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Learning Recursive Functions From
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Approximations
John Casef Susanne Kaufmann? Efim Kinber?
University of Delaware Universitiat Karlsruhe Sacred Heart University

Martin Kummer?

Universitat Karlsruhe

Abstract

Investigated is algorithmic learning, in the limit, of correct programs for
recursive functions f from both input/output examples of f and several in-
teresting varieties of approzimate additional (algorithmic) information about
f. Specifically considered, as such approximate additional information about
f, are Rose’s frequency computations for f and several natural generalizations
from the literature, each generalization involving programs for restricted trees
of recursive functions which have f as a branch. Considered as the types of
trees are those with bounded variation, bounded width, and bounded rank.

For the case of learning final correct programs for recursive functions, £ X -
learning, where the additional information involves frequency computations,
an insightful and interestingly complex combinatorial characterization of learn-
ing power is presented as a function of the frequency parameters. For FX-
learning (as well as for BC-learning, where a final sequence of correct programs
is learned), for the cases of providing the types of additional information consid-
ered in this paper, the maximal probability is determined such that the entire
class of recursive functions is learnable with that probability.
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1 Introduction

In the traditional setting of inductive inference the learner receives input/output ex-
amples of an unknown recursive function f and has to learn a program for f. In real
life a learner usually has “additional information” available. There are several ap-
proaches in the literature to incorporate this fact into the learning model, for instance
by providing an upper bound for the size of the minimal program which computes f
(Freivalds, Wiehagen [16]), by providing a higher-order program for f (Baliga, Case
[3]), by allowing access to an oracle (Fortnow et al. [14]), by answering questions about
f formulated by the learner in some first-order language (Gasarch, Smith [18]), by
presenting “training sequences” (Angluin et al. [2]).

In this paper we follow a different route, we provide additional information in form
of algorithms that approzimate f. In the context of robot planning, Drew McDermott
[34] says, “Learning makes the most sense when it is thought of as filling in the
details in an algorithm that is already nearly right.” As will be seen, the particular
approximations we consider can be thought of as algorithms that are nearly right
except for needing details to be filled in. The notions of approximation which we
consider are also of interest in complexity theory [6] and recursion theory [4].

A classical approximation notion is (m, n)-computation (also called frequency com-
putation) introduced by Rose [39] and first studied by Trakhtenbrot [42]. Here the
approximating algorithm computes, for any n pairwise different inputs zy,...,x,,
a vector (y1,...,y,) such that at least m of the y,; are correct, i.e., are such that
yi = f(z;).

E X-style learning [9] requires of each function in a class learned that, in the limit,
a single correct program be found. In Section 3 below we provide a combinatorial
characterization of all m,n,m’.,n’ such that every class which can be EX-learned
from (m,n)-computations can also be EX-learned from (m’, n’)-computations. The
combinatorial conditions for this characterization turn out to be interestingly complex.
In this same section we also prove an interesting duality result comparing the learning
of programs from (m,n)-computations with the learning of (m,n)-computations.

In Section 4 we determine the maximal probability p > 0 such that the class of
all recursive functions is learnable with probability p from (m,n)-computations by a
probabilistic inductive inference machine. We show that for m < n/2 there is no such
probabilistic machine; whereas, for m > n/2, that p = 1/(n —m+ 1) is the maximal p
such that there is a probabilistic inductive inference machine which infers all recursive
functions with probability p from (m,n)-computations. BC-style learning [9] requires
of each function in a class learned that, in the limit, an infinite sequence of correct
programs be found. Our results of this section hold for both FX- and BC-learning.

Providing an (m,n)-computation for f can be considered as a special case of
providing a partial first-order specification of f (see the discussion at the beginning
of Section 5 below). The idea is that the set of all solutions of a partial first-order
specification can be pictured as the set of all branches of a recursive tree. Thus it is
also natural to look at approximative information in the form of a recursive tree T
such that f is a branch of T'.

In this regard we consider several classes of recursive trees parameterized by nat-
ural numbers: trees of bounded variation, bounded width, or bounded rank. These



classes are known from the literature, and they have the pleasing property that all the
branches of their trees are recursive (see [21]). In Section 5 below, for each of these
classes of approximate additional information, we determine the maximal probability
p such that all recursive functions are learnable. In contrast to the special case of
frequency computations, a higher maximal probability is obtained in many cases for

BC than for F X.

2 Notation and Definitions

The recursion theoretic notation is standard and follows [35, 41].

w=40,1,2,...}. ¢; is the i-th partial recursive function in an acceptable enu-
meration, and W; C w is the i-th associated r.e. set (i.e., W; = dom(¢;)). Let REC
denote the class of all total recursive functions, and let RECy; be the class of all
{0,1}-valued functions in REC.

For functions f and ¢ let f =* ¢ denote that f and ¢ agree almost everywhere,
e, (Jzo)(Ve > xo)[f(x) = g(x)]. f I y denotes the restriction of f to arguments
x < y. x4 1s the characteristic function of A C w. We identify A with y4, e.g., we
write A(x) instead of ya(z).

w* is the set of finite sequences of natural numbers. A is the empty string. |o]
denotes the length of string o. For instance, |A\| = 0. For strings o and 7 we write
o =X 7 if o is an initial segment of 7. Let o(x) = b if # < |o| and b is the (x + 1)-
th symbol of o. For 0,7 € w", 0 =° 7 means that ¢ and 7 disagree in at most e
components. The concatenation of o and 7 is denoted by o % 7. We often identify
strings with their coding number, e.g., we may regard W; as the i-th r.e. set of strings.

A tree T is a subset of w* which is closed under initial segments. o € T' is called
anodeof T. Tisre. if W; = {0 : 0 € T} for some i. Such an ¢ is called a ¥i-index
of T'. T'is recursive if yr is a recursive function, in which case 7 is called a Ag-index
of T'if p; = xr. f € {0,1}¥ is a branch' of T if every finite initial segment of f is a
node of T'. We also say that A C w is a branch of T'if y4 is a branch of T'. [T] is the
set of all branches of T'. Let T'[o] = {r € T': 0 < 7}, the subtree of 1" below o.

An inductive inference machine (IIM) M is a recursive function from w* to w. M
EX-infers f € REC if lim,, M(f | n) exists and is a ¢-index of f. For S C REC,
S € EX if there is an 1IM which £ X-infers all f € S.

For a € w, M BC-infers f if there is an ng such that for all n > ng, Yar(sin) = f-
For S C REC, S € BC if there is an IIM which BC-infers all f € S. See [9, 36] for
background on these definitions.

In this paper we consider 1IMs which receive additional information on f coded
into a natural number. In this case an 1IM is a recursive function from w x w™ to w.
M EX-infers f € REC from additional information e € w, if lim, M (e, f | n) exists
and is an index of f; similarly for BC-inference.

As is well-known, every IIM M can be replaced by a primitive recursive (or even
polynomially time bounded) machine M’ which infers the same set of functions (see

"'We could consider branches f € w*, but, as we shall see in Section 5 below, for this paper, that
will not be necessary.



[36]). M’ just performs a slow simulation of M. Let {M.}.c, be an effective listing
of all primitive recursive IIMs.

3 The Power of Learning from Frequency Com-
putations

In this section we determine the relative power of inductive inference from frequency
computations. We give a combinatorial characterization of the parameters m,n, m’,n’
such that every class which can be learned from (m,n)-computations can also be
learned from (m’,n’)-computations. Our criterion was previously considered for the
inclusion problem of frequency computation [13, 23, 28] where it is sufficient but not
necessary, and for the inclusion problem of parallel learning where it is necessary but
not sufficient [27].

Let us first recall the formal definition of (m, n)-computation which was introduced

by Rose [39] and first studied by Trakhtenbrot [42].

Definition 3.1 Let 0 < m < n. A function [ :w — w is (m,n)-computable iff there
is a recursive function F': w" — " such that for all x; < --- < a,,

(flar), .o, fla,) =""" Flag, ... xn),

i.e., F' has at least m correct components. In this context, we call F' an “(m,n)-
operator” and say that f is (m,n)-computable via F.

Trakhtenbrot [42] proved the classical result that, for m > n/2, all (m, n)-computable
functions are recursive. He also proved that this is optimal, i.e., there exist nonrecur-
sive (n,2n)-computable functions. See [19] for a recent survey of these and related
results.

In our new learning theoretic notion, the learner receives input /output examples of
f and an index of an (m,n)-operator for f. If m > n/2, then any two functions which
are (m,n)-computable via the same (m,n)-operator differ in at most 2(n —m) places.
However, the (m,n)-operator does not reveal too much information about f, even if
m = n — 1: Kinber [22] proved that there is no uniform procedure to compute from
an index of an (n — 1,n)-operator a program which computes, up to finitely many
errors, a function which is (m,n)-computable via this operator. This was recently
generalized in [21].

Definition 3.2 Let 0 < m < n. A class S € REC belongs to (m,n)EX iff there is
an inductive inference machine M such that for every f € S and every index e of an
(m,n)-operator for f, lim; M(e, f | 1) exists and is an index of f. Similarly, (m,n)BC
is defined.

Remark: Note that (0,n)EX = EX. Thus the new notion (m,n)EX generalizes
E X-inference. On the other hand, it can also be considered as a special case of FX-
inference: For every S C REC let gmn ={f:de. fla +1)€ S A f(0)is an index
of an (m,n)-operator for Az. f(x +1)}. Then, S C (m,n)EX iff gmn C EX.
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Our next goal is a combinatorial characterization of the parameters m,n,m’ n’ such
that (m,n)EX C (m/,n")EX. To this end we consider (m, n)-computations on finite
domains. This is a local combinatorial version of (m,n)-computation. It was first

studied by Kinber [23] and Degtev [13].

Definition 3.3 Let { > n > m > 0. A set V C w' is called (m,n)-admissible
iff for every n numbers z; (1 < 2y < --- < x, < () there exists a vector b € w"
such that (Vv € V)[v[z1,...,2,] =""™ b]. In other words, there exists a function
G A{l,....(}" — w" such that v[zq,...,2,] =" G(a1,...,2,) for all 1 < 1 <

- < x, < (. Here v[zy,...,2,] denotes the projection of v on the components
Tlyenn, Xy

It is decidable whether for given m,n,m’/,n’ and ¢ = max(n,n’), every (m,n)-
admissible set V' C w’ is (m/, n’)-admissible. One has to check for all G : {1,...,(}" —
{1,..., n(ﬁ) 1 whether there is H : {1,...,0}" — {1,... ,n(ﬁ) 17" such that for all
v € W', if {v} is (m,n)-admissible via G, then it is (m/,n')-admissible via H. Also, if
there is an (m,n)-admissible set V' C w* which is not (m’,n’)-admissible, then there
is a finite such V.

The following characterization says roughly that (m,n)EX C (m/,n)EX iff ev-
ery finite (m/,n’)-operator can be transformed into an (m,n)-operator, i.e., (m',n’)-
computations can be locally replaced by (m,n)-computations.

Theorem 3.4 Let 0 < m < n,0 < m' < n',¢ = max(n,n’). Then (m,n)EX C
(m/,n"YEX iff every (m’,n’)-admissible set V C w' is (m,n)-admissible.

Proof: (<) : If every (m’,n’)-admissible set V C w* is (m, n)-admissible, then we
can compute from any index of an (m/,n’)-operator H in a uniform way an index of
an (m,n)-operator H such that every recursive function which is (m’,n’)-computable
via H is (m,n)-computable via H.

More formally, H is computed as follows: Given z; < --- < z,, let z,41 =
o+ 1,...,20=x, + { —n. The set

V={veuw: (V1 <y <o <ty S O[0ftny .oyt =n'-m' H(xg ..oz ,)]}

is (m’,n’)-admissible. By hypothesis there is a function G : {1,...,(}" — w" such that
V' is (m,n)-admissible via G and, by the remarks above, such a G can be computed
from H. Let ]:](:z:l,...,xn) =G(1,...,n).

It easily follows that (m,n)EX C (m/,n")EX: Suppose the [IM M (m,n)-infers
S C REC. Given the index ¢ of an (m’,n’)-operator for f € S we first compute an
index ¢’ of an (m, n)-operator for f and then simulate M with inputs ¢" and f.

(=) : For the converse, assume that there is an (m/,n’)-admissible set V C w*
which is not (m,n)-admissible. By the remarks above, V' can be chosen as a finite
set, say V = {vy,...,05}. W.lo.g., v1(1) # vy(1). Fix G : {1,...,0}" — w" such
that V is (m/,n’)-admissible via GG. Recall that {M.}.c, is an effective listing of all
primitive recursive [IMs. For each ¢ we define a function f. € REC and an index ¢
of a recursive function F. : 0" — w™ such that f. is (m’, n')-computable via F,, but



M. (1, f.) does not infer f.. Thus S = {f.:e >0} & (m/,n')EX. But we take care
that 5 € (m,n)EX.

The basic idea for constructing f. is standard. We try to build an increasing
sequence 1yp < 71 < ---, each time forcing an incorrect guess or a new mindchange,
i.e., for each ¢ we want that either @ar(i)(|7¢|) # Tix1(|7|) (this corresponds to
condition (1.2) below) or M.(i,7) # M.(¢,0) for some o with 7» < ¢ < 74 (this
corresponds to condition (1.3) below). If this succeeds we let f. = lim; 7. If we get
stuck after building 7, we let f, = 7 % 0“.

In the construction below we have a variable me in which we count the current
number of errors enforced by the above actions.

The main new ingredient is that we simultaneously try to diagonalize against all
(m,n)-operators, i.e., for each j we try to ensure that f. is not (m,n)-computable
via ; (this corresponds to condition (1.1) below). However, the diagonalization is
allowed only if more than j errors have been enforced. In the variable L we record all
J such that ¢; has been diagonalized.

The goal of the additional diagonalization is that f. becomes inferable from any
index j of an (m,n)-operator for f.: To this end one simulates the construction below.
As long as me < j it is assumed that f. =" 0. When me > j the inference algorithm
uses the fact that ¢; is never diagonalized. This means that mc goes to infinity and
hence f. = lim; 7. Thus, as soon as me¢ > j the algorithm can simply output a
program for lim; 7.

The following construction depends on the parameters e,:. We define a sequence
T, T1, - - -, a function f, and an (m,n)-operator F'. Formally all of these objects depend
on ¢,1. To keep the notation simple we omit these additional indices and assume that
e,1 are fixed. By the recursion theorem we will later obtain a recursive function A
such that ¢ = h(e) is an index of F, ;.

Construction of the T-sequence:
Stage 0: Let t =0, 70 = (¢),mc=0,L = 0.
Stage s+ 1: Let I = {|ne],..., |7+ —1}.
1.) Check whether one of the following conditions is satisfied.
(1.1) There is j < me, j & L such that ¢, (21,...,2,) |€ &"
for all @1,...,2, € [ with a1 <--- < a,.
(1.2) There is b € {1,2} such that @.(|7|) |# vs(1) for ¢ = M (2, 74).
(1.3) There is o such that 7, xv1 < 0 < 7 x vy x0° and M.(i,0) # M. (i, 74).
2.) If none of the conditions holds, then go to stage s 4+ 2. Otherwise choose the first
condition (1.a) which holds, perform step (2.a), and go to stage s + 2.
(2.1) Choose the least j such that (1.1) holds. Compute ¢, 1 < ¢ < k, such that
there are x1,...,2, € [ with #1 < --- <z, and @;(21,...,2,) agrees with
v, in at most m — 1 components. (Note that ¢ exists, since otherwise ¢,
witnesses that V' is (m,n)-admissible.)
Let mpn =i xv, %05t =1t +1; L=LU{j}.
(2.2) Choose b as in (1.2) and let 741 = 7w * v x 0% t =t 4+ 1; me = me + 1.
(2.3) Let 741 = e x vy % 05 6 =t 4+ 1; me = me+ 1.
End of construction.



Definition of f:
If ¢ is incremented only finitely often, then let ¢ denote its maximal value and define
f = 7u*vy x0¥ Otherwise define f = lim, 7.

Definition of F:

We define F(y1,...,yn) = (b1,...,by) as follows for y; < -+ < ypur:

Let s = 9, and let ¢’ denote the value of ¢ at the end of stage s+ 1. Choose zy,..., 2.
such that 1 <z < -~ <zy <land {y; : 1 <3< n AN |ro| <y; <|mu|+(} C
{Jrr|+ 2z —1:1< 5 <n'}.

If y; < |7|, then let b; = 7 (y;).

If y; > |rw| + ¢, then let b; = 0.

If y; = |ro| + 25 — 1 for some 1 < 3" <0/, then let b; = G(z1,...,2.)[J']

Note that the definition of F'is uniform in e,? and that I is defined for all n’-tuples
Yy < -+ < yu. The definition of f is non-uniform, but f is in any case a total recursive
function.

Claim 0: f is (m/,n’)-computable via F'.

Proof: Consider y; < -+ < yu and let s,',z1,...,2,,b1,...,b, be as above. If
yi < |7v|, then by = 7u(y;) = f(y;) since 7 < f. I y; > || 4+ {, then b; = 0 = f(y;)
since 7w x v % 0° < f for some v € V. Otherwise, |7u| < y; < |rw| 4+ (. Suppose that
there are a such y;’s. Since the other n’ — a components are correct, we need to show
that at least m’ — (n’ — a) of the corresponding b;’s are correct. Note that the b;’s
are components of a projection of G/(zy1,...,z,) on a set of size a. By construction,
Gz, oy 20) =" (f(|re| + 21 = 1), ..., f(|7e| + 2 — 1)). Thus any projection on
a components has at least m’ — (n’ — a) correct components. O

Claim 1: M.(7, f) does not converge to an index of f.
Proof: a.) Suppose that  is incremented only finitely often and reaches its maximal
value t" at stage s’. Then conditions (1.2) and (1.3) do not hold at any later stage.
Thus ©ar,(ir0(|7e|) is undefined and Mc(¢, 7)) = M. (i, 7 % vy % 0%) for all s, i.e.,
M. (2, f) converges to an index of a non-total function.

b.) If ¢ is incremented infinitely often, then also mc is incremented infinitely often.
(If me does not change, then ¢ can be incremented only via (1.1). But this can happen
at most mc times.) Thus, M. (¢, f) makes infinitely many mindchanges or for infinitely
many 7 < [ we have g (|7]) # fe(|7]). In particular, M.(z, f) does not converge
to an index of f. O

Definition of f., F., and S:

Let F.;, f.; denote the recursive functions [, f in the construction with parameters
e,t. Since the construction of F,; is uniform in e,z, there is a recursive function g
such that Fi; = @gi). By the recursion theorem with parameters there is a recursive
function h such that @pe) = @yen(e)) for all e. Let I, = F. ), fe = fen(e), and
S={f.:e>0}.

Claim 2: h(e) is an index of an (m/,n’)-operator for f..

Proof: By Claim 0, F. is an (m’,n’)-operator of f.. By definition of h, h(e) is an
index of F.. O

Claim 3: S & (m',n")EX.

Proof: Suppose that S € (m/,n')EX. Then there is an e such that M. infers S. By
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Claim 1, M.(h(e), f.) does not converge to an index of f.. Since, by Claim 2, h(e) is
an index of an (m’,n’)-operator for f., we obtain a contradiction. O

Claim 4: S € (m,n)EX.
Proof: The following algorithm infers S: Given f € S and an index j of an (m,n)-
operator for f. First obtain e = f(0) and compute ¢ = h(e). Then simulate the
construction of the 7-sequence with parameters e,:. As long as me < j assume that
fe =7 0¥ and perform identification by enumeration. If it is discovered that mec > j,
then output a program which computes lim; 7.

It remains to show that this algorithm is correct. If at each stage me < j, then
t is incremented only finitely often and f. =* 0¥. If me¢ > j and ¢ is incremented
only finitely often, then there is a stage at which j is the least number for which (1.1)
holds, so ¢; would be diagonalized which contradicts the hypothesis that ¢; is an
(m,n)-operator for f.. Thus, t is incremented infinitely often and f. = lim; 7, i.e.,
the final guess of the algorithm is correct. O |

Remarks: a.) As {0,1}" is (trivially) (0,n)-admissible, but not (1,n)-admissible,
it follows that EX C (1,n)EX for all n > 1. This shows that even if very weak
operators are provided, one can still learn more than without them.

b.) In the proof of (=) we construct recursive functions such that every (m,n)-
operator of f has high running time. Indeed, in the simulation one uses the running-
time of the program which computes the operator rather than the extensional infor-
mation provided by the operator. This is inevitable: Suppose S € (1,n)FEX and every
f € Sis (1,n)-computable by an operator which is easily computable, say primitive
recursive. Then S € E X, since we can successively try all primitive recursive (1, n)-
operators as additional inputs, until we settle down on one which is consistent with
f. — Note however, that even if we restrict all operators to be computable in poly-
nomial time, they can still (n — 1, n)-compute arbitrarily complex recursive functions

(see [1, 22]).

It is also natural to define a notion of inference where we want to learn an approxima-
tion of f instead of f, i.e., a program of an (m,n)-operator for f instead of a program
for f. Call this notion EFX(m,n). We get the following interesting and nontrivial
duality between both notions.

Theorem 3.5 FX(m,n) C EX(m/,n') iff (m',n)EX C (m,n)EX.

Proof sketch: = We use the characterization of Theorem 3.4.

If (m/,n)EX C (m,n)EX, then every (m,n)-operator can be uniformly trans-
formed into an (m’,n')-operator; hence, if we can learn an (m,n)-operator for f we
can also learn an (m’,n)-operator.

For the other direction, if (m/,n")EX € (m,n)EX, then there is an (m,n)-
admissible finite set V which is not (m’, n’)-admissible. We can use V' to diagonalize
over machines which learn (m’, n’)-operators while constructing an (m,n)-operator.
This is formally similar to (but easier than) the proof of Theorem 3.4 (=). The details
are left to the reader. |



A couple of explicit results on (m,n)-admissible sets are listed in [27, Section 3.3]
(see also [21, Section 5]). For instance, Kinber [23] showed that, for n > 2, every
(n,n + 1)-admissible set is (n 4+ 1,n + 2)-admissible. If n —m > n’ —m/, then the set
of all binary vectors with at most n — m ones is (m, n)-admissible but not (m/, n’)-
admissible. The set {1%,2¢, ... n*} is (1,n)-admissible but not (m/, n’)-admissible for
¢ = max(n,n’) and m’/n’ > 1/n. Hence, we get the following corollary.

Corollary 3.6
a.) (ny,n+ 1H)EX =(n+1,n+2)EX foralln > 2.

b.) (m,n)EX C(m+1,n)EX forall <m <n.
In particular, REC & (n —1,n)EX.

c.) (m',nYEX Z (1,n)EX if I/n <m//n'.

4 Probabilistic Learning from Frequency Compu-
tations

We have shown that REC' is not inferable by an IIM even if (n — 1, n)-computations of
f are provided. In this section we answer the question whether REC' is inferable from
(m,n)-computations by a probabilistic IIM with positive probability. We show that
this is indeed the case if m/n > 1/2. Further, we determine the maximal p = p(m,n)
such that REC can be learned from (m,n)-computations with probability p.

We first recall some notation and results from [38]. Let FX,,,;(p) denote the set
of all S C RFE(C that can be EX-inferred by a probabilistic IIM with probability at
least p. Let FX[k| denote the set of all S which can be EX-inferred by a team of k
[IMs. The same notation is used for BC' instead of EX. Pitt [38] proved the following
surprising connection between probabilistic inference and team inference.

Proposition 4.1 [38] For all natural numbers k > 1 and all real numbers p € (0,1]:
EXpTob(p) g EX[Ll/pJ] A EX[k] g EXpTob(l/k)-
The same holds for BC instead of EX.

Using Smith’s team hierarchy result [40] that EX[k] C EX[k + 1] and BC[k] C
BC[k+ 1] for all £ > 1, Pitt concluded that the probabilistic classes form an infinite
discrete hierarchy with breakpoints of the form 1/k.

Proposition 4.2 [38, 40] For all natural numbers k > 1 and all real numbers p €
(0,1]:

1 1
EXpTob(p) = EX[]C] < m <p< z < BCpmb(p) = BC[]C]
In particular, REC & EX 0 (p).



These notions can be transferred in a straightforward way to our setting:

Let (m,n)E X, (p) denote the set of all S C REC such that there is a proba-
bilistic [IM M such that for every f € S and every index e of an (m,n)-operator of
f, M(e, f) converges to an index of f with probability at least p.

Let (m,n)FEX[k] denote the set of all S C RFEC such that there is a team of k
[IMs My, ..., My such that for every f € S and every index e of an (m,n)-operator
for f there is 7,1 <17 < k such that lim; M;(e, f | t) exists and is an index of f. The
classes (m,n)BC,.,4(p) and (m,n)BCk] are defined analogously.

The proof of Pitt’s Proposition 4.1 can be straightforwardly transferred and yields
the following.

Proposition 4.3 For all natural numbers k,m,n, with k > 1, and all real numbers
p € (0,1]:

(m,n)EX,m(p) C (m,n)EX[[1/p]] A (m,n)EX[E] C (m,n)EX,0(1/k).
The same holds for BC instead of EX.

Our first result shows that no probabilistic IIM can infer REC with positive proba-
bility from frequency computations with frequency less than or equal to 1/2.

Theorem 4.4 If0 <m < % and 0 < p <1, then RECo1 & (m,n)BC,,01(p).

Proof: Let C C RECy, be the set of all recursive functions ¢ such that there is
a sequence dg, aq, ... with g the characteristic function of {{aq,...,a;) : 7 > 0}. It is
easy to see that there is a (1, 2)-operator F' such that every g € C is (1, 2)-computable
via F'. It follows that for every m,n with m/n < 1/2 there is a fixed (m, n)-operator
Fo. such that every g € C is (m,n)-computable via F, ,,.

Suppose for a contradiction that C' € (m,n)BC,..u(p) with p € (0,1]. Let k =
|1/p]. Then, by Proposition 4.3, C € (m,n)BC[k]. Let e be an index of F, ,,. There
is a team of k machines which BC-infers ' with additional information e. If this
constant additional information is hard-wired into the IIMs, we obtain C' € BC[k].
Note that every f € REC can be transformed into a unique ¢ € (' and vice versa, by
recursive operators. Thus it follows that REC € BC[k]. This contradicts the team
hierarchy result of Smith [40]. |}

Now we turn to frequencies greater than 1/2. In this case there exist probabilistic

[TMs which can infer REC from frequency computations. We determine the maximal

probability p for which this can be done.

Theorem 4.5 Let 2 < m < n. Then REC ¢ (m,n)EXpmb(ﬁ), but RECy, ¢
1

n—m-+1"

(m,n)BC,01(p) for any probability p >

Proof:  Let m,n > 1 be given with & < m < n. By Proposition 4.3 is suffices to
show the upper bound REC € (m,n)EX[n —m + 1] and the lower bound RECy; ¢
(m,n)BC[n — m].

a.) Proof of REC € (m,n)EX[n—m+1]: This requires a combination of methods
from [19] and [21]. Given an (m,n)-operator R we define uniformly as in [19, p. 684] a
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recursive tree T' C {0, 1}* whose branches represent the graphs of all partial functions
which are (m,n)-computable via R.
More formally, we call a string o single valued if

(V{2 y1) < lo[)(V(z,y2) <lo])(o((z,31)) =1 A o((z,92)) = 1) = 41 = va]:

We call a string o R-consistent if for all 1 < -+ < 2, if R(xq,...,2,) = (21,. .., 20)
and (x1,21), ..., {2y, z,) < |o|, then {7 : ({2}, 2;)) = 1}| > m. Then we define T as
follows.

T ={0€{0,1}": 0 is single valued and R-consistent}.

Assume that f € REC is (m,n)-recursive via R. Then the characteristic function
of Graph(f) = {(x, f(x)) : @ € dom(f)} is a branch of T. Conversely suppose that
A € [T, i.e., ya is a branch of T. Then there is a partial function ¢ such that
A = Graph(g) and for all 1 < -+ < @, [{¢ : 2; € dom(g) N (R(x1,...,2,)) =
g(x;)}| > m. Since m > n/2 it follows that f =2""") ¢ In particular, there are at
most 2(n —m) arguments for which ¢ is undefined.

The Vapnik-Chervonenkis dimension of [T], dim(T), is the maximal number d
such that there exist z; < -+ < 24 with

(V7€ {0,1})(3A € [T)]r = (xal=1), .-, xalza))]-

See [7] for more information on this notion. Note that we have dim(T) < n —
m. Otherwise there exist pairwise distinct numbers z; = (21,y1),.. ., Znomyr =
(Xp—m+1, Yn—m+1) and branches of T' whose characteristic functions on z1, ..., 2, m41
realize all possible 0/1-vectors of length n —m 4 1. Since every branch is single valued,
it follows that the x;’s are pairwise distinct. Assume that 1 < --- < z,_,,,41 and let
(a1,...,an) = R(®1, .., Cpnemits Tnems1 + 1y ooy Tpema1r + m — 1). Choose a branch
A such that [A(z;) =1 &y, # a;] for 1 < i < n —m+ 1. But this means that an
initial segment of A is not R-consistent, a contradiction.

It is shown in [21, Lemma 3.12] that if 7" is an infinite recursive tree with dem(7) <
d such that any two branches agree almost everywhere, then one can compute uni-
formly from any Ag-index of T' the indices of d + 1 partial recursive functions such
that one of them is total recursive and computes a branch of T' up to finitely many
errors. If we combine the results presented so far we get the following.

Claim: There is a uniform procedure to compute from any index of an (m, n)-operator
R alist of n —m + 1 indices ¢1,...,2, 11 such that if there is f € REC which is
(m,n)-recursive via R, then there is 1 < j < n —m + 1 and such that ¢;; is total,
{0,1}-valued, and ¢;, = Graph(g) for some g with f =*g.

Now the inference procedure for REC € (m,n)EX[n — m + 1] is clear: On input
(e, f), where e is an index of an (m,n)-operator for f, each team member computes
the list 41,...,7p—ms1 as in the claim. The j-th team member assumes that o;, is
total, {0,1}-valued and ¢;, = Graph(g) for some g with f =* ¢g. While reading f it
checks whether f(x) = g(x) and outputs a program for ¢ where all differences with
f that have been discovered so far are patched. By the claim, for one of the team
members the assumption is correct. Thus, this team member will eventually output
a correct program for f.

11



b.) RECy1 & (m,n)BC[n — m]: Suppose for a contradiction that there is team of
n — m machines My, ..., M,_,, which infers RECy; from (m,n)-computations. We
combine the proof of the lower bound in [21, Theorem 3.5] with a diagonalization
method for teams and construct a function f € RECy; and an (m,n)-operator R for
f. By the recursion theorem, we can use an index e of R in the construction. For
1 < <n—m, we ensure that M;(e, f) does not BC-infer f.

The function f is initialized as the constant zero function. During the construction
f(z) may be updated from zero to one. For each ¢ we are looking for possibilities to
force an error in the inference process of M; with inputs ¢ and f. To this end we
are looking for r such that ¢ag(e,s1r)(7) = 0 = f(r) and then update f(r) = 1 and
ensure that f(z) does not change for @ < r. If this can be done for infinitely many
r, then M;(e, f) produces infinitely many incorrect hypotheses. If this can be done
only finitely often, then almost all hypotheses of M;(e, f) are incorrect. In any case,
M;(e, f) does not BC-infer f.

Since there is a conflict between the diagonalization and preservation actions for
different machines, we are using a priority ordering of the machines that is up-
dated during the construction according to the ‘least recently used principle’: If
q = (a1,...,a,_,) is the current ordering of machine indices and there are several
candidates for diagonalization, then we select the machine with the leftmost index,
say ¢ = ag. f(r) is updated accordingly, and it is ensured that all later diagonal-
ization actions of M, with j > k start at values greater than r (thereby preserving
£ 1 (r+1) with priority k). In the updated sequence ¢, we insert ¢ at the last position,
Le, ¢ = (a1, ooy ety Gty v oy Gy Q).

This update rule for the diagonalization values will automatically allow us to
compute an (m,n)-operator for f.

Construction:
Stage 0: Initialize ¢ = (1,2,...,n —m). Let f =Ax. 0; 2, =0fore=1,...,n —m.
Stage s+ 1: If there is an ¢ for which there exists (a least) r such that

i <r<s A f(r)=0 A @es(r) =0 for c= Mie, f 1),

then select (¢,r) such that ¢ appears in the leftmost position in ¢, say ¢ = aj.
Update f(r) =1, let z,, = 2s for k < j <n —m.

Move ¢ to the rear of ¢, i.e.,let ¢ = (a1,..., 051,011, Qnim, Gk).

End of construction.

The (m,n)-operator R(yi,...,y,) is defined as follows:
Given iy < --- <y, let s = y,, and let f; be the function f at the end of stage s 4 1.

Then let R(y1,.. . yn) = (fs(y1), -+, fs(yn))-

From the update rule for the z,’s, it follows that f is (m,n)-recursive via R.

Let I be the set of all ¢ such that ¢ is selected at infinitely many stages. Let I’ be
the set of all « which are selected only finitely often. Then, by the update rule for ¢,
there is a stage to such that in all stages ¢ > ¢, all elements from I’ occupy the first
|I'| positions of ¢ and the z;,¢ € I’; do not change. If |[I'| = n — m, then [ = f,.
') =k—=1<n—m,then f(a) = fi(x) for t = (us > to)[ta,s > x] where x,, s
denotes the value of z,, at the end of stage s 4+ 1. In particular, f is recursive.
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From the update rule for the z;’s, it follows that f(r) = 0 for infinitely many r.

No M;,» € I, BC-infers f: Let «! be the final value of ;. Then for all » > z; such
that f(r) =0, M;(e, f | r) outputs a program which is undefined at r or computes a
nonzero value (otherwise ¢ would eventually be selected and x; would increase). Thus,
M;(e, f) outputs infinitely often an incorrect program.

Now suppose for a contradiction that ¢ € I and M;(e, f | r) is an index of f for
all r > rg. Consider a stage s + 1 > o with x; > ro where ¢ occupies the (|I'| + 1)-
th position in ¢ and is selected (by the update rule for ¢ there are infinitely many
such stages). At stage s + 1 we put f(r) =1 # 0 = @.(r) for ¢ = M(e, fs | 1)
and some r > rg. By the choice of {; and the update rule for the z;’s we have
fs1(r+1)=f1(r+1). Thus ¢ = M;(e, f | ) is not a program for f, a contradiction.

Therefore, none of the M;’s BC-infers f with additional information e. |

We obtain the following interesting corollary on team inference. It shows that
there are natural team hierarchies of arbitrary finite length.

Corollary 4.6

a.) If 5 <m < n, then (m,n)EX[k] C (m,n)EX[k +1] for 1 <k <n—m, and
(m,n)EX[k] = (m,n)EX[k + 1] = 28FY for k > n —m.

b.) If 0 <m < %, then (m,n)EX[k] C (m,n)EX[k+1] for all k > 1.
The same holds for BC instead of EX.

Proof: a.) Let & < m < n. By proof of Theorem 4.5 it remains to show that
(m,n)EX[k] C (m,n)EX[k + 1] and (m,n)BC[k] C (m,n)BC[k+ 1] for 1 < k <
n —m. By a modification of the proof that RECy1 ¢ (m,n)BC[n — m| one can even
show the following:

If1 <k<n-—m, then EX[k+ 1] — (m,n)BC[k] # 0.

To this end we diagonalize over all k-tuples of [IMs. For the -th tuple we use the
old construction to build a function f; with 1'0 < f; and an index g¢(7) of an (m,n)-
operator for f; such that none of the IIMs in the :-th tuple infers f; with additional
information g(¢). The function ¢ € REC is obtained by the recursion theorem with
parameters. Let S = {f; : ¢« > 0}. By construction, S & (m,n)BC[k]. It remains to
verify that S € EX[k + 1]:

On input f the £ X-team first determines ¢ such that 1°0 < f. Then it simulates
the construction of f;. The j-th team member, 1 < 5 < k + 1, assumes that j — 1 is
maximal such that an initial segment of length j — 1 of the queue ¢ is almost always
constant. It is not difficult to check that the team member with the correct guess can
E X-infer f;.

b.) By the team hierarchy result of Smith [40] there is a set S C REC with
S € EX[k+ 1] — BC[k]. Let C be the set as defined in the proof of Theorem 4.4.
As we saw there, for any S’ C (', all £ > 1, and all m,n with 1 < m < 7 we have
[S" € (m,n)EX[(] & S € EX[{]], and the same for BC instead of EX. Further, S
can be translated into a subset S’ of C' such that 5" € EX[k + 1] — BC[k]. Thus the

second part of the corollary follows. |
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5 Other Notions of Approximative Information

In this section we consider other notions of approximative information and determine
the maximal probability p with which all total recursive {0,1}-valued functions are
learnable. In each case we provide indices of recursive or r.e. trees with certain prop-
erties such that the function which is to be learned is an infinite branch of the tree.
If one generalizes from binary to arbitrary trees (and thus arbitrary f € REC) one
gets a notion which corresponds to r.e. trees in the binary case. Therefore, we only
consider the {0,1}-valued case.

Recursive trees capture a wide range of approximative information: Suppose we
have a first-order specification of f, i.e., an r.e. set S of sentences containing the
function symbol f. Then, the set of all consistent interpretations f’ : w — w of f
are just the branches of a recursive tree T" which can be computed uniformly from S
By the compactness theorem, f’ is inconsistent with S iff there is an initial segment
o= (Yo, ,Yn) < [ such that S, = SU{f(0) =yo,..., f(n) =y,} is an inconsistent
set of formulas, which is an r.e. property of o. Let g, 01, ... be a recursive enumeration
of all such o. Define T'= {7 : 0; A 7 for all « < |7|}.

For all notions of approximative information which we consider the analogue of
Proposition 4.3 holds. Therefore we first state our results in terms of team inference.
At the end of this section we state the corresponding results for probabilistic inference.

5.1 Trees of Bounded Variation

We consider trees where any two branches differ in at most a constant number of
arguments.

Definition 5.1 For A, B C w, let AAB denote the symmetric difference of A and B.
For any tree T C {0, 1}, let (AT') = sup{|AAB|: A, B branches of T'}. We say that
T has bounded variation if (AT) < oo.

If a recursive tree T' C {0,1}* has bounded variation, then every branch of 7' is
recursive [42] (see also [19, 21]). We now determine, for each n, the optimal team size
such that all recursive functions are learnable given recursive trees T with (AT) <n
as additional information.

Definition 5.2 Let dgx(n) denote the least team size k such that there is a team
of £ IIMs that FX-infers every f € RECy, given any Ag-index of a recursive tree
T C{0,1}* such that (AT) < n and f is a branch of T'. dgc(n) is defined analogously
for BC- instead of £ X-inference.

Theorem 5.3 Forn >0, dgx(n) =n+1 and dpc(n) = [“34].
Proof: a.) dgx(n) < n+1: Fix n. It is shown in [21] that there is a uniform
procedure to compute, for any Ag-index of an infinite recursive tree 7' C {0, 1}* with

(AT) < n, a set of n + 1 partial recursive functions such that one of these functions
is total and computes a branch of T" up to finitely many errors. Each of the team
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members computes one of these functions and patches all differences with f. The
team member which got the total finite variant of f successtully £ X-infers f.

b.) dgx(n) > n: We modify the proof of the lower bound in [21, Theorem 3.13]
to diagonalize a team of n F X-machines. Suppose for a contradiction that each
f € RECy, is EX-inferred by the team M, ..., M, from Ag-indices of recursive
trees T' C {0,1}* such that (AT) <n and f is a branch of T.

We construct a recursive function f and a tree T with (AT) < n and f € [T].
By the recursion theorem we can use a Ag-index e¢ of T' in the construction. The
construction is a slight modification of the construction in the proof of Theorem 4.5.

Construction:
Stage 0: Initialize ¢ = (1,2,...,n). Let f =Xa. 0; ¢, =i fori=1,...,n.
Stage s + 1: If there is an ¢ such that one of the following conditions holds:
(1) es(x;) =0 for ¢ = Mi(e, f 1 2;),
(2) (Ar)ei<r <s AN Mi(e, f1a:)# Mi(e, f17)],
then select that ¢ which appears in the leftmost position in ¢, say ¢ = ay.
If (1) holds, then update f(x;) = 1.
In both cases let z,;, = sn +a; for k£ < j < n and move ¢ to the rear of ¢, i.e., let
q=(A1y. .oy, g1y ey Upy Q).
End of construction.

Note that in (1) we look for a diagonalization at x; and in (2) we look for a mindchange.
If from some point on, neither (1) nor (2) holds and M;(e, f) converges to an index ¢,
then ¢.(x;) #0 = f(x;).

Similarly as in the previous proof it follows that f is recursive and f is not £ X-
inferred by any of the M,’s.

[t remains to give a uniform definition of 7' such that (AT) < n and f € [T]. This
is analogous to the proof in [21, Theorem 3.13]. Note in each stage x; = ¢ mod n.
Thus the values of x;,z; for ¢ # j are different. Let x;, denote the value of x; at the
end of stage s + 1. Define

T = {0‘ € {0, 1}* : (\V/l‘ < |0'|)[$ € {$17|U|, e ,xn7|g|} — 0‘(1‘) = f|g|($)]}.

Clearly f € [T]. Let £ be the number of x;’s which are incremented only finitely often
and let zy,...,z; be their final values. Then we get [T] = {g € {0,1}* : (Va)[x &
{z1,.. ., 2z} — f(2) = g(x)}. Thus (AT) = <n.

c.) dpc(n) < (”zlw Fix n. It is shown in [21] that there is a uniform procedure
to compute for any Ag-index of an infinite recursive tree 7' C {0, 1}* with (AT) < n
a set of (”zllw partial recursive functions such that one of these functions computes a
branch of T'up to finitely many errors. (Note that, in contrast to a.), it is possible that
none of the functions is total.) Each of the (%W team members outputs programs for
one of these functions which are patched with the correct values of f on arbitrary large
initial segments. The team member which received the finite variant of f successfully
BC-infers f.

d.) dpc(n) > [™]: Trakhtenbrot [42] (see also [19, 21]) proved that if k/2 <
h < k, then one can compute in a uniform way for any (h, k)-operator F' a recursive

tree T' C {0, 1}* with (AT) < 2(k — h) such that every {0, 1}-valued function f which
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is (h, k)-recursive via F' is a branch of T'. Therefore, the lower bound from Theorem

4.5, for h = k+ 1,k =2k + 1, implies that dgc(2k + 1) > dpc(2k) > k+ 1. 1

Remark: R.e. trees of bounded variation are of less help. One can show that no finite
team size suffices to infer RECy; from indices of r.e. trees, even for r.e. trees with
exactly one branch.

5.2 Trees of Bounded Width

We consider trees which have at most a constant number of nodes in each level.

Definition 5.4 The width w(T) of a tree T' C {0,1}* is the maximum number of
nodes on any level, i.e., w(T) = max{|T N {0,1}*| : k > 0}.

If a recursive tree T" C {0,1}* has bounded width, then every branch of T is
recursive. In fact, this holds also for r.e. trees of bounded width [37]. We determine,
for both the recursive and the r.e. cases, the optimal team size such that all recursive
functions are inferable given such trees as additional information.

Definition 5.5 Let wgpx(n) denote the least team size k such that there is a team
of £ IIMs that FX-infers every f € RECy, given any Ag-index of a recursive tree
T C {0,1}* such that w(T) < n and f is a branch of T'. If ¥;-indices are provided
for T' the corresponding team size is denoted by wiiy(n). The analogous numbers for
BC-teams are wpe(n) and wis(n).

Theorem 5.6 Forn > 1, wgx(n) = wiy(n) = wgs(n) =n and wpc(n) = 1.

Proof: If T has bounded width and f is a branch of T', then there is 0g < f such
that f is the unique branch of T" which extends oq. If we have a Ag-index of T and
any T with g < 7 < f, we can compute an index of f. Using this fact it easily follows
that wpc(n) = 1.

Clearly wgx(n) < wify(n) and whs(n) < wiy(n).

a.) wgy(n) < n: If fis an infinite branch of T let w(7T, f) = sup{w(T[o]) :
o < f}. It is shown in [21] that given k,o, ¢ < f, and a Yj-index of T with
w(To]) = w(T, f) = k we can uniformly compute an index of f.

For each k, 1 < k < n, we have a team member M}, which assumes that w(T, f) = k
and works as follows: At the beginning it initializes a local variable ¢ = A and outputs
an index of f on the assumption that w(7T[c]) = w(T, f) = k. Then it enumerates 7.
If after s steps it is discovered that w(T[o]) > k, then it updates o = (f(0),..., f(s))
and outputs a new index for f, etc. Clearly, if & = w(T, f), then after finitely many
steps w(T[o]) = k and from then on M} outputs a fixed correct index of f.

b.) wg~(n) > n — 1: Suppose for a contradiction that each f € RECy, is BC-
inferred by the team My, ..., M, _; from ¥;-indices of r.e. trees T' C {0,1}* such that
w(T) < n and fis a branch of T.

We construct a recursive function f and an r.e. tree T' with w(7T) < n and f € [T].
By the recursion theorem we can use a i-index e of T in the construction. The

16



construction is just the diagonalization in the proof of Theorem 4.5 where n — m is
replaced by n — 1.

Let f, denote the version of f at the end of stage s + 1. We define a tree T as
follows:

T={0e€{0,1}":(3s)[o = fs | s]}.

Clearly T is a tree which is uniformly r.e., and f is a branch of T'. We claim that
w(T) < n: Consider any level k, let s; = k+ 1, and let s5 < -+ < s4 be those s > s
such that f, | (k4 1) # fo_1 | (k+1). It follows that |T'N{0,1}*] = d. At each stage
35, 2 < 3 <d, some ¢ with @; < k is selected and f(r) is updated for some r with
r; <r <k <s;. Then z; is updated to 2s; > k. Hence for each ¢ there is at most
one such stage and therefore d < n.

c.) wgx(n) >n — 1: The construction is a modification of the diagonalization in
the proof of Theorem 5.3, b.), where n is replaced by n — 1. The point is that we
strengthen the update rule for f such that if f(r) is set from 0 to 1 at stage s + 1,
then we reset f(r') =0 for all ' > r.

It is still the case that f € REC and f is not EX-inferred by any M;, with
additional input e. Let x; , denote the value of x; at the end of stage s + 1. We define
a set 1" as follows:

T= {fs1s:s>0}
U{oe{0,1}":(Fis)llo]l =5 A zis<s A o= (folwis)x1x0utl]}

Clearly T' is uniformly recursive and every initial segment of f belongs to T'. Also,
by the update rule for the a;’s, |T'N {0,1}°| < n. It remains to verify that 7 is a
tree. This is done by induction on s. In the inductive step we have to show that
the predecessor of every o € T of length s > 0 belongs to T'. This is easy to see if
no ¢ is selected at stage s 4+ 1. If some ¢ is selected, then, using the new reset rule,
(fs—1 | @is—1) *x L x0°%s=1 € T is an initial segment of f; and ;5 > s+ 1 for all j
with @;s-1 > @;s—1. Thus, also in this case the predecessor of every o € T'N {0,1}°
belongs to T'. 1

Remark: One obtains more general classes by considering (m,n)-verboseness opera-
tors, see [4, 5, 6]. The corresponding inference notions can be studied along the lines
of Sections 3, 4 above.

We now present an application for learning when an upper bound of the descriptional
complexity of f is given as additional information. The following considerations hold
for our arbitrary acceptable numbering ; though usually these notions are considered
only for “optimal numberings” or “Kolmogorov numberings” [15, 30]. Let lg(i) =
|log,(i+1)] denote the size of the number 7, i.e., the number of bits in the ¢-th binary
string. The descriptional complexity C(o) of a string o € {0,1}" is defined as

C(o) =lg(min{i : pi(n) = o}).

Thus C(o) is just the well-known (length conditional) Kolmogorov complexity of o
with respect to ¢. See [30] for background information.

The descriptional complexity C(f) of f € RECy; is defined as
C(f) =lg(min{z : i = f}).
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Finally, we define the weak descriptional complexity C'(f) of f as

C'(f) :=sup{C(f I n):n>0}.

Note that there is a recursive function ¢ such that C'(f) < t(C(f)) for all f € RECy ;.
For optimal Godelnumberings one has t(e) = e + O(1). Since there are less than 2°
functions with C’(f) < ¢, C'(f) indeed measures, in some sense, bits of information of
f, as Chaitin [10, Section 4] pointed out. He called C'(f) the “Loveland information
measure” and proved that C’(f) can be much smaller than C'(f). If f € RECy 4, then
C'(f) is finite. The converse appears in a paper of Loveland [31] where it is credited
to A. R. Meyer. Actually, as was noted in [21], Meyer’s result is roughly equivalent
to the fact that trees of bounded width have only recursive branches.

Freivalds and Wiehagen [16] proved that RECy; is EX-learnable if an upper
bound of C(f) is given as additional information for f € RECy;. In contrast we
show that upper bounds of C’(f) do not provide sufficient information to learn all

f € REC,;. This follows as a corollary of Theorem 5.6.

Corollary 5.7 For all k > 1, RECy1 is not BC[k|-learnable if an upper bound for
C'(f) is given as additional information for f € RECy ;.

Proof: Define a recursive function g such that g ;)(n) is the j-th string o of
length n which appears in W, (i.e., there is an s such that ¢ € W, and |{r €
{0, 1} (3)[(r,t) < (o,8) A 7 € W.,}| =7 —1) and is undefined if o does not exist.

Suppose for a contradiction that there is a team of k& [IMs which BC'-infers every
f € RECy, given an upper bound of C’(f) as additional information. Let h(e) =
max{g(e,j): 1 <j < k+41}. If eis a ¥y-index of a tree T" with w(7T") < k+ 1 and
[ € [T], then for each n thereis j,1 < j < k + 1, such that f | n = vy ;)(n). Thus,
C'(f) < h(e) and one of the team members BC-infers f from additional information
h(e). Since h € REC we obtain a team of k machines which BC-infers every f €
REC), from any Yq-index of a tree T' of width at most £+ 1 which has f as a branch.
This contradicts wi(k + 1) > k which was shown in Theorem 5.6. 1

5.3 Trees of Bounded Rank

A larger class of trees is obtained if we consider finite rank instead of finite width.

Definition 5.8 B, = {0,1}=" is the full binary tree of depth n. A mapping g : B, —
T is an embedding of B, into T if

(Vo)llo]<n — [glc*0) = g(o)x0 A glox1) = g(o)*1]].
rk(T), the rank of T, is the supremum of all n such that B, is embeddable into 7'

If an r.e. tree T'C {0,1}* has finite rank, then every branch of T is recursive (see
[21, 26]). We consider both r.e. and recursive trees of finite rank which are given as
additional information to the IIM.
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Definition 5.9 Let rkgx(n) denote the least team size k such that there is a team
of £ IIMs that FX-infers every f € RECy, given any Ag-index of a recursive tree
T C {0,1}* such that r&(T) < n and f is a branch of T. If ¥;-indices are provided
for T', the corresponding team size is denoted by rkjy(n). The analogous numbers
for BC-teams are rkgc(n) and rki.(n).

Theorem 5.10 Forn > 0, rkgx(n) = rkify(n) = rkgs(n) = n+ 1 and rkpe(n) =
max(1,n).

Proof:  a.) The lower bounds for rkgx(n), rki.(n) follow from the corresponding
lower bounds of Theorem 5.6, since [w(T) < n+ 1 = rk(T) < nj.

If fis a branch of T, let rk(T, f) = sup{rk(T[o]) : ¢ < f}. It is shown in [21]
that given k,o and a ¥q-index of T' with rk(T[o]) = rk(T,f) =k N o < f we can
uniformly compute an index of f. Hence, for the upper bounds we can argue as in
the proof of Theorem 5.6. Note that we have n + 1 possible values for k (including
k =0); thus n + 1 team members suffice.

b.) For the upper bound rkpc(n) < max(1,n) it suffices to show that rkgc(1) = 1.
Then we apply the argument of a.) above and note that the cases k = 0,1 can be
handled by a single [IM. Thus we can save one team member and therefore n team
members are enough for n > 1.

Given a Ag-index of a tree T' C {0,1}*, rk(T) < 1, such that f is a branch of T', the
BC-algorithm works as follows:

On input o = (f(0),..., f(n)) it outputs a program e, such that:
@e,(x) = () if there is 7 € T, 0 = 7 such that either 7 is the only extension of
oin T with |7| =2+ 1, 0r |[7| > 2+ 1 and 7 x 0,7 % 1 both belong to 7.

Since rk(T) < 1, either there is 09 < f such that T' has no branching node 7 with
o9 = 7, or for every 0 < f there is 7 > o such that 7x0,7x1 € T. In the latter
case, all such 7 must be an initial segment of f. (Otherwise, B, is embeddable in T'.)
Thus, in both cases ¢., = f for almost all n.

c.) Clearly rkpc(0) = 1. For n > 1 and the lower bound rkgc(n) > n, we add
two features to the diagonalization in the proof of Theorem 4.5. First, the reset rule
which we already used in the proof of Theorem 5.6. Second, an additional restriction
of diagonalization points. In the original construction all r > z; were available to
diagonalize M;. This time we may, in the course of the construction, exclude certain
points, e.g., if some j with z; > x; is selected at stage s+ 1, then all r with 2; <r <'s
are henceforth excluded for diagonalizing M;. We use an additional set variable L;
to record the excluded points. These restrictions are needed for the construction of a
recursive tree of rank at most n which contains f as a branch. They may delay the
diagonalization process, but it still goes through.

Now we turn to the formal details. Suppose for a contradiction that the team
Mi,...,M,_, BC-infers every f € RECy; given Ag-indices of trees of rank at most
n as additional information. We construct a function f € RECy; and a Ag-index e of
a recursive tree T', rk(T) < n such that f € [T] but f is not BC-inferred by any M,
with additional information e. Since the construction of 7" will be uniform, we may
assume by the recursion theorem that e is given in advance.
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Construction:

Stage 0: Initialize ¢ = (1,2,...,n —1). Let f = Aa. 0. Let z; = 0; L; = § for
r=1,...,n—1.

Stage s + 1: If there is an ¢ for which there exists r such that

rE&Li Nxp<r<s A f(r)=0 A @.s(r)=0 for c= Mie, f Ir),

then select that ¢ which appears in the leftmost position in ¢, say ¢ = ay.
Update f(r) =1 and reset f(r') =0 for all v’ > r.

Let Ly, = Lo, U{z:2; <o <spforl <j <k

Let v, =2sfor k <j <n -1

Move ¢ to the rear of ¢, i.e., let ¢ = (a1,...,Qp—1,Aks1,- .., Ape1, af).
End of construction.

Definition of T':
Let f,, 2,5, Li, denote the values of f,x;, L; at the end of stage s + 1.

T= {fs1s:s5>0}
U{oe{0,1}*:(Fi,ms)lloj=s AN xis<r<s A ré&lL
Ao=(f1r)x1x07"tV]}

Clearly T is uniformly recursive and f € [T]. It is verified by induction on s that T is
a tree. If ¢ acts at stage s+ 1 and sets f(r) = 1, then f; extends (fs—1 | r)*1x0°~" for
somer & L; ;_1. Also, [r,s] C L, for all j with 2, ; < s and therefore fs [ ' = fo_q | 1/
for all v <s with r' & L, ;.

rk(T) < n: Suppose for a contradiction that ¢ is an embedding of B,4; into T

Let 70 = g(\), 7 = g(0?) for j = 1,...n — 1. Then 7;%0 =< 7,4 for j = 0,...,n — 2.
There must be a stage ¢; where 7; < f;, and f(|7;|) is set to 1. (Otherwise By is not
embeddable in the subtree T'[7;x1].) It follows that ;41 < ¢; for 0 < j <n —1, since
fir (| +1) # 75 %0 for all t > ¢;. Let i; denote the 7 which is selected at stage ¢;.
Then x;, ; > t; for all £ > ¢;. Thus all i;’s are pairwise distinct. This contradicts the
fact that there are at most n — 1 different ¢;’s.
None of the team members infers f from additional information e: Let (aq,...,ax),
k > 0, denote the maximal initial segment of ¢ which stays almost always constant,
say from stage so onwards. If & = n, then there are only finitely many stages where
some ¢ is selected and f changes only finitely often. Clearly, in this case none of the
machines infers f.

If £ < n then for each ¢ & {ay,...,a;} there are infinitely many stages s + 1 > s
where ¢ = agyq1 and ¢ is selected. This makes the guess of M;(e, f | r) incorrect
for some r with z;,_; < r < s. Since x; grows unbounded, M;(e, f) infinitely often
outputs an incorrect guess.

Suppose for a contradiction that M;(e, f) BC-infers f for some ¢ € {ay,...,ax}.
Then there is s; > 2s¢ > x; such that pagc sy is an index of f for all # > s;. Let
sy + 1> s1 be a stage where some j with j = a4y acts. Then Tay, > 25 > 59+ 1 for
K'>k+1andt > sy. Thus, [s2+1,2s2)NL;; = 0 and f(s2+1) = 0. Choose s3 > s3
such that ©ar,(e,fi(ss41)),50 (52 + 1) = 0. Then ¢ satisfies the condition in stage ss + 1
and therefore some [ < k is selected, a contradiction. |
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By adapting Proposition 4.3 to our new inference notions we obtain that inference
with probability p implies team inference with team size |1/p|. And team inference
with size k implies probabilistic inference with probability 1/k.

Hence as a corollary of our results on team inference we obtain the desired results
on probabilistic inference. This is depicted in the following table where the maximal
probabilities p are given such that RECy; is inferable w.r.t. FX 0 (p) and BCp0(p)
from additional information.

Additional information | RECoy € EX,mo(p) | RECos € BCoy(p)
(m, n)-comp., m < n/2 0 0
(m,n)-comp., m >n/2 | 1/(n—m+1) 1/(n—m+1)
T rec., (AT) < n 1/(n+1) 1/

T rec., width(T) < n 1/n 1

T re., width(T) < n 1/n 1/n

T rec., rank(T) < n 1/(n+1) 1/ max(1,n)

T re., rank(T) < n 1/(n+1) 1/(n+1)

6 Conclusion and Future Work

We believe the present paper provides hope for escaping from the dilemma in compu-
tational learning theory (as well as in work with real robots [8]) that learning is too
unsolvable or infeasible. We have provided above some reasonable forms of additional
information that yield at least slightly positive solvability results.

Future work could investigate improved forms of practically available additional
information toward finding increasingly useful, solvable and feasible learnability.

We intend to consider, for example, the learning of useful programs for maps, in-
cluding route finding programs [33], motivated by robot navigation problems. As in
[12], we would model the spaces to be navigated as graphs with vertices representing
locally distinct places [24, 25, 29] and with edges representing conduits between them.
We plan to consider, as natural additional information, bird’s eye views, aerial shots,
or satellite photos, graph theoretically modeled as (possibly noisy) homomorphic im-
ages of the maps to be learned, i.e., as (approximate) copies of the maps with some
vertices coalesced. This approach would be complementary to that in [20]. Our work
in the present paper suggests, for example, using homomorphic images which limit,
in each of various regions, how many vertices from the map are coalesced. In animal
learning of spatial routes to goals, the animals attend to global, macroscopic shape
information before local clues (see, for example, [11, 17, 32]). Homomorphic image is
also a good first approximation to global, macroscopic shape information.
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