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Abstract

Reconstructing ghosting-free high dynamic range (HDR)
images of dynamic scenes from a set of multi-exposure im-
ages is a challenging task, especially with large object mo-
tion and occlusions, leading to visible artifacts using exist-
ing methods. To address this problem, we propose a deep
network that tries to learn multi-scale feature flow guided
by the regularized loss. It first extracts multi-scale features
and then aligns features from non-reference images. Af-
ter alignment, we use residual channel attention blocks to
merge the features from different images. Extensive qualita-
tive and quantitative comparisons show that our approach
achieves state-of-the-art performance and produces excel-
lent results where color artifacts and geometric distortions
are significantly reduced.

1. Introduction

High dynamic range (HDR) imaging is a method to gen-
erate a larger dynamic range of illumination than standard
imaging systems. It has been applied to movies [29] and
computer rendering [1] to gain more information and bet-
ter visual experience. As cameras that can capture HDR
images are generally expensive, an alternative way to get
HDR images is to reconstruct HDR images from a series of
low dynamic range (LDR) images captured by a standard
camera with different exposure settings. While they can
reconstruct high-quality HDR images for static scenes, the
existing methods tend to yield images with many ghosting
artifacts for dynamic scenes, in which the imaging scenes
are static captured by a hand-held camera or there are some
moving objects.

Increasing efforts have been invested in exploring how to
remove ghosting artifacts in the multi-exposure-based HDR
reconstruction. There are several methods that attempt to
detect motion regions in the input LDR images and then

LDR images Tonemapped HDR images LDR Patches

TMO HDRCNN Sen Kalantari Wu AHDR PSFNet Ours GT
[31] [30] [29] [12] [9] [10] [11]

Figure 1. Examples of generated HDR images from the test set
of [14]. The zoomed regions of different methods are highlighted.

remove these regions in the step of merging the images [11,
17, 38]. However, they tend to work well only when the
motion in the input images is relatively small. When there
are large motions, a large number of image pixels need to be
removed, which results in incorrect reconstruction because
the information about these pixels is lost.

Another approach has also been studied, which is to
align input LDR images to a reference view, and then merge
them altogether for HDR image reconstruction [2, 10, 12].
Many recent methods employ convolutional neural network
(CNN) to improve reconstruction image quality. However,
there is still room for improvements in the area of ghost-
ing artifacts. End-to-end learning-based approaches such
as [35,37,40] without implicit alignment directly feed LDR
images into a network to reconstruct HDR images, failing
to deal with scenarios with complex motion or large dis-
parity. As shown in Fig. 1, these end-to-end leaning-based
methods fails to deal with the motion region. The method
in [14] performs optical flow-based image alignment fol-
lowed by a convolutional neural network at the merging
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process. Aligning images in the pixel domain is often prone
to noisy or saturated pixels-induced misalignment, which
leads to visible artifacts in the final synthesized presenta-
tion. In addition, the classical optical flow methods and
the optical flow models pre-trained on other datasets can
not deal with the occlusion region in which the ghosting
artifacts often occur. As suggested in [4], feature warping
can achieve better performance compared with warping the
image. The method in [27] performs alignment in feature
domain by using deformable convolution layers [45]. How-
ever, it has a limitation in finding long-distance correspon-
dence; as argued in [20], deformable convolution could also
lead to an unstable training process and limited generaliza-
tion. Inspired by non-local structure [34], Choi et al. [5]
proposed to calculate the inter-similarity between LDR im-
ages for every pixel, which are used to align non-reference
features toward the reference feature. However, this non-
local structure-based operation is computationally expen-
sive and needs large memory when the size of input images
is large, while the images for HDR imaging often have a
large size. According to [36], Task-Oriented flow learns to
handle occlusions well, though its estimated motion field
differs from the ground truth optical flow. Considered the
benefit from Task-Orient flow, Kalantari et al. [15] pro-
posed a Task-Oriented flow network which is specifically
designed for HDR video reconstruction and is only based on
the loss for HDR video reconstruction. This Task-Oriented
flow network performs better than pre-trained or classical
optimization-based optical flow methods since it can deal
with the occlusion, which reduces the artifacts in occlusion
regions. However, only trained on the task-specific loss (i.e.
HDR reconstruction loss), the Task-Oriented flow will fail
on the large saturated areas in which there are a few details.
In this case, this misalignment leads to artifacts on the over-
exposed regions in the reference image.

Inspired by the photometric loss [41] for self-supervised
learning of optical flow, we proposed the regularized loss
to provide supervision for flow learning to address the mis-
alignment in Task-Orient flow in HDR imaging. We directly
reconstruct an HDR image based on the aligned features and
compute loss between this reconstructed image and the cor-
responding ground truth.

Differing from the previous methods [14,15,26] that use
the existing optical flow models like SPyNet [28] and PWC-
Net [32], we design a simple but effective network for learn-
ing the flow for feature alignment. We remove the context
encoder in the flow network and directly use the features for
HDR image reconstruction as the input for flow estimation.
We argue that this flow structure can achieve better align-
ment performance in the HDR imaging task since there are
large illumination changes and large saturated areas in im-
age space, while the extracted features for HDR reconstruc-
tion can provide rich information to avoid misalignment.

And we name this flow structure as feature flow.
To this end, we propose a new network that enables end-

to-end training, including alignment. The proposed method
consists of two networks: alignment network and merg-
ing network in this order. The alignment network extracts
multi-scale features from the input LDR images and esti-
mates optical flow. It then aligns the non-reference LDR
images to the reference LDR image in feature space using
the estimated flow. The merging network takes the aligned
features and multi-scale features as input and generates a
final HDR image using a residual attention mechanism. Ex-
perimental results show that our method can achieve bet-
ter quantitative and qualitative evaluation performance than
the existing state-of-the-art methods on the commonly used
public test datasets.

2. Related Works
2.1. Motion Removal based Methods

These methods is firstly to detect the motion region and
then remove these pixels on the motion region in the merg-
ing processing. Khan et al. [17] use a non-parametric model
to compute weights iteratively and apply these computed
weights to pixels to fuse multiple LDR images to obtain
final HDR images. Heo et al. [11] detect motion regions
based on the joint probability densities and refine these re-
gions by using energy minimization. Jacobs et al. [13] pro-
pose a method to detect moving pixels based on the dif-
ference between the LDR images. Zhang et al. [42] pro-
pose motion detection method based on the image gradi-
ents between different images. Lee et al. [19] considered
that the noise, moving objects, and distortions as outliers,
so they proposed a low-rank model to reconstruct HDR im-
ages. Following their method, Yan et al. [38] proposed a
sparse model to detect motion regions. When the motion in
LDR images is small, motion-removal-based methods can
achieve satisfactory results. However, when the motion is
large, a large number of pixels are unavoidably removed in
the merging stage, causing undesirable artifacts in the gen-
erated HDR images.

2.2. Alignment based Methods

Most alignment based methods adopt optical flow and its
variants to align LDR images and then merge aligned LDR
images to generate corresponding HDR images. Bogoni [2]
use optical flow to estimate motion filed between LDR im-
ages and then warped and aligned these LDR images by us-
ing the computed motion field. Instead of fusing LDR im-
ages in the spatial domain, Kang et al. [16] firstly utilize the
information of exposure time and converted LDR images
into luminance domain. In the fusion process, a method
was proposed to eliminate artifacts by using the optical flow.
Sen et al. [31] propose a method based on a patch-matching
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algorithm for HDR reconstruction. Hu et al. [12] propose a
displacement estimation method which converts images by
the intensity mapping function and then merging images in
the transformed domain for HDR image generation, which
implicitly align LDR images by searching and aggregating
similar patches. Hafner et al. [10] propose a method to
jointly estimate the optical flow and reconstruct HDR im-
age. However, since the alignment process in the image
domain is vulnerable to large motion and excessively dark
or bright regions, these methods tend to generate artifacts in
the aligned images.

2.3. CNN Based Methods

As with other computer vision tasks, CNNs have been
applied to HDR imaging. Eilertsen et al. [7] propose an
encoder-decoder network to generate an HDR image from a
single LDR image. Endo et al. [8] synthesize multiple LDR
images with different exposures from a single LDR image
by CNNs, and then merge them to reconstruct an HDR im-
age. These single-image-based methods are unable to re-
construct the textures on saturated regions accurately.

To generating more accurate images, more attention is
paid on obtaining HDR images from a sequence of LDR
images captured with different exposures. Kalantari et al.
[14] propose the first CNN-based method for HDR imag-
ing, where the input LDR images are first aligned by opti-
cal flow and then the aligned LDR images are fed to CNNs
to reconstruct an HDR image. In stead of using explicit
alignment, Wu et al. [35] directly concantenated the fea-
tures extracted from input LDR images and forwarded them
to a deep model with the U-net structure to reconstruct HDR
images. Yan et al. [39] introduce a non-local structure [34]
into the U-net as for implicit alignment. Yan et al. [37]
propose an attention module to learn to identify misaligned
elements before merging the LDR images. Pu et al. ap-
plied the deformable convolution [45] to multi-scale fea-
tures, which aligned LDR images in a pyramidal manner,
and reconstructed the corresponding HDR images. To re-
duce the computational cost by CNN-based methods, Prab-
hakar et al. [25] propose an efficient method that performs
all operations in low resolution and upscales the result to
the required full resolution. Similar to our work, a few stud-
ies consider using optical flow for the alignment. But they
either use a pre-trained estimator [26] or optimize the esti-
mator through the reconstruction loss [15], which may lead
to suboptimal results.

3. Proposed Method

Given a series of LDR images, L1, L2, ..., Lk, captured
with different exposures, the goal of HDR imaging is to
generate an HDR image H corresponding to a selected ref-
erence image Lr.

𝐿! 𝐿"𝐿#

Figure 2. Three LDR images of the same scene captured with three
different exposures. L1, L2, and L3 denote the images captured
with the low, medium, and high exposure, respectively.

There are two samples with different exposure settings
shown in Fig. 2. The sample in the first row shows that L3

has little effect for image restoration of L2 since there are
large areas of over-exposure region in L3. While the sample
in the second row shows that L3 can be helpful for image
restoration of L2. In this case, the model can easily produce
high-quality HDR images duo to the efficient information.
Without the input of L3, the model can also generate a high-
quality HDR image though the model needs to be more ef-
fective.

Unlike the previous methods taking three LDR images as
input, we use two LDR images, L1 and L2 as inputs, sorted
in the order of exposures and set L2 as the reference image
by considering the properties in L3. And two images for
input can also reduce computational costs.

Following the settings of previous studies [14, 37], we
first map the LDR images into the HDR domain using
gamma correction and then feed them into the network. To
be specific, we map Li to Hi by

Hi = Lγi /ti, i = 1, 2, (1)

where γ denotes the gamma correction parameter and fol-
lowed [24] we use γ = 2.2 in this paper. ti is the exposure
time of Li. As the suggestion in [14], we concatenate Li
and Hi in the channel dimension to obtain a six-channel
tensor Xi = [Li, Hi], i = 1, 2, and input X1 and X2 to the
network.

Our network consists of two sub-networks, the alignment
network and merging network, as shown in Fig.3. We first
describe the alignment network (Sec.3.1) and then explain
the merging network (Sec.3.2).

3.1. Feature Alignment Network

The feature alignment network first extracts multi-scale
feature maps from the input tensor Xi. Specifically, the
feature extractor consists of a convolution layer with stride
= 1 and the following two layers with stride = 2, which
forms multi-scale feature maps with scale = 0, 1, and 2.
We represent the feature map at scale s ∈ {0, 1, 2} as
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Figure 3. Overview of the proposed network. It consists of two sub-networks: feature alignment and merging networks. The alignment
network warps the features of the non-reference images onto those of the reference image using optical flow. The merging network takes
the warped features as input and reconstructs an HDR image.
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Figure 4. Architecture of the multi-scale feature flow module (MS-
Flow). It follows the coarse-fine manner to generates multi-scale
optical flows and the multi-scale feature maps aligned to the refer-
ence image.

F si ∈ RHs×Ws×Cs , where Hs = H/2s, Ws = H/2s, and
Cs = C. These feature maps will be used in the subsequent
modules. For clarity, we use the index r(= 2) to indicate
the reference LDR images; thus, Xr = X2 and F sr = F s2 in
what follows.

3.1.1 Multi-Scale Feature Flow Module (MS-Flow)

Following SPyNet [28] and PWC-Net [32], we estimate the
optical flow in a coarse-to-fine manner, as shown in Fig. 4.
The estimated flows at the coarser scales can capture the
large motions. On the other hand, the flows at the finer
scales will be helpful to capture small motions.

We first concatenate the coarsest scale features F si with

F sr in the channel dimension and feed it to a flow estimator.
The estimator consists of five convolution layers with 7× 7
kernel size and generates the s-th scale optical flow fs1→r.
Then, we upsample fs1→r by factor = 2 and use it to warp
the non-reference feature map F s−11 onto the reference fea-
ture map F s−1r . Specifically, we map each pixel ps−11 in
F s−11 to its estimated correspondence in F s−1r as

ps−1r = ps−11 + f̃s1→r(p
s−1
1 ), (2)

where f̃s1→r represents the upsampled flow of the s-th scale
flow fs1→r. We then concatenate the warped and reference
feature maps in the channel dimension and feed it to the
subsequent flow estimator. The output of the flow estimator
is then element-wise added to the upsampled flow, yielding
the flow at scale s − 1. We iterate this procedure for s =
1 and 0, obtaining multi-scale optical flows fs1→r and the
warped multi-scale feature maps F si→r.

3.1.2 Multi-Scale Feature Fusion Module (MS-Fuse)

As shown in Fig. 5, the multi-scale feature fusion module
takes the concatenated feature maps at each scale F̄ s =
[F s1→r, F

s
r ]. We apply a convolution layer with the kernel

size of 3 × 3 followed by ReLU to the finest feature map
F̄ 0 to obtain a feature map O0. For the feature maps F̄ 1

and F̄ 2, we first apply a convolution layer with the same
kernel size and then upsample the outputs with bilinear in-
terpolation so that the resulting maps become the same size
as the finest one. Finally, all the outputs are concatenated as
Z0 = [O0, O1, O2] and then used as input for the following
merging network.
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Figure 5. Multi-scale feature fusion.
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Figure 6. Reconstruction of Hof .
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3.1.3 Reconstruction using Warped Features

Unlike the previous HDR imaging studies using optical
flow, we reconstruct an HDR image Hof using the feature
maps F s1→r, which are the feature maps right after warping
by the optical flow. Our intention behind this reconstruction
is to directly guide the network to generate accurate optical
flow and perform better alignment. As shown in Fig. 6, we
first upsample the feature maps F 1

1→r, F
2
1→r so as to be the

same size as the finest feature map F 0
1→r. We then concate-

nate them and feed them to a series of convolution layers
with the kernel size of 3 × 3 followed by ReLU and five
residual channel attention blocks (RCAB) [43]; see Fig. 7
for the detail of the RCAB. We then calculate `1 loss be-
tween the reconstructed HDR image Hof and its ground
truth HDR image, as will be explained later.

3.2. Merging Network

Following the previous methods [37, 43], we employ an
attention mechanism to merge the feature maps and gener-
ate an HDR image; in specific, we use the RCAB. As shown
in Fig. 3, the merging network takes the concatenated fea-
ture mapsZ0 = [O0, O1, O2]. We apply a convolution layer
and three RCABs to Z0 and then concatenate the outputs of
each RCAB as Z5 = [Z2, Z3, Z4]. Applying three convo-
lutions and a global skip connection with F 0

r , the merging
network outputs a final HDR image.

3.3. Loss Function

Following [14], we consider the optimization in the do-
main of tonemapped HDR images because the HDR im-
ages are usually displayed after tonemapping and training
the network on the domain is more effective than that on
the original domain of HDR images. Thus, we employ the

µ-law for tone mapping as suggested in [14], which is for-
mulated as

T (H) =
log(1 + µH)

log(1 + µ)
, (3)

where µ is set to 5, 000 throughout our experiments. It is
also reported in [37, 44] that minimizing the L1 norm be-
tween the predicted HDR image Ĥ and its ground truth H
in the tone-mapped domain works better than others. Fol-
lowing their studies, we use the following `1 loss,

Ltm = ‖T (Ĥ)− T (H)‖1. (4)

For the standard optical flow estimators such as
SPyNet [28] and PWC-Net [32], they are trained on the
datasets with the standard exposure settings (e.g. Sintel [3],
KITTI [9], and Middlebury [30]). However, there is no
dataset containing ground truths of optical flow maps for the
HDR imaging task. Inspired by the photometric loss [41]
for self-supervised learning of optical flow, we use `1 loss
between the reconstruction Hof and its ground truth H in
the tone-mapped domain to provide supervision for the op-
tical flow learning,

Lreg = ‖T (Hof )− T (H)‖1. (5)

The reconstruction of Hof is only based on the warped
features from the non-reference images. Then Lreg com-
puted on Hof and the ground truth imposes a heavy con-
straint on these warped features to provide more accurate
gradients to the warping field than the Ltm which involves
both the warped features and the features from the reference
image.

Our total loss is taken as the weighted sum of two losses

L = Ltm + λLreg, (6)

where we use λ = 2 in this paper.

4. Experiments
4.1. Experimental Settings

4.1.1 Training Data

To train our network, we adopt the HDR dataset [14] which
consists of 74 samples for training and 15 samples for test-
ing. We use the former for training our model. Each sam-
ple includes a ground truth HDR image and three LDR
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Table 1. Quantitative comparison on the Kalantari’s test sets [14]. The numbers in the table are the average values of the 15 test images.

Methods PSNR-µ PSNR-L SSIM-µ SSIM-L HDR-VDP-2
TMO [8] 8.3120 8.8459 0.5029 0.0924 44.3345
HDRCNN [7] 13.7054 13.8956 0.5924 0.3456 47.5690
Sen [31] 40.9689 38.3425 0.9859 0.9764 60.3463
Kalantari [14] 42.7177 41.2200 0.9889 0.9829 61.3139
Wu [35] 41.9977 41.6593 0.9878 0.9860 61.7981
AHDR [37] 43.7013 41.1782 0.9905 0.9857 62.0521
PANet [27] 43.8487 41.6452 0.9906 0.9870 62.5495
PSFNet [40] 44.0613 41.5736 0.9907 0.9867 63.1550
Ours 44.3298 41.8936 0.9911 0.9878 63.1190

TMO HDRCNN Sen Kalantari Wu AHDR PSFNet Ours GT

LDR images Tonemapped HDR images LDR Patches

[31] [30] [29] [12] [9] [10] [11]

LDR images Tonemapped HDR images LDR Patches

TMO HDRCNN Sen Kalantari Wu AHDR PSFNet Ours GT
[31] [30] [29] [12] [9] [10] [11]

Testing data (08) in [14] Testing data (09) in [14]

Figure 8. Results from the test set of [14]. Upper row from left to right: the two input LDR images, the HDR image produced by the
proposed method, and (zoomed-in) LDR image patches with two identical positions/sizes (in green and red). Lower row: the same patches
of the HDR images produced by different existing methods.

images with different exposure settings of {−2, 0,+2} or
{−3, 0,+3}. All the images are resized to the resolution of
1000× 1500.

4.1.2 Testing Data

Following recent studies, we choose the following datasets
for testing. We evaluate our method on the 15 scenes of the
dataset of [14], where we perform a quantitative evaluation
using the provided ground truths. We also test the proposed
method on the datasets of Sen et al. [31] and Tursun et al.
[33]. Since these datasets do not contain ground truths of
HDR images, we compare the reconstructed HDR images
by our method with those by state-of-the-art methods for
qualitative evaluation.

4.1.3 Evaluation Metrics

As used in the existing studies, we use PSNR-µ and SSIM-
µ for primary metrics, which are PSNR and SSIM values
in the tone-mapped domain using µ-law. We show PSNR
and SSIM values in the linear domain, which are denoted

by PSNR-L and SSIM-L for completeness. We also report
HDR-VDP-2 [22], which is designed to evaluate the quality
of HDR images.

4.2. Implementation Details

For training, we first crop the training images into
patches of 256 × 256 pixel size with a stride of 128 pix-
els. We then apply random rotation and flipping for data
augmentation to avoid over-fitting. We use the Adam opti-
mizer [18] with β1 = 0.9, β2 = 0.999, initial learning rate
1× 10−4 and set the batch size to 8. We train our model for
210 epochs and employ the cosine annealing strategy [21]
to steadily decrease the learning rate from an initial value to
1× 10−6. We implement our model using PyTorch [23] on
NVIDIA GeForce RTX 2080 GPUs.

4.3. Comparison with the State-of-Art Methods

We compare the proposed method with existing meth-
ods. Specifically, we compare our model with two HDR
imaging methods based on a single LDR image, TMO [8]
and HDRCNN [7], and five HDR imaging methods based
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[31] [30] [29] [12] [9] [10] [14]

Example of Sen et al. ’s dataset [31] Example of Tursun et al. ’s dataset [33]

Figure 9. Visual comparisons on the datasets without ground truth. See Fig. 8 for the explanation of the panels.

on multi LDR images, the patch-based method [31], the
flow-based method with CNN merger [14], the U-net struc-
ture without optical flow [35], the attention-guide method
(AHDR) [37], pyramidal alignment network (PANet) [27],
and progressive and selective fusion network (PSFNet) [40].
For all the methods, we used the authors’ code for compar-
ison, except for [27] since their code is not available as of
the time of writing this paper.

4.3.1 Evaluation on Kalantari et al. ’s Dataset

Figure 8 shows two examples on the test set of [14]; see the
supplementary material for more visualization results. The
input LDR images contain saturated background and fore-
ground motions. We can observe from the results of the
single-image methods, TMO [8] and HDRCNN [7], that
they cannot sufficiently recover the detailed textures and
generate artifacts in the over-exposed regions; they also suf-
fer from the color distortion. The patch-based method of
Sen et al. [31] generates some artifacts due to the failure
of finding patches correctly. Kalantari et al.’s method [14]
cannot completely eliminate the effects of the occlusion.
The method of Wu et al. [35] cannot deal with over-exposed
regions and then produces artifacts on motion areas. Non-
aligned methods (i.e. AHDR [37] and PSFNet [40]) yield
artifacts in the saturated areas and also suffer from ghosting
artifacts due to the large motions. Compared with them, our
proposed method produces less color distortion and recov-
ers the textures more accurately, leading to the best qualita-
tive results.

Table 1 shows the quantitative evaluation on the same
dataset. In specific, we report the averaged values over
15 test scenes. It can be seen that the proposed method
achieves better performance than the others in terms of
PSNR-µ, SSIM-µ, PSNR-L and SSIM-L. Also, our method

achieves comparable performance to the state-of-the-art
method [40] in terms of the HDR-VDP-2 metric.

4.3.2 Evaluation on Datasets w/o Ground Truth

We also provide comparisons using Sen’s [31] and Tursun’s
[33] datasets. These datasets do not have ground truths of
HDR images and thus we qualitatively compare the gener-
ated HDR images.

Some examples of the results are shown in Fig. 9. The
single image methods, TMO [8] and HDRCNN [7], gener-
ate serious noises and color distortions in the under-exposed
regions. The patch-based method (Sen et al [31]) also gen-
erates severe artifacts. The method of Kalantari et al. [14]
produces artifacts due to the alignment error and also gener-
ates serious noises in the under-exposed regions. These are
arguable because of the misalignment by the estimated opti-
cal flow and the limitation of the merging method. Wu et al.
’s method [35] tends to yield over-smoothness and generate
ghosting artifacts on the large motion areas. AHDR [37]
yields color distortions and also suffers from ghosting arti-
facts due to large motions shown in Fig. 9 (b). PSFNet [40]
generates ghosting artifacts in the motion regions and gen-
erates the geometric distortions shown in Fig. 9 (a). On the
other hand, our method produces better results with notice-
ably reduced geometric and color distortions compared with
others.

4.4. Ablation Study

We demonstrate the effectiveness of each component in
the proposed method. We use the same configurations as
those used above unless otherwise noted.
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Table 2. Results of ablation tests on Kalantari’s test set. The upper row shows the effects of channel attention (CA), multi-scale feature
flow module (MS-Flow), feature flow module (FF), and multi-scale feature fusion module (MS-Fuse). The lower row shows the effects of
the choice of optical flow.

Methods PSNR-µ PSNR-L SSIM-µ SSIM-L
MSFFNet w/o CA 44.0377 41.8150 0.9909 0.9875
MSFFNet w/o MS 44.1236 41.8216 0.9908 0.9869
MSFFNet w/o FF 43.9466 41.3520 0.9909 0.9867
MSFFNet w/o MSFF 43.6752 41.4698 0.9908 0.9868
MSFFNet w/o FF w/ SPyNet 43.9717 41.3563 0.9905 0.9852
MSFFNet w/o FF w/ fixed-pre-trained SPyNet 43.6611 41.6913 0.9896 0.9821
MSFFNet w/o FF w/ PWC-Net 44.1436 42.0084 0.9911 0.9879
MSFFNet w/o FF w/ fixed-pre-trained PWC-Net 43.3769 41.5546 0.9891 0.9808
MSFFNet 44.3298 41.8936 0.9911 0.9878

Oursw/o CA w/o MS w/o MSFF w/o FF w/o FF
w/ PWC

w/o FF
w/ Fix-PWC

w/o FF
w/ Spy

w/o FF
w/ Fix-Spy

Figure 10. Results obtained by ablated networks.

4.4.1 Effects of Optical Flow Learning

First, we verify the effect of the proposed loss in Eq. 5 by
changing the value of the parameter λ. When λ = 0, the
network will be trained only using the `1 loss (i.e. Eq. 4)
between the final outputs and their ground truths. This is
equivalent to the previous methodology using optical flow
[15]. It should be noted that although the work [15] tack-
les the HDR video reconstruction, the approach also works
on the HDR imaging task. As shown in Fig. 11, the model
without the proposed loss (i.e. λ = 0) generates sever color
and geometry distortions. In contrast, the models with the
proposed training (i.e. λ > 0) significantly improve the re-
construction results. We also quantitatively evaluate them
on the Kalantari et al. ’s test set [14]. As shown in Table 3,
our proposed training with λ = 2 achieves the best per-
formance. Even though the gain by the proposed training is
not so large, the artifacts usually appear in a small area of an
image, and they have only small impacts on these metrics.

Table 3. Results obtained with different λ values in Eq. 6.

PSNR-µ PSNR-L SSIM-µ SSIM-L
λ=0 44.1229 41.8947 0.9911 0.9875
λ=1 44.0978 41.7622 0.9910 0.9868
λ=2 44.3298 41.8936 0.9911 0.9878
λ=3 44.1238 41.7043 0.9911 0.9871

𝜆 = 0 𝜆 = 3𝜆 = 1 𝜆 = 2

Figure 11. Results obtained with different λ values in Eq. 6. It
can be seen that our proposed training (i.e. λ > 0) significantly
improve the reconstruction results.

4.4.2 Effects of Different Configurations

Since our method has several design choices, we conduct
experiments to examine which configuration shows the best.
Specifically, we examine the effect of channel attention
(CA), multi-scale feature flow module (MS-Flow), feature
flow module (FF), and multi-scale feature (MS-Fuse). The
results are shown in Table 2. When we eliminate the MS-
Flow, we use a single convolution layer to extract feature
maps and then concatenate them as Z0. We also do not
reconstruct HDR images using the warped feature maps.
When we eliminate the FF, we also do not reconstruct HDR
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images and directly use F s1 as F s1→r (s = 1, 2, 3) since
there is no optical flow available for the alignment. We can
observe from Table 2 that CA and MS-Flow are essential to
achieve better performance. Figure 10 shows some exam-
ples of the zoomed-in patches produced by the models with
different configurations. It can be seen that artifacts appear
except the MSFFNet (with full components).

We compare the proposed multi-scale feature flow
estimation module with other optical flow methods
(SPyNet [28] and PWC-Net [32]). We replace the FF with
the optical flow (SPyNet and PWC-Net) in the proposed
network named MSFFNet w/o FF w/ SPyNet and MSFFNet
w/o FF w/ PWC-Net. As shown in Table 2, the proposed
method achieves better performance than other optical flow-
based methods even the PWC-Net has a more complicated
network structure (e.g. with correlation layer [6]) than ours.
Since our feature flow network can not be pre-trained on
other datasets with optical flow ground truth, we also com-
pare the pre-trained optical flow network named MSFFNet
w/o FF w/ fixed-pre-trained SPyNet and MSFFNet w/o FF
w/ fixed-pre-trained PWC-Net with the model trained on the
proposed regularized loss to demonstrate the effectiveness
of the proposed regularized loss. These two ablated net-
works are trained by only using tone-mapped loss in Eq. 4.
As shown in Table 2, the model trained on the proposed reg-
ularized loss (MSFFNet w/o FF w/ SPyNet and MSFFNet
w/o FF w/ PWC-Net) achieve better performance than the
pre-trained model (MSFFNet w/o FF w/ fixed-pre-trained
SPyNet and MSFFNet w/o FF w/ fixed-pre-trained PWC-
Net). As shown in Figure 10, there is severe color and ge-
ometry distortion in the images generated from the optical
flow-based method.

5. Conclusions
In this paper, we propose a new method for generating an

HDR image of a dynamic scene from its LDR images along
the alignment-before-merging direction. The first step of
feature alignment plays a central role in generating high-
quality HDR images. Trained by the regularized loss, the
multi-scale feature flow module can effectively learn the
flow for alignment even in occlusion regions and the large
saturated areas, which greatly reduce the artifacts in these
regions. After the alignment by the estimated flow, the fea-
tures from the non-reference image will be fused with the
features from the reference image to reconstruct an HDR
image. The experimental results have validated the effec-
tiveness of the proposed approach.
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