Thereis a team of k machines which BC-infers C with additional information e. If thisconstant additional information is hard-wired into the IIMs, we obtain C 2 BC[k].Note that every f 2 REC can be transformed into a unique g 2 C and vice versa, byrecursive operators. Thus it follows that REC 2 BC[k]. This contradicts the teamhierarchy result of Smith [40].Now we turn to frequencies greater than 1=2. In this case there exist probabilisticIIMs which can infer REC from frequency computations. We determine the maximalprobability p for which this can be done.Theorem 4.5 Let n2 < m � n. Then REC 2 (m;n)EXprob( 1n�m+1 ), but REC0;1 62(m;n)BCprob(p) for any probability p > 1n�m+1 .Proof: Let m;n � 1 be given with n2 < m � n. By Proposition 4.3 is su�ces toshow the upper bound REC 2 (m;n)EX[n�m+ 1] and the lower bound REC0;1 62(m;n)BC[n�m].a.) Proof of REC 2 (m;n)EX[n�m+1]: This requires a combination of methodsfrom [19] and [21]. Given an (m;n)-operator R we de�ne uniformly as in [19, p. 684] a10



recursive tree T � f0; 1g� whose branches represent the graphs of all partial functionswhich are (m;n)-computable via R.More formally, we call a string � single valued if(8hx; y1i < j�j)(8hx; y2i < j�j)[(�(hx; y1i) = 1 ^ �(hx; y2i) = 1) =) y1 = y2]:We call a string � R-consistent if for all x1 < � � � < xn, if R(x1; : : : ; xn) = (z1; : : : ; zn)and hx1; z1i; : : : ; hxn; zni < j�j, then jfi : �(hxi; zii) = 1gj � m. Then we de�ne T asfollows. T = f� 2 f0; 1g� : � is single valued and R-consistentg:Assume that f 2 REC is (m;n)-recursive via R. Then the characteristic functionof Graph(f) = fhx; f(x)i : x 2 dom(f)g is a branch of T . Conversely suppose thatA 2 [T ], i.e., �A is a branch of T . Then there is a partial function g such thatA = Graph(g) and for all x1 < � � � < xn, jfi : xi 2 dom(g) ^ (R(x1; : : : ; xn))i =g(xi)gj � m. Since m > n=2 it follows that f =2(n�m) g. In particular, there are atmost 2(n �m) arguments for which g is unde�ned.The Vapnik-Chervonenkis dimension of [T ], dim(T ), is the maximal number dsuch that there exist z1 < � � � < zd with(8� 2 f0; 1gd)(9A 2 [T ])[� = (�A(z1); : : : ; �A(zd))]:See [7] for more information on this notion. Note that we have dim(T ) � n �m. Otherwise there exist pairwise distinct numbers z1 = hx1; y1i; : : : ; zn�m+1 =hxn�m+1; yn�m+1i and branches of T whose characteristic functions on z1; : : : ; zn�m+1realize all possible 0/1-vectors of length n�m+1. Since every branch is single valued,it follows that the xi's are pairwise distinct. Assume that x1 < � � � < xn�m+1 and let(a1; : : : ; an) = R(x1; : : : ; xn�m+1; xn�m+1 + 1; : : : ; xn�m+1 +m� 1). Choose a branchA such that [A(zi) = 1 , yi 6= ai] for 1 � i � n �m + 1. But this means that aninitial segment of A is not R-consistent, a contradiction.It is shown in [21, Lemma 3.12] that if T is an in�nite recursive tree with dim(T ) �d such that any two branches agree almost everywhere, then one can compute uni-formly from any �0-index of T the indices of d + 1 partial recursive functions suchthat one of them is total recursive and computes a branch of T up to �nitely manyerrors. If we combine the results presented so far we get the following.Claim: There is a uniform procedure to compute from any index of an (m;n)-operatorR a list of n �m + 1 indices i1; : : : ; in�m+1 such that if there is f 2 REC which is(m;n)-recursive via R, then there is 1 � j � n � m + 1 and such that 'ij is total,f0; 1g-valued, and 'ij = Graph(g) for some g with f =� g.Now the inference procedure for REC 2 (m;n)EX[n � m + 1] is clear: On input(e; f), where e is an index of an (m;n)-operator for f , each team member computesthe list i1; : : : ; in�m+1 as in the claim. The j-th team member assumes that 'ij istotal, f0; 1g-valued and 'ij = Graph(g) for some g with f =� g. While reading f itchecks whether f(x) = g(x) and outputs a program for g where all di�erences withf that have been discovered so far are patched. By the claim, for one of the teammembers the assumption is correct. Thus, this team member will eventually outputa correct program for f . 11



b.) REC0;1 62 (m;n)BC[n � m]: Suppose for a contradiction that there is team ofn � m machines M1; : : : ;Mn�m which infers REC0;1 from (m;n)-computations. Wecombine the proof of the lower bound in [21, Theorem 3.5] with a diagonalizationmethod for teams and construct a function f 2 REC0;1 and an (m;n)-operator R forf . By the recursion theorem, we can use an index e of R in the construction. For1 � i � n �m, we ensure that Mi(e; f) does not BC-infer f .The function f is initialized as the constant zero function. During the constructionf(x) may be updated from zero to one. For each i we are looking for possibilities toforce an error in the inference process of Mi with inputs e and f . To this end weare looking for r such that 'Mi(e;f�r)(r) = 0 = f(r) and then update f(r) = 1 andensure that f(x) does not change for x � r. If this can be done for in�nitely manyr, then Mi(e; f) produces in�nitely many incorrect hypotheses. If this can be doneonly �nitely often, then almost all hypotheses of Mi(e; f) are incorrect. In any case,Mi(e; f) does not BC-infer f .Since there is a conict between the diagonalization and preservation actions fordi�erent machines, we are using a priority ordering of the machines that is up-dated during the construction according to the `least recently used principle': Ifq = (a1; : : : ; an�m) is the current ordering of machine indices and there are severalcandidates for diagonalization, then we select the machine with the leftmost index,say i = ak. f(r) is updated accordingly, and it is ensured that all later diagonal-ization actions of Maj with j � k start at values greater than r (thereby preservingf � (r+1) with priority k). In the updated sequence q0, we insert i at the last position,i.e., q0 = (a1; : : : ; ak�1; ak+1; : : : ; an�m; ak).This update rule for the diagonalization values will automatically allow us tocompute an (m;n)-operator for f .Construction:Stage 0: Initialize q = (1; 2; : : : ; n�m). Let f = �x: 0; xi = 0 for i = 1; : : : ; n�m.Stage s+ 1: If there is an i for which there exists (a least) r such thatxi < r � s ^ f(r) = 0 ^ 'c;s(r) = 0 for c = Mi(e; f � r);then select (i; r) such that i appears in the leftmost position in q, say i = ak.Update f(r) = 1, let xaj = 2s for k � j � n�m.Move i to the rear of q, i.e., let q = (a1; : : : ; ak�1; ak+1; : : : ; an�m; ak).End of construction.The (m;n)-operator R(y1; : : : ; yn) is de�ned as follows:Given y1 < � � � < yn let s = yn and let fs be the function f at the end of stage s+ 1.Then let R(y1; : : : ; yn) = (fs(y1); : : : ; fs(yn)).From the update rule for the xi's, it follows that f is (m;n)-recursive via R.Let I be the set of all i such that i is selected at in�nitely many stages. Let I 0 bethe set of all i which are selected only �nitely often. Then, by the update rule for q,there is a stage t0 such that in all stages t > t0, all elements from I 0 occupy the �rstjI 0j positions of q and the xi; i 2 I 0, do not change. If jI 0j = n � m, then f = ft0.If jI 0j = k � 1 < n � m, then f(x) = ft(x) for t = (�s > t0)[xak;s > x] where xak ;sdenotes the value of xak at the end of stage s+ 1. In particular, f is recursive.12



From the update rule for the xi's, it follows that f(r) = 0 for in�nitely many r.No Mi; i 2 I 0, BC-infers f : Let x0i be the �nal value of xi. Then for all r > xi suchthat f(r) = 0, Mi(e; f � r) outputs a program which is unde�ned at r or computes anonzero value (otherwise i would eventually be selected and xi would increase). Thus,Mi(e; f) outputs in�nitely often an incorrect program.Now suppose for a contradiction that i 2 I and Mi(e; f � r) is an index of f forall r � r0. Consider a stage s + 1 > t0 with xi > r0 where i occupies the (jI 0j + 1)-th position in q and is selected (by the update rule for q there are in�nitely manysuch stages). At stage s + 1 we put f(r) = 1 6= 0 = 'c(r) for c = Mi(e; fs � r)and some r > r0. By the choice of t0 and the update rule for the xj's we havefs � (r+1) = f � (r+1). Thus c = Mi(e; f � r) is not a program for f , a contradiction.Therefore, none of the Mi's BC-infers f with additional information e.We obtain the following interesting corollary on team inference. It shows thatthere are natural team hierarchies of arbitrary �nite length.Corollary 4.6a.) If n2 < m � n, then (m;n)EX[k] � (m;n)EX[k + 1] for 1 � k � n �m, and(m;n)EX[k] = (m;n)EX[k + 1] = 2REC for k > n�m.b.) If 0 � m � n2 , then (m;n)EX[k] � (m;n)EX[k + 1] for all k � 1.The same holds for BC instead of EX.Proof: a.) Let n2 < m � n. By proof of Theorem 4.5 it remains to show that(m;n)EX[k] � (m;n)EX[k + 1] and (m;n)BC[k] � (m;n)BC[k + 1] for 1 � k �n�m. By a modi�cation of the proof that REC0;1 62 (m;n)BC[n�m] one can evenshow the following:If 1 � k � n �m; then EX[k + 1]� (m;n)BC[k] 6= ;:To this end we diagonalize over all k-tuples of IIMs. For the i-th tuple we use theold construction to build a function fi with 1i0 � fi and an index g(i) of an (m;n)-operator for fi such that none of the IIMs in the i-th tuple infers fi with additionalinformation g(i). The function g 2 REC is obtained by the recursion theorem withparameters. Let S = ffi : i � 0g. By construction, S 62 (m;n)BC[k]. It remains toverify that S 2 EX[k + 1]:On input f the EX-team �rst determines i such that 1i0 � f . Then it simulatesthe construction of fi. The j-th team member, 1 � j � k + 1, assumes that j � 1 ismaximal such that an initial segment of length j � 1 of the queue q is almost alwaysconstant. It is not di�cult to check that the team member with the correct guess canEX-infer fi.b.) By the team hierarchy result of Smith [40] there is a set S � REC withS 2 EX[k + 1] � BC[k]. Let C be the set as de�ned in the proof of Theorem 4.4.As we saw there, for any S 0 � C, all ` � 1, and all m;n with 1 � m � n2 we have[S 0 2 (m;n)EX[`] , S 0 2 EX[`]], and the same for BC instead of EX. Further, Scan be translated into a subset S 0 of C such that S 0 2 EX[k + 1]�BC[k]. Thus thesecond part of the corollary follows. 13



5 Other Notions of Approximative InformationIn this section we consider other notions of approximative information and determinethe maximal probability p with which all total recursive f0; 1g-valued functions arelearnable. In each case we provide indices of recursive or r.e. trees with certain prop-erties such that the function which is to be learned is an in�nite branch of the tree.If one generalizes from binary to arbitrary trees (and thus arbitrary f 2 REC) onegets a notion which corresponds to r.e. trees in the binary case. Therefore, we onlyconsider the f0; 1g-valued case.Recursive trees capture a wide range of approximative information: Suppose wehave a �rst-order speci�cation of f , i.e., an r.e. set S of sentences containing thefunction symbol f . Then, the set of all consistent interpretations f 0 : ! ! ! of fare just the branches of a recursive tree T which can be computed uniformly from S:By the compactness theorem, f 0 is inconsistent with S i� there is an initial segment� = (y0; : : : ; yn) � f 0 such that S� = S[ff(0) = y0; : : : ; f(n) = yng is an inconsistentset of formulas, which is an r.e. property of �. Let �0; �1; : : : be a recursive enumerationof all such �. De�ne T = f� : �i 6� � for all i � j� jg.For all notions of approximative information which we consider the analogue ofProposition 4.3 holds. Therefore we �rst state our results in terms of team inference.At the end of this section we state the corresponding results for probabilistic inference.5.1 Trees of Bounded VariationWe consider trees where any two branches di�er in at most a constant number ofarguments.De�nition 5.1 For A;B � !, let A�B denote the symmetric di�erence of A and B.For any tree T � f0; 1g�, let (�T ) = supfjA�Bj : A;B branches of Tg. We say thatT has bounded variation if (�T ) <1.If a recursive tree T � f0; 1g� has bounded variation, then every branch of T isrecursive [42] (see also [19, 21]). We now determine, for each n, the optimal team sizesuch that all recursive functions are learnable given recursive trees T with (�T ) � nas additional information.De�nition 5.2 Let dEX(n) denote the least team size k such that there is a teamof k IIMs that EX-infers every f 2 REC0;1 given any �0-index of a recursive treeT � f0; 1g� such that (�T ) � n and f is a branch of T . dBC(n) is de�ned analogouslyfor BC- instead of EX-inference.Theorem 5.3 For n � 0, dEX(n) = n+ 1 and dBC(n) = dn+12 e.Proof: a.) dEX(n) � n + 1: Fix n. It is shown in [21] that there is a uniformprocedure to compute, for any �0-index of an in�nite recursive tree T � f0; 1g� with(�T ) � n, a set of n+ 1 partial recursive functions such that one of these functionsis total and computes a branch of T up to �nitely many errors. Each of the team14



members computes one of these functions and patches all di�erences with f . Theteam member which got the total �nite variant of f successfully EX-infers f .b.) dEX(n) > n: We modify the proof of the lower bound in [21, Theorem 3.13]to diagonalize a team of n EX-machines. Suppose for a contradiction that eachf 2 REC0;1 is EX-inferred by the team M1; : : : ;Mn from �0-indices of recursivetrees T � f0; 1g� such that (�T ) � n and f is a branch of T .We construct a recursive function f and a tree T with (�T ) � n and f 2 [T ].By the recursion theorem we can use a �0-index e of T in the construction. Theconstruction is a slight modi�cation of the construction in the proof of Theorem 4.5.Construction:Stage 0: Initialize q = (1; 2; : : : ; n). Let f = �x: 0; xi = i for i = 1; : : : ; n.Stage s+ 1: If there is an i such that one of the following conditions holds:(1) 'c;s(xi) = 0 for c = Mi(e; f � xi),(2) (9r)[xi < r � s ^ Mi(e; f � xi) 6=Mi(e; f � r)],then select that i which appears in the leftmost position in q, say i = ak.If (1) holds, then update f(xi) = 1.In both cases let xaj = sn + aj for k � j � n and move i to the rear of q, i.e., letq = (a1; : : : ; ak�1; ak+1; : : : ; an; ak).End of construction.Note that in (1) we look for a diagonalization at xi and in (2) we look for a mindchange.If from some point on, neither (1) nor (2) holds and Mi(e; f) converges to an index c,then 'c(xi) 6= 0 = f(xi).Similarly as in the previous proof it follows that f is recursive and f is not EX-inferred by any of the Mi's.It remains to give a uniform de�nition of T such that (�T ) � n and f 2 [T ]. Thisis analogous to the proof in [21, Theorem 3.13]. Note in each stage xi � i mod n.Thus the values of xi; xj for i 6= j are di�erent. Let xi;s denote the value of xi at theend of stage s+ 1. De�neT = f� 2 f0; 1g� : (8x < j�j)[x 62 fx1;j�j; : : : ; xn;j�jg ! �(x) = fj�j(x)]g:Clearly f 2 [T ]. Let ` be the number of xi's which are incremented only �nitely oftenand let z1; : : : ; z` be their �nal values. Then we get [T ] = fg 2 f0; 1g! : (8x)[x 62fz1; : : : ; z`g ! f(x) = g(x)g. Thus (�T ) = ` � n.c.) dBC(n) � dn+12 e: Fix n. It is shown in [21] that there is a uniform procedureto compute for any �0-index of an in�nite recursive tree T � f0; 1g� with (�T ) � na set of dn+12 e partial recursive functions such that one of these functions computes abranch of T up to �nitely many errors. (Note that, in contrast to a.), it is possible thatnone of the functions is total.) Each of the dn+12 e team members outputs programs forone of these functions which are patched with the correct values of f on arbitrary largeinitial segments. The team member which received the �nite variant of f successfullyBC-infers f .d.) dBC(n) � dn+12 e: Trakhtenbrot [42] (see also [19, 21]) proved that if k=2 <h � k, then one can compute in a uniform way for any (h; k)-operator F a recursivetree T � f0; 1g� with (�T ) � 2(k�h) such that every f0; 1g-valued function f which15



is (h; k)-recursive via F is a branch of T . Therefore, the lower bound from Theorem4.5, for h = k + 1; k = 2k + 1, implies that dBC(2k + 1) � dBC(2k) � k + 1.Remark: R.e. trees of bounded variation are of less help. One can show that no �niteteam size su�ces to infer REC0;1 from indices of r.e. trees, even for r.e. trees withexactly one branch.5.2 Trees of Bounded WidthWe consider trees which have at most a constant number of nodes in each level.De�nition 5.4 The width w(T ) of a tree T � f0; 1g� is the maximum number ofnodes on any level, i.e., w(T ) = maxfjT \ f0; 1gkj : k � 0g.If a recursive tree T � f0; 1g� has bounded width, then every branch of T isrecursive. In fact, this holds also for r.e. trees of bounded width [37]. We determine,for both the recursive and the r.e. cases, the optimal team size such that all recursivefunctions are inferable given such trees as additional information.De�nition 5.5 Let wEX(n) denote the least team size k such that there is a teamof k IIMs that EX-infers every f 2 REC0;1 given any �0-index of a recursive treeT � f0; 1g� such that w(T ) � n and f is a branch of T . If �1-indices are providedfor T the corresponding team size is denoted by wreEX(n). The analogous numbers forBC-teams are wBC(n) and wreBC(n).Theorem 5.6 For n � 1, wEX(n) = wreEX(n) = wreBC(n) = n and wBC(n) = 1.Proof: If T has bounded width and f is a branch of T , then there is �0 � f suchthat f is the unique branch of T which extends �0. If we have a �0-index of T andany � with �0 � � � f , we can compute an index of f . Using this fact it easily followsthat wBC(n) = 1.Clearly wEX(n) � wreEX(n) and wreBC(n) � wreEX(n).a.) wreEX(n) � n: If f is an in�nite branch of T let w(T; f) = supfw(T [�]) :� � fg. It is shown in [21] that given k; �, � � f , and a �1-index of T withw(T [�]) = w(T; f) = k we can uniformly compute an index of f .For each k, 1 � k � n, we have a teammemberMk which assumes that w(T; f) = kand works as follows: At the beginning it initializes a local variable � = � and outputsan index of f on the assumption that w(T [�]) = w(T; f) = k. Then it enumerates T .If after s steps it is discovered that w(T [�]) > k, then it updates � = (f(0); : : : ; f(s))and outputs a new index for f , etc. Clearly, if k = w(T; f), then after �nitely manysteps w(T [�]) = k and from then on Mk outputs a �xed correct index of f .b.) wreBC(n) > n � 1: Suppose for a contradiction that each f 2 REC0;1 is BC-inferred by the teamM1; : : : ;Mn�1 from �1-indices of r.e. trees T � f0; 1g� such thatw(T ) � n and f is a branch of T .We construct a recursive function f and an r.e. tree T with w(T ) � n and f 2 [T ].By the recursion theorem we can use a �1-index e of T in the construction. The16



construction is just the diagonalization in the proof of Theorem 4.5 where n �m isreplaced by n� 1.Let fs denote the version of f at the end of stage s + 1. We de�ne a tree T asfollows: T = f� 2 f0; 1g� : (9s)[� � fs � s]g:Clearly T is a tree which is uniformly r.e., and f is a branch of T . We claim thatw(T ) � n: Consider any level k, let s1 = k + 1, and let s2 < � � � < sd be those s > s1such that fs � (k+1) 6= fs�1 � (k+1). It follows that jT \ f0; 1gkj = d. At each stagesj, 2 � j � d, some i with xi < k is selected and f(r) is updated for some r withxi < r � k � sj. Then xi is updated to 2sj > k. Hence for each i there is at mostone such stage and therefore d � n.c.) wEX(n) > n � 1: The construction is a modi�cation of the diagonalization inthe proof of Theorem 5.3, b.), where n is replaced by n � 1. The point is that westrengthen the update rule for f such that if f(r) is set from 0 to 1 at stage s + 1,then we reset f(r0) = 0 for all r0 > r.It is still the case that f 2 REC and f is not EX-inferred by any Mi, withadditional input e. Let xi;s denote the value of xi at the end of stage s+1. We de�nea set T as follows:T = ffs � s : s � 0g[ f� 2 f0; 1g� : (9i; s)[j�j = s ^ xi;s < s ^ � = (fs � xi;s) ? 1 ? 0s�(xi;s+1)]g:Clearly T is uniformly recursive and every initial segment of f belongs to T . Also,by the update rule for the xi's, jT \ f0; 1gsj � n. It remains to verify that T is atree. This is done by induction on s. In the inductive step we have to show thatthe predecessor of every � 2 T of length s > 0 belongs to T . This is easy to see ifno i is selected at stage s + 1. If some i is selected, then, using the new reset rule,(fs�1 � xi;s�1) ? 1 ? 0s�xi;s�1 2 T is an initial segment of fs and xj;s > s + 1 for all jwith xj;s�1 � xi;s�1. Thus, also in this case the predecessor of every � 2 T \ f0; 1gsbelongs to T .Remark: One obtains more general classes by considering (m;n)-verboseness opera-tors, see [4, 5, 6]. The corresponding inference notions can be studied along the linesof Sections 3, 4 above.We now present an application for learning when an upper bound of the descriptionalcomplexity of f is given as additional information. The following considerations holdfor our arbitrary acceptable numbering '; though usually these notions are consideredonly for \optimal numberings" or \Kolmogorov numberings" [15, 30]. Let lg(i) =blog2(i+1)c denote the size of the number i, i.e., the number of bits in the i-th binarystring. The descriptional complexity C(�) of a string � 2 f0; 1gn is de�ned asC(�) = lg(minfi : 'i(n) = �g):Thus C(�) is just the well-known (length conditional) Kolmogorov complexity of �with respect to '. See [30] for background information.The descriptional complexity C(f) of f 2 REC0;1 is de�ned asC(f) = lg(minfi : 'i = fg):17



Finally, we de�ne the weak descriptional complexity C 0(f) of f asC 0(f) := supfC(f � n) : n � 0g:Note that there is a recursive function t such that C 0(f) � t(C(f)) for all f 2 REC0;1.For optimal G�odelnumberings one has t(e) = e + O(1). Since there are less than 2cfunctions with C 0(f) < c, C 0(f) indeed measures, in some sense, bits of information off , as Chaitin [10, Section 4] pointed out. He called C 0(f) the \Loveland informationmeasure" and proved that C 0(f) can be much smaller than C(f). If f 2 REC0;1, thenC 0(f) is �nite. The converse appears in a paper of Loveland [31] where it is creditedto A. R. Meyer. Actually, as was noted in [21], Meyer's result is roughly equivalentto the fact that trees of bounded width have only recursive branches.Freivalds and Wiehagen [16] proved that REC0;1 is EX-learnable if an upperbound of C(f) is given as additional information for f 2 REC0;1. In contrast weshow that upper bounds of C 0(f) do not provide su�cient information to learn allf 2 REC0;1. This follows as a corollary of Theorem 5.6.Corollary 5.7 For all k � 1, REC0;1 is not BC[k]-learnable if an upper bound forC 0(f) is given as additional information for f 2 REC0;1.Proof: De�ne a recursive function g such that 'g(e;j)(n) is the j-th string � oflength n which appears in We (i.e., there is an s such that � 2 We;s and jf� 2f0; 1gn : (9t)[h�; ti < h�; si ^ � 2 We;tgj = j � 1) and is unde�ned if � does not exist.Suppose for a contradiction that there is a team of k IIMs which BC-infers everyf 2 REC0;1 given an upper bound of C 0(f) as additional information. Let h(e) =maxfg(e; j) : 1 � j � k + 1g. If e is a �1-index of a tree T with w(T ) � k + 1 andf 2 [T ], then for each n there is j; 1 � j � k + 1, such that f � n = 'g(e;j)(n). Thus,C 0(f) � h(e) and one of the team members BC-infers f from additional informationh(e). Since h 2 REC we obtain a team of k machines which BC-infers every f 2REC0;1 from any �1-index of a tree T of width at most k+1 which has f as a branch.This contradicts wreBC(k + 1) > k which was shown in Theorem 5.6.5.3 Trees of Bounded RankA larger class of trees is obtained if we consider �nite rank instead of �nite width.De�nition 5.8 Bn = f0; 1g�n is the full binary tree of depth n. A mapping g : Bn !T is an embedding of Bn into T if(8�)[j�j< n! [g(� ? 0) � g(�) ? 0 ^ g(� ? 1) � g(�) ? 1]]:rk(T ), the rank of T , is the supremum of all n such that Bn is embeddable into T .If an r.e. tree T � f0; 1g� has �nite rank, then every branch of T is recursive (see[21, 26]). We consider both r.e. and recursive trees of �nite rank which are given asadditional information to the IIM. 18



De�nition 5.9 Let rkEX(n) denote the least team size k such that there is a teamof k IIMs that EX-infers every f 2 REC0;1 given any �0-index of a recursive treeT � f0; 1g� such that rk(T ) � n and f is a branch of T . If �1-indices are providedfor T , the corresponding team size is denoted by rkreEX(n). The analogous numbersfor BC-teams are rkBC(n) and rkreBC(n).Theorem 5.10 For n � 0, rkEX (n) = rkreEX(n) = rkreBC(n) = n + 1 and rkBC(n) =max(1; n).Proof: a.) The lower bounds for rkEX(n); rkreBC(n) follow from the correspondinglower bounds of Theorem 5.6, since [w(T ) � n+ 1) rk(T ) � n].If f is a branch of T , let rk(T; f) = supfrk(T [�]) : � � fg. It is shown in [21]that given k; � and a �1-index of T with rk(T [�]) = rk(T; f) = k ^ � � f we canuniformly compute an index of f . Hence, for the upper bounds we can argue as inthe proof of Theorem 5.6. Note that we have n + 1 possible values for k (includingk = 0); thus n+ 1 team members su�ce.b.) For the upper bound rkBC(n) � max(1; n) it su�ces to show that rkBC(1) = 1.Then we apply the argument of a.) above and note that the cases k = 0; 1 can behandled by a single IIM. Thus we can save one team member and therefore n teammembers are enough for n � 1.Given a �0-index of a tree T � f0; 1g�, rk(T ) � 1, such that f is a branch of T , theBC-algorithm works as follows:On input � = (f(0); : : : ; f(n)) it outputs a program en such that:'en(x) = � (x) if there is � 2 T , � � � such that either � is the only extension of� in T with j� j = x+ 1, or j� j > x+ 1 and � ? 0; � ? 1 both belong to T .Since rk(T ) � 1, either there is �0 � f such that T has no branching node � with�0 � � , or for every � � f there is � � � such that � ? 0; � ? 1 2 T . In the lattercase, all such � must be an initial segment of f . (Otherwise, B2 is embeddable in T .)Thus, in both cases 'en = f for almost all n.c.) Clearly rkBC(0) = 1. For n � 1 and the lower bound rkBC(n) � n, we addtwo features to the diagonalization in the proof of Theorem 4.5. First, the reset rulewhich we already used in the proof of Theorem 5.6. Second, an additional restrictionof diagonalization points. In the original construction all r > xi were available todiagonalize Mi. This time we may, in the course of the construction, exclude certainpoints, e.g., if some j with xj > xi is selected at stage s+1, then all r with xj < r � sare henceforth excluded for diagonalizing Mi. We use an additional set variable Lito record the excluded points. These restrictions are needed for the construction of arecursive tree of rank at most n which contains f as a branch. They may delay thediagonalization process, but it still goes through.Now we turn to the formal details. Suppose for a contradiction that the teamM1; : : : ;Mn�1 BC-infers every f 2 REC0;1 given �0-indices of trees of rank at mostn as additional information. We construct a function f 2 REC0;1 and a �0-index e ofa recursive tree T , rk(T ) � n such that f 2 [T ] but f is not BC-inferred by any Miwith additional information e. Since the construction of T will be uniform, we mayassume by the recursion theorem that e is given in advance.19



Construction:Stage 0: Initialize q = (1; 2; : : : ; n � 1). Let f = �x: 0. Let xi = 0; Li = ; fori = 1; : : : ; n� 1.Stage s+ 1: If there is an i for which there exists r such thatr 62 Li ^ xi < r � s ^ f(r) = 0 ^ 'c;s(r) = 0 for c = Mi(e; f � r);then select that i which appears in the leftmost position in q, say i = ak.Update f(r) = 1 and reset f(r0) = 0 for all r0 > r.Let Laj = Laj [ fx : xi < x � sg for 1 � j < k.Let xaj = 2s for k � j � n � 1.Move i to the rear of q, i.e., let q = (a1; : : : ; ak�1; ak+1; : : : ; an�1; ak).End of construction.De�nition of T :Let fs; xi;s; Li;s denote the values of f; xi; Li at the end of stage s+ 1.T = ffs � s : s � 0g[ f� 2 f0; 1g� : (9i; r; s)[j�j= s ^ xi;s < r � s ^ r 62 Li;s^ � = (fs � r) ? 1 ? 0s�r+1)]g:Clearly T is uniformly recursive and f 2 [T ]. It is veri�ed by induction on s that T isa tree. If i acts at stage s+1 and sets f(r) = 1, then fs extends (fs�1 � r)?1?0s�r forsome r 62 Li;s�1. Also, [r; s] � Lj;s for all j with xj;s � s and therefore fs � r0 = fs�1 � r0for all r0 � s with r0 62 Lj;s.rk(T ) � n: Suppose for a contradiction that g is an embedding of Bn+1 into T .Let �0 = g(�), �j = g(0j) for j = 1; : : : n� 1. Then �j ? 0 � �j+1 for j = 0; : : : ; n � 2.There must be a stage tj where �j � ftj and f(j�jj) is set to 1. (Otherwise B1 is notembeddable in the subtree T [�j ? 1].) It follows that tj+1 < tj for 0 � j < n� 1, sinceft � (j�jj+ 1) 6= �j ? 0 for all t � tj. Let ij denote the i which is selected at stage tj.Then xij;t > tj for all t � tj. Thus all ij's are pairwise distinct. This contradicts thefact that there are at most n� 1 di�erent ij's.None of the team members infers f from additional information e: Let (a1; : : : ; ak),k � 0, denote the maximal initial segment of q which stays almost always constant,say from stage s0 onwards. If k = n, then there are only �nitely many stages wheresome i is selected and f changes only �nitely often. Clearly, in this case none of themachines infers f .If k < n then for each i 62 fa1; : : : ; akg there are in�nitely many stages s+ 1 > s0where i = ak+1 and i is selected. This makes the guess of Mi(e; f � r) incorrectfor some r with xi;s�1 � r � s. Since xi grows unbounded, Mi(e; f) in�nitely oftenoutputs an incorrect guess.Suppose for a contradiction that Mi(e; f) BC-infers f for some i 2 fa1; : : : ; akg.Then there is s1 > 2s0 � xi such that 'Mi(e;f�t) is an index of f for all t � s1. Lets2+1 > s1 be a stage where some j with j = ak+1 acts. Then xak0;t � 2s > s2+ 1 fork0 � k+1 and t � s2. Thus, [s2+1; 2s2)\Li;t = ; and f(s2+1) = 0. Choose s3 > s2such that 'Mi(e;f�(s2+1));s3(s2 + 1) = 0. Then i satis�es the condition in stage s3 + 1and therefore some l � k is selected, a contradiction.20



By adapting Proposition 4.3 to our new inference notions we obtain that inferencewith probability p implies team inference with team size b1=pc. And team inferencewith size k implies probabilistic inference with probability 1=k.Hence as a corollary of our results on team inference we obtain the desired resultson probabilistic inference. This is depicted in the following table where the maximalprobabilities p are given such that REC0;1 is inferable w.r.t. EXprob (p) and BCprob(p)from additional information.Additional information REC0;1 2 EXprob(p) REC0;1 2 BCprob(p)(m;n)-comp., m � n=2 0 0(m;n)-comp., m > n=2 1=(n �m+ 1) 1=(n �m+ 1)T rec., (�T ) � n 1=(n + 1) 1=dn+12 eT rec., width(T ) � n 1=n 1T r.e., width(T ) � n 1=n 1=nT rec., rank(T ) � n 1=(n + 1) 1=max(1; n)T r.e., rank(T ) � n 1=(n + 1) 1=(n + 1)6 Conclusion and Future WorkWe believe the present paper provides hope for escaping from the dilemma in compu-tational learning theory (as well as in work with real robots [8]) that learning is toounsolvable or infeasible. We have provided above some reasonable forms of additionalinformation that yield at least slightly positive solvability results.Future work could investigate improved forms of practically available additionalinformation toward �nding increasingly useful, solvable and feasible learnability.We intend to consider, for example, the learning of useful programs for maps, in-cluding route �nding programs [33], motivated by robot navigation problems. As in[12], we would model the spaces to be navigated as graphs with vertices representinglocally distinct places [24, 25, 29] and with edges representing conduits between them.We plan to consider, as natural additional information, bird's eye views, aerial shots,or satellite photos, graph theoretically modeled as (possibly noisy) homomorphic im-ages of the maps to be learned, i.e., as (approximate) copies of the maps with somevertices coalesced. This approach would be complementary to that in [20]. Our workin the present paper suggests, for example, using homomorphic images which limit,in each of various regions, how many vertices from the map are coalesced. In animallearning of spatial routes to goals, the animals attend to global, macroscopic shapeinformation before local clues (see, for example, [11, 17, 32]). Homomorphic image isalso a good �rst approximation to global, macroscopic shape information.21
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