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Learning Regular Sets from Queries 

and Counterexamples* 
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The problem of identifying an unknown regular set from examples of its members 
and nonmembers is addressed. It is assumed that the regular set is presented by a 
minimaMy adequate Teacher, which can answer membership queries about the set 
and can also test a conjecture and indicate whether it is equal to the unknown set 
and provide a counterexample if not. (A counterexample is a string in the sym- 
metric difference of the correct set and the conjectured set.) A learning algorithm 
L* is described that correctly learns any regular set from any minimally adequate 
Teacher in time polynomial in the number of states of the minimum dfa for the set 
and the maximum length of any counterexample provided by the Teacher. It is 
shown that in a stochastic setting the ability of the Teacher to test conjectures may 
be replaced by a random sampling oracle, EX( ). A polynomial-time learning 
algorithm is shown for a particular problem of context-free language iden- 
tification. cl 1987 Academic Press, Inc. 

1. INTRODUCTION 

Imagine a human expert in some domain, for example, cancer diagnosis, 
attempting to communicate the method he or she uses in that domain to an 
expert system. Specific positive and negative examples will form an impor- 
tant component of the communication, in addition to advice about general 
rules, explanations of significant and irrelevant features, justifications of 
lines of reasoning, clarifications of exceptions, and so on. Moreover, 
the examples given are likely to be chosen so that they are “central” 
or “crucial” rather than random or arbitrary, in an attempt to speed 
convergence of the system to a correct hypothesis. 

Studies of learning general rules from examples have generally assumed a 
source of examples that is arbitrary or random [a]. The scenario above 
suggests that it is reasonable to investigate learning methods that assume 
that the source of examples is “helpful.” To emphasize this aspect, the 
source of examples will be called the Teacher and the learning algorithm 
the Learner. 
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How can we tell whether the Learner is assuming “too much help” from 
the Teacher? The answer to this question is ultimately empirical; it depends 
on whether the assumptions about the Teacher are satisfied by the actual 
source of examples in an intended application. It therefore seems 
impossible to give a single theoretical definition of “too much help.” We 
demonstrate in this paper a Learner that efficiently learns an initially 
unknown regular set from any of a fairly wide class of Teachers, called 
“minimally adequate Teachers.” 

1.1. Minimally Adequate Teachers 

A minimally adequate Teacher is assumed to answer correctly two types 
of questions from the Learner about the unknown regular set. The first 
type is a membership query, consisting of a string t; the answer is yes or no 
depending on whether t is a member of the unknown set or not. The 
second type of question is a conjecture, consisting of a description of a 
regular set S; the answer is yes if S is equal to the unknown language and 
is a string t in the symmetric difference of S and the unknown language 
otherwise. In the second case, the string t is called a counterexample 
because it serves to show that the conjectured set S is incorrect. 

Note that there is only one correct answer to a membership query, so all 
minimally adequate Teachers must answer these identically for a particular 
regular set. However, in the case of an incorrect conjecture, any of the 
possible counterexamples may be given by a minimally adequate Teacher. 

1.2. Discussion 

How “reasonable” is the assumption of minimal adequacy of the 
Teacher? Answering membership queries, that is, classifying instances 
proposed by the Learner, seems like an unobjectionable ability to require 
of a Teacher, although practically it will be important to be able to deal 
with errors in the Teacher’s answers. Answering the second type of 
question, which involves a test of whether the conjecture is equivalent to 
the correct hypothesis, and finding a counterexample if not, is more 
problematic. This seems to require the Teacher to have a very precise and 
explicit representation of the correct hypothesis, a common language with 
the Learner for the description of hypotheses (rather than just examples), 
and appears to limit the domain to one in which equivalence of hypotheses 
is at least a decidable question. However, we show later in the paper that 
using the criterion of approximate identification proposed by Valiant [S], 
we may substitute a random sampling oracle for the ability to answer 
questions of the second type, removing some of the limitations of the 
assumption of minimal adequacy of the Teacher. 

How feasible are the computations required of a minimally adequate 
Teacher in this setting? The answer depends on the form of description of 
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the unknown regular set and the conjectures presented by the Learner. The 
particular Learner we shall present describes regular sets by means of 
deterministic finite-state acceptors (dfa’s) with some straightforward 
encoding. If we assume in addition that the unknown regular set to be 
taught is presented to the Teacher as a dfa of n states, then there exists a 
minimally adequate Teacher T * that answers each question in time 
polynomial in n and the length of the question. To answer membership 
queries, T* merely traces the given string through the dfa representing the 
unknown language. To answer conjectures, T* performs a standard 
polynomial-time algorithm for testing the equivalence of two dfa’s, which 
yields a counterexample in case they are not equivalent. 

Note that we have avoided giving formal definitions of Teachers, 
Learners, questions, dialogs and so on, preferring not to obscure the 
intuitive simplicity of the present paper. An alternative characterization of 
a minimally adequate Teacher is as a pair of oracles, MEMBER(x) and 
EQUIV(M), with the obvious interpretations. This characterization tends 
to direct attention away from the possibility of a “pedagogical strategy” on 
the part of the Teacher, and I will avoid it except in the exposition of the 
stochastic setting. 

1.3. Related Results 

The identification of regular sets from examples has been studied quite 
extensively [2]. Gold [4] has shown that the problem of finding a dfa of a 
minimum number of states compatible with a given finite set of positive 
and negative examples is NP-hard. This result is generally interpreted as 
indicating that even a very simple case of inductive inference, inferring dfas 
from positive and negative examples, is computationally intractable. 

Below we show that with the additional information available in 
membership queries, there is an efficient algorithm to find the (unique) 
minimum dfa compatible with the given examples and the answers to the 
queries. Thus, the information in membership queries can be used to avoid 
a lengthy computation. 

The results to be described are related to and based upon a method of 
identifying a regular set from a “representative sample” and membership 
queries in polynomial time, described in [l]. It is also related to the 
method used by Gold [4,5]. However, the present paper is self-contained. 

The stochastic setting we use was proposed by Valiant [8] and 
generalized by Blumer et al. [3]. 

2. MAIN RESULT 

We describe the learning algorithm L* and show that it efficiently learns 
an initially unknown regular set from any minimally adequate Teacher. Let 
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the unknown regular set be denoted by U and assume that it is over a fixed 
known finite alphabet A. 

2.1. Observation Tables 

At any given time, the algorithm L * has information about a finite 
collection of strings over A, classifying them as members or nonmembers of 
the unknown regular set U. This information is organized into an obser- 
vation table, consisting of three things: a nonempty finite prefix-closed set S 
of strings, a nonempty finite suffix-closed set E of strings, and a finite 
function T mapping ((S u S. A) . E) to { 0, 1). The observation table will 
be denoted (S, E, T). (A set is prefix-closed if and only if every prefix of 
every member of the set is also a member of the set. Suffix-closed is defined 
analogously.) 

The interpretation of T is that T(u) is 1 if and only if u is a member of 
the unknown regular set, U. The observation table initially has 
S = E = {IL}, and is augmented as the algorithm runs. 

An observation table can be visualized as a two-dimensional array with 
rows labelled by elements of (S u S. A) and columns labelled by elements 
of E, with the entry for row s and column e equal to T(s . e), If s is an 
element of (S u S . A), then row(s) denotes the finite function f from E to 
{ 0, 1 } defined by ,f(e) = T(s . e). 

The algorithm L* eventually uses the observation table to build a deter- 
ministic finite-state acceptor. Rows labelled by elements of S are the can- 
didates for states of the acceptor being constructed, and columns labelled 
by elements of E correspond to distinguishing experiments for these states. 
Rows labelled by elements of S. A are used to construct the transition 
function. 

Closed, consistent observation tables. An observation table is called 
closed provided that for each t in S. A there exists an s in S such that 
row(t) = row(s). An observation table is called consistent provided that 
whenever s1 and s2 are elements of S such that row(s,) = row(s,), for all a 
in A, row(s, . a) = row(s, . a). 

If (S, E, T) is a closed, consistent observation table, we define a 
corresponding acceptor M(S, E, T) over the alphabet A, with state set Q, 
initial state qO, accepting states F, and transition function 6 as follows: 

Q= {row(s):sES}, 

q0 = row(L), 

F= {row(s):sESand T(s)=l}, 

G(row(s), a) = row(s . a). 
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To see that this is a well defined acceptor, note that since S is a non- 
empty prefix-closed set, it must contain 1, so qO is defined. Also, since E is 
nonempty and suffix-closed, it also must contain ;1. Thus, if si and s2 are 
elements of S such that row(s,)=row(s,), then T(s,)= T(s, ~2) and 
T(s,) = 7’(sz. 1) are defined and equal to each other, so F is well defined. 
To see that 6 is well defined, suppose s1 and s2 are elements of S such that 
row(s,) = row(s,). Then since the observation table (S, E, T) is consistent, 
for each a in A, row(s, . a) = row(s, . a), and since it is closed, this common 
value is equal to row(s) for some s in S. 

The important fact about this acceptor is the following. 

THEOREM 1. Zf (S, E, T) is a closed, consistent observation table, then the 
acceptor M(S, E, T) is consistent with thefinite function T. Any other accep- 
tor consistent with T but inequivalent to M(S, E, T) must have more states. 

This theorem is proved by a sequence of straightforward lemmas. 

LEMMA 2. Assume that (S, E, T) is a closed, consistent observation table. 
For the acceptor M(S, E, T) and,for every s in (Su S. A), 6(q,, s) = row(s). 

This lemma is proved by induction on the length of s. It is clearly true 
when the length of s is 0, i.e., s = 1, since qO = row(i). 

Assume that for every s in (Su S. A) of length at most k, 
6(q,, s) = row(s). Let t be an element of (Su S. A) of length k + 1, that is, 
t = s a for some string s of length k and some a in A. In fact, s must be in 
S, for either t is in S . A, and therefore s in S, or t is in S, and since S is 
prefix-closed, s is in S. Then 

6(q,, t) = 6(6(q,, f), a) 

= S(row(s), a), 

= row(s . o), 

= row(t), 

by the induction hypothesis, 

by the definition of 6, 

since t = s a. 

This completes the induction and the proof of Lemma 2. 

LEMMA 3. Assume that (S, E, T) is a closed, consistent observation table. 
Then the acceptor M(S, E, T) is consistent with the,finite function T. That is, 
for every euery s in (Su S. A) and e in E, 6(q,, s. e) is in F if and only if 
T(s.e)= 1. 

This lemma is proved by induction on the length of e. When e is /I and s 
is any element of (S u S. A), by the preceding lemma, 6(q,, s. e) is just 
row(s). If s is in S, then by definition of F, row(s) is in F if and only if 
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T(s) = 1. If s is in S .A, then since the observation table is closed, 
row(s)=row(s,) for some si in S, and row(s,) is in F if and only if 
T(s,)= 1, which is true if and only if T(s)= 1. 

Suppose the result holds for all e from E of length at most k, and let e be 
an element of E of length k + 1. Then, since E is suffix-closed, e = a . e i for 
some a in A and some e, in E of length k. Let s be any element of 
(Su S. A). Because the observation table is closed, there exists a string si 
in S such that row(s) = row(s,). Then 

&q,, s.e)=&@ch, s), a.el) 

= G(row(s), a.e,), by the preceding lemma, 

= G(row(s,), a .e,), since row(s) = row(s,), 

= 46(row(s, ), ~1, el 1 

= G(row(s, .a), e,), by the definition of 6, 

=&&q,, s1 .a), e,), by the preceding lemma, 

=6(q,, s1 .u.e,). 

By the induction hypothesis on e, , 6(q,, s1 .a .e,) is in F if and only 
if T(s,.a.e,)=l. Since row(s)=row(s,) and u.e,=e is in E, 
T(s,.a.e,)=T(s.u.e,)=T(s.e). Hence G(q,,s.e) is in F and only if 
T(s . e) = 1, as claimed. 

LEMMA 4. Assume that (S, E, T) is a closed, consistent observation 
table. Suppose the acceptor M(S, E, T) has n states. If M’ = (Q’, qb, F, 6’) is 
any acceptor consistent with T that has n or fewer states, then M’ is 
isomorphic to M(S, E, T). 

We prove this lemma by exhibiting an isomorphism. Define, for each q’ 
in Q’, row(q’) to be the finite functionffrom E to (0, 1) such that f(e) = 1 
if and only if 6’(q’, e) is in F. 

Note that since M’ is consistent with T, for each s in (S u S. A) and each 
e in E, S’(q&, s .e) is in F if and only if T(s .e) = 1, which means that 
6’(6’(q,, s), e) is in F if and only if T(s .e) = 1, so row(b’(qb, s)) is equal to 
row(s) in M(S, E, T). Hence as s ranges over all of S, row(b’(q,, s)) ranges 
over all the elements of Q, so M’ must have at least n states, i.e., it must 
have exactly n states. 

Thus, for each s in S there is a unique q’ in Q’ such that 
row(s) = row(q’), namely, 6’(qb, s). Define for each s in S, d(row(s)) to be 
S’(qb, s). This mapping is one-to-one and onto. We must verify that it 
carries qO to qb, that it preserves the transition function, and that it carries 
F to F. 
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To see that d(qo) = qb, note the following: 

dhJ = 4(roW4) 

= Qqb, 1) 

= 4;. 

For each s in S and a in A, let si be an element of S such that 
row(s . a) = row(s,). Then 

4(W-owb), ~1) = 4(row(s. a)) 

= M-owh 1) 

= d’(qb, s, ). 

Also, 

~‘(4(row(s)),a) = 6’(d’(qb, s), a) 

= S’(qb, s. a). 

Since 6’(qb, si) and d’(q&, s.u) have identical row values, namely row(s,) 
and row(s .a), they must be the same state of M’, so we conclude that 
&&row(s), a)) = G’(b(row(s)), a) for all s in S and a in A. 

To conclude the proof of isomorphism of M(S, E, T) and M’, we must 
see that 4 maps F to F, but this is clear since ifs in S has row(s) in F, then 
T(s) = 1, so since #(row(s)) is mapped to a state q’ with row(q’) = row(s), 
it must be that q’ is in F. Conversely, if row(s) is mapped to a state q’ in 
F, then since row(q’) = row(s), T(s) = 1, so row(s) is in F. 

This concludes the proof of Lemma 4 and also the proof of Theorem 1, 
since Lemma 3 shows that M(S, E, 7J is consistent with T, and Lemma 4 
shows that any other acceptor consistent with T is either isomorphic to 
M(S, E, T) or contains at least one more state. Thus, M(S, E, T) is the 
uniquely smallest acceptor consistent with T. 

2.2. The Learner L* 

The Learner L* maintains an observation table (S, E, T). A summary of 
L* is given in Fig. 1. 

Initially S = E= {A}. To determine T, L* asks membership queries for 1 
and each a in A. This initial observation table may or may not be closed 
and consistent. 

The main loop of L* tests the current observation table (S, E, T) to see 
if it is closed and consistent. If (S, E, T) is not consistent, then L* finds s1 
and s2 in S, e in E, and a in A such that row(s,) = row@,) but T(s, .a .e) is 
not equal to T(s, . a. e). L* adds the string a. e to E and extends T to 
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Initialize S and E to {X}. 
Ask membership queries for X and each a E A. 

Construct the initial observation table (S. E, T) 

Repeat: 
While (S, E, T) is not closed or not consistent: 

If (S, E, T) is not consistent, 
then find s, and s2 in S, a E A, and e E E such that 

TOW(~) = row(sz) and T(sl a. e) # T(a2. a. e), 
add a. e to E, 
and extend T to (S U S A) E using membership queries. 

If (S, E, T) is not closed. 
then find s1 E S and a E A such that 
TOW(S~ a) is different from row(s) for all s E S, 
add s, a to S, 
and extend T to (S U S .4) E using membership queries. 

Once (S, E, T) is closed and consistent. let ~31 = M(S, E, T). 

Make the conjecture M. 

If the Teacher replies with a counter-example t, then 
add t and all its prefixes to S 
and extend T to (S U S. A) E using membership queries. 

Until the Teacher replies yes to the conjecture M. 
Halt and output hl. 

FIG. 1. The Learner L*. 

(SW S. A). (a. e) by asking membership queries for missing elements. 
(Note that in this case, si, s2, e, and a must exist, and since e is in E, E 

remains suffix-closed when a e is added.) 
If (S, E, T) is not closed, then L* finds s, in S and a in A such that 

row(s, .a) is different from row(s) for all s in S. L* adds the string s, .a to 
S and extends T to (S u S . A) . E by asking membership queries for missing 
elements. (Note that in this case, s1 and a must exist, and since s1 is in S, S 
remains prefix-closed when si . a is added.) 

These two operations are repeated as long as the table (S, E, T) is not 
.closed and consistent. When (S, E, T) is found to be closed and consistent, 
L* makes a conjecture of M(S, E, T). The Teacher replies either with yes, 
signifying that the conjecture is correct, or with a counterexample t. If the 
Teacher replies with I’es, L* terminates with output M(S, E, T). If the 
Teacher replies with a counterexample t, then t and all its prefixes are 
added to the set S and the function T is extended to (S u S. A). E by 
means of membership queries for the missing entries. The main loop of the 
algorithm is then repeated for this new observation table (S, E, T). 

Correctness of L*. To see that L* is correct, note that if the Teacher is 
minimally adequate then if L* ever terminates its output is clearly an 
acceptor for the unknown regular set U being presented by the Teacher. 

Termination of L*. To see that L* terminates, we need a simple lemma. 
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LEMMA 5. Let (S, E, T) be an observation table. Let n denote the number 
of different values of row(s) for s in S. Any acceptor consistent with T must 
have at least n states. 

Let A4 = (Q, 6, qO, F) be any acceptor consistent with T. Define 
f(s) = 6(q,, s) for every s in S. Suppose sr and s2 are elements of S such 
that row(s,) and row(s,) are distinct. Then there exists e in E such that 
T(s, .e) # T(s, .e). Since A4 is consistent with T, exactly one of S(q,, s, . e) 
and 6(q,, s2 .e) is in F. Thus, 6(q,, s,) and 6(q,, s2) must be distinct states. 
Thus, f (s) takes on at least n different values as s ranges over S, so M must 
have at least n states, proving Lemma 5. 

Now suppose that n is the number of states in the minimum acceptor 
M, for the unknown regular set U. We show that the number of distinct 
values of row(s) for s in S increases monotonically up to a limit of n as L* 
runs. (Note that at every iteration of the main loop, (S, E, T) is indeed an 
observation table.) 

Suppose a string is added to E because the table is not consistent. Then 
the number of distinct values row(s) for s in S must increase by at least 
one, because two previously equal values, row(s,) and row(s?), are no 
longer equal after E is augmented. (Note that two values unequal before E 
is augmented remain unequal after E is augmented.) 

Suppose a string sr a is added to S because the table is not closed. Then 
by definition, row(s, . a) is different from row(s) for all s in S before S is 
augmented, so the number of distinct values row(s) is increased by at least 
one when s, a is added to S. 

Thus, the total number of operations of either type over the whole run of 
the algorithm L* must be at most n - 1, since there is initially at least one 
value of row(s) and there cannot be more than n. Hence L* always even- 
tually finds a closed, consistent observation table (S, E, T) and makes a 
conjecture M(S, E, T). 

How many distinct conjectures can L* make? If a conjecture M(S, E, T) 
is found to be incorrect by the counterexample t, then since the correct 
minimum acceptor Mu is consistent with T and inequivalent to M(S, E, T) 
(since they disagree on t), by Theorem 1, M, must have at least one more 
state. That is, M(S. E, T) has at most n - 1 states. Furthermore, L* must 
eventually make a next conjecture, M(S’,E’, T), which is consistent with T 
(since T’ extends T) and also classifies t the same as M,! (since t is in S’ 
and I is in E), and so is inequivalent to M(S, E, T). Thus, M(S’, E’, T’) 
must have at least one more state than M(S, E, T). 

This shows that L* can make a sequence of at most n - 1 incorrect con- 
jectures, since the number of their states must be monotonically increasing, 
is initially at least one, and may not exceed n - 1. Since L* must, as long as 
it is running, eventually make another conjecture, it must terminate by 
making a correct conjecture. 
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Thus, L* correctly terminates after making at most n conjectures and 
executing its main loop a total of at most n - 1 times. 

Time analysis of L*. How much time does L* consume? That depends 
partly on the length of the counterexamples t presented by the Teacher. If 
long counterexamples are given, it will take correspondingly long to 
process them. Hence we analyze the running time of L* as a function of n, 
the number of states in the minimum acceptor M, of the unknown regular 
set, and m, the maximum length of any counterexample string presented by 
the Teacher during the running of L*. 

We describe a straightforward implementation of L* to show that its 
running time is bounded by a polynomial in m and n. Let k denote the 
cardinality of the alphabet A. 

Initially S and E each contain one element. Each time (S, E, T) is dis- 
covered to be not closed, one element is added to S. Each time (S, E, T) is 
discovered to be not consistent, one element is added to E. For each coun- 
terexample t of length at most m supplied by the Teacher, at most m strings 
are added to S. (Note that 1 is already in S.) 

Thus, the total number of strings in E cannot exceed n, since the obser- 
vation table is discovered to be not consistent at most n - 1 times. The 
maximum length of any string in E is initially zero and is increased by at 
most one with every string added to E, so the maximum length of any 
string in E is it- 1. 

The total number of strings in S cannot exceed n + m(n - 1). This is 
because the observation table is discovered to be not closed at most n - 1 
times, and there can be at most n - 1 counterexamples, each of which may 
cause at most m strings to be added to S. The maximum length of any 
string in S is increased by at most one with every string added because the 
observation table is not closed. Thus, the maximum length of any string in 
S is at most m+n-1. 

Putting these together, the maximum cardinality of (S u S. A). E is at 
most 

(k + l)(n + m(n - 1)) n = O(mn*). 

The maximum length of any string in (S u S. A). E is at most 

m+2n-1 =O(m+n). 

Thus, the observation table can be explicitly represented by a finite table of 
size polynomial in m and n (O(m’n* + mn’) suffices.) 

Now consider the operations performed by L*. Checking the observation 
table to be closed and consistent can be done in time polynomial in the size 
of the observation table and must be done at most n - 1 times. Adding a 
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string to S or E requires at most 0(mn) membership queries of strings of 
length at most O(m + n) to find the missing entries in the table. When the 
observation table is closed and consistent, M(S, E, T) may be constructed 
in time polynomial in the size of the observation table, and this must be 
done at most n times. A counterexample requires the addition of at most m 
strings of length at most m to S, and this can happen at most n - 1 times. 
Thus, the total running time of L* can be bounded by a polynomial 
function of m and n. 

We summarize the results concerning L* in the following theorem. 

THEOREM 6. Given any minimally adequate Teacher presenting an 
unknown regular set U, the Learner L* eventually terminates and outputs an 
acceptor isomorphic to the minimum dfa accepting U. Moreover, if n is the 
number of states of the minimum dfa accepting U and m is an upper bound 
on the length of any counterexample provided by the Teacher, then the total 
running time of L* is bounded by a polynomial in m and n. 

One corollary of this is that if the Teacher always presents counterexam- 
ples of minimal length, then they wil be at most n in length and L* will run 
in time polynomial in n. The polynomial time Teacher T* of Section 1.2 
may be constructed to present counterexamples of minimal length, in 
which case the total running time of L* and T* together will be polynomial 
in n. 

3. AN EXAMPLE RUN OF L* 

Suppose the unknown regular set U is the set of all strings over (0, 1 > 
with an even number of O’s and an even number of 1’s. 

Initially, L* asks membership queries for the strings A, 0, and 1. The 
initial observation table T, is shown in Fig. 2. This observation table is 
consistent, but not closed, since row(O) is distinct from row(A). 

L* chooses to move the string 0 to the set S and then queries the strings 
00 and 01 to construct the observation table T, shown in Fig. 3. This 
observation table is closed and consistent, so L* makes a conjecture of the 
acceptor M,, shown in Fig. 4. The initial state of M, is qO and the final 
state is also qO. M, is not a correct acceptor for U, so the Teacher selects a 

FIG. 2. Initial observation table, S= E= {A}. 
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FIG. 3. Augmented observation table, S = {I, 0}, E= {I}. 

counterexample. In this case we assume that the counterexample 11 is 
selected; it is in U but rejected by M,. 

To process the counterexample 11, L* adds the strings 1 and 11 to S 
(the string A is already in S), and queries the strings 10, 110, and 111 to 
construct the observation table T3 shown in Fig. 5. This observation table 
is closed but not consistent since row(O) = row( 1) but row(OO) # row( 10). 

Thus L* adds the string 0 to E, and queries the strings 000, 010, 100, 
1100, and 1110 to construct the observation table T4 shown in Fig. 6. This 
observation table is closed and consistent, so L* conjectures the acceptor 
44, shown in Fig. 7. The initial state of M2 is q. and the final state is also 
qo. M, is not a correct acceptor for the set U, so the Teacher answers the 
conjecture with a counterexample. We suppose that the counterexample 
supplied is 011, which is not in U but is accepted by M2. 

L* responds to this counterexample by adding the strings 01 and 011 to 
S. (The other prefixes of 011, A and 0, are already members of S.) L* then 
queries the strings 0110, 0100, 01100, 0111, and 01110 to construct the 
observation table T, shown in Fig. 8. This table is found to be closed but 
not consistent, since row( 1) = row(01) but row( 11) # row(011). 

Thus L* adds the string 1 to E and queries the strings 001, 101, 1101, 
1111, 0101, 01101, and 01111 to construct the observation table T6 shown 
in Fig. 9. This table is closed and consistent, so L* conjectures the acceptor 
M3 shown in Fig. 10. The initial state of M3 is q. and the final state is also 
qo. M, is a correct acceptor for the language U, so the Teacher replies to 
this conjecture with yes and L* terminates with M3 as its output. 

The total number of membership queries during this run of L* is 25. L* 

makes two incorrect conjectures and one correct conjecture. The number of 
membership queries seems rather large for a practical system. One open 
problem is to find a method to reduce substantially the number of 
membership queries required. 

FIG. 4. M,, the first conjecture of L*. 
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T3 x 
x 1 
0 0 
10 
11 1 
00 1 
01 0 
10 0 
110 0 
111 0 

FIG. 5. Observation table, S= {A, 0, 1, ll}, E= ii). 

4. FINDING COUNTEREXAMPLES USING SAMPLING 

As defined, a minimally adequate Teacher must be able to test an 
arbitrary conjecture, reply whether the conjecture is correct, and supply a 
counterexample if not. As previously mentioned, this seems too restrictive 
to require more general domains. If we instead postulate a stochastic 
setting analogous to that proposed by Valiant [8] and require only that 
the Learner get an approximately correct hypothesis with high probability, 
then this aspect of the Teacher can be replaced by a random sampling 
oracle. 

4.1. The Setting 

For the stochastic setting, we assume that there is some probability dis- 
tribution Pr on the set of all strings over the alphabet A. We do not assume 
that this distribution is known to the Learner. 

There is an unknown regular set U over the alphabet A. The Learner has 
access to information about U by means of two oracles. The first is just the 
membership oracle, MEMBER(x), that returns yes if x is an element of U 

T4 x 0 
x 10 
0 0 1 
1 0 0 
11 1 0 

El! 

00 1 0 
01 0 0 
10 0 0 
110 0 1 
111 0 0 

FIG. 6. S= (A.0, 1, ll}, E= {A,O}. 
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FIG. 7. M2. the second conjecture of L*. 

and no otherwise. The second is a random sampling oracle, EX( ), that 
selects a string x from A* according to the distribution Pr and returns the 
pair (x, d), where d is yes if x is in U and no otherwise. Separate calls to 
EX( ) are statistically independent events. 

In addition, the Learner is given, at the start of the computation, two 
positive numbers between 0 and 1, the accuracy E and the confidence 6. 

4.2. Approximation 

Let E denote a positive number between 0 and 1, and let V and W denote 
sets of strings over the alphabet A. V is an &-approximation of W provided 
that 

(Ye W denotes the symmetric difference of Y and W, that is, the elements 
that are in exactly one of the two sets). If A4 is a dfa, it is said to be an 
E-approximation of the set W provided the set of strings V accepted by M is 
an&approximation of W. 

T5 x 

F=F x 1 0 0 
1 0 
11 1 
01 0 
011 0 
no 1 

k 
10 0 
110 0 
111 0 
010 0 
0110 1 
0111 0 

0 
0 
1 
0 
cl 
0 
1 
0 
0 
1 
0 
0 
0 
0 - 

FIG. 8. S={~,O,1.11.Ol,Oll),E={l,O}. 
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x 1 0 0 

0 0 1 0 

1 0 0 1 

11 1 0 0 

01 0 0 0 

011 0 

cc 
1 0 

00 1 0 0 

10 0 0 0 

110 0 1 0 

111 0 0 1 

010 0 0 1 

0110 1 1 0 0 

0111 0 0 0 

FIG. 9. S={~,O,1,11,Ol,Oll},E={l,O,1). 

If M is an s-approximation of the unknown regular set U, then the 
probability of finding a discrepancy between the set accepted by M and U 
with one call to the random sampling oracle EX( ) is at most E. 

4.3. The Approximate Learner L,* 

The approximate Learner Ls is obtained by modifying L*. A mem- 
bership query of the string x is satisfied by a call to MEMBER(s). Each 
conjecture is tested by a number of calls to EX( ). If any of the calls to 
EX( ) returns a pair (t, d) such that d= yes but M( S, E, T) rejects t or vice 
versa, then t is said to be a counterexample, and L,* proceeds to modify its 
hypothesis as L* does for the counterexample t. If none of the calls to 
EX( ) returns a counterexample, then L,* halts with output M(S, E, T). 

How many calls to EX( ) does L,* make to test a given conjecture? That 
depends on the accuracy and confidence parameters, E and 6, as well as 
how many previous conjectures have been tested. Let 

ri=f log;+ (log2)(i+ 1) 
( > 

If i previous conjectures have been tested, then L,* makes rril calls to 
EX( ). (Note: log denotes the natural logarithm.) 

The main result concerning Lf is the following. 

FIG. 10. M,, the third conjecture of L* 

643/75i2-2 
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THEOREM 7. If n is the number of states in the minimum dfa for 
the unknown regular set U, then Lz terminates after O(n + (I/E) 
(n log( l/6) + n’)) calls to the EX( ) oracle. Moreover, the probability that 
the acceptor output by L,* is an &-approximation of U is at least I- 6. 

To see that this holds, note that as before there will be a total of at most 
n - 1 counterexamples. The total number of calls to EX( ) before L,* 
terminates is at most 

n-2 

;Fo (ri+l)=(n-l )+~((n-l)log($)+(logZ)~~~(i+l)) 

=O(n+~(n10g(~)+n2)). 

What is the probability that L,* will terminate with an acceptor that is 
not an s-approximation of U after testing i previous conjectures? It is at 
most (1 - &)“I, so the probability that L,* terminates with an acceptor that 
is not an s-approximation of U is at most 

n-2 n-2 

i;. (l-E)“< C eeEr’ 

i=O 

n-2 

cgl 
i=O 

6 6. 

This concludes the proof of Theorem 7. 

The running time of L,*. The running time of L,* can be analyzed 
analogously to that of L*. Namely, if n is the number of states of the 
minimum dfa for U and m is an upper bound on the length of any string 
returned by EX( ) during the run, then the running time of L,* is bounded 
by a polynomial in m and n. If the distribution Pr is such that it concen- 
trates a lot of probability on very long strings (compared to n), then this is 
not much of a guarantee. 

One thing that can be done to mitigate this problem somewhat 
(especially if the formal model allows the Learner to determine the length 
of and discard long sample strings in sublinear time), is to have L,* do a 
preliminary sampling from EX( ) to determine a cutoff length 1 such that 
with probability at least (1 - 6/2) the weight (with respect to Pr) of strings 
longer than 1 is at most 42. Then L,* runs as before, replacing the 
parameters E and 6 by ~12 and S/2, and ignoring any strings returned by 
EX( ) that are longer than 1. The output will with probability at least 
(1 - 6) be an acceptor that is an s/2-approximation of an s/2- 
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approximation of U. The termination claim and argument must be 
modified somewhat to account for the (unlikely) possibility that EX( ) will 
return many strings of length greater than Z, and of which are ignored. 
Standard statistical analysis shows that the number of samples that L: 
must take in the preliminary phase is bounded by a polynomial in l/s and 
l/S. 

Note that this general approach, of replacing the Teacher’s replies to 
conjectures by statitical sampling, does not depend on the domain being 
the regular sets. It is applicable whenever the problem of testing a conjec- 
ture against randomly drawn samples is sufficiently tractable. 

5. CONTEXT-FREE GRAMMARS, A SPECIAL CASE 

The idea of a minimally adequate Teacher is related to Shapiro’s 
assumptions about the kinds of queries a user can answer in Prolog 
program debugging [7]. In addition to being able to answer membership 
queries and provide counterexamples, Shapiro assumes the ability to 
answer “existential queries” and “termination queries.” 

To give an example of how the ideas of the present paper extend to some 
of the domains considered by Shapiro, we describe a Learner Lcf for a class 
of context-free languages. 

5.1. The Setting 

There is an unknown context-free grammar G in Chomsky normal form. 
The Learner knows the set T of terminal symbols, the set V of nonterminal 
symbols, and the start symbol S of G. 

A minimally adequate Teacher in this domain is assumed to be able to 
answer two types of questions. The first type is a membership query, 
MEMBER(x, A), where x is a string of terminals and A is a nonterminal 
symbol. The Teacher determines whether the string x can be derived from 
A using the rules of G, answering yes if so and no if not. The other type of 
question is a conjecture, EQUIV(H), where H is a context-free grammar. 
The Teacher determines whether H is equivalent to G (i.e., they generate 
the same sets of terminal strings from the start symbol S.) If so, it replies 
pes, otherwise, it replies with a counterexample t that is generated by G but 
not H or vice versa. (This second type of query can be replaced by 
sampling as in the preceding section.) 

5.2. The Learner L”’ 

Note that the restriction to grammars in Chomsky normal form and the 
Learner’s knowledge of T and V imply that the Lcf can explicitly enumerate 
all the possible productions of G in time bounded by a polynomial in the 
cardinalities of T and V. 
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Initially, Lcf places all the possible productions of G in the hypothesized 
set of productions P. The main loop of L” asks an EQUIV(H) question for 
the grammar H with terminals T, nonterminals V, start symbol S, and 
productions P. If H is equivalent to G, then L” halts with output H. 

Otherwise, it “diagnoses” the counterexample t returned, which results in at 
least one production being removed from P. The main loop is then 
repeated. 

The process of “diagnosis” is special case of Shapiro’s general diagnosis 
algorithm. In particular, the set P will always contain the productions of G 
as a subset, so the grammar H will always generate a superset of the strings 
generated by G. Hence the only type of counterexample is one that is 
generated by H but not by G. 

To diagnose the counterexample t, L‘:’ finds a parse tree exhibiting a 
derivation of t from S using the productions in P. The root of the parse 
tree is labelled by S. Suppose it has two sons, labelled A and B, and the 
frontier of the subtree rooted at A is t, and the frontier of the subtree 
rooted at B is tS. Clearly, t = t i . t,. 

L”’ then asks the question MEMBER(t,, A). If the reply is no, then t, 

can be derived from A in H but not in G and Llf recursively continues to 
diagnose the subtree of the parse tree rooted at A. If the answer is yes, then 
L”/‘asks the question MEMBER(t,, B). If the reply is no, it recursively con- 
tinues to diagnose the subtree of the parse tree rooted at B. If the answer is 
yes, then we have the fact that in G, t, may be derived from A and t, from 
B, but t may not be derived from S. Hence the production S + AB cannot 
be in the grammar G, and we remove it from P and return. 

The recursive calls must eventually find a production of the form 
A + BC to discard from P, or arrive at a node labeled by a nonterminal A 
with only one son, labelled by a terminal symbol ~1. In this case, we have 
just asked MEMBER(a, A) and found that A does not generate a in G, so 
the production A -+ a may be removed from P. 

In either case, the diagnosis procedure eventually finds a production in P 
that cannot be in G and removes it from P. Thus the condition that P 
contains the productions of G as a subset is preserved. 

The correctness and termination of L”’ are immediate. 

Time analysis of L”. Every counterexample causes the elimination from 
P of another production that is not in G, which means that after at most 
IP\ counterexamples, L”’ must find a grammar equivalent to G and halt. 
The processing of each counterexample may be done in time polynomial in 
IPI and the length of the counterexample. Since IPI is bounded by a 
polynomial in 1 TI and 1 VJ, this means that the running time of L”” is 
bounded by a polynomial in 1 TI, I VI, and the maximum length of any 
counterexample provided during the run. 
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5.3. Comments 

The Learner L”’ is considerably simpler than the Learner L*. This is 
because the information correspond to the nonterminal set V and the 
“enriched” membership questions MEMBER(x, A) are not available in the 
setting of L*. 

Note that the MEMBER(x, A) questions may be answered by a com- 
putation polynomial in the length of x and the size of G. However, to 
answer the question EQUIV(H) is not in general decidable, so there is no 
computable implementation of a minimally adequate Teacher for this 
domain. (Hence the stochastic setting may be preferable.) 

Moreover, in contrast to the case of dfa’s, the shortest counterexample 
will not in general be bounded by a polynomial in j TI and 1 VI. (It is not 
difficult to construct a grammar of size polynomial in n that generates each 
string of l’s whose length is not a positive multiple of n!. For this case, the 
smallest counterexample to the initial conjecture (which generates all 
strings) is a string of length n !,) 

The choice of Chomsky normal form for G guarantees that initially IPI is 
bounded by a polynomial in / T] and I VI. Any other class of grammars with 
this property would work as well. In this case, convergence is by means of 
a decreasing chain of subsets to a correct hypothesis. 

6. OPEN PROBLEMS 

Can we substantially reduce the number of membership queries used by 
L*? Can we do without membership queries altogether for either the deter- 
ministic or the stochastic settings for regular sets and still infer them 
efficiently? 

An interesting domain proposed by Phil Laird is that of propositional 
Horn sentences. (That is, propositional sentences in conjunctive normal 
form with at most one positive literal per clause.) The satisliability and 
equivalence problems for these sentences can be solved in polynomial time, 
making them an attractive class [6]. 

A minimally adequate Teacher for propositional Horn sentences must 
answer two types of questions. A membership query consists of an 
assignment of truth-values to the (known) variables of the unknown sen- 
tence 4, and the Teacher replies according to whether this assignment 
satisfies 4. A conjecture consists of a Horn sentence II/, and the Teacher 
tests the equivalence of 4 and $ and replies either with yes or an 
assignment of truth-values that satisfies one of the sentences but not the 
other. There is a polynomial-time algorithm (in the sizes of 4 and $) to 
implement a minimally adequate Teacher in this domain. 
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An interesting open problem is whether there is a Learner Lh that can 
learn any propositional Horn sentence 4 from any minimally adequate 
Teacher of propositional Horn sentences in time polynomial in the size of 
4. (So far, I have only been able to find such an algorithm with some 
annoying additional restrictions on the Teacher.) 
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