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Abstract

Recent deep learning-based Brain-Computer Inter-
face (BCI) decoding algorithms mainly focus on
spatial-temporal features, while failing to explic-
itly explore spectral information which is one of the
most important cues for BCI. In this paper, we pro-
pose a novel regional attention convolutional neu-
ral network (RACNN) to take full advantage of
spectral-spatial-temporal features for EEG motion
intention recognition. Time-frequency based anal-
ysis is adopted to reveal spectral-temporal features
in terms of neural oscillations of primary sensori-
motor. The basic idea of RACNN is to identify the
activated area of the primary sensorimotor adap-
tively. The RACNN aggregates a varied number of
spectral-temporal features produced by a backbone
convolutional neural network into a compact fixed-
length representation. Inspired by the neuroscience
findings that functional asymmetry of the cerebral
hemisphere, we propose a region biased loss to en-
courage high attention weights for the most critical
regions. Extensive evaluations on two benchmark
datasets and real-world BCI dataset show that our
approach significantly outperforms previous meth-
ods.

1 Introduction

The Brain-Computer Interface (BCI) can be defined as a tech-
nology that translates brain signals into commands for in-
teractive applications [Cecotti and Graser, 2010]. Noninva-
sive Electroencephalography (EEG) is regarded as one of the
most convenient ways to record brain activity. EEG-based
motion intention recognition algorithms promise to revolu-
tionize many application areas [Shan et al., 2018], notably
to enable severely motor-impaired users to control assistive
technologies [Schiatti et al., 2018] (e.g., mind-controlled ex-
oskeletons, rehabilitation robotics, and entertainments). Due
to low signal-to-noise ratio, limited public EEG datasets, it’s
very challenging to tackle this task.

∗corresponding author.

(a) Both feet movement

(c) Right fist movement

(b) Left fist movement

Figure 1: Time-frequency representations generated by our complex
Morlet wavelet convolution and baseline subtraction. It can stably
reveal many task-relevant dynamics in EEG data of different brain
regions.

In the past few years, many EEG-based motion intention
recognition algorithms have been proposed, which mainly
focus on two parts: handcrafted feature-based models and
deep learning-based models. Features extracted by common
spatial pattern (CSP) algorithm [Wu et al., 2014] or discrete
wavelet transform (DWT) [Chen et al., 2016] are fed to classi-
cal machine learning models such as support vector machine
(SVM) [Lal et al., 2005], linear discriminant analysis (LDA)
[Kaneshiro et al., 2015]. Deep learning-based models use
deep neural networks to learn discriminative and robust fea-
tures in an end-to-end manner [Sakhavi et al., 2018]. For
example, [Zhang et al., 2018] try to learn spatiotemporal fea-
tures by using cascade and parallel convolutional recurrent
neural networks. [Chen et al., 2018] extract EEG signals with
different frequencies and introduce a novel multi-task deep
learning model to learn human intentions. However, most of
them fail to take full advantage of spectral-spatial-temporal
features, which are all essential cues for EEG-based motion
intention recognition [Bashivan et al., 2016].

In this paper, we effectively and explicitly use the spectral-
spatial-temporal features and propose a novel regional at-
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tention convolutional neural network. Firstly, we use time-
frequency-based approaches to analyze EEG data as a mul-
tidimensional signal that contains frequency as a prominent
dimension, which provides many opportunities to link EEG
data to experimental manipulations and ongoing subject be-
haviour. By doing so, we can explore spectral features of
different brain regions while decreasing temporal precision
to a certain extent. According to neuroscience, when a per-
son performs motor execution (ME) or motor imagery (MI),
the amplitude or energy of mu and beta rhythms in spe-
cific area of the primary sensorimotor will decrease, resulting
in event-related desynchronization (ERD) [Dornhege et al.,
2003]. For example, when a person executes both feet, right-
hand or left-hand motor movement, the energy of mu and beta
rhythms in Cz, C3 or C4 decrease, separately. As shown in
Figure 1, many task-relevant dynamics in EEG data are re-
vealed by time-frequency-based approaches. Secondly, we
propose a novel regional attention convolutional neural net-
work (RACNN) to capture the importance of brain regions for
EEG-based motion intention recognition. The RACNN con-
sists of feature extraction module, self-attention module, and
regional attention module. Given EEG data of different brain
region, RACNN learns attention weights for each area in an
end-to-end manner, and aggregates their CNN-based features.
Finally, since functional asymmetry [Grosse-wentrup, 2009]

of the cerebral hemisphere, we propose an attention loss to
encourage a high attention weight for the most critical brain
region. The attention loss constraint on the RACNN that the
attention of the activated brain region should be larger than
others.

Our main contributions can be summarized as below:

1. We propose a novel regional attention convolutional
neural network (RACNN) to explore spectral-spatial-
temporal features for EEG motion intention recogni-
tion. RACNN aggregates a varied number of spatial
features of different brain regions produced by a back-
bone convolutional neural network into a compact fixed-
length representation. The learned features are sensitive
to task-relevant dynamics by distinguishing spectral-
temporal features of different brain regions.

2. We adopt time-frequency based analysis to reveal
spectral-temporal features in terms of neural oscillations
of primary sensorimotor. It can stably reveal many task-
relevant dynamics in EEG data of different brain re-
gions.

3. Experiments on three datasets: PhysioNet EEG dataset,
Upper Limb Movement EEG dataset and real-world BCI
dataset demonstrate the effectiveness of our proposed
RACNN and time-frequency based analysis. Based on
them, our approach outperforms previous methods.

2 Related Works

2.1 Handcrafted Feature-Based Models

Previous EEG analysis systems learn hand-crafted features.
[Chen et al., 2016] use discrete wavelet transform (DWT)
to extract features for epileptic focus localization. An op-
timal time-frequency resolution can be achieved in all fre-

quency ranges by adopting DWT because of its varying win-
dow size. [Park and Chung, 2019] propose a novel motion in-
tention recognition algorithm using filter-bank common spa-
tial pattern (FBCSP) features. Those methods prove the ef-
fectiveness of spectral-spatial-temporal features for analyzing
EEG signals. However, those features are manually designed,
which is time-consuming and highly relies on the human ex-
perience. Different from them, our model exploits spectral-
spatial-temporal information with deep learning model.

2.2 Deep Learning-Based Models

Deep Learning methods have been rising in popularity in the
past few years, and are used as the most effective machine
learning technology in dealing with EEG signals. Some deep
learning-based models learn spatial-temporal representations
of raw EEG data. For example, cascade and parallel convo-
lutional recurrent network models [Zhang et al., 2018] are
used to extract spatial-temporal information and generate ro-
bust representations. [Chen et al., 2018] extract EEG sig-
nals of different frequency band and introduce a novel Multi-
task deep learning model to learn human intentions. Apart
from those spatial-temporal features decoding method, the
proposed approach [Sakhavi et al., 2018] is used to preserve
part spectral feature and spatial-temporal features of EEG
data which leads to finding features that are less sensitive
to variations within each dimension. Different from those
deep learning-based models, which mainly focus on spatial-
temporal features and fail to take advantage of spectral infor-
mation, our regional attention convolutional neural network
explicitly explores the spectral-spatial-temporal features.

2.3 Time-Frequency Based Analysis

Time-frequency-based approaches are used to conceptualize
and analyze EEG data as a multidimensional signal that con-
tains frequency as a prominent dimension, which provides
many opportunities to link EEG data to experimental manip-
ulations and ongoing subject behaviour. Recently, by using
time-frequency-based approaches to reveal neural oscillations
of primary sensorimotor, some methods [Tang et al., 2016]

have shown remarkable results in BCI. Different from them,
our time-frequency-based approach is specifically designed
for motion intention recognition, which adopts complex Mor-
let wavelets and baseline normalization, thus generating sta-
ble time-frequency representations.

3 Regional Attention Convolutional Neural

Network

3.1 Generating Time-Frequency Representation

To generate time-resolved frequency representation of EEG
data, we adopt band-pass filter (4-30 Hz), complex Morlet
wavelet convolution, and baseline normalization. With com-
plex Morlet wavelet convolution, the mapping between the
two vectors is represented in a 2-D space that allows ex-
tracting not only the bandpass filtered signal but also time-
frequency power and phase information [Cohen, 2014].

A complex Morlet wavelet ω can be defined as the product
of a complex sine wave and a Gaussian window.

w = e2iπfte
−t

2

2σ2 (1)
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Figure 2: Graphical overview of how to extract power.

where i is the imaginary operator, f is frequency, and t is
time. To avoid introducing a phase shift, t should be centred
at t = 0, σ is the width of the Gaussian, which is defined as
σ = n

2πf
. When computing the dot product between a k Hz

complex wavelet ω and a single-trial EEG data ϕ(t) at time
s, the result of the dot product contains a real part and an
imaginary part.

Ptf = ω · ϕ(t) = p cos θ + ip sin θ = peiθ (2)

By extracting the magnitude of the result of convolution,
we construct a time series of power one frequency band. Tak-
ing frequency into account, we can obtain time-resolved fre-
quency representations of EEG data. It’s still difficult to vi-
sualize activity from a large range of frequency bands simul-
taneously based on raw power values. Baseline normaliza-
tion is used to convert time-resolved frequency representa-
tions to a scale that is suitable for quantitative statistical anal-
ysis. Decibel normalization and baseline subtraction are ap-
plied separately.

Ptf = 10 log
10

atf

btf
(3)

Ptf = atf − btf (4)

where atf is frequency-specific power, and btf is the baseline
level of power in that same frequency. The generated time-
resolved frequency representations are shown in Figure 1.

3.2 Regional Attention Convolutional Neural
Network

After using complex Morlet wavelets and baseline normal-
ization to extract the time-varying power from EEG data of
each channel, the time-resolved frequency representations R
are created as follows:

R = [r1, r2 . . . rn] (5)

where rn is the time-frequency representation of channel n,
and n is the number of channels. Regional attention convo-
lutional neural network (RACNN) is used to recognize mo-
tion intentions from each time-resolved frequency represen-
tations R. RACNN consists of feature extraction module,
self-attention module, and regional attention module as illus-
trated in Figure 3. The input to the model is the preprocessed
representations of 3D data (e.g., R), containing both spectral-
spatial-temporal information. We first extract the spectral-
temporal features of each data representation and coarsely
calculate the importance of each channel by a global aver-
age pooling layer conducted on its feature, which is called

self-attention module. The second stage seeks to find more
accurate attention weights by modeling the relationship be-
tween varied representations of different brain regions aggre-
gated from the first stage, which is called regional attention
module.

To extract the spectral-temporal features of each data, we
apply a backbone CNN, as shown in Figure 3. The in-
put time-resolved frequency representations are defined as
R = [r1, r2 . . . rn]. The feature representation rn extracted
by CNN is defined as below:

fn = C (rn) (6)

Through the CNN spectral-temporal feature extraction step,
the input time-resolved frequency representations are trans-
formed into sequences of spectral-temporal feature represen-
tations.

Fc = [f1, f2 . . . fn] (7)

Self-attention module. To coarsely calculate the impor-
tance of each channel, we apply a global average pooling
layer with a tanh activation. Mathematically, the attention
weight of the n-th channel is defined as below:

αn = f (g (fn)) (8)

where g denotes the global average pooling function, and f
denotes the tanh activation function. In this stage, we aggre-
gate the spectral-temporal features of the same brain region
with their attention weights into a global representation.

F j
r =

1
∑k

i=1
αi

k
∑

i=1

αifi, j = 1, 2 . . .m (9)

where F j
r is the spatial feature of the j-th brain region, which

contains k channels.
Regional attention module. Since the aggregated represen-

tation F j
r , j = 1, 2 . . .m inherently represents the contents

of all brain regions, the attention weights can be further re-
fined by modeling the relationship between varied represen-
tations of different brain regions. With these region features,
the region attention module applies an FC layer and a softmax
function to estimate the attention weights βj of j-th brain re-
gion.

βj = f
(

[

F j
r

]T

q1
)

(10)

where f denotes the softmax function, and q1 is the parameter
of fully connected layer. The attention information along with
the spectral-temporal features can be aggregated into a new
compact feature.

F =
1

∑m

i=1
λiβi

m
∑

i=1

λiβiF
i
r , i = 1, 2 . . .m (11)

where λi is the minimum self-attention of i-th brain region,
λi = min (αk . . . αd). The spectral-spatial-temporal repre-
sentation F is fed into a standard softmax classifier. Then the
classification loss can be formulated as:

Lcls = −
∑

c

Ŷc log (Pc) (12)
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Figure 3: Architecture of our proposed regional attention convolutional neural network model. More details can be found in text.

Regional attention loss. Inspired by the neuroscience find-
ings that functional asymmetry of the cerebral hemisphere,
we propose a region biased loss to encourage high attention
weights for the most important regions. The region attention
loss can be formulated as:

Lra = max {0, δ − (αmax − αmin)} (13)

where δ is hyper-parameter served as margin, αmax and αmin

is the maximum and minimum value of self-attention.

Finally, the overall loss function of our regional attention
convolutional neural network can be formulated as:

Lall = Lcls + Lra (14)

4 Experiment

4.1 Datasets

PhysioNet EEG dataset [Goldberger et al., 2000] contains
109 subjects with 64 electrode channels and 160Hz [Schalk
et al., 2004] sampling rate. Each subject performed motor
execution (ME) and motor imagery (MI) to finish four-class
intentions, including eye closed, both feet, right fist and left
fist open and close. Nevertheless, we found that the data of
the #88, #89, #92, #100, and #104 subject were damaged
in the data processing stage, so this participant’s record was
removed.

Upper Limb Movement EEG dataset [Ofner et al., 2017]

contains 15 subjects with 61 electrode channels and 512 Hz
sampling rate. Each subject performed motor execution (ME)
and motor imagery (MI) to finish seven-class intentions, in-
cluding rest, elbow flexion, elbow extension, forearm supina-
tion, forearm pronation, hand close, and hand open.

4.2 Implementation Details

Nine electrode channels, which are shown in Figure 4, are
chosen to generate time-resolved frequency representations.
Through band-pass filter (4-30 Hz), complex Morlet wavelet
convolution, and baseline normalization, the raw 4 trials of
EEG data from the same session are used to generate spectral-
spatial-temporal representation, as shown in Figure 1. Then
three-quarters generated data chosen in random are used as
the training set, and others are used as the validation set.

For CNN part, we adopt three convolution layers with ker-
nel sizes of 3×3 to extract spectral-temporal features. For the
classification loss, a classifier includes a 1024-dim FC layer
as the middle layer followed by dropout and an FC layer with
identity number logits as output layer. The keep probability
of the dropout operation is 0.6.

All experiments are established in TensorFlow framework
with batch size 100. When jointly training with regional at-
tention loss and classification loss, the default loss weight ra-
tio is 2:1. The margin in regional attention loss is default as
0.15. The Adam method with 10−5 learning rate is used as
the optimizer.

4.3 Ablation Study

To evaluate each component of our regional attention con-
volutional neural network, we conduct two variants trained
under different settings. Firstly, we train the model under
Eq.(12) as a baseline. Secondly, by comparing the whole
model under Eq.(14) with the first variants, we can verify
the effectiveness of attention loss. Both the first two vari-
ants are learning from time-frequency representations gen-
erated by complex Morlet wavelets and baseline subtraction
under Eq.(4). Thirdly, by comparing model learning from
time-frequency representations produced by complex Mor-
let wavelets and decibel normalization under Eq.(3) with the
second variants, we can verify the effectiveness of complex
Morlet wavelets and baseline subtraction. We mark them as
Lcls(sub), Lall(sub), and Lall(db), respectively.

Methods
PhysioNet dataset Upper Limb dataset

ME MI ME MI

Lcls(sub) 74.6 68.3 39.2 30.2
Lall(db) 70.1 65.8 37.9 27.4
Lall(sub) 76.9 70.2 42.6 33.1

Table 1: The classification accuracies of different model variants on
PhysioNet EEG dataset and Upper Limb Movement EEG dataset.

Comparison with different variants of our regional atten-
tion convolutional neural network on PhysioNet EEG dataset
and Upper Limb Movement EEG dataset as shown in Ta-
ble 1, Lcls(sub) achieves 74.6% and 39.2% classification
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accuracy of ME and 68.3% and 30.2% classification ac-
curacy of MI on PhysioNet EEG dataset and Upper Limb
Movement EEG dataset, respectively. This demonstrates that
the regional attention convolutional neural network is capa-
ble of learning spectral-spatial-temporal features generated
by time-frequency-based approaches. Secondly, Lall(sub)
achieves 76.9% and 42.6% classification accuracy of ME
and 70.2% and 33.1% classification accuracy of MI on Phys-
ioNet EEG dataset and Upper Limb Movement EEG dataset,
respectively. Compared with Lcls(sub), the attention loss
improves the result by 2.3% and 3.4% classification accu-
racy of ME and 1.9% and 2.9% classification accuracy of
MI on PhysioNet EEG dataset and Upper Limb Movement
EEG dataset, respectively. This shows that attention loss
contributes to learning spectral-spatial-temporal features. Fi-
nally, Lall(db) achieves 70.1% and 37.9% classification ac-
curacy of ME and 65.8% and 27.4% classification accuracy
of MI on PhysioNet EEG dataset and Upper Limb Movement
EEG dataset, respectively. Compared with Lall(db), com-
plex Morlet wavelets and baseline subtraction improves the
result by 6.8% and 4.7% classification accuracy of ME and
4.4% and 5.7% classification accuracy of MI on PhysioNet
EEG dataset and Upper Limb Movement EEG dataset, re-
spectively. This shows that complex Morlet wavelets and
baseline subtraction contribute to learning spectral-spatial-
temporal features. In summary, our proposed approach by us-
ing spectral-spatial-temporal information is effective for mo-
tion intention recognition.

4.4 Evaluation of Time-Resolved Frequency
Representation

Figure 1 displays the time-frequency representations gener-
ated by our complex Morlet wavelet convolution and baseline
subtraction for ME of three movements from subject 3.

For each movement, time-frequency representations of
channel C4 over the right sensorimotor cortex, C3 over the
left sensorimotor cortex and Cz are demonstrated. In each
time-frequency representation, the cue occurs at 0 s. The
blue color means ERD (power decrease), and the yellow color
means ERS (power increase). For both feet movement, the
ERD in both theta (4-7 Hz) and alpha (8-13 Hz) bands is
shown at Cz electrode and the ERS in both alpha and beta
bands is shown at the hand area (C3 and C4). For the right
fist and left fist movement, ERD is shown from around 0–4 s
after the cue onset due to the response delay; ERD in both
theta and alpha bands is shown over motor areas. What’s
more, ERD is most apparent over motor areas contralateral
to the hand moves. In summary, our complex Morlet wavelet
convolution can stably reveal many task-relevant dynamics in
EEG data of different brain regions.

4.5 Visualizing Attention Weights

We present the visualized analysis of recognizing both feet,
right-hand or left-hand motor execution on PhysioNet EEG
dataset. Fig.4(a) shows the positions of different electrodes
for PhysioNet EEG dataset; Fig.4(b) shows the attention
weights of different electrodes for both feet, left-fist or right-
fist motor execution (ME).

(a) Both feet (b) Left fist (c) Right fist

Cz

CPz

FCz

C3

CP3

FC3

FC4

C4

CP4

(a) Position of EEG electrodes (b) Attention weight of different  EEG electrodes

Figure 4: Visualization of attention weights of different EEG elec-
trodes on PhysioNet EEG dataset.

Through self-attention module and regional attention mod-
ule, our proposed regional attention convolutional neural net-
work puts a high emphasis on Cz, FC4, and C3 when rec-
ognizing both feet, right-hand or left-hand motor execution,
respectively. Compared with simple aggregation mechanism,
which treats all time-frequency representations equally, the
proposed attention mechanism automatically learns the pri-
ority of different brain region, which works better in feature
fusion, and achieves better performance.

4.6 Comparison with Previous Methods

We compare our regional attention convolutional neural net-
work with state-of-the-art, which can be grouped into two
groups, i.e. handcrafted feature-based models, and deep
learning-based models. The compared methods are used to
perform single-trial classification.

The experimental results on PhysioNet EEG dataset and
Upper Limb Movement EEG dataset are shown in Table 2
and Table 3. Firstly, the handcrafted feature-based models
contribute to motion intention recognition but achieve a poor
classification performance. This is mainly because hand-
crafted feature-based models can’t take full advantage of big
data. Secondly, deep learning-based models significantly out-
perform the handcrafted feature-based models, which shows
the effectiveness of deep learning. Finally, our regional at-
tention convolutional neural network outperforms all those
methods achieving new state-of-the-art. The experimental re-
sults verify the superiority of regional attention convolutional
neural network over existing methods.

4.7 Case Study and Demonstration

We develop a BCI system for motion intention recognition
and evaluate the proposed models on our real-world BCI
dataset. Neuroscan’s Grael EEG amplifier and 32-channel
EEG cap are used with sampling rate of 256 Hz, which can
be seen from Figure 5. Baseline correction, 50 Hz notch filter,
and band-pass filter (4-30 Hz) are applied to eliminate base-
line drift and noise. Each subject performed motor execution
(ME) and motor imagery (MI) to finish four-class intentions,
including eye closed, both feet, right fist and left fist open
and close. In each recording session, the participants perform
each task for 3 seconds, followed by rest for 3 seconds. Every

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1574



Methods Multi-class
ME MI

Accuracy Precision Recall Accuracy Precision Recall

1
SVM [Chen et al., 2016] Multi(4) 40.8 40.0 40.6 32.1 41.6 33.3

LDA [Kaneshiro et al., 2015] Multi(4) 43.8 48.7 43.2 35.7 30.2 35.9
FBCSP[Wu et al., 2014] Binary - - - 56.3 55.9 56.1

2

Cascade [Zhang et al., 2018] Binary 63.4 63.6 63.7 57.3 57.4 57.9
Parallel [Zhang et al., 2018] Binary 62.2 62.4 62.8 56.8 56.1 56.3

Bashivan [Bashivan et al., 2016] Multi(4) - - - 68.6 - -
EEGNet [Lawhern et al., 2018] Binary 73.8 73.2 73.5 - - -
VG-HAM [Zhang et al., 2019] Binary 76.3 76.8 76.5 - - -

Ours(Lall(sub)) Multi(4) 76.9 77.2 75.9 70.2 77.3 69.1

Table 2: Comparison with previous models on PhysioNet EEG dataset. 1: handcrafted feature-based models. 2: deep learning-based models.

Methods Multi-class
ME MI

Accuracy Precision Recall Accuracy Precision Recall

1
SVM [Chen et al., 2016] Multi(7) 37.5 36.1 37.8 23.2 24.8 22.7

LDA [Kaneshiro et al., 2015] Multi(7) 38.1 37.1 39.8 27.2 26.5 27.7

2
Zhao [Zhao et al., 2019] Multi(7) - - - 31.0 - -

Parallel [Zhang et al., 2018] Multi(4) - - - 30.2 30.6 30.5

Ours(Lall(sub)) Multi(7) 42.6 40.6 42.8 33.1 34.4 33.7

Table 3: Comparison with previous models on Upper Limb Movement EEG dataset. 1: handcrafted feature-based models. 2: deep learning-
based models.

volunteer performs 160 trials, and there are totally 4 male vol-
unteers. Table 4 shows the classification results on our BCI
dataset.

Grael amplifier

VR game

EEG cap

Figure 5: EEG signal recording process and EEG based BCI to con-
trol the movement of a virtual ball in 2D space.

Table 4 shows the evaluating results on our BCI dataset.
Our method achieves 50.6% classification accuracy of ME
and 35.1% classification accuracy of MI on our BCI dataset.
Compared with the best baseline model, our methods im-
prove the result by 8.5% classification accuracy of ME and
2.3% classification accuracy of MI, respectively. In summary,
the proposed regional attention convolutional neural network
is capable of learning spectral-spatial-temporal features and
outperforms all those methods.

The proposed method was finally used to develop an EEG
based BCI system, as shown in Figure 5. The movement
of a virtual ball is controlled by the motion intention of the
participant. For example, when the participant executes both
feet, right fist and left fist movement, the virtual ball will go
straight, turn right and turn left, separately.

Methods
Real-world BCI dataset

ME MI

SVM [Chen et al., 2016] 33.6 28.7
LDA [Kaneshiro et al., 2015] 36.5 27.2
Cascade [Zhang et al., 2018] 42.1 32.8
Parallel [Zhang et al., 2018] 41.9 31.6

Ours(Lall(sub)) 50.6 35.1

Table 4: The classification accuracies of different models on our BCI
dataset.

5 Conclusion

In this paper, we propose a novel approach to exploit spectral-
spatial-temporal features for EEG motion intention recogni-
tion. Firstly, we propose a novel regional attention convolu-
tional neural network, which learns spectral-spatial-temporal
features by feature extraction module, self-attention module,
and regional attention module. Secondly, we adopt complex
Morlet wavelet convolution and baseline normalization to re-
veal many task-relevant dynamics in EEG data of different
brain regions. Finally, experimental results on two bench-
mark datasets and our BCI dataset show the effectiveness of
our method.
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