
Journal of Artificial Intelligence Research 53 (2015) 41-90 Submitted 03/14; published 05/15

Learning Relational Event Models from Video

Krishna S. R. Dubba krishna.dubba@gmail.com

Anthony G. Cohn a.g.cohn@leeds.ac.uk

David C. Hogg d.c.hogg@leeds.ac.uk

School of Computing, University of Leeds,
Leeds, UK. LS2 9JT

Mehul Bhatt bhatt@informatik.uni-bremen.de

Frank Dylla dylla@informatik.uni-bremen.de

Cognitive Systems, SFB/TR 8 Spatial Cognition

University of Bremen, Bremen 28334, Germany

Abstract

Event models obtained automatically from video can be used in applications ranging
from abnormal event detection to content based video retrieval. When multiple agents are
involved in the events, characterizing events naturally suggests encoding interactions as
relations. Learning event models from this kind of relational spatio-temporal data using
relational learning techniques such as Inductive Logic Programming (ILP) hold promise,
but have not been successfully applied to very large datasets which result from video data.
In this paper, we present a novel framework remind (Relational Event Model INDuction)
for supervised relational learning of event models from large video datasets using ILP.
Efficiency is achieved through the learning from interpretations setting and using a typing
system that exploits the type hierarchy of objects in a domain. The use of types also
helps prevent over generalization. Furthermore, we also present a type-refining operator
and prove that it is optimal. The learned models can be used for recognizing events from
previously unseen videos. We also present an extension to the framework by integrating
an abduction step that improves the learning performance when there is noise in the input
data. The experimental results on several hours of video data from two challenging real
world domains (an airport domain and a physical action verbs domain) suggest that the
techniques are suitable to real world scenarios.

1. Introduction

With the advent of digital technology and wide availability of cameras and video recorders,
the quantity of video data has increased enormously over recent years, e.g., YouTube users
upload about 100 hours of video to the site every minute (“YouTube”, 2015). This data is
semantically rich but there is a lack of algorithms to process and utilize this data effectively.
There are a number of applications that demand video processing, especially event modelling
and recognition, such as content based video search, robotics, automatic description of
activities, video surveillance etc. The main objective of our work is to provide a supervised
relational learning framework to learn high level human understandable event models and
use them to recognize events in video. Supervised learning is the machine learning task of
inferring a model from labelled training data.

c©2015 AI Access Foundation. All rights reserved.

Dubba, Cohn, Hogg, Bhatt & Dylla

Video is considered as a sequence of images and the area of video analysis poses several
challenges. The most interesting aspect of video when compared to images is that objects
(or parts of objects) in video can be perceived to move in space over time. These changes of
state in the space dimension are interesting and we call them events if they satisfy certain
properties such as being sufficiently frequent and having sufficiently well defined boundaries
etc. An event can be a change of state of a single object, such as moving some parts of its
body (for example people waving their hands) or it can be an interaction between multiple
objects. By interactions, in this context, we mean the movement of all the objects relative
to their surroundings as well as relative to each other. For example, an interaction between
two objects might be both objects moving towards each other or one at rest and the other
moving away from it. Before events can be recognized, we assume that the objects involved
have been detected and tracked from the source video. This is not a requirement in general
since some approaches (Laptev, 2005) do not require detection of objects prior to event
detection.

In events involving multiple objects, interactions between the objects become a distin-
guishing factor in recognizing the event instance. Capturing these interactions is the crux of
event modelling and recognition as it is our hypothesis that each event can be distinguished
by the interactions between the objects involved. Some events might have more than one
interaction pattern that identifies the event. One way to capture these interactions is to
abstract the interactions into relations between the objects. In order to represent the inter-
actions of objects in an abstract form, we can use relations between the objects that depend
on the spatial configuration or motion pattern of objects over a period of time. We call
these spatio-temporal relations and in this paper we focus purely on the use of qualitative
spatial relations since these abstract away from the metric details of particular object tra-
jectories and thus facilitate the recognition of interactions as being instances of some event
class (Cohn et al., 2006). There is no unique way to represent interactions using qualitative
spatio-temporal relations, and the best set of relations to use depends on the domain, kind
of data available (speed, orientation, size of moving objects, etc.) and the objectives of the
task.

Though each event class has distinguishing interaction patterns, there are two particular
challenges in event learning from examples expressed as qualitative spatio-temporal rela-
tions. Firstly, automatic object detection and tracking from video is not perfect and will
introduce errors into the relations. Secondly, the same event may be performed in different
ways.

1.1 Overview of the Framework

We follow the relational learning approach to the cognitive vision task of learning event
models from videos and using them for recognition (Cohn et al., 2006; Dubba, Cohn, &
Hogg, 2010). The video data (sequence of images with pixel data) is converted to relational
facts involving qualitative spatio-temporal relations using the tracking data of the objects
involved in the scenes. We use several qualitative spatial calculi to represent the video
data in relational form. Event instances are annotated temporally and spatially though the
objects involved in each event are not delineated separately and these annotations are used
for obtaining the positive and negative examples of events. The learning procedure as well

42

Learning Relational Event Models from Video

as the extension of this procedure using abduction (explained in later sections) is applied
on this relational data to obtain the event models. These event models are in the form of
Prolog rules that can be used as queries in the relational data from an unseen video. From
the answer substitutions we extract the spatial and temporal extensions of recognized event
instances.

The main contributions1 of the paper are:

• a novel supervised relational learning framework remind for learning event models
from video and recognizing event instances using these models.

• an optimal Type Refinement operator for upward refinement of hypotheses that ex-
ploits a type hierarchy in a domain for finding better event models.

• an extended framework to integrate induction and abduction in an interleaved fashion
with an embedded spatial theory for improving the learning of event models.

• an evaluation of the framework on two real world video data sets (aircraft turn-arounds
where the events include aircraft arrival, luggage loading and human interactions
where the events are common action verbs such as exchange, follow, dig etc).

Though we concentrate on relational data obtained from tracking objects from video,
the principles and techniques in this work equally apply to spatio-temporal relational data
acquired from non-visual sources (e.g. laser mapping, GPS tracks, textual descriptions etc).

2. Related Work

Much of the work in event analysis (Ivanov & Bobick, 2000; Medioni, Cohen, Brémond,
Hongeng, & Nevatia, 2001; Vu, Bremond, & Thonnat, 2003; Albanese, Moscato, Picariello,
Subrahmanian, & Udrea, 2007; Ryoo & Aggarwal, 2009, 2011; Morariu & Davis, 2011), does
not involve learning of the models used. Instead high level event models are hand-coded
using different representations (Nevatia, Hobbs, & Bolles, 2004; Hakeem, Sheikh, & Shah,
2004).

Techniques that are based on a similarity based metric in a space of low level pixel based
features such as local space-time features (Laptev, 2005) are frequently used for modelling
and recognizing events. These are generally more suitable for single agent events like human
activities based on motion. These kind of activities generally include a particular motion
signature with which an event can be recognized such as running, jumping, waving hands
etc. In some event recognition systems, hand-coded high level event models are used on top
of the learned low level human activity models (Ivanov & Bobick, 2000; Ryoo & Aggarwal,
2009, 2011).

One of the best performances to date in event recognition using low level pixel-based
features is obtained by the Stack convolutional Independent Subspace Analysis (ScISA) (Le,
Zou, Yeung, & Ng, 2011) algorithm. ScISA is based on pixel level flow based features
which are then used to model events using a hierarchical representation using deep learning
techniques (Bengio, 2009). The authors present an extension of Independent Subspace

1. This paper is an extended version of the work by Dubba et al. (2010, 2012).

43

Dubba, Cohn, Hogg, Bhatt & Dylla

Analysis to learn invariant spatio-temporal features in an unsupervised fashion instead of
using predefined features.

If events are considered as a sequence of primitive states or events, state-space models
are useful in representing the event models. It is also easy to hand-code the structure of the
state space models, though the parameters are better if learned than encoded by hand. They
provide a more robust statistical event model than hand-coded models and event recognition
is done using inference on these models. Bayesian Networks are not very popular in event
modelling as they lack the temporal aspect though other state space models such as Hidden
Markov Models (HMM) (Rabiner, 1989) and Dynamic Bayesian Networks (DBN) (Ghahra-
mani, 1998) are extensively used in event modelling and recognition. A simple HMM is not
very effective in modelling complex events. Several extensions of HMM are used to suit the
context and the type of event models. Hoogs and Perera (2008) proposed a DBN for jointly
solving event recognition and broken tracks linking problems. The event model is a set of
discrete states which expresses how the actors in the event interact over time. They assume
the states are strictly ordered and this may limit learning some events that involve complex
temporal relations such as during, overlaps etc.

The main problem with state space models is that it is difficult to encode high-level
temporal relations such as during, overlaps etc. The states or sub-events in an event are
assumed to be in a sequential order which is not the case in many domains. Also the
states are propositional in nature and hence are semantically less complex than a relational
representation.

Veeraraghavan et al. (2007) learn Stochastic Context Free Grammar based models from
traffic videos using predefined regions in the image. Each event model is a spatio-temporal
pattern of primitive actions expressed as a string, S = a1, a2, . . . , an. The event learning
algorithm aims to find a grammar that can generate the corresponding pattern for an event.
The primitive actions are sequentially arranged, hence Allen’s temporal relations are not
used to connect the primitive actions. Gupta et al. (2009) claim that the fixed structure of
the DBNs poses serious limitations for modelling events if there are many variations in the
way an event can happen. Instead they use AND-OR graphs for modelling event models.
The order of the nodes imposes the causal relationship among the nodes. Because of this,
some Allen relationships such as during, overlaps etc. cannot be modelled which limits its
application since modelling these relations is very important in many domains.

Though low-level features and state space models are popular for simple motion patterns,
it is possible to build high-level event recognition systems through several layers of reasoning.
These systems use simple pattern recognition techniques to detect primitive events and then
use a temporal structure to reason about complex events. The main motivation for using
a high level temporal structure is that the low level features (like bag-of-features) discard
most of the information regarding the relations between different entities in the data and
thus makes it hard to recognize events involving complex interactions between multiple
objects.

Moyle and Muggleton demonstrated using a simple blocks world that domain specific
axioms can be learned from temporal observations using an ILP framework (Moyle & Mug-
gleton, 1997). In work by Needham et al. (2005), the Progol system (Muggleton, 1995)
was used to learn the protocols of table top games from real sensory data from a video cam-
era and microphone. A key aspect of this work is a method for spatio-temporal attention

44

Learning Relational Event Models from Video

applied to the sensor data from audio and video devices. This identifies subsets of the sensor
data relating to discrete concepts. Symbolic description of the continuous data is obtained
by clustering within continuous feature spaces from processed sensor data. The Progol
ILP system is subsequently used to learn symbolic models of the temporal protocols present
in the presence of noise and over-representation in the symbolic input data. The framework
is based on time points and used only the successor temporal relation.

Könik and Laird (2006) proposed a learning by observation framework to learn an agent
program that mimics a human expert’s behaviour in domains such as games. The learned
concepts are used to generate behaviour rather than classification. They applied ILP tech-
niques on artificially created examples from expert behaviour traces and goal annotations.
The relational data used is simple as each predicate is valid in a situation (an abstract time
point) and hence concepts with sophisticated temporal relations such as Allen’s interval
algebra (Allen, 1983) that use intervals cannot be learned. This limits the real world appli-
cability of the framework where there are different events occurring in parallel and hence
requires using Allen’s interval algebra to model them. The framework uses only positive
examples and the negative examples are generated randomly in a controlled fashion.

Fern, Givan and Siskind (2002) introduced a system, leonard, that learns event defi-
nitions from videos by following a standard specific-to-general learning approach from only
positive data. There are seven simple event types that are learned in this system namely
pick up, put down, stack, unstack, move, assemble and disassemble. The relational data is
obtained by tracking objects in indoor scenarios. No negative examples are supplied and
the event models are found by computing the least-general covering formula (LGCF) of
each positive example and then computing the least-general generalisation (LGG) of all
these resulting formulae. When computing the LGCF of each example, the resulting LGCF
will not have any interval information. Hence the model can only support before and equal
temporal relations between states.

The important aspect to note for the above review is that most of the work in this area
has been done on either artificial or simulated data (Moyle & Muggleton, 1997; Könik &
Laird, 2006) or very simple real world data (Fern et al., 2002; Needham et al., 2005) that
involves few objects, the events are of short duration and all the objects in the scene are
involved in the events. In our case, the tracked data from videos is very large and at the
same time more complex and noisy and contains more objects.

Several attempts were made in the literature for integrating induction and abduction for
learning better theories. It was pointed out by Tammaddoni-Nezhad et al. (2006) that ab-
duction and induction are integrated in general when two conditions hold: the background
knowledge is incomplete and the hypothesis language is disjoint from the observation lan-
guage. The setting in which the latter condition holds is called non Observation Predicate
Learning (non-OPL) setting (i.e. in the OPL setting, the examples and hypotheses define
the same predicate). They assume the existence of a theory that connects the hypothesis
language and the observation language to start with. Since this theory is not learned, it
can be considered as the background theory. The general strategy in this case is to ab-
duce (Kakas & Riguzzi, 2000) the missing observations using background theory and use
this abduced data for inducing new theories. Muggleton and Bryant (2000) proposed The-
ory Completion using Inverse Entailment (TCIE) in the non-OPL setting. TCIE abduces
and adds facts called the Start Set that connect the target predicate with observable pred-

45

Dubba, Cohn, Hogg, Bhatt & Dylla

icates to the observation data and generalizes this data. In our case, the missing facts are
because of noise in the observed data and the set of target predicates is the same as the set
of observables whereas in TCIE, it is because the target predicate is not observable and the
set of target predicates and the set of observables are disjoint.

Moyle (2003) introduces an ILP system (alecto) that combines abduction and in-
duction to learn theories for robot navigation. One limitation of this system is that it is
restricted to positive observations only learning. The integration is not interleaved in na-
ture as abduction is first used to generate explanations for each example and induction is
applied on this set of explanations. This means the abduction phase does not take into
consideration the concepts learned in the induction phase and dealing with noise in data
was left as future work.

3. Relational Representation of Scenes in Video

To represent interactions of objects by relational data, we use spatial and temporal relations.
Since the input in this work is from video, the spatial relations are defined either in the
image plane or in the ground plane (if a homography is used to map the image plane to
the ground plane). The spatial relations are necessary to encode the state a particular pair
of objects is in. These states between two objects change as time progresses, hence we
need temporal relations to connect these states. In this section, we explain how objects’
interactions are converted to relational data.

Notation: We use a first-order typed language (L) with the following alphabet: {¬, ∧, ∨,
∀, ∃, ⊃, ≡,R}. Let R = {r1, r2, . . . , rm} denote a set of m qualitative spatial relationships
in an arbitrary qualitative spatial calculus. There are sorts (and corresponding variables)
as given below (upper case letter denotes a set and lower case letter denotes a set element):

time points T — t

time intervals ∆ — δ

spatial objects O — o

events E — ε

temporal relations A — α

object types χ — τ

The special event-predicate tran(ri, ok, ol, tm) ∈ E denotes a transition from a spatial
relation ri between objects ok and ol at time point tm. Note that in this work, α can only
take values from the set of 13 Allen’s base relations (Allen, 1983) i.e. A = {before, after,
meets, met by, overlaps, overlapped by, during, contains, equals, finishes, finished by, starts,
started by}. We say two intervals are disjoint if the Allen relation between them is from
the set {before, after, meets, met by}.

3.1 Spatial Relations

In order to get a high level description of the interactions of objects in videos, we need rela-
tions that can encode the interactions of objects without loss of essential information (Cohn
et al., 2006). There are several possibilities on what kind of relations we have to choose.
Since the interactions of objects in video take place in spatial dimensions, it is natural to

46

Learning Relational Event Models from Video

∗ →← ◦ ⋆ ← ◦ ← ∗ ← ◦

∗ → • ⋆ • ← ∗ •

∗ → ◦ → ⋆ ◦ → ← ∗◦ →

Figure 1: Qualitative Trajectory Calculus (QTCL1) (Van de Weghe et al., 2006): Each
blob is a possible QTCL1 spatial relation. In a blob, an asterix (left object) or circle (right
object) represent objects in motion while a star and black dot represent objects at rest and
the direction of the arrow shows the direction of motion of the object. For example, the
top-left ellipse is interpreted as two objects moving towards each other and the bottom-left
ellipse is interpreted as the right object is moving away from the left object while the left
object is moving towards the right object (i.e the left object is chasing the right object).
Though nine relations are possible in QTCL1 as shown in the figure, in practice we can
reduce them to six exploiting symmetry in some relations. When only one object changes
its motion state (note that an object cannot change direction without going through the
rest state), the QTC relation changes along a thick line connecting two relations. When
both objects change motion state instantaneously, the relation changes along a dotted line.

use qualitative spatial calculi to model the interactions. These interactions also have a
temporal dimension as they occur over a period of time, so we extend the spatial relations
with arguments modelling the temporal dimension. When we say interactions of objects we
mean the interactions of the bounding boxes2 (aligned to the axes) of these objects that we
get from tracking the objects using computer vision algorithms (Yilmaz, Javed, & Shah,
2006). There are different kinds of spatial calculi that target different aspects of object
interactions like topology, orientation, direction, trajectories etc. and which calculi to use
is a domain dependent choice (Chen, Cohn, Liu, Wang, Ouyang, & Yu, 2015). We primar-
ily use three spatial relations that encode the object interactions at the topological level:
dc (Discrete) when the intersection of pixels in the bounding boxes of two objects is empty,
in (Inside) when the intersection of pixels is the same as the pixels in the bounding box of
one of the objects and touch in every other case. This set of simple topological relations
is an abstracted version3 of RCC-8 (Randell, Cui, & Cohn, 1992) spatial calculus, reduced
for practical purposes without loss of essential information for event analysis. We also use
QTCL1 (Van de Weghe et al., 2006) (Fig.1) and domain specific relations as primitives to
represent the interactions of objects in the videos.

2. In principle, other shape abstractions could be used as well, e.g. convex hulls, silhouettes, bounding ovals
etc.

3. The other two relations in this version of RCC called RCC-5 are equal and contains (inverse of in). The
relation equal rarely occurs in our experiments and we do not use contains as we can convert it to in by
reversing the arguments.

47

Dubba, Cohn, Hogg, Bhatt & Dylla

o1

o2

o1

o2

o1

o2

δ2δ1 δ3

dc touch in

dc(o1, o2, δ1)

touch(o1, o2, δ2)

in(o2, o1, δ3)

meets(δ1, δ2)

meets(δ2, δ3)

before(δ1, δ3)

Figure 2: Converting interactions of objects to relational data.

3.2 Temporal Interval Relations

We can define temporal relations between time intervals based on Allen’s interval algebra.
We use start and end frames of an interval to represent the intervals. An advantage of this
approach is, we do not have to precalculate temporal relations and store them beforehand in
the database for inference. Instead, Prolog rules that calculate temporal relations given start
and end time points of two intervals are used. In order to incorporate temporal information
in describing a scenario, we extend the spatial relations with a temporal interval as an extra
argument.

3.2.1 Temporally Extending a Spatial Relation

The state where a spatial relation r between objects o1 and o2 holds throughout an interval δ
is represented as r(o1, o2, δ) where r ∈ R , o1, o2 ∈ O and δ ∈ ∆. Grounding this expression
with objects and intervals from a database will provide us with spatio-temporal facts.

A temporal relation between two spatio-temporal facts is the Allen relation between the
intervals in the spatio-temporal facts.

3.3 Representing an Event Class

An event class is represented by a set of Horn clauses where the head predicate is the same
as the event name under consideration and the body is a non empty conjunction of atoms
consisting of spatial and temporal predicates.

The structure of each clause in an event model for an event class ε is as follows:

ε() : − β1, . . . , βi, . . . , βn
where each βi is either of the form r(o1, o2, δ) where r ∈ R, o1, o2 ∈ O and δ ∈ ∆, or is

of the form α(δ1, δ2) where α ∈ A and δ1, δ2 ∈ ∆.

48

Learning Relational Event Models from Video

4. Deictic Supervision

For supervised learning, we need positive and preferably negative examples too of event
instances. One major problem in supervised learning is collecting the labelled training
data. Because of the general ambiguity in defining the spatial and in particular the temporal
extent of an event (i.e. where do events precisely start and finish), it is difficult to annotate
videos with event labels. A possible approach is to annotate the objects involved in each
event and give the event’s temporal extent. But annotating objects is tedious and prone
to human error and for some events there may be uncertainty in the objects involved. We
can avoid this by using Deictic Supervision (Dubba et al., 2010). Instead of annotating the
exact objects involved in the training event instances, we only give a bounding spatial and
temporal extent of each event instance which may contain other objects. The spatial extent
is a region indicating where the event is happening in the video. The temporal extent is
an interval which includes the actual temporal extent of the event, but may be deliberately
longer in order to avoid accidentally truncating state changes relevant for the event. This
makes preparation of training data easier and the learning process more robust and less
biased to the labelling and the learning algorithm should be able to induce reasonable
models even with this data.

Delineating spatio-temporal volumes in videos from which to learn feature-based repre-
sentations of actions such as hand gestures is not without precedent in the computer vision
literature (Laptev & Pérez, 2007), but our use here extends it to multiple simultaneous ac-
tors and relational descriptions and resilience to perturbations in the placement of cuboids
provided events are fully enclosed.

4.1 Deictic Interval and Region

In this work, a deictic spatial region is a rectangle on the image plane indicating where
the event happened and the deictic interval is a time interval indicating when the event
happened. A deictic spatial region is obtained by hand-delimiting the event in the image
plane with a rectangle4, hence can be represented using a coordinate point (top-left corner
vertex), height and width of the rectangle (x, y, h, w). A deictic temporal interval is provided
by specifying the start and end time points of the interval. Together they define a space-time
cuboid which delimits the spatial and temporal extension of an event.

A deictic cuboid defines a set of spatial facts and temporal relations between them;
an event instance is a subset of these facts and corresponds to a positive example in the
learning from interpretations setting. Obtaining positive and negative examples for learning
using event annotations in the form of deictic spatial regions and deictic temporal intervals
is explained in the following sections. Note that the deictic interval and region are regarded
as any other interval and object in ∆ and O respectively and the spatial relations are
computed accordingly. After the positive and negative examples are computed, the spatial
relations involving the deictic regions as one of the objects are discarded from the database
as they are of no further use.

4. If the tracking data is on the ground plane then we can back-project this rectangle automatically into a
minimum enclosing rectangle on the ground plane using homography (Hartley & Zisserman, 2004).

49

Dubba, Cohn, Hogg, Bhatt & Dylla

4.2 Herbrand Interpretation for an Event

Let si and δi be the deictic spatial region and deictic temporal interval for an instance εi of
an event class ε in video v. Let Γv be the set of spatio-temporal facts present in v, Ov be
the set of objects in v and ∆v be the set of all time intervals in v. The set of facts Eεi ⊆ Γv

is the Herbrand Interpretation for the event εi over Γv iff all the facts contained in it are
entailed by Γv, whose temporal intervals are not disjoint with the deictic interval and whose
objects have relation touch or in within the deictic region.

Eεi = {r(o1, o2, δ) : Γv � r(o1, o2, δ) ∧

Γv � α(δi, δ) where α /∈ {before,after,meets,metby} ∧

∃δ1[Γv � r1(si, o1, δ1) where r1 ∈ {touch,in}∧

Γv � α1(δi, δ1) where α1 /∈ {before,after,meets,metby}]∧

∃δ2[Γv � r2(si, o2, δ2) where r2 ∈ {touch,in}∧

Γv � α2(δi, δ2) where α2 /∈ {before,after,meets,metby}]∧

o1, o2, si ∈ Ov ∧ r ∈ R ∧ δ1, δ2 ∈ ∆v

}

An example interpretation for an event instance of AFT Bulk LoadUnload in the Airport
domain is illustrated in Fig.3. The interpretation includes all those spatial facts involving
objects that have the relation touch or in with the deictic region and which lie within
the two vertical dashed lines (the deictic interval). The set of Herbrand Interpretations
corresponding to the set of deictic regions and intervals for an event form the positive
examples for the learning phase. The rest of the relational facts in each video form the
negative example where if an event model fires an instance in the database, it is considered
as a false positive. When a Herbrand Interpretation is extracted from a set of spatio-
temporal facts of a video, this interpretation is independent of all the other facts in the
spatio-temporal database5 for the video and hence other facts can be assumed false from
this interpretation’s point of view.

Note that by definition the spatio-temporal facts that do not spatio-temporally overlap
the deictic region and interval of an event instance are not relevant to the event. Considering
facts outside the indicated event occurrence not only increases the size of the training data
but also makes the example instances for different event classes less distinct.

One limitation of using a cuboid shaped deictic region for delineating an event instance
is that it is not possible to differentiate among multiple co-occurring instances of the same
event type involving different objects in a region. One way to overcome this limitation is to
use more than one cuboid to enclose an event instance allowing the elimination of unwanted
facts.

5. This spatio-temporal database is itself a subset of the Herbrand Base of the video obtained using the
predicates (spatio-temporal relations) and the constants (objects and time intervals) from the video.

50

Learning Relational Event Models from Video

Figure 3: An example interpretation for the event AFT Bulk LoadUnload in the Airport
domain. The vertical black lines are the start and end of the deictic interval. Each row
represents the interactions of two of the objects present in the deictic region during the
deictic interval in the video. The colours of the lines represent the spatial relations between
the pairs of objects at that point of time. This figure does not show the effect of a deictic
spatial region, but this would correspond to the elimination of certain rows (where the
objects do not have a spatial relation of touch or in whilst in the deictic spatial region
during the deictic temporal interval.

4.3 Herbrand Interpretation for a Non-event Interval (Negative Example)

In our framework, the negative examples are not explicitly labelled. The negative example
for a given event in a video is the set of spatio-temporal facts from the database of the
video that are not present in the positive examples of the event in that video. Note that
the negative example will in general contain data that might be in positive examples of
other event classes in that video. Another alternative is to use labelled positive examples
of other events as negative examples for the event we are learning. This is convenient for
classification purposes but not in recognition tasks as this will miss the background data
that might be useful to minimize detections in the background regions.

Let Γεv be the union of all spatio-temporal facts from all Herbrand Interpretations of
event ε in video v. The set of facts NIεv ⊆ Γv is the Herbrand Interpretation for a negative
example for event ε in video v iff it contains all the facts in Γv which are not in Γεv , i.e.,
NIεv = Γv − Γεv .

5. Typed ILP

In any event learning and recognition system, low level image processing and computer
vision techniques may introduce noise into the system. One kind of noise, in particular
when video quality is bad as in videos from some CCTVs, is that the wrong type may be
assigned by the tracker to an object history. An object detector is typically trained with

51

Dubba, Cohn, Hogg, Bhatt & Dylla

Object

Person

Aircraft

Vehicle

Light Vehicle

GPU

Transporter

Push Back

Service Vehicle

Heavy Vehicle

Mobile Stairs

Loader

Conveyor Belt

Passenger Boarding Bridge

Container

Catering

Tanker

Bulk Loader

Figure 4: Tree-structured object type hierarchy in the Airport domain.

many example images of objects to be detected. Even though many example images are
given for training, it is not possible to capture all the possible ways an object can appear
because of lighting, viewing direction, size, shape, etc. (Lowe, 2004). This may result in
correctly localized objects but with the wrong categories of the objects, especially those
that look visually similar in low contrast images.

When the input data is huge and noisy, there are several problems an ILP system can
face. One of these is that hypothesis evaluation can take a lot of time because of the size of
the data. Also the noise will tend to make the hypothesis over specific as the system learns
more rules to cover the inconsistent examples. Using a typed ILP system can speed up
evaluation because of typed arguments in the hypothesis (Walther, 1985; Cohn, 1989) and
also reduce the number of false positives through avoiding certain cases where the types of
the arguments do not match. Any event model that has objects with a specialized type will
fail to recognize some event instances where the object appears with a different type. In
contrast, if the event model does not have any type system and uses a very generic type for
all the objects such as object, thing etc., then this approach will have many false positives
as it cannot differentiate between events with same structure but involving different types
of objects. One possible approach is to find an appropriate type generalization instead of
using one of the two extremes: most generic type and most specialized type.

In most ILP systems, the type hierarchy of objects is not integrated into the learning
process. For example, in Progol, types of the objects are used only in mode declarations
and since it assumes a flat type hierarchy of the domain, the search procedure cannot
take any type hierarchy into consideration. For example, if the tracking system sometimes
confuses two types of objects (τ1, τ2) such that some objects of type τ1 are misclassified as

52

Learning Relational Event Models from Video

s1

s2

s3
s4

s5

Figure 5: Tree-structured example object type hierarchy. s1 is the most general type and
s2, s4, s5 are the most specific types.

type τ2, then Progol generates two rules, one with τ1 and another with τ2. Even if we
are not dealing with a vision system that introduces noise into the high level learning and
reasoning system, in some cases an event might involve objects from a particular sub-group
of objects. In this case, instead of using a very generic type like object or very particular
types like the type of the object itself, it is more efficient to use an intermediate generic type
that represents this sub-group. A variable without type restrictions will be satisfied by any
type of object when instantiating the Horn clause. However, an appropriate generalization
can be enforced by the learning system with a variable of type τ1⊔τ2 from the type hierarchy,
which is satisfied6 only by objects of type τ1 or τ2, thereby reducing false positives.

5.1 Representing a Typed Hierarchy

If we wish to use an existing Prolog engine for hypothesis evaluation then some way of
encoding type using terms must be found. There are several ways of doing this depending
on whether the structure of the object type hierarchy is a tree or a lattice. We use the
type representation proposed by Bundy, Byrd and Mellish (1985) that can deal with tree
structured type hierarchies; we then develop a refinement operator by incorporating this
representation in the hypothesis search procedure. An advantage of using this representation
is that ordinary unification can be used to determine whether two types are compatible.

We will write τi < τj , if τi is a subtype of τj and τi 6= τj . Every object o of type τn
in a hypothesis can be represented by the term τ1(τ2(. . . τn(o) . . .)) where τ1, . . . , τn is the
maximal sequence of types such that τn < . . . < τ2 < τ1. We denote this representation
function by Υ. Note that we need a constraint, i.e. a tree structured type hierarchy, in
order to guarantee the uniqueness of the sequence τ1, . . . , τn.

For example, let s1, s2, s3, s4, s5 be types such that s4 < s3 < s1, s5 < s3 < s1 and
s2 < s1 as shown in Fig.5. Then any object o of type s4 can be represented as follows:

Υ(o) = s1(s3(s4(o)))

An object oi is not compatible with an object oj in a hypothesis if Υ(oi) is not unifiable
with Υ(oj). For example: s1(s3(o1)) will not unify with s1(s2(o2)) but will unify with
s1(s3(s4(o3))) and s1(s3(s5(o4))), hence they are compatible.

5.1.1 Example of Representing a Type Hierarchy

An object type hierarchy that occurs in one of the two domains used in the evaluation
section of this work is shown in Fig.4. The hierarchy from Fig.4 is hand defined based

6. A variable of type τ1 ⊔ τ2 can unify with a term of type τ1 or τ2.

53

Dubba, Cohn, Hogg, Bhatt & Dylla

on observed errors in object classification of the tracking data from the Airport domain.
In the airport domain, the ground power unit (GPU), transporter and push back vehicle
are small vehicles that look similar as the videos from CCTV cameras in the airport have
low resolution contrast without much colour or sharp edges. This makes it challenging to
train an object detector and use it for detecting objects in these videos. The objects from
the Verbs domain present no particular challenges from an automatic classification point
of view but some events involve objects from a particular subset of objects, for example,
the throw event involves balls of different types like small ball, basket ball, etc. Hence using
a type hierarchy based on utility is expected to help find event models that have better
performance in detecting events in unseen videos.

A vehicle V of type GPU will be represented as obj(veh(light veh(gpu(V))))7

while V of type light veh is represented as obj(veh(light veh(V))). Note that
obj(veh(light veh(V))) unifies with vehicles of type GPU and vehicles of type Trans-
porter. So using obj(veh(light veh(V))) in a model can cover examples that either
involve a GPU or a Transporter and hence can handle the noise from an object detector if
it confuses these vehicles by outputting GPU in place of Transporter or vice versa.

5.2 Type Refinement Operator

A refinement operator is used to traverse through the hypothesis lattice. There are two
types of refinement operators: upward and downward (Nienhuys-Cheng & De Wolf, 1997).
We write Hg � Hs if Hg is a more generic8 hypothesis than Hs. If we assume that the
top most element of the hypothesis lattice is the most generic hypothesis and the bottom
most hypothesis is the most specific hypothesis, then the upward refinement operator can be
defined as follows (the downward refinement operator can be defined in a similar fashion):

Let L be the set of all possible hypotheses. An (upward) refinement operator ρ is defined
such that for a hypothesis H, ρ produces only generalizations of H, ρ(H) = {Hg | Hg �
H,Hg ∈ L}.

We define the (upward) Type Refinement operator ρt as an operator that generalizes
the object types of H. Apart from object types, the structure of H and members of ρt(H)
is identical.

We define a type generalizing operator as follows:

generalize type(τ1(τ2(. . . τn−1(τn(o)) . . .))) = τ1(τ2(. . . τn−1(o) . . .))

The Type Refinement operator, ρt, applies the generalize type operator to a selected
object type present in a hypothesis, resulting in a more generic hypothesis by moving up
exactly one level in the type hierarchy.

Though the specific current representation of type hierarchy using functors requires a
tree structured hierarchy, having a tree structured hierarchy is beneficial from a computa-
tional viewpoint in limiting the type generalizations, i.e., there are no multiple ancestors.
A tree-like type hierarchy is very natural in many domains though some domains might not

7. Note the short forms used for Object, Vehicle and Light Vehicle.
8. There are several possible generality orders, most important are subsumption and logical implica-

tion (Nienhuys-Cheng & De Wolf, 1997).

54

Learning Relational Event Models from Video

have a well defined tree-like object type hierarchy. In such cases, a lattice structured type
hierarchy is more suitable though this will increase the size of the search space since the
number of possible refinements is increased, in particular in a tree structure type general-
ization is deterministic whilst this is not the case in a lattice structure.

5.2.1 Optimality of the Type Refinement Operator

Refinement operators can be ideal or optimal (Nienhuys-Cheng & De Wolf, 1997)9. An
optimal refinement operator generates any hypothesis in the hypothesis lattice only once
and there is a unique way to produce each hypothesis. This kind of refinement operator is
desirable in complete search algorithms as duplicate generation of hypotheses will increase
the cost of the search procedure. The optimality of the Type Refinement operator is proved
in Appendix A.

6. Learning from Interpretations Setting for Learning Event Models

The result of deictic supervision gives us examples that are sets of spatio-temporal facts.
Though these examples (sets of facts) come from the same or different videos, they are
independent of each other, i.e., the mapping of each example to a class is independent of
other examples. For this kind of learning setting where each example is independent of
each other and each example is a set of facts, the learning from interpretations setting is
an apt choice (Blockeel, De Raedt, Jacobs, & Demoen, 1999). The setting can be specified
formally thus:

Given :

• a set of classes C (each class label c is a nullary predicate).

• a set of classified examples E (each element of E is of the form (Ei, c) with Ei a set
of facts and c a class label)

• and a background theory B,

Find : a hypothesis H (a set of Horn clauses), such that for all (Ei, c) ∈ E:

• H ∧ Ei ∧B � c, and

• ∀c′ ∈ C − {c} : H ∧ Ei ∧B 2 c′

In the current event learning problem, the above setting is applied for each event class
where in each case the set of classes has only two elements, the event class and the back-
ground class. Background class represents the negative examples and each class label c is a
nullary predicate.

9. An ideal refinement operator is proper and complete whereas an optimal refinement operator is weakly-
complete and non-redundant. See Appendix A for formal definitions.

55

Dubba, Cohn, Hogg, Bhatt & Dylla

6.1 Traversing the Search Space

The search process for a hypothesis starts with an initial hypothesis which has a nullary
predicate as head and an empty body. The hypothesis lattice is traversed using the Progol
and Type Refinement operators in an interleaved fashion. The Progol refinement operator
is a specialization operator that adds atoms from the bottom clause to a hypothesis. A
specialization operator moves from the top (empty clause) to bottom in the hypothesis
space which is a lattice bounded by the bottom clause from the bottom. Adding atoms
from the bottom clause makes the hypothesis more specialized because the body of the
hypothesis is a conjunction of atoms and each atom can be considered as a constraint.
Adding more atoms to the body increases the constraints it has to satisfy to become true.

The Progol refinement operator that we use here is based on the bottom clause also
called the most-specific clause and is non-redundant though it is not weakly-complete with
respect to the general subsumption order (Tamaddoni-Nezhad & Muggleton, 2009). The
most-specific clause that the Progol refinement operator uses can be computed from train-
ing examples, mode declarations and the background knowledge (Muggleton, 1995). Mode
declarations are user defined syntactic biases in the form of predicates that specify what
predicates from the background knowledge are expected in the target hypothesis and also
the nature of the variables (input, output, or constant). The selection of atoms to be
added to the hypothesis from bottom clause is done in a controlled manner. The atoms
are only considered starting from left and moving to the right and each atom can be added
only once (Tamaddoni-Nezhad & Muggleton, 2009). These constraints on the selection of
atoms makes the refinement process non-redundant, i.e., a hypothesis is not generated twice.
There is an additional refinement operator that refines by unifying two variables arbitrarily
selected from the hypothesis or by substituting a variable with a constant. We do not use
this operator as unifying two variables needs checking the hypothesis for consistency with
respect to the underlying spatial theory and there are no fixed constants (apart from frame
numbers) in the domain as constants in any example are independent from constants from
other examples. For example, consider the three relations from Section 4.1 for the spatial
theory and Allen’s relations for the temporal relations: we cannot unify two arguments of
a predicate (spatial or temporal) as this violates the semantics of these relations.

The Type Refinement operator generalizes a hypothesis by generalizing the type of an
object in the hypothesis (Fig.6). There are two possible approaches to apply the Type
Refinement operator: type first approach is to select a type from the set of types for a
hypothesis and generalize the type of the variables that belong to the selected type and
variable first approach is to select a variable from the hypothesis and generalize the type
of all occurrences of this variable in the hypothesis. The type first approach generalizes the
selected type throughout the hypothesis and this may involve several variables while the
variable first approach only generalizes the type of one variable. In our work, we use the
type first approach as this has a fewer number of refined hypotheses and a smaller search
space while the variable first approach has a larger number of choices and hence a larger
search space. One more reason to use the type first approach is that the computer vision
algorithm might confuse the type of a whole group of objects that belong to a particular
type rather than a single object in a video because of an inaccurate object detector.

56

Learning Relational Event Models from Video

Figure 6: Type refinement operator (generalization).

6.2 Searching the Event Model

Once the most-specific clause is computed, the sub-lattice bounded from below by the most-
specific clause is searched using a best-first search for the hypothesis that has a maximum
score calculated based on a combination of (1) the number of positive examples covered, (2)
the number of answer substitutions in the negative examples, (3) the length of hypothesis
and (4) the number of distinct variables in the hypothesis subject to the given constraints
(discussed in the next subsection).

score(H) = γ ∗ p− (̺ ∗ n + l + v)

where

γ = weight to positive examples

p = number of positive examples covered

̺ = weight to answer substitutions in negative examples

n = number of answer substitutions in negative examples

l = length of the hypothesis

v = number of distinct variables in the hypothesis

An answer substitution θ for an example e is a substitution that grounds the hypothesis,
h ← b1, . . . , bn, and the query ← b1θ, . . . , bnθ succeeds in the database of e. Note that in
the learning from interpretations setting each positive example is a separate database and
when a hypothesis is used as a Prolog query in each database, it might result in multiple
answer substitutions. An example is considered covered by the hypothesis if there are one
or more answer substitutions. While testing the hypothesis in a test database, each answer
substitution is considered as one recognized event instance. If the recognized event interval
falls outside the event ground truth in a test video, it is considered as false positive. In the
event recognition domain, the hypothesis is used for recognizing events in unseen videos

57

Dubba, Cohn, Hogg, Bhatt & Dylla

instead of classifying videos, a hypothesis with fewer false positives is desirable. Hence
hypotheses are penalized using the number of answer substitutions10 in negative examples.
If the number of positive and negative examples are disproportionate in numbers, giving
more weight to the positive examples and negative examples using γ and ̺ will result in an
hypothesis that has better performance in test data.

Since the starting hypothesis is empty and completely generic, it will cover all the
negative examples. As the hypothesis is specialized by Progol’s refinement operator, the
number of false positives decreases. When the score of the hypothesis no longer increases, the
Type Refinement operator is used to generalize the types thereby increasing the generality
of the hypothesis with a possible increase of positive examples covered (as well as false
positives). This process of interleaved application of both operators is continued until the
hypothesis score no longer increases.

Once a satisfactory hypothesis is found, an argument representing temporal information
in the form of a list of time intervals formed using the time intervals in the body of the
event model can be introduced into the head in order to explicitly represent when the event
occurs – this is useful when using the hypothesis for event monitoring – it allows the interval
during which the event occurs to be explicitly flagged when viewing the video.

The learning algorithm uses a set covering method (Quinlan, 1990) to learn an event
model that is a set of clauses interpreted as a disjunction. The covering method starts with
an empty model and learns a clause using the provided positive and negative examples and
adds this clause to the model. It repeats this procedure but now with positive examples
that are not covered by the earlier clause. This process is repeated until all the positive
examples are covered.

6.3 Constraining the Search Space

The size of the search space depends on the size of the bottom clause (Muggleton, 1995).
Thus, in the event learning domain, it depends on the number of spatial relations being
used and the number of objects in the event instances used as positive examples. The size
of the bottom clause increases with the number of Allen’s temporal relations as each interval
in the atoms with spatial predicates is temporally connected to every other interval in other
atoms with spatial predicates. This creates many atoms with temporal predicates in the
bottom clause.

In order to decrease the size of the search space, the algorithm makes use of domain-
dependent and domain-independent constraints on the structure of the hypothesis. The
constraints the algorithm uses such as restrictions on the hypothesis length and the number
of variables in the hypothesis etc. are domain-independent structural constraints as they
do not depend on the predicates used or any domain knowledge. The following are the two
domain-dependent constraints that reduce the search space and time thereby making the
learning process more efficient.

• Upper bounds on the number of atoms in the body of a rule.

10. Counting the number of answer substitutions instead of number of examples covered is a heuristic used
in the FOIL system (Quinlan & Cameron-Jones, 1993).

58

Learning Relational Event Models from Video

• Any interval in an atom with spatial (temporal) predicate should appear in an atom
with a temporal (spatial) predicate. Any hypothesis with atoms that do not satisfy
this criteria is not semantically meaningful since it might be satisfied by facts not at
all related to the event in question.

However the constraints listed above are domain dependent constraints rather than ap-
plication specific constraints, i.e., these constraints that involve the spatial and temporal
predicates should be applicable in most, if not all event learning scenarios. Note that some
of the constraints are hard (i.e. inviolate). If a hypothesis violates any such constraint, then
it is discarded without scoring or refining. For example, the domain-independent constraints
and the first domain-dependent constraint mentioned above are hard. In contrast, if a hy-
pothesis violates a constraint that is not hard, for example, the second domain-dependent
constraint listed above, it is not scored and discarded only after generating refined hypothe-
ses from it. This is because discarding such hypotheses without refining might obstruct the
traversal of the lattice. For example, in the current work, the algorithm starts the search
process with an empty hypothesis and the initial hypotheses obtained by refining the empty
hypothesis do violate the second domain-dependent constraint listed above (since they con-
tain exactly one predicate and therefore cannot contain both a spatial and a temporal
predicate).

6.4 Event Recognition

The learned event models are used for event recognition in unseen videos. For this purpose,
the test video is converted to relational data and used as a database and the event models
are used as Prolog queries. The querying is done in the whole database and the intervals
extracted from the answer substitutions from these queries give the temporal extent of the
recognized instances of the events. In order to record when the event takes place, we change
the arity of the event predicate (the rule head) to be monadic such that the argument is a
list of all interval variables occurring in the body. Note that it would also be possible to
introduce a second argument to record which objects are involved in the event (i.e. a list
of all variables of type object - or equivalently that occur as the first two arguments of any
spatial predicate in the body).

An issue that arises is exactly when an event occurs given that it consists of multiple
overlapping temporal intervals from the instantiated predicates in any given answer substi-
tution. Given the list of all intervals λ occurring in the instantiated body of the hypothesis,
various possibilities present themselves. One could take the maximal interval which exactly
spans all intervals in λ. Or one could take the interval which exactly spans the interval from
the first transition (i.e. pair of meeting intervals involving the same pair of objects) to the
last such transition. Clearly there are other possibilities too. Ultimately this is probably a
domain dependent decision. For our experiments, we take the list of all intervals in λ and
the temporal extension of the event is obtained by taking the minimum and maximum of
the time points in λ.

Note that there may be several rules for an event class, each rule capturing a variation
in which an event can happen. These rules do not have weights specifying how important
or reliable a rule is for recognizing events. When recognizing events, all the rules of an event
class are used and this may result in multiple answer substitutions.

59

Dubba, Cohn, Hogg, Bhatt & Dylla

7. Interleaved Induction and Abduction (IIA)

In the previous section we showed how ILP can be applied to learn rule-based relational
event/activity models, given an observation dataset, positive and negative examples of
events whose models have to be learnt. However, data from visual and other sensors tend
to be noisy with high variability in the sample space. This leads to over-fitted models (i.e.,
more rules), as the model has to cover some of the examples that are corrupt because of
the sensor noise. A model with more rules can result in many false positives when used for
event-recognition in test data.

In this section, we show how well-fitted, semantically meaningful event models can be
learned from noisy data by interleaving induction and abduction. This acquires significance
in cases where training data is scarce and noisy. We apply the Typed ILP system presented
in the previous section to learn event-based models and using these models as the domain
theory, we explain the examples/observations not covered by the induced theory using
abduction. The uncovered examples are either noisy, or are examples for the same event
that in reality happened in a different way. Using the explanation we rectify the errors in the
noisy examples corrupted by tracking errors and thus reduce the requirement for additional
rules. In our framework, the examples themselves are noisy (i.e. incorrect) thereby requiring
observation data revision in a manner that is consistent with the initially learned theory,
and general common-sense knowledge about space, spatial change, and the dynamics of the
domain. Note that many ILP approaches discard examples considering them as noisy by
using a heuristic stopping criteria. This is not acceptable in cases where there is scarcity of
training data, where learning from every example is potentially important.

7.1 Domain-Independent Spatial Theory

In order to pursue our goal, an Axiomatic Characterisation of the Spatial Theory is neces-
sary. Many spatial calculi exist, each corresponding to a different aspect of space. Here, it
suffices to focus on one spatial domain, e.g., topology, with a corresponding mereotopologi-
cal axiomatization by way of the binary relationships of the RCC-8 fragment Rrcc8. From an
axiomatic viewpoint, a spatial calculus defined on R has some general properties (P1–P5),
which can be assumed to be known apriori. To realize a domain-independent spatial theory
that can be used for reasoning (e.g., spatio-temporal abduction) across dynamic domains,
it is necessary to formalize a domain-independent spatial theory (Σspace) which preserves
the high-level axiomatic semantics of these generic properties. For reasons of space we only
sketch the properties P1–P5 and neglect the formal axiomatization.
(P1–P2) The Basic Calculus Properties (Σcp) describe the jointly exhaustive & pair-
wise disjoint (JEPD) property, i.e., for any two entities in O, one and only one spatial
relationship from R holds in a given situation. The jointly exhaustive property of n = |R|
base relations can be axiomatized by n ordinary state constraints and, similarly, the pair-
wise disjoint property can be axiomatized by [n(n − 1)/2)] constraints. Other miscellaneous
properties such as symmetry and asymmetry can be expressed in the same manner.
(P3) The primitive relationships in R have a continuity structure, referred to as its Con-
ceptual Neighbourhood (Σcn) (CND) (Freksa, 1991), which determines the direct, con-
tinuous changes in the quality space (e.g., by deformation and/or translational motion).
(P4) From an axiomatic viewpoint, a spatial calculus defined on R is (primarily) based

60

Learning Relational Event Models from Video

on the derivation of a set of Composition Theorems (Σct) between the JEPD set R.
In general, for a calculus consisting of n JEPD relationships, [n × n] compositions are
precomputed. Each of these composition theorems is equivalent to an ordinary state con-
straint, which every n-clique spatial situation description should satisfy.
(P5) Additionally, Axioms of Interaction (Σai) are necessary when more than one spa-
tial calculus is modelled in a non-integrated manner (i.e., with independent composition
theorems). These axioms explicitly characterize the relative entailments between inter-
dependent aspects of space, e.g., topology and size.
Now, let Σspace ≡def [Σcp ∪ Σcn ∪ Σct ∪ Σai] denote a domain-independent spatial theory
that is based on the axiomatizations encompassing (P1–P5).

7.2 Physically Plausible Scenarios

Corresponding to each spatial situation (e.g., within a hypothetical situation space), there
exists a situation description that characterizes the spatial state of the system. It is neces-
sary that the spatial component of such a state be a ‘complete specification’, possibly with
disjunctive information. For k spatial calculi being modelled, the initial situation descrip-
tion involving m domain objects requires a complete n-clique specification with [m(m −1)/2]

spatial relationships for each calculus. Therefore, we need to define a scene description to
be C-Consistent, i.e., compositionally consistent, if the n-clique state or spatial situation
description corresponding to the situation satisfies all the composition constraints of every
spatial domain (e.g., topology, orientation, size) being modelled. If more than one calculus
is modelled the inter-dependent constraints (P5) must hold as well.

From the viewpoint of model elimination of narrative descriptions during an (abductive)
explanation process, C-Consistency of scenario descriptions is a key (contributing) factor
determining the commonsensical notion of the physically realizability of the (abduced) sce-
nario completions. Bhatt and Loke (2008) show that a standard completion semantics with
causal minimization in the presence of frame assumptions and ramification constraints pre-
serves this notion of C-Consistency for Σspace within a logic programming framework, as
well as with arbitrary basic action theories.

7.3 The Inductive-Abductive Framework

We interleave inductive and abductive commonsense reasoning about space, events and
change within a logic programming framework. Induction is used as a means to learn event
models by generalizing from sensory data, whereas abductive reasoning is used for noisy
data correction by scenario and narrative completion, thereby improving the learning.

7.3.1 Explanation by Abduction

Diametrically opposite to projection and planning is the task of post-dictum or explana-
tion (Poole, Goebel, & Aleliunas, 1987), where given a set of time-stamped observations
or snap-shots, the objective is to explain which events and/or actions may have caused
the observed state-of-affairs. Explanation problems demand the inclusion of a narrative
description, which is essentially a distinguished course of actual events about which we may
have incomplete information (Miller & Shanahan, 1994). Narrative descriptions are typi-

61

Dubba, Cohn, Hogg, Bhatt & Dylla

cally available as sensory observations from the real execution of a system or process. Given
narratives, the objective is often to assimilate/explain them with respect to an underlying
process model.

The abductive explanation problem can be stated as follows (Kakas, Kowalski, & Toni,
1992):
Given : Theory T and observations G, find an explanation △ such that:

• T
⋃

△ � G

• T
⋃

△ is consistent

i.e., the observation follows logically and non trivially from the theory extended given the
explanation. Abductive explanations are usually restricted to ground literals with pred-
icates that are undefined in theory, namely the abducibles. Abductive explanations are
derived by trying to prove the observation from the initial theory alone: whenever a lit-
eral is encountered for which there is no clause to resolve with, the literal is added to the
explanation.

The abduction procedure results in many valid explanations. In order to reduce the
number of explanations, several restrictions as listed below can be used (Kakas et al., 1992):

Explanations should be basic This means one explanation should not explain another
explanation. This is enforced by not allowing abducibles in the head of any rule.

Explanations should be minimal This means one explanation should not subsume an-
other explanation.

Explanations should satisfy all integrity constraints With this restriction, we ob-
tain explanations that are valid in the domain under consideration. In our work,
explanations should satisfy all the spatial constraints of the underlying spatial theory.

7.3.2 Scenario and Narrative Completion

It is easy to intuitively infer the general structure of narrative completion by abductive
explanation. Consider the illustration in Fig.7 for a hypothetical situation space that char-
acterizes the complete evolution of a system. In Fig.7 the situation-based history given
by the solid arrows represents one path, corresponding to an actual time-line discretized
into intervals 〈δ0, δ1, . . . , δm〉, within the overall branching-tree structured situation space.
Given incomplete narrative descriptions, e.g., corresponding to only some ordered intervals
in terms of high-level spatial (e.g., topological, orientation) and occurrence information, the
objective of explanation is to derive one or more paths from the branching situation space,
that could best-fit the available narrative information. Formally:

Φ1 ≡ touch(a, c, δ1)

Φ2 ≡ dc(a, c, δ4) ∧ in(b, a, δ4) ∧ dc(b, c, δ4)

[Σspace ∧ Φ1 ∧ Ω] |= Φ2, where

Ω ≡ (∃ δi, δj).[meets(δ1, δi) ∧ before(δi, δ4) ∧ dc(b, a, δi)

∧ touch(a, c, δi) ∧ dc(b, c, δi)]

∧ [meets(δi, δj) ∧ meets(δj , δ4) ∧ touch(b, a, δj)

∧ touch(a, c, δj) ∧ dc(b, c, δj)]

(7.1)

62

Learning Relational Event Models from Video

a c

a c

a c

b

a c
b

a c
b

a c
b

a cb

a cb

Figure 7: Branching/Hypothetical Situation Space. Only a few possibilities are shown.
There are clearly more paths from the initial scenario to the target scenario. There are also
more possible states.

In (7.1), Φ1 denotes the initial situation and Φ2 denotes the final situation represented in
terms of spatial relations (RCC-5) among the objects present in the scene. The abductive
derivation of Ω, that explains how the scene changed from situation Φ1 to situation Φ2,
primarily involves non-monotonic reasoning in the form of minimizing change, in addition to
making the default assumptions about inertia, and an appropriate treatment of ramification
constraints (Bhatt & Loke, 2008).

7.4 IIA Algorithm

Most ILP systems use a covering algorithm to learn models from examples. The search
ranges over a hypothesis lattice and each hypothesis is evaluated based on the number of
positive and negative examples it covers. If it is selected as a suitable hypothesis based on
some scoring function, this hypothesis (rule) is added to the model, the covered examples are
removed and this process is repeated until all the positive examples are covered. Examples
can be corrupted by noise resulting in missing or incorrect facts. In such cases, more
rules are learned than necessary in order to cover all the examples. As the number of
rules for a concept increases, this may result in many false positives when the rules are
used for classification/recognition in test examples. In order to avoid learning from corrupt
examples, the framework identifies examples as being corrupted by explaining them through
abduction using the already induced model and the background theory (Dubba et al., 2012).

63

Dubba, Cohn, Hogg, Bhatt & Dylla

The main assumption we make here is that the noise in the examples is not consistent. If
the noise is consistent (i.e., present in most of the examples in a similar fashion) then it
becomes part of the pattern that defines the concept and might be learned by the learning
algorithm.

The pseudo algorithm is given in Algorithm 1. The induction algorithm induces an
initial hypothesis based on the score function explained in previous sections. The positive
examples covered (E+

Rule) by this hypothesis are removed from the list of positive examples
yet to be covered. The induced theory along with background knowledge is used to explain
the uncovered examples treating each example as a narrative. Abduction gives several
possible explanations each with different cost (based on the nature and the number of facts
in the explanation). The explanations are rejected if they have a cost more than a specified
threshold. Furthermore, given the formulation of the spatial theory Σspace, C-Consistency of
abduced explanations is ensured. The examples (E+

△) that have an explanation whose cost
is less than the specified threshold are removed from the positive examples list that are yet
to be covered, as they are now considered to be covered by the already induced model. This
process of induction and abduction is repeated until all the positive examples are covered.

Apart from the constraints enforced by the spatial theory to filter abduced explanations,
several heuristics can be used to give a score to each explanation so that a low cost consistent
explanation can be selected by the system. One of the several possible heuristics is to prefer
explanations where the number of transitions in spatial relations is minimal (Hazarika &
Cohn, 2002). This heuristic is a direct consequence of McCarthy’s Common Sense Law of
Inertia (McCarthy, 1986) which states that change is abnormal and persistence is to be
preferred in the absence of data. In a spatio-temporal domain, each explanation abduced in
the absence of data is a set of spatio-temporal facts and there are three ways to add them to
the explanation: (i) Extend the current relation between two objects (can be done in both
directions of the timeline if the situation permits) (ii) change the current relation between
two objects to its neighbouring relation in a CND (iii) introduce a new object (hypothetical)
into the scene and its spatial relations with other objects in the scene as well. The cost of
each explanation is based on the type of spatio-temporal fact chosen and is calculated as
explained below.

7.4.1 Cost of an Abduced Explanation

Let △ be an explanation from the abduction procedure where △ is a set of grounded spatio-
temporal facts of the form r(oi, oj , δk) denoted as fijrk, E+

p is the current positive example
(an interpretation, i.e., a set of facts) and let r be from the set of spatial relations R in a
spatial calculus. Let O be the set of objects in E+

p . Let cfijrk be the cost of abducing fijrk.

The total cost of △ denoted as C△ is
∑

fijrk∈△

cfijrk .

The cost of abducing fijrk is calculated as follows:

cfl =

ι, if there exists a fijrm in E+
p such that δk and δm are disjoint

κ, if there exists a fijsm in E+
p such that δk and δm are disjoint and r 6= s

µ ∗ n, where n is the number of hypothetical objects (objects not in O) in fijrk

where ι < κ < µ.

64

Learning Relational Event Models from Video

The first case in the cost function occurs when the system abduces a fact that extends
a relation between two objects in the temporal dimension. This does not count as a spatial
transition and hence has a very low cost. In contrast, the second case occurs when the
system abduces a fact that extends the existence of two objects in temporal dimension with
a different relation (the new spatial relation must be a neighbour to the existing relation
in the CND) than the one that already exists between them. This counts as a spatial
transition and has a cost more than the first case. The third case occurs if it is necessary
to have a hypothetical object to satisfy the hypothesis in E+

p . This case is used when an
object involved in an event is completely missed by the object tracker while first two cases
are used in scenarios where an object is not detected in some temporal slice in its life time.
Note that the first case is clearly the most preferred if the abduction procedure has to find a
low cost explanation and the third case which is the most expensive applies when an object
is completely missed by the object tracker. Though it is possible to avoid transitions to
reduce the score, sometimes it is mandatory to consider transitions. For example, consider a
scenario where two objects have a dc relation and in the final state they have an in relation.
In this case, the algorithm has to abduce facts where there are two transitions (one when
the dc relation changes to touch and another when touch changes to in relation). Note that
it is not necessary to abduce temporal relational facts as the Prolog definitions for temporal
relations in the background theory can be used to compute them when needed. This can
be achieved by not including temporal predicates in the list of abducibles.

The abduction procedure uses the existing constants in the database and one issue with
this is that though the number of relations and objects is small, the number of possible
intervals is very large if not constrained. In order to constrain the possible explanations,
we introduce intervals with predefined duration into the database so that abduction uses
only these intervals for abducing explanations. Note that abduction as we have defined
it only adds missing spatio-temporal information and cannot be used to retract corrupted
data resulting from noise.

Algorithm 1 Interleaved Induction and Abduction algorithm (IIA)

procedure IIA(E+, E−, B) ⊲ training sets and background knowledge (includes spatial
theory)

H ← ∅
△ ← ∅
while E+ 6= ∅ do

Rule← Induce(B,E+, E−)
H ← H

⋃

{Rule}
E+ ← E+ − E+

Rule

△← Abduce(B,H,E+)
E+ ← E+ − E+

△

end while
return H ⊲ Learned theory

end procedure

65

Dubba, Cohn, Hogg, Bhatt & Dylla

Figure 8: Airport domain: The videos are recorded using 6 static cameras looking at the
same scene from different angles.

8. Experimental Results

In this section, we present an evaluation of remind, as well as the extension presented in
Section 7. For the experiments, we used two real world video datasets that are different from
each other in many aspects. The videos from these datasets are shot in outdoor settings and
in different weather and light conditions (rainy, cloudy, sunny, night). These variations in
the videos present various challenges to the vision system and subsequently to the learning
system both in the training phase and the event recognition phase.

The two datasets used in this work for evaluation are from airport logistics and verb
videos. The datasets from these domains differ in many aspects such as number of objects
in the video, length of video, duration of events, background structures, the number of
cameras used to capture the events and also the plane (image plane or ground plane) in
which the tracking data is made available. We view the differences in the datasets as a
positive aspect - the framework shown to work in two very different kinds of scenarios.

remind11 is implemented in Python and for speed, some modules are implemented
in Cython; SWI-Prolog is used as the underlying Prolog engine for storing and querying
relational facts and background knowledge.

8.1 Airport Logistics

For experiments in the airport logistics domain, 15 turn-arounds12 were used where each
turn-around was shot using 6 cameras from different angles (Fig.8) and each video is on
average one hour long (15 frames per sec).

The following are informal descriptions of the International Air Transport Associa-
tion (IATA) events we aim to learn models for:

11. Available on request from the first author and will be made public in the near future.
12. A turn-around is the duration of a plane entering and leaving the apron area.

66

Learning Relational Event Models from Video

Aircraft Arrival Aircraft comes into the apron

Aircraft Departure Aircraft moves away from its position on the apron

GPU Positioning Ground power unit comes and positions in its zone

Left Refuelling Fuel truck arrives on the left side of aircraft for refuelling

PB Positioning Push-back vehicle positioning in front of the aircraft

PBB Positioning Passenger Boarding Bridge attaches itself to the aircraft

PBB Removing Passenger Boarding Bridge detaches itself from the aircraft

FWD CN LoadUnload Container Loading/Unloading at the front end of the aircraft

AFT CN LoadUnload Container Loading/Unloading at the rear end of the aircraft

AFT Bulk LoadUnload Baggage Loading/Unloading at the rear end of the aircraft

FWD Bulk LoadUnload Catering Loading/Unloading at the front end of the aircraft

Within each event, there is high variability because of noise in tracking and also because
of objects extraneous to the event entering the event scene. Note that some events might
not be present or may occur multiple times in some turn-arounds. The scenes involve
interactions of vehicles and people with zones on the apron. These zones are specified
on the ground plane according to the IATA specifications and the position of the zones
depends on the type of aircraft. These zones are used for parking and steering vehicles
for different operations carried out in a turn-around. Note that these zones are static
throughout the video and do not change size or position, unlike the bounding boxes of the
vehicles obtained through tracking. Hence zones are not included in the type hierarchy used
for the domain (Fig.4) since they do not suffer from visual noise. The main reason to use
zones is that the RCC-5 spatial relations between bounding boxes of vehicles and people
in the ground plane rarely touch, hence most of the interactions are encoded as dc if zones
are not used. It is important to use the zones as most of these interactions happen in the
zones. According to the IATA specifications, a vehicle transition through the zones and the
position of the vehicle in particular zones is important to determine the events.

We use the object tracks provided by a partner in the Co-Friend project (Ferryman,
Borg, Thirde, Fusier, Valentin, Bremond, Thonnat, Aguilera, & Kampel, 2005); certain
details in some events are not detectable with this tracking system such as the direction of
baggage on the rail of the loader vehicle and whether the trolleys are empty when they arrive
at the scene. The Load/Unload events obtained from IATA events differ in such details (if
the trolleys are loaded when they arrive at the scene and the baggage is moving towards
the aircraft, then the event is loading and if the trolleys are empty when they arrive at the
scene and the baggage is moving away from the aircraft, the event is unloading). Apart from
these details, they are semantically similar and hence are regarded as the same events (for
example, FWD CN Load and FWD CN Unload are regarded as the same events and named
FWD CN LoadUnload, the same strategy is followed with other Load/Unload events).

8.1.1 Tracking and Obtaining Relational Data

The apron scene area is too large to be covered by a single static camera. The events
on the apron occur on both sides of the aircraft which is very difficult to cover with a

67

Dubba, Cohn, Hogg, Bhatt & Dylla

single camera and because of the size of the aircraft it is possible to have many occluded
objects in the scene. In order to solve these problems, six cameras are used to shoot the
scene from different angles so that the entire area is covered and the number of occluded
objects is minimized. Working on the ground plane data results in learned models that are
independent of the camera view and the airport as these models can be readily applied at
different airports with different camera configurations.

The tracking data is obtained for each of the videos from six cameras of a turn-around
and fused together to get 3D data on the ground plane (Ferryman et al., 2005). The tracking
data is noisy because of low quality, bad light and weather conditions and low contrast
of CCTV videos. The noise can be the presence of phantom objects, missing objects,
wrong types of vehicles, inaccurate bounding boxes, broken trajectories, object identity,
inconsistencies etc. which are typical problems in any computer vision tracking system.
Each turn-around is separately processed to get relational data that consists of a set of
spatial relations among the vehicles and zones on the apron. Prolog rules that decide the
temporal relationships among intervals are considered as background information in the ILP
system. The data for each video has between 250 and 500 spatial relational facts (excluding
temporal relational facts) depending on the number of objects and the interactions between
these objects.

Note that an event requires at least one change in the state (here, spatio-temporal
relations between pairs of objects) of the objects. If the relation between any two objects
is dc and does not change during the life span of the objects, it signifies that the objects
are not interacting and the relational fact is discarded as these spatio-temporal facts do not
contain relevant information in defining event models. The tracking data also consists of
bounding boxes for people in the scenes, but these are discarded as people are not germane
in the semantics of the events and also these increase the size of the relational data.

8.1.2 Annotation of Events

For supervised learning we need positive and preferably negative example instances of
events. In the airport domain, the temporal extent of the events is provided by indi-
viduals who have expertise in the IATA protocols and apron activities, by specifying the
start and end frame numbers of the event instance in that video. The spatial extent was
obtained by using a tool with which a polygon can be drawn on one of the image planes
and the corresponding ground plane region is obtained using an homography (it was easier
for a human annotator to watch an actual video to provide the spatial annotation rather
than view a 3D visualization in the ground plane, which being the fusion of the imperfectly
tracked data that does not always show all relevant objects). This region gives a spatial
extent for the event instance.

8.2 Physical Action Verbs Dataset

The Action Verbs dataset13 is a corpus of video vignettes (Fig.9) that portray motion verbs
such as approach, exchange, jump, collide, etc. enacted in natural environments like parks,

13. This dataset (Mind’s Eye Year 1 recognition task videos) is provided by DARPA and publicly available
from http://www.visint.org/datasets

68

Learning Relational Event Models from Video

(a) Approach event with tracked objects (b) Snatch event with tracked objects

Figure 9: Example event instances for Approach and Snatch in Action Verbs dataset

urban places, etc. These vignettes are short in duration when compared to videos from the
airport domain, a few tens of seconds. The full list of verbs is given in Table 3.

Though each vignette was shot to portray a single verb action, other verbs are inevitably
present as well, sometimes overlapping in time. This is primarily unavoidable, for example, a
vignette that portrays the verb carry, will automatically include walk if a person is carrying
some object in their hand. This aspect is taken into consideration while annotating the
vignettes. We were able to obtain tracked data from an external source (Morariu, Harwood,
& Davis, 2013) including object type information (Fig.10).

The new challenge in using this dataset is the different ways a verb can be enacted.
There are 48 verbs in the dataset and a total of 1615 vignettes are used for training and
2348 vignettes are used for testing.

8.2.1 Tracking and Obtaining Relational Data

The tracking data available to us often suffers from errors, e.g., a bouncing ball is often only
tracked once it is being held and fast moving objects such as a running person are missed.
We used Qualitative Trajectory Calculus relations (QTCL1) (Van de Weghe et al., 2006)
as the primitive spatio-temporal relations. We did not choose RCC for this dataset as it
seemed unlikely that a purely topological representation would be sufficient. In contrast,
the QTCL1 relations capture the typical movements in the verbs dataset like moving away,
approaching, follow etc. For example, in a chase event where one object is following another
object the relation is dc, using RCC, which is also the same for two objects standing still
with some distance in between.

It is difficult to model motion patterns of objects like run, walk, raise, bend etc. using
only relational data without referring to parts of a person. The verbs dataset contains some
events that involve such motion patterns and to recognize these, pixel based models are
more appropriate. The primitive events were recognized in all the videos using the method
proposed by Jiang, Lin and Davis (2010), where an action is represented as a sequence
of joint HOG-flow descriptors (Dalal & Triggs, 2005) extracted independently from each
frame. Instead of applying this approach to the entire frame and video as proposed by
Jiang et al. (2010), the input was restricted to sliding temporal windows along the spatio-

69

Dubba, Cohn, Hogg, Bhatt & Dylla

Object

Person

Vehicle

Other

Figure 10: Tree-structured object type hierarchy in the Action Verbs domain.

temporal volume defined by a person’s bounding box. These primitive events14 in addition
to QTCL1 relations provide the relational data in the verbs domain.

8.2.2 Annotation of Events

The ground truth for events in the verbs dataset vignettes is of a different nature to the
ground truth in the airport domain. The development and the test set were annotated
by 10 people using Amazon Mechanical Turk (AMT). Each vignette was presented to the
annotator and 48 questions were presented in the form: Is verb X present in this vignette?
Only verbs annotated by more than 50% of the annotators are considered as events present
in the vignette. For the development set, the annotations were extended by providing for
each event instance its temporal extent.

8.3 Experimental Results and Evaluation for the Typed ILP Framework

Sample rules15 learned for Aircraft Arrival and AFT Bulk LoadUnload events are given
below. For example, the Aircraft Arrival rule can be interpreted as: an aircraft arrives
when the aircraft bounding box has the in relation with the right AFT Bulk TS Zone and
then moves forward thereby changing the relation to touch. This happens when the aircraft
arrives and is moving to its position. The rule also correctly identifies that this bounding
box should belong to an object of type aircraft. The goals in the rule are ordered such that
spatial predicates come before (to the left of) the temporal predicates since there are more
temporal facts16 compared to spatial facts and this ordering speeds up the query execution.

aircraft arrival([intv(T1,T2), intv(T3,T4)]) :-
in(obj(aircraft(V)), right AFT Bulk TS Zone, intv(T1,T2)),
touch(right AFT Bulk TS Zone, obj(aircraft(V)), intv(T3,T4)),
meets(intv(T1,T2), intv(T3,T4)).

aft bulk loadunload([intv(T1,T2), intv(T3,T4)]) :-
touch(left TK Zone, obj(veh(heavy veh(V1))), intv(T1,T2)),
touch(obj(veh(V2)), left TK Zone, intv(T3,T4)),
meets(intv(T3,T4), intv(T1,T2)).

We followed the standard leave-one-out methodology for testing performance in the
airport domain. All turn-arounds except one are used for training and the remaining one is
used as a test case. This process is iterated until each turn-around is used as the test case

14. This data was provided by Vlad Morariu from University of Maryland.
15. A temporal interval is represented as intv(T1, T2) for programming convenience where T1 and T2 are the

starting and ending frame numbers of the interval.
16. As already noted, temporal facts are not explicitly stored but are computed via background knowledge

rules.

70

Learning Relational Event Models from Video

Event #Examples Without Type Generalization With Type Generalization

FWD CN LoadUnload 7 0.86 0.06 0.11 0.86 0.08 0.15

GPU Positioning 16 0.4 0.03 0.05 0.27 0.02 0.04

Aircraft Arrival 15 0.43 0.01 0.02 0.36 0.01 0.02

AFT Bulk LoadUnload 29 0.72 0.20 0.31 0.72 0.20 0.31

PBB Removing 15 0.43 0.06 0.10 0.36 0.12 0.18

Left Refuelling 8 0.25 0.03 0.05 0.12 0.10 0.11

PB Positioning 14 0.28 0.04 0.07 0.14 0.06 0.08

Aircraft Departure 12 0.41 0.11 0.17 0.33 0.19 0.24

AFT CN LoadUnload 15 0.80 0.05 0.09 0.67 0.07 0.13

PBB Positioning 15 0.73 0.16 0.26 0.67 0.34 0.45

FWD Bulk LoadUnload 3 1.00 0.24 0.39 1.00 1.00 1.00

Weighted Average 0.15 0.20

Table 1: Performance comparison of models obtained without and with using types using
RCC-5 primitives in the airport domain. The first, second and third columns for each
category are recall, precision and f1 respectively. The best f1 value in each case is presented
in bold. It is clear from the table that using types improves the overall performance. By
without type generalization we mean, type information from tracker is ignored (all objects
have the same type) and type generalization is not performed during learning.

exactly once. The results of our experiments are summarised in Table 1. The third and
fourth columns show the recall and precision without using types in the 15 turn-arounds
(i.e., type information from the tracker is ignored, hence all objects have the same type and
type generalization is not performed during learning). The fifth and sixth columns show
the recall and precision using the type hierarchy. From the tables it is clear that using type
information can increase the accuracy of event recognition. Also the combined execution
time for all the experiments using type generalization was reduced by roughly 30% when
compared to the execution time of experiments without type generalization.

The detailed recognition results (temporal localization) for events in a turn-around is
shown in Fig. 11 (best seen in colour). The plot shows a turn-around with one subplot show-
ing ground truth of event instances and another subplot showing the recognized instances
by the Typed ILP system in that turn-around. Each event is colour coded for comparing
ground truth with the recognized instance intervals. Note that a recognized event instance
is considered a true positive if it overlaps at least 20% with the corresponding event ground
truth interval (Oh et al., 2011). In some cases the temporal extent of recognized event in-

71

Dubba, Cohn, Hogg, Bhatt & Dylla

Figure 11: Recognition of events in turn-around 1 in the airport domain (best viewed in
colour).

stances is long because some spatial relations that are important in the event extend beyond
the deictic interval of the event.

8.3.1 Evaluating Learned Event Models Against Hand-Coded Event Models

The learned models are also evaluated by comparing them with hand-coded models. The
hand-coded models were provided by domain experts using a set of domain-dependent
spatial relations (Ferryman et al., 2005). In order to directly compare performance without
any change in underlying representation, rather than using the RCC-5, we recomputed
relational data for remind using the same domain-dependent primitives. The comparisons
are given in Table 2. It is clear from the table that learned models have a better performance
in all the event categories when compared to the performance of hand-coded models. The
hand-coded models were single primitives rather than a set of primitives connected by
temporal relations. These kind of models with only one single predicate have far more
false positives when compared to models that have a set of spatial relations connected by

72

Learning Relational Event Models from Video

Event #Examples Learned (RCC-5) Learned (d-d) Hand-coded (d-d)

FWD CN LoadUnload 7 0.86 0.08 0.15 0.14 0.50 0.22 0.71 0.04 0.07

GPU Positioning 16 0.27 0.02 0.04 0.44 0.03 0.05 0.00 1.00 0.00

Aircraft Arrival 15 0.36 0.01 0.02 0.07 0.01 0.01 0.07 0.05 0.06

AFT Bulk LoadUnload 29 0.72 0.20 0.31 0.59 0.27 0.37 0.03 0.05 0.04

PBB Removing 15 0.36 0.12 0.18 0.26 0.14 0.18 0.00 1.00 0.00

Left Refuelling 8 0.12 0.10 0.11 0.38 0.23 0.28 0.00 1.00 0.00

PB Positioning 14 0.14 0.06 0.08 0.07 0.08 0.07 0.21 0.09 0.12

Aircraft Departure 12 0.33 0.19 0.24 0.00 1.00 0.00 0.00 1.00 0.00

AFT CN LoadUnload 15 0.67 0.07 0.13 0.33 0.05 0.08 0.47 0.07 0.12

PBB Positioning 15 0.67 0.34 0.45 0.26 0.20 0.22 0.40 0.07 0.12

FWD Bulk LoadUnload 3 1.00 1.00 1.00 0.00 1.00 0.00 1.00 0.02 0.04

Weighted Average 0.20 0.16 0.05

Table 2: Table comparing learned (RCC-5), learned (domain-dependent) and hand-coded
models performance (domain-dependent). The first, second and third columns for each
category are recall, precision and f1 respectively. The best f1 value in each case is presented
in bold.

temporal relations. Also the hand-coded models use a very specific vehicle type in the event
models which affects the performance by reducing the true positives as there is noise in the
object type detection, whereas the learned models use an appropriate generalized object
type to cover these instances.

8.3.2 Evaluating Learned Event Models with Different Spatial Relations

We also performed an evaluation to investigate the effects of different spatial relations.
For comparison we used RCC-5 and domain specific relations in the airport domain. We
did not use QTC relations for this domain as there were very few examples to learn from
and because of the many spatial relations in the QTC spatial calculus, the patterns for
events do not emerge. The results are given in Table 2. From the table it is clear that
models learned using RCC-5 have a better recognition performance (mean f1: 0.25) when
compared to the models learned using domain-dependent relations (mean f1: 0.13). One
reason might be that RCC-5 has a better representation granularity when compared to the
domain-dependent primitives. Also RCC-5 has the JEPD (jointly exhaustive and pair-wise
disjoint) property while the domain-dependent primitives in the airport domain does not
(it lacks the pair-wise disjoint property).

8.3.3 Evaluating on the Verbs Dataset

The framework that uses the type generalization has also been applied to the verbs dataset
for the 48 verbs. Table 3 shows the precision, recall and f1 scores for the classification task.
For each video in the test set, all the event models are used as queries and if an event model

73

Dubba, Cohn, Hogg, Bhatt & Dylla

succeeds, that particular verb is considered to be present in the video (and the variable
bindings give the time of the occurrence and what objects are involved). This is compared
with the ground truth to obtain the precision and recall values.

Below we provide sample rules learned for the events Approach and Snatch which cover
the instances shown in Fig.9. The QTCL1 relations moto (short form for moving towards a
stationary object), static and depart (short form for moving away from a stationary object)
corresponds to the relations in blobs in row 2 and column 1, row 2 and column 2, row 2
and column 3 respectively in Fig.1. Also note that unlike the models learned in the Airport
Dataset, there is no list of temporal intervals as an argument in the head of the rules here.
This is because we just want to recognize the events in the videos in the Action Verbs
dataset and the videos are too short to find the temporal extent of an event.

approach() :-
moto(obj(vehicle(J)), obj(person(K)), intv(V 32,V 33)),
static(obj(vehicle(J)), obj(person(K)), intv(V 34,V 35)),
meets(intv(V 32,V 33), int(V 34,V 35)).

snatch() :-
static(obj(person(J)), obj(person(K)), intv(V 24,V 25)),
moto(obj(other(L)), obj(person(J)), intv(V 40,V 41)),
depart(obj(other(L)), obj(person(K)), intv(V 18,V 51)),
overlaps(intv(V 40,V 41), int(V 18,V 51)),
during(intv(V 40,V 41), intv(V 24,V 25)),
during(intv(V 18,V 51), intv(V 24,V 25)).

The proposed framework, was compared with other existing systems and the results
are presented in Tables 4-7. One of the systems that we compared with, the RedVine
system, is a supervised learning version of the framework proposed by Sridhar, Cohn and
Hogg (2010). It is based on a graphical representation of relational facts, where an event
is represented by a histogram of graphemes (small graphs that represent spatio-temporal
interactions of the objects involved in the event) mapped into a vector space to facilitate
classification. The Stack convolutional Independent Subspace Analysis (ScISA) (Le et al.,
2011)17 is based on pixel level flow based features which are then used to model events
using a neural network. The spatio-temporal features used in this algorithm are learned
in unsupervised fashion instead of using predefined features such as SIFT (Lowe, 2004),
HoG (Dalal & Triggs, 2005), etc.

The evaluation dataset as provided by DARPA has a total of 2348 vignettes. It was
found that some vignettes (1294) in the training set also appeared in the evaluation set.
We call the dataset with 2348 vignettes the Verb Evaluation Dataset-1 (VED1) and the
remaining vignettes after discarding the 1294 vignettes that appeared in training dataset
VED2. Evaluation on VED1 gives interesting insights into overfitting and underfitting
in the different learning frameworks that are compared. We chose two different average
mechanisms (macro and micro)18 to get an overall f1 and Matthews correlation coefficient
(MCC) scores over all the verbs and vignettes. True Negatives do not play a role in f1

17. Results using this system have been provided by Tuyen Huynh of SRI.
18. Macro-average is calculated by first calculating precision and recall for each category and then taking

the average of these values, while micro-average is calculated by constructing a global contingency table
and then calculating precision and recall using these sums.

74

Learning Relational Event Models from Video

Verb precision recall f1

approach 0.36 0.78 0.49

arrive 0.28 0.73 0.40

attach 0.08 0.49 0.14

bounce 0.11 0.71 0.19

bury 0.05 0.57 0.10

carry 0.14 0.53 0.22

catch 0.05 0.58 0.10

chase 0.04 0.44 0.07

close 0.07 0.29 0.11

collide 0.14 0.83 0.24

dig 0.02 0.36 0.04

drop 0.08 0.47 0.14

enter 0.17 0.74 0.28

exchange 0.06 0.56 0.11

exit 0.15 0.71 0.25

fall 0.10 0.62 0.17

Verb precision recall f1

flee 0.07 0.82 0.14

fly 0.06 0.42 0.11

follow 0.09 0.62 0.16

get 0.15 0.50 0.23

give 0.11 0.66 0.18

go 0.52 0.79 0.63

hand 0.10 0.66 0.17

haul 0.09 0.46 0.15

have 0.46 0.60 0.52

hit 0.14 0.64 0.23

hold 0.47 0.69 0.56

jump 0.06 0.25 0.09

kick 0.07 0.38 0.11

leave 0.29 0.76 0.42

lift 1.00 0.00 0.00

move 0.76 0.74 0.75

Verb precision recall f1

open 0.10 0.77 0.17

pass 0.22 0.39 0.28

pickup 1.00 0.00 0.00

push 0.16 0.82 0.27

putdown 1.00 0.00 0.00

raise 0.33 0.63 0.44

receive 0.15 0.70 0.25

replace 0.07 0.77 0.13

run 0.10 0.82 0.18

snatch 0.11 0.51 0.19

stop 0.39 0.78 0.52

take 0.24 0.62 0.35

throw 0.06 0.39 0.10

touch 0.64 0.53 0.58

turn 0.47 0.53 0.50

walk 0.32 0.80 0.45

Table 3: Classification results per verb in the physical action verbs domain.

scores but have a considerable effect on MCC scores as MCC does not differentiate between
positive and negative classes. MCC will give the same scores even if the class labels are
interchanged while f1 scores change. Note that much of the work in the literature on activity
recognition use f1 scores.

From the Tables 4-7, it is clear that ScISA has better MCC scores in all cases while
remind has a better f1 score on the VED2, though it has lower MCC scores than the
MCC scores of the other two algorithms. Also note the drop of performance of ScISA
in VED2 set when compared to VED1, whereas remind and RedVine have almost the
same performance indicating ScISA is overfitting the data while remind and RedVine are
underfitting the data. The reason for the very high f1 but very low MCC score in remind

is because of few True Negatives.

ScISA performs quite well (w.r.t. MCC score) but does not have the modelling capability
our framework has since it underutilizes the temporal domain. While we do not outperform
the state-of-the-art for all evaluation measures, the proposed scheme is still general, i.e.,
(i) it gives good interpretations of activities in video scenes; (ii) does take the temporal
domain into account unlike the ScISA and therefore provides better modelling capabilities;
(iii) gives high recall while precision can be improved with further post-processing and
(iv) provides (elegant) logical rules which can be easily interpreted by a human observer.
One major drawback of ScISA is the lack of spatio-temporal localization of the recognized
event. It is suitable only for the event classification tasks (verbs dataset) but not for the
event recognition tasks (airport domain). Although we do not report on localization here
(owing to the short videos in the data set), deriving localization (or position) information
from remind is trivial once the event is recognized since the intervals and objects involved
are explicitly identified in the rule body.

75

Dubba, Cohn, Hogg, Bhatt & Dylla

Method avg-prec avg-rec f1 MCC

remind 0.24 0.56 0.34 0.05
RedVine 0.32 0.24 0.28 0.16
ScISA 0.91 0.54 0.68 0.67

Table 4: Performance in the verbs domain: VED1, macro-average per verb.

Method total prec total rec f1 MCC

remind 0.21 0.59 0.31 0.0
RedVine 0.37 0.24 0.30 0.19
ScISA 0.92 0.60 0.72 0.70

Table 5: Performance in the verbs domain: VED1, micro-average (total detection classifi-
cation)

Method avg-prec avg-rec f1 MCC

remind 0.25 0.59 0.35 0.04
RedVine 0.35 0.25 0.29 0.17
ScISA 0.49 0.20 0.29 0.21

Table 6: Performance in the verbs domain: VED2, macro-average per verb

Method total prec total rec f1 MCC

remind 0.21 0.63 0.32 0.08
RedVine 0.40 0.26 0.31 0.20
ScISA 0.59 0.29 0.39 0.33

Table 7: Performance in the verbs domain: VED2, micro-average (total detection classifi-
cation)

8.4 Experimental Results and Evaluation for IIA

The IIA framework has been evaluated on both the airport and verb datasets. We use
Hyprolog, a logic programming framework capable of abductive inference (Christiansen &
Dahl, 2005).

8.4.1 Embedding Spatial Theory for the Airport Domain

For the airport domain, we have encoded the RCC-5 spatial theory Σspace into the frame-
work that contains the conceptual neighbourhood graph, the JEPD relationships and the
composition theorems of the spatial relations used as follows:

76

Learning Relational Event Models from Video

% Sample JEPD constraints (P1 - P2) for RCC-5

dc(X, Y, T) , touch(X, Y, T) <=> fail.

dc(X, Y, T1), touch(X, Y, T2), during(T1, T2) <=> fail.

dc(X, Y, T1), touch(X, Y, T2), during(T2, T1) <=> fail.

dc(X, Y, T1), touch(X, Y, T2), overlaps(T1, T2) <=> fail.

dc(X, Y, T1), touch(X, Y, T2), overlaps(T2, T1) <=> fail.

% Conceptual Neighbourhood constraints (P3) for RCC-5

dc(X, Y, T1), in(X, Y, T2), meets(T1, T2) <=> fail.

in(X, Y, T1), dc(X, Y, T2), meets(T1, T2) <=> fail.

% Sample Composition Theorem (P4) for RCC-5

in(X, Y, T1), dc(Y, Z, T2), touch(X, Z, T3), during(T2, T1),

during(T3, T2) <=> fail.

The JEPD and the CND property constraints forbid the abduction of facts which con-
tradict the spatial theory thus avoiding physically impossible scenarios and this also helps
abduction to complete in reasonable time.

To explain our approach, consider the following fragments of actually occurring datasets
(Ex:1 - Ex:4) for the event Aircraft Arrival :

Ex:1 dc(arr zone,obj(aircraft(obj45)),intv(6661,7137))

touch(arr zone,obj(aircraft(obj45)),intv(7138,29114))

touch(arr zone,obj(veh(light veh(gpu(obj54)))),intv(7154,8161))

dc(arr zone,obj(veh(heavy veh(loader(obj2)))),intv(749,30380))

Ex:2 dc(arr zone,obj(aircraft(obj68)),intv(2342,2663))

touch(arr zone,obj(aircraft(obj68)),intv(2664,29524))

Ex:3 dc(arr zone,obj(veh(light veh(trolley(obj0)))),intv(285,21494))

touch(arr zone,obj(aircraft(obj41)),intv(4458,32404))

touch(arr zone,obj(veh(light veh(trolley(obj2)))),intv(1712,32405))

Ex:4 dc(arr zone,obj(aircraft(obj33)),intv(2435,6987))

touch(arr zone,obj(veh(heavy veh(loader(obj27)))),intv(2197,2310))

dc(arr zone,obj(veh(heavy veh(loader(obj27)))),intv(2311,2645))

We obtain the following model for Aircraft Arrival event learned by the ILP approach from
the first two examples of the given examples with arr zone denoting a specific zone on the
apron and any Ti denotes a time point. Each fact has two time points indicating the start
and end of an interval in which the spatio-temporal fact holds.

aircraft arrival([intv(T1,T2), intv(T3,T4)]) :-
dc(arr zone, obj(aircraft(V)), intv(T1,T2)),
touch(arr zone, obj(aircraft(V)), intv(T3,T4)),
meets(intv(T1,T2), intv(T3,T4)).

77

Dubba, Cohn, Hogg, Bhatt & Dylla

time

dis(arr_zone,obj(aircraft(V)),T1,T’) con(arr_zone,obj(aircraft(V)),T’+1,T2)
aircraft_arrival(T1,T2)

obj

obj

Z1
Z2

Z3

Z4 Z5

Z3

Z5Z4

Z2

Z1

arr_zone arr_zone

(a) Spatial primitive based event modelling

time

con(arr_zone,obj(aircraft(obj996)),16631,16868)rel?(arr_zone,obj?,5338,16630)
aircraft_arrival(5338,16868)

966

Z5Z4

Z3

Z2

966

Z5Z4

Z3

Z1
Z2

Z1

arr_zone arr_zone

(b) Narrative completion (of data video) and previously learned model

Figure 12: IIA Scenario and Narrative Completion; E.g., aircraft arrival

This rule states that an aircraft arrival takes place if there is some interval in which an
aircraft is disconnected from arr zone directly followed by an interval, i.e., meets, where
the same aircraft is connected to arr zone. This model does not cover any other examples
apart from Ex:1 and Ex:2. Ex:3 has a missing dc relation related to the aircraft whereas
Ex:4 has a missing touch relation (Fig. 12b). These represent the typical data corruption
at a higher level because of tracking error at lower level video processing at different stages
in the video.

8.4.2 Narrative Completion in the Airport Domain

Multiple explanations are interesting as they give several possible scenarios that are all con-
sistent with the narrative. For example, consider Ex:4 where a touch fact related to aircraft
arrival event is missing in the narrative. This happens when the vision algorithm fails to
detect the aircraft when it is coming towards the parking zone as such a big object changes
the light conditions in the scene. The abduction system comes up with two explanations (as
shown in the following sample interactive run of the system), one filling the missed fact that
is consistent with the narrative and the background knowledge and constraints. Another
explanation is using a hypothetical object (G41673) that is not present in the database.

78

Learning Relational Event Models from Video

This explanation is more expensive than the first explanation, so the system chose the first
explanation.

%A small narrative with three observations (The ‘touch’ fact

%is missing, this happens, when the vision algorithm fails

%to detect the aicraft when it is close: Approximate

%interval can be specified for aircraft-arrival query

%dc(arr_zone,obj(aircraft(obj33)),intv(2435,6987))

%touch(arr_zone,obj(veh(heavy_veh(loader(obj7)))),intv(2197,2310))

%dc(arr_zone,obj(veh(heavy_veh(loader(obj7)))),intv(2311,2645))

?- aircraft_arrival(intv(2000,12000)).

touch(arr_zone,obj(aircraft(obj33)),intv(6988,7988))

true ;

dc(arr_zone,obj(aircraft(_G41673)),intv(2435,6987))

touch(arr_zone,obj(aircraft(_G41673)),intv(6988,7988))

true ; false.

With narrative completion, it is possible to cover all the examples given above, with one
single Aircraft Arrival model learned. This avoids learning spurious rules to cover these
corrupted examples thus giving us compact and semantically meaningful models.

To evaluate our approach, we compare the rules learned using only induction and rules
learned using the IIA algorithm. The first column in Table 8 shows the events that we
considered for the experiments, the second column shows the number of instances of that
particular event in the 15 turnarounds. The third column shows the number of rules learned
by using only ILP while the fourth column shows the results using the IIA algorithm while
fifth column shows the number of examples that were not covered by the induced rules
but were explained using abduction and hence no rules learned from them. By interleaving
induction and abduction, we were able to avoid learning spurious rules as shown by the
results. For most classes, the number of rules are reduced by about 50% and the overall
performance is also increased. We also observed that the rules which had been previously
learned for the examples now covered by abduction did not semantically correspond to the
events.

8.4.3 Evaluating IIA on the Verbs Dataset

For the verbs domain, we encoded the spatial theory for QTCL1 spatial calculi. Though
we also used domain-dependent primitive events for this domain besides QTCL1, we did
not encode any spatial theory for these relations as it is not well defined. For example, the
domain-dependent primitives for this domain are neither jointly exhaustive nor pair-wise
disjoint. We also avoided abducing explanations with these relations by not including these
relations in the list of abducibles. 10-fold cross-validation was used for evaluation for verbs
dataset. Since each video is short in duration with around 200 frames, we used classification
instead of recognition. From Table 9 it is clear that using abduction reduces the number
of rules in event model thereby giving a more compact model. In the verbs dataset results,
there is no considerable change in performance as this is a classification task rather than a
recognition task. The main performance increase with IIA during inference comes when

79

Dubba, Cohn, Hogg, Bhatt & Dylla

Airport Events #pos 2 ⋄ RoI PoI RIA PIA

FWD CN LoadUnload 5 2 1 2 0.8 0.3 0.8 0.4
GPU Positioning 15 5 3 4 1 0.2 1 0.4
Aircraft Arrival 15 5 2 5 0.38 0.26 0.33 0.32
Aircraft Departure 15 5 2 7 0.8 0.15 0.71 0.26
AFT Bulk LoadUnload 12 5 2 4 0.63 0.43 0.63 0.65
Left Refuelling 6 2 1 2 0.66 0.5 0.66 0.55
PB Positioning 15 4 3 2 0.33 0.34 0.33 0.42
AFT CN LoadUnload 7 3 1 3 0.57 0.4 0.57 0.51
PBB Positioning 15 4 3 2 1 0.57 1 0.62
PBB Removing 15 5 2 5 0.54 0.23 0.54 0.31
FWD Bulk LoadUnload 3 2 1 1 1 1 1 1

 Num of rules with only Induction 2 Num of rules with IIA ⋄ avg num of examples covered by abd

Table 8: Airport domain IIA results averaged from all iterations in leave-one-out testing.
RoI, PoI - recall and precision with only induction: RIA, PIA - recall and precision using
IIA.

Verb Events #pos 2 ⋄ RoI PoI RIA PIA

Approach 584 12 5 45 0.73 0.12 0.74 0.12
Arrive 8 2 1 2 0.50 0.05 0.50 0.05
Attach 48 6 3 12 1.00 0.14 1.00 0.17
Bounce 22 2 2 0 0.95 0.06 0.95 0.08
Catch 201 7 4 31 0.59 0.11 0.56 0.11
Chase 108 11 7 19 0.59 0.08 0.57 0.08
Collide 101 6 4 14 0.98 0.16 0.98 0.18
Dig 140 10 7 21 0.96 0.38 0.96 0.39
Drop 44 2 2 0 1.00 0.16 1.00 0.16
Exchange 18 6 3 4 0.40 0.03 0.40 0.03
Fall 134 8 5 18 0.92 0.35 0.90 0.35
Give 552 27 20 54 0.94 0.56 0.94 0.60
Jump 150 6 4 14 0.98 0.13 0.98 0.13
Kick 48 4 3 6 1.00 0.15 1.00 0.15
Leave 116 10 4 34 0.67 0.20 0.67 0.22
Lift 78 8 5 17 0.67 0.24 0.67 0.24
Pass 76 8 4 13 0.87 0.10 0.87 0.12
Pickup 40 6 4 8 0.81 0.13 0.81 0.16
Run 76 7 5 7 0.57 0.12 0.57 0.12
Throw 26 3 2 5 0.67 0.11 0.67 0.11

 Num of rules with only Induction 2 Num of rules with IIA ⋄ avg num of examples covered by abd

Table 9: Verbs dataset IIA results averaged from all iterations in 10-fold cross-validation
testing. RoI, PoI - recall and precision with only induction: RIA, PIA - recall and precision
using IIA.

there is reduction of false positives because of fewer rules and in recognition there is a high
possibility of multiple rules firing in the test data thereby giving many false positives. In
classification, this is not the case, as once a vignette is classified as being a member of a
particular event class by a rule, the classification by other rules of the event class does not
affect the overall outcome for that vignette.

80

Learning Relational Event Models from Video

9. Limitations and Future Work

The models used by remind are local, i.e., without the context of a wider activity model
that could be used to filter out recognized instances thereby increasing performance. For
example, in some turn-arounds in the airport domain, the Aircraft Departure event is
sometimes recognized even before Aircraft Arrival is recognized resulting in false positives
for Aircraft Departure. Another limitation of the learned models is the lack of representation
of duration for events. Many recognized event instances are rejected by the system because
the temporal extent of the recognized instances is long and fails our criteria of 20% overlap
with the ground truth. These can be reduced by learning a global model (Greenall, Cohn, &
Hogg, 2011) that constrains the ordering of events such that Aircraft Departure detections
can happen only after Aircraft Arrival. The activity models can also represent expected
duration of events, the temporal separation of events and the number of occurrences.

The framework is sensitive to the initial example selected to start the learning procedure.
The induction system used is based on the algorithm that uses a bottom clause (Muggleton,
1995) constructed from the selected example to guide the refinement of the hypothesis while
searching in the lattice. Hence it is possible it might select a corrupted example initially and
this might affect the whole induction process. This is a typical problem in machine learning
and there are several ways to avoid this. One promising approach that we followed in this
work is to repeat the learning with different examples chosen randomly as the starting point
then selecting the iteration that gives the minimum number of rules.

Another limitation of the framework is its dependency on the tracking of objects as it
uses the interactions of objects to model events. Challenging scenarios for object tracking
pose limitations for the current framework. The current framework is not probabilistic, i.e.,
neither the input data nor the learned models are probabilistic. One direction of future work
is to extend the framework using statistical relational learning so that it can use soft evidence
and learn more robust probabilistic relational models. Since the current framework does
not handle hierarchies of events, the framework could be extended to handle hierarchical
composition of events. One possible approach for this is to learn models of events at a
particular layer using the events at lower layers as primitives.

10. Conclusion

In this paper, we have proposed a supervised relational learning framework, and an exten-
sion using abduction, to learn event models from complex videos. Such event models can
be used to recognize event instances from unseen videos. We presented a Type Refinement
operator that exploits the object type hierarchy in the domain to search for better hypothe-
ses and also proved that it is an optimal refinement operator. We presented an empirical
evaluation of the proposed framework on two real world video data sets and the results are
encouraging, showing that the framework can be effectively used in real world systems for
event recognition in various domains. We also showed that the proposed framework has
better generalization capabilities and performance when compared to the state-of-the-art
systems in event modelling. Finally, we note that although we have focused on learning
from video data here, in fact the approach would also be suitable for learning from other
data sources which provide tracks of interacting moving objects (e.g. from GPS streams).

81

Dubba, Cohn, Hogg, Bhatt & Dylla

Acknowledgements

We thank colleagues in the CO-FRIEND, RACE, STRANDS and VIGIL projects consortia
for their valuable inputs to this research, and the respective funding from EU Framework
7 (FP7-ICT-214975, FP7-ICT-27752, FP7-ICT-600623) and DARPA (W911NF-10-C-0083).
Also financial support by the Deutsche Forschungsgemeinschaft in the Transregional Col-
laborative Research Center SFB/TR 8 Spatial Cognition project R3-[Q-Shape] is gratefully
acknowledged.

Appendix A. Proof of Optimality of Type Refinement Operator ρτ

Let T be the type hierarchy tree with set of nodes TV , and set of leaf nodes TL, i.e. most
specific types (TL ⊂ TV) and τr be the root of the tree (most generic type). A type at a
parent node τ in T is more generic than the types τi at its children nodes and we write
τ = τi.

Let g be a function, g : TV → TV , that maps a child node to its immediate parent. The
function g can be considered as a generalizing operator that generalizes a type to its nearest
generic type. g can be applied as long as τi 6= τr

Let Sτi be an ordered (from most-specific to most general) set of all possible generaliza-
tions of τi including τi.

Sτi = {τi, g(τi), g(g(τi)), . . . , τr}

For any set of types {τ1, τ2, . . . , τn}, we can define corresponding sets Sτ1 , Sτ2 , . . . , Sτn .
Let {h1, h2, . . . , hm} be the set of types19 in the clause C where {h1, h2, . . . , hm} ⊆ TV . For
{h1, h2, . . . , hm}, we can define Sh1

, Sh2
, . . . , Shm

. We can make the set {h1, h2, . . . , hm}
more generic by applying g (one or more times) on any arbitrarily selected subset of types
one type at a time.

The Cartesian product Sh1
× Sh2

× . . . × Shm
is the set of tuples where each tuple is a

possible generalization of {h1, h2, . . . , hm}.

Let l be a function mapping a non-leaf type node to an integer that specifies how many
times g was applied to the original leaf node to obtain the non-leaf node20 in T , l : TV → N .

Using l, we can generate a new set Nhi
from Shi

by replacing τi by l(τi). Now we can
generate a new Cartesian product Nh1

×Nh2
× . . .×Nhm

.

Example .1. Let (τ1, τ2, τ3) be the set of types from a clause C and let the type hierarchy
be as given in Fig.13. Then we can define Sτ1 , Sτ2 , Sτ3 and Nτ1 , Nτ2 , Nτ3 as follows and the
tree representation of the Cartesian products Sτ1 ×Sτ2 ×Sτ3 and Nτ1 ×Nτ2 ×Nτ3 are given
in Fig.14 and Fig.15 respectively.

19. If we consider the list of types from a clause C where some types may be repeated because of some
arguments have the same type, the results in this appendix are still valid.

20. Note that in general, a non-leaf node can be obtained from any of the leaf nodes that are its descendants
but a unique leaf node can be obtained if we store the original leaf node that is generalized using g to
get the non-leaf type node.

82

Learning Relational Event Models from Video

τr

τ1 g(τ2), g(τ3)

τ2 τ3

Figure 13: An example type hierarchy.

Sτ1 = {τ1, g(τ1)}

Sτ2 = {τ2, g(τ2), g(g(τ2))}

Sτ3 = {τ3, g(τ3), g(g(τ3))}

Nτ1 = {0, 1}

Nτ2 = {0, 1, 2}

Nτ3 = {0, 1, 2}

φ

τ1

τ2

τ3 g(τ3) g(g(τ3))

g(τ2)

τ3 g(τ3) g(g(τ3))

g(g(τ2))

τ3 g(τ3) g(g(τ3))

g(τ1)

τ2

τ3 g(τ3) g(g(τ3))

g(τ2)

τ3 g(τ3) g(g(τ3))

g(g(τ2))

τ3 g(τ3) g(g(τ3))

Figure 14: Representing the Cartesian product Sτ1 ×Sτ2 ×Sτ3 as a tree. The root is empty
and the next layer corresponds to Sτ1 and so on. Note that g(τ1) = g(g(τ2)) = g(g(τ3)) = τr.
Each path in the tree to a leaf is a possible generalization of (τ1, τ2, τ3) – the leftmost path
being the null generalization, i.e. (τ1, τ2, τ3).

Definition .2. (Type Substitution, θτ) A type substitution θτ is a set
{h1/γ1, h2/γ2, . . . , hn/γn} where each hi is the type of a subset of variables in the
clause C and γi is the immediate generic type of hi (parent node of hi in the tree T). We
say γi is substituted for hi in the clause. The set {h1, h2, . . . , hn} is called the domain of
θτ , denoted dom(θτ) and the set (γ1, γ2, . . . , γn) is called range of θτ , denoted rng(θτ).

A type substitution is used to generalize the type of a subset of variables in the clause.

Definition .3. (Most Generic Type Substitution, θτr) A most generic type substitution is
a type substitution whose range is the set {τr} where τr the root of type hierarchy tree T .

A most generic type substitution is used to check if two clauses are structurally equivalent
(Def:4) by substituting the types of all variable by τr. Note that every clause C has a unique
most generic type substitution, θCτr , whose domain is the set of all types in C and range is
the set {τr}.

83

Dubba, Cohn, Hogg, Bhatt & Dylla

φ

0

0

0 1 2

1

0 1 2

2

0 1 2

1

0

0 1 2

1

0 1 2

2

0 1 2

Figure 15: Representing the Cartesian product Nτ1×Nτ2×Nτ3 as a tree. The root is empty
and the next layer corresponds to Nτ1 and so on. Each path to a leaf represents a possible
generalization of (τ1, τ2, τ3). Each generalization is obtained by following the path from
root to leaf and generalizing the type at each layer the number of times indicated by the
node value. For example, the highlighted sequence (1,2,1) corresponds to the generalization
(g(τ1), g(g(τ2)), g(τ3)). This can be obtained by generalizing τ1 once and generalizing τ2
twice and generalizing τ3 once. If a top to bottom order (left to right in case of tuples)
is followed, this is the only unique way to achieve the generalization (g(τ1), g(g(τ2)), g(τ3))
from (τ1, τ2, τ3).

Definition .4. (Structurally Equivalent, ≍) Two clauses, C and C ′ are structurally equiv-
alent, denoted C ≍ C ′, if CθCτr ≡ C ′θC

′

τr
.

A clause C is structurally equivalent to all the clauses obtained by replacing a subset of
types of variables in C by any of their generalizations.

Definition .5. (Generic Order w.r.t. types, �τ) A clause C is said to be more general
w.r.t. type than another clause C ′, denoted C �τ C ′, iff C ≍ C ′ and the set of types of C
are correspondingly more generic than the set of types of C ′.

Definition .6. (Type-Refinement Operator) Let ς be a clausal language, T a type hierarchy
and C a clause in ς. ςTC is a subset of ς defined over T and C where a clause C ′ ∈ ςTC is
structurally equivalent to C, i.e., C ≍ C ′. Let�τ be the subsumption order as defined above.
The Type-Refinement operator ρτ for 〈ςTC ,�τ 〉 is a function such that ρτ (C) ⊆ {D|D �τ C}.

• A One-step type refinement of C is defined when ρτ is applied only once, i.e. ρ1τ =
ρτ (C). An n-step type refinement can be defined similarly, i.e. ρnτ = {D | ∃E,E ∈
ρn−1
τ (C) such that D ∈ ρτ (E)}. The set of all type refinements on C is given by

ρ∗τ (C) = ρ1τ (C) ∪ ρ2τ (C) ∪

• ρτ is locally finite if for every C ∈ ς, ρτ (C) is finite and computable.

• ρτ is proper if for every C ∈ ς, ρτ (C) ⊆ {D|D ≺τ C}.

• ρτ is complete if for every C,D ∈ ς such that D ≺τ C, there is an E ∈ ρ∗τ (C) such
that D ∼ E (i.e. D and E are equivalent in the �τ order).

84

Learning Relational Event Models from Video

• ρτ is weakly complete for 〈ςTC ,�τ 〉 if ρ∗τ (C) = ςTC .

• ρτ is non-redundant if for every C,D,E ∈ ς, E ∈ ρ∗τ (C) and E ∈ ρ∗τ (D) implies
C ∈ ρ∗τ (D) or D ∈ ρ∗τ (C)

• ρτ is ideal if it is locally finite, proper and complete.

• ρτ is optimal if it is locally finite, non-redundant and weakly complete.

The type refinement operator selects a type hi from the set {h1, h2, . . . , hm} for C and ap-
plies the type generalizing operator to the type and the resulting set {h1, h2, . . . , g(hi), . . . , hm}
is used for substitution in C to obtain a more generic clause C ′ with respect to type, i.e.,
C ′ �τ C . The type refinement operator follows a left to right order in generalizing types
to avoid generating redundant clauses, i.e., if a type at position i is generalized then in the
next step of refinement of h′ no type at position j, j < i is selected for generalizing.

Theorem .7. ρτ is locally finite

Proof. Let T be the type hierarchy tree and TV be the set of all nodes in T and TC =
{h1, h2, . . . , hm} be the set of types in the clause C where TC ⊂ TV . Let g be the type
generalizing operator and ρτ be the type refinement operator. ρτ operates on C by selecting
a type from the set {h1, h2, . . . , hm} and generalizing it by applying g. There are only |TC |
possibilities to select from and for each possible type selected there is only one possible
generalization, as a type only has one parent in the tree T . Also each type can only be
generalized finite number of times (i.e., until it becomes τr). Hence the number of possible
refinements, i.e., |ρτ (C)| is finite making ρτ locally finite.

Theorem .8. ρτ is weakly complete

Proof. For any given clause C with set of types {h1, h2, . . . , hm} and T as defined above.
Let X1 be the set of substitutions {θ1τ,1, θ

1
τ,2, . . .} obtained from one-step type refinement

such that C ′
i = Cθ1τ,i and C ′

i ∈ ρ1τ (C). Let X = X1 ∪ X2 ∪ . . . where X2 is the set of

substitutions obtained from two-step type refinement and so on and {γ1i1, γ
1
i2, . . . , γ

1
im} be

the rng(θ1τ,i).

Let Γ1 be the set of tuples {(γ111, γ
1
12, . . . , γ

1
1m), . . . , (γ1i1, γ

1
i2, . . . , γ

1
im), . . .}, i.e. Γ1 is the

set of tuples where each tuple represents a possible type refinement of {h1, h2, . . . , hm}
through one-step type refinement and let Γ = Γ1 ∪ Γ2 ∪

It is easy to observe that any tuple P ∈ Γ is also a tuple in the Cartesian product
Sh1
× Sh2

× . . .× Shm
. In fact there is an exact one to one matching for the members of Γ

and members of Sh1
×Sh2

× . . .×Shm
. It is easy to obtain each member tuple, say P where

P = (γ1, γ2, . . . , γm) of the Cartesian product by generalizing {h1, h2, . . . , hm}. A type hi
is generalized until it is equal to γi before moving to the next type on the immediate right
of hi. In this way all possible type generalizations of {h1, h2, . . . , hm} are reachable from
{h1, h2, . . . , hm}, i.e., all possible type generalized clauses are reachable from C, hence ρτ
is weakly complete.

Theorem .9. ρτ is non-redundant

85

Dubba, Cohn, Hogg, Bhatt & Dylla

Proof. Let Nh1
×Nh2

× . . .×Nhm
be as defined previously for a set of types {h1, h2, . . . , hm}

from a clause C. This Cartesian product can be represented as a tree where the root is
empty and the next level is the elements from Nh1

and so on. Each path to a leaf represents
a possible generalization of {h1, h2, . . . , hm}. Each generalization is obtained by following
the path from root to leaf and generalizing the type at each layer the number of times
indicated by the node value. If a top to bottom order (left to right in case of tuples) is
followed, there is a unique way to obtain the generalization that path generates. Hence ρτ
is non-redundant.

Example .10. For example in Fig.15, the sequence (1,2,1) in bold corresponds to the gener-
alization (g(τ1), g(g(τ2)), g(τ3)). This can obtained by generalizing τ1 once and generalizing
τ2 twice and generalizing τ3 once. If a top to bottom order is followed, this is the only
unique way to achieve the generalization (g(τ1), g(g(τ2)), g(τ3)) from (τ1, τ2, τ3).

Theorem .11. ρτ is optimal

Proof. Since the type refinement operator is locally finite, weakly complete and non-redundant,
it is optimal.

References

Albanese, M., Moscato, V., Picariello, A., Subrahmanian, V., & Udrea, O. (2007). Detecting
stochastically scheduled activities in video. In Proceedings of the International Joint
Conference on Aritificial Intelligence (IJCAI), pp. 1802–1807.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of
the ACM, 26, 832–843.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine
Learning, 2 (1), 1–127.

Bhatt, M., & Loke, S. (2008). Modelling dynamic spatial systems in the situation calculus.
Spatial Cognition & Computation, 8 (1-2), 86–130.

Blockeel, H., De Raedt, L., Jacobs, N., & Demoen, B. (1999). Scaling up Inductive Logic
Programming by learning from interpretations. Data Mining and Knowledge Discov-
ery, 3 (1), 59–93.

Bundy, A., Byrd, L., & Mellish, C. (1985). Special-purpose, but domain-independent, in-
ference mechanisms. In Progress in Artificial Intelligence, pp. 93–111. London: Ellis
Horwood.

Chen, J., Cohn, A. G., Liu, D., Wang, S., Ouyang, J., & Yu, Q. (2015). A survey of
qualitative spatial representations. The Knowledge Engineering Review, 30, 106–136.

Christiansen, H., & Dahl, V. (2005). HYPROLOG: A new logic programming language
with assumptions and abduction. Logic Programming, 159–173.

Cohn, A. G. (1989). Taxonomic reasoning with many-sorted logics. Artificial Intelligence
Review, 3 (2), 89–128.

86

Learning Relational Event Models from Video

Cohn, A. G., Hogg, D. C., Bennett, B., Devin, V., Galata, A., Magee, D. R., Needham, C.,
& Santos, P. (2006). Cognitive vision: integrating symbolic qualitative representations
with computer vision.. Vol. 3948 of LNCS, chap. 14, pp. 221–246. Springer.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vol. 1, pp.
886–893.

Dubba, K. S., Bhatt, M., Dylla, F., Hogg, D. C., & Cohn, A. G. (2012). Interleaved
inductive-abductive reasoning for learning complex event models. In Inductive Logic
Programming, pp. 113–129. Springer.

Dubba, K. S., Cohn, A. G., & Hogg, D. C. (2010). Event model learning from complex
videos using ILP. In Proceedings of the European Conference on Artificial Intelligence
(ECAI), Vol. 215, pp. 93–98.

Fern, A., Givan, R., & Siskind, J. (2002). Specific-to-general learning for temporal events
with application to learning event definitions from video. Journal of Artificial Intel-
ligence Research, 17, 379–449.

Ferryman, J., Borg, M., Thirde, D., Fusier, F., Valentin, V., Bremond, F., Thonnat, M.,
Aguilera, J., & Kampel, M. (2005). Automated scene understanding for airport aprons.
LNCS-3809, Springer Verlag, 3809, 593.

Freksa, C. (1991). Conceptual neighborhood and its role in temporal and spatial reasoning.
In Singh, M., & Travé-Massuyès, L. (Eds.), Decision Support Systems and Qualitative
Reasoning, pp. 181–187. North-Holland, Amsterdam.

Ghahramani, Z. (1998). Learning Dynamic Bayesian networks. Adaptive Processing of
Sequences and Data Structures, 168–197.

Greenall, J., Cohn, A. G., & Hogg, D. C. (2011). Temporal structure models for event
recognition. British Machine Vision Conference (BMVC).

Gupta, A., Srinivasan, P., Shi, J., & Davis, L. (2009). Understanding videos, constructing
plots learning a visually grounded storyline model from annotated videos. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2004–2011.

Hakeem, A., Sheikh, Y., & Shah, M. (2004). CASEE : A hierarchical event representation
for the analysis of videos. In Proceeding of the National Conference on Artificial
Intelligence (AAAI), pp. 263–268.

Hartley, R., & Zisserman, A. (2004). Multiple View Geometry in Computer Vision (Second
edition). Cambridge University Press.

Hazarika, S. M., & Cohn, A. G. (2002). Abducing qualitative spatio-temporal histories
from partial observations. In International Conference on Principles Of Knowledge
Representation And Reasoning, pp. 14–25.

Hoogs, A., & Perera, A. G. A. (2008). Video activity recognition in the real world. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 1551–
1554.

87

Dubba, Cohn, Hogg, Bhatt & Dylla

Ivanov, Y., & Bobick, A. (2000). Recognition of visual activities and interactions by stochas-
tic parsing. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
22 (8).

Jiang, Z., Lin, Z., & Davis, L. S. (2010). A tree-based approach to integrated action lo-
calization, recognition and segmentation. Third Workshop on Human Motion (in
conjuntion with ECCV).

Kakas, A., Kowalski, R., & Toni, F. (1992). Abductive logic programming. Journal of Logic
and Computation, 2 (6), 719.

Kakas, A., & Riguzzi, F. (2000). Abductive concept learning. New Generation Computing,
18 (3), 243–294.

Könik, T., & Laird, J. (2006). Learning goal hierarchies from structured observations and
expert annotations. Machine Learning, 64 (1), 263–287.

Laptev, I. (2005). On space-time interest points. International Journal of Computer Vision,
64 (2), 107–123.

Laptev, I., & Pérez, P. (2007). Retrieving actions in movies. In IEEE International Con-
ference on Computer Vision (ICCV), pp. 1–8.

Le, Q., Zou, W., Yeung, S., & Ng, A. (2011). Learning hierarchical invariant spatio-temporal
features for action recognition with independent subspace analysis. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 3361–3368. IEEE.

Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60 (2), 91–110.

McCarthy, J. (1986). Applications of circumscription to formalizing common-sense knowl-
edge. Artificial Intelligence, 28 (1), 89–116.

Medioni, G., Cohen, I., Brémond, F., Hongeng, S., & Nevatia, R. (2001). Event detection
and analysis from video streams. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 23 (8), 873–889.

Miller, R., & Shanahan, M. (1994). Narratives in the Situation Calculus. Journal of Logic
and Computation, 4 (5), 513–530.

Morariu, V. I., & Davis, L. S. (2011). Multi-agent event recognition in structured scenarios..
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3289–
3296.

Morariu, V. I., Harwood, D., & Davis, L. S. (2013). Tracking people’s hands and feet
using mixed network and/or search.. In IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI).

Moyle, S. (2003). Using theory completion to learn a robot navigation control program.
Proceedings of the International Conference on ILP, 182–197.

Moyle, S., & Muggleton, S. (1997). Learning programs in the Event Calculus. LNAI-1297,
Springer-Verlag, 205–212.

Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13 (3&4),
245–286.

88

Learning Relational Event Models from Video

Muggleton, S., & Bryant, C. H. (2000). Theory completion using inverse entailment. In Pro-
ceedings of the International Conference on ILP, pp. 130–146, UK. Springer-Verlag.

Needham, C., Santos, P., Magee, D., Devin, V., Hogg, D., & Cohn, A. (2005). Protocols
from perceptual observations. Artificial Intelligence, 167 (1-2), 103–136.

Nevatia, R., Hobbs, J., & Bolles, B. (2004). An ontology for video event representation.
In Computer Vision and Pattern Recognition Workshop (CVPRW-04), pp. 119–119.
IEEE.

Nienhuys-Cheng, S., & De Wolf, R. (1997). Foundations of Inductive Logic Programming,
Vol. 1228. Springer Verlag.

Oh, S., Hoogs, A., Perera, et al. (2011). A large-scale benchmark dataset for event recog-
nition in surveillance video. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3153–3160.

Poole, D., Goebel, R., & Aleliunas, R. (1987). Theorist: A logical reasoning system for
defaults and diagnosis. In The Knowledge Frontier, pp. 331–352.

Quinlan, J., & Cameron-Jones, R. (1993). FOIL: A midterm report. In Proceedings of the
European Conference on Machine Learning (ECML), pp. 1–20.

Quinlan, J. (1990). Learning logical definitions from relations. Machine Learning, 5 (3),
239–266.

Rabiner, L. (1989). A tutorial on Hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77 (2), 257–286.

Randell, D. A., Cui, Z., & Cohn, A. (1992). A spatial logic based on regions and connec-
tion. In Proceedings of the International Conference on Knowledge Representation
and Reasoning, pp. 165–176. Morgan Kaufmann.

Ryoo, M. S., & Aggarwal, J. K. (2009). Semantic representation and recognition of continued
and recursive human activities. International Journal of Computer Vision, 82 (1), 1–
24.

Ryoo, M., & Aggarwal, J. (2011). Stochastic representation and recognition of high-level
group activities. International Journal of Computer Vision, 93 (2), 183–200.

Sridhar, M., Cohn, A. G., & Hogg, D. C. (2010). Unsupervised learning of event classes from
video. In Proceedings of the National Conference on Artificial Intelligence (AAAI),
pp. 1631–1638.

Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., & Muggleton, S. (2006). Application of
abductive ILP to learning metabolic network inhibition from temporal data. Machine
Learning, 64 (1), 209–230.

Tamaddoni-Nezhad, A., & Muggleton, S. (2009). The lattice structure and refinement
operators for the hypothesis space bounded by a bottom clause. Machine learning,
76 (1), 37–72.

Van de Weghe, N., Cohn, A., De Tre, G., & De Maeyer, P. (2006). A qualitative trajec-
tory calculus as a basis for representing moving objects in geographical information
systems. Control and Cybernetics, 35 (1), 97.

89

Dubba, Cohn, Hogg, Bhatt & Dylla

Veeraraghavan, H., Papanikolopoulos, N., & Schrater, P. (2007). Learning dynamic event
descriptions in image sequences. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1–6.

Vu, V.-T., Bremond, F., & Thonnat, M. (2003). Automatic video interpretation: A novel
algorithm for temporal scenario recognition. In Proceedings of the International Joint
Conference on Artifical Intelligence (IJCAI), Vol. 3, pp. 1295–1300.

Walther, C. (1985). A mechanical solution of Schubert’s Steamroller by many-sorted reso-
lution. Artificial Intelligence, 26 (2), 217–224.

Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. ACM Computing
Surveys (CSUR), 38 (4), 13.

“YouTube” (2015) http://www.youtube.com/yt/press/statistics.html. Ac-
cessed January 25, 2015.

90

