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Abstract

Recognizing 3D object has attracted plenty of attention

recently, and view-based methods have achieved best re-

sults until now. However, previous view-based methods

ignore the region-to-region and view-to-view relationships

between different view images, which are crucial for multi-

view 3D object representation. To tackle this problem, we

propose a Relation Network to effectively connect corre-

sponding regions from different viewpoints, and therefore

reinforce the information of individual view image. In ad-

dition, the Relation Network exploits the inter-relationships

over a group of views, and integrates those views to obtain

a discriminative 3D object representation. Systematic ex-

periments conducted on ModelNet dataset demonstrate the

effectiveness of our proposed methods for both 3D object

recognition and retrieval tasks.

1. Introduction

We humans live in an environment that 3D object is a

ubiquitous and rich source of information. Understand-

ing and representing 3D object has been one of the most

fundamental problems in the field of computer vision and

artificial intelligence, as it becomes increasingly impor-

tant for a wide range of practical applications (e.g. self-

driving, autonomous robot). With the success of deep

learning [23, 33, 25, 42] and the rapid development of

large-scale 3D repositories [6, 46], various approaches

have been proposed for 3D object recognition. Overall

speaking, those approaches can be divided into three lines

of research according to the input modality: view-based

approaches [39, 43, 17, 2, 31, 47, 10, 18], voxel-based

approaches [46, 24, 27, 31, 35] and pointset-based ap-

proaches [30, 32, 20, 38]. The view-based approaches ren-

der the 3D object from multiple views and deploy image-

based classifiers on individual view image; The voxel-based

approaches represent the object as a 3D occupancy grid and

analyze the grid using 3D deep networks. The pointset-

based approaches represent the object as a collection of
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Figure 1. The overview of our method. The Reinforcing block

models the region-to-region relationships between different views

to reinforce their information. The Integrating block models the

view-to-view relationships over views to integrate them into an

effective 3D object descriptor.

unordered points and make predictions based on the point

cloud. Among these approaches, the view-based methods

have achieved the best performance so far. Comparing to

other input modality, the view-based input is relatively low-

dimensional, contains more fine-grained details about the

3D object, and is robust to 3D object representation arti-

facts. Another advantage of view-based methods is that the

input views can be easily captured comparing to other meth-

ods, especially for the situation that one cannot directly ac-

cess to 3D object models. The great success of view-base

methods also benefits from the well-established 2D deep

representation models, e.g., VGG [37], GoogLeNet [40],

ResNet [13] and DenseNet [16].

Intuitively, when humans recognize the 3D object in the

world from one particular viewpoint, the object usually have

some regions that are occluded, reflective, incomplete or to-

tally invisible to human eyes. Thus humans will need in-

formation from other viewpoints to fully understand the ob-

ject. For this reason, how to combine the information from

multiple viewpoints leaves a very important question. Un-

fortunately, current prevailing view-based methods, in gen-

eral, cannot solve this problem fundamentally: they lack

a mechanism to reason about the relationships of the 2D

appearances from different viewpoints. For example, the

Multi-View CNN (MVCNN) [39] method uses a view-wise
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pooling strategy to fuse the feature from individual views

into a global 3D object descriptor. But for a particular part

of the 3D object, it will be projected to different spatial po-

sitions in the 2D plane if the 3D shape is rendered from dif-

ferent viewpoints. The view-pooling operation ignores the

spatial correlation between 2D appearances from different

viewpoints, therefore, the corresponding regions from dif-

ferent views are misaligned, and the information from dif-

ferent views cannot be effectively combined. For instance,

as shown in Figure 2, the front (nose) of the plane in differ-

ent views cannot be effectively aggregated through view-

pooling. Moreover, view-pooling strategy treats all views

equally, without considering the relationships between dif-

ferent views and the discriminative power of each view.

To tackle these issues, we argue that there are two key

ingredients: First, modeling the region-to-region relation-

ships. In case that some parts of the 3D object are not

clearly understood from some particular viewpoint (e.g.,

partially occluded, reflective, incomplete), the missing in-

formation can be found from other viewpoints. For a given

view image, if there is a strategy to matching the regions in-

side it and the corresponding regions in other views, the in-

formation of that given view can be reinforced by exploiting

the relationships between matching regions. Second, mod-

eling the view-to-view relationships. In case that several

parts of the 3D object are totally invisible from some view-

points, just modeling region-to-region relationships cannot

further help those views to gain information about the in-

visible parts. We will need to model the view-to-view re-

lationships to determine the discriminative power of each

view, and further integrate those views to obtain the final

3D object descriptor.

Motivated by the above analysis, we propose a novel

framework for multi-view 3D object recognition. Figure 1

shows an overview of our framework. The model we de-

velop, which we term Relation Network, employs two basic

building blocks, i.e., the Reinforcing block and the Integrat-

ing block. The Reinforcing block is responsible for explor-

ing region-to-region relationships in order to reinforce the

information for each individual view; The Integrating block

is responsible for modeling view-to-view relationships so

that the information from individual view can be integrated

effectively. Specifically, for the feature map of a given view

image, each spatial position in the feature map is a feature

vector corresponds to a certain region in the image. For

each region in the given view image, the Reinforcing block

finds the matching/related regions from other views and re-

inforces the information of that region by taking advantage

of the clues from the matching regions. In this way, the

information of views can be reinforced. After that, the Inte-

grating block employs a self-attentive selection mechanism

to generate the importance score for each view, which de-

notes the relative discriminative power of that view. Note

Feature maps

...

View-pooled regions

Feature maps Feature maps

Corresponding regions

Figure 2. The information from corresponding regions (the front

of the plane) should be aggregated, but the view-pooling fuses the

information from red boxes.

that to determine whether a certain view is discriminative,

we also need to look at the remaining views. This moti-

vates us to consider the relationships over views in the self-

attention mechanism. Finally, the Integrating block takes

the importance scores and high-level visual features into

consideration and generates the final 3D object descriptor.

To demonstrate the effectiveness of the Relation Net-

work, we have conducted systematic experiments on the

ModelNet dataset for both 3D object classification and re-

trieval tasks. Our method uses only greyscale input and

achieves state-of-the-art performance. Our main contribu-

tions can be summarized as follows:

• Different from the previous multi-view 3D object

recognition methods, we utilize a novel relation-based

framework to specifically model both the region-to-

region relationships and view-to-view relationships

over the multi-view input data.

• We propose a Relation Network for the task of 3D

object recognition and retrieval. The model contains

several Reinforcing and Integrating blocks. The Rein-

forcing block reinforces the information for individual

view by modeling the relationships between its inside

regions and the corresponding regions in other views.

The Integrating block models the inter-relationships

over views and integrates the information from those

views to generate a final 3D object descriptor.

• Our model can be trained end-to-end, and we demon-

strate the effectiveness of our model on the Model-

Net dataset. Our proposed method outperforms exist-

ing models in both 3D object recognition and retrieval

tasks. Besides, we visualize the behavior of the Rein-

forcing block and the Integrating block to gain more

insights about the framework.

2. Related Works

2.1. Handcraft Descriptors

A growing body literature on handcraft 3D object de-

scriptor analysis has been developed in the field of computer

vision and graphics, which can be broadly divided into two

categories: shape-based handcraft feature and view-based

handcraft feature. shape-based handcraft feature is directly
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extracted from the native models. For example, it can be

represented as features constructed from curvatures, nor-

mals, distances, angles, tetrahedra volumes, triangle areas

or local shape diameters of the 3D object surface [29, 8, 14];

mathematical characteristics of spherical functions defined

in 3D voxel grids [19]; heat kernel signatures on 3D poly-

gon meshes [5, 22]; or extended SIFT and SURF feature

descriptors of 3D volumetric grids [21], etc. View-based

handcraft feature is extracted from a collection of 2D pro-

jections from the 3D object. For instance, the Lighting Field

descriptor [9] consists of a set of geometric and Fourier de-

scriptors which are extracted from the object silhouettes.

Murase and Nayar [28] compress the set of 2D views to

a low-dimensional parametric eigenspace, then they recog-

nize the identity of the 3D object based on the manifold it

lies.

2.2. Voxel­based Approaches

Recently, deep neural networks have been applied to

3D object recognition by representing the objects as voxel

grids. Wu et al. [46] represent the 3D object as a binary 3D

tensor, where each voxel can be categorized as free space

or occupied space. And they propose the 3D ShapeNets to

model the probability distribution of the binary variables in

the tensor. Similarly, Maturana and Scherer [27] propose

a VoxNet to effectively recognize the 3D object based on

the voxel grid. Qi et al. [31] propose two distinct volu-

metric CNN network for 3D object recognition. The first

architecture utilizes multi-task training to help the network

to scrutinize details of 3D object carefully. The second ar-

chitecture employs long anisotropic kernels to model the

long-distance interactions in the voxel grid. Brock et al. [4]

propose a Voxception-ResNet (VRN) and achieve a signif-

icant improvement. However, these methods are limited by

the data sparsity and costly computation of voxel data.

2.3. Pointset­based Approaches

Point cloud is another type of 3D data structure. In the

basic setting, a point cloud is a set of unordered points, and

each point is represented by its three coordinates in the geo-

metric space plus additional information such as color, nor-

mal etc. The seminal work of Qi et al. [30] uses a PointNet

architecture that directly takes unordered point sets as input

and outputs 3D object recognition and part segmentation

results. However, the PointNet architecture cannot model

fine-grained patterns due to its limitation in capturing local

structures induced by the metric space points live in. Qi et

al. [32] later solve this problem and propose a PointNet++

architecture to learn hierarchical features with respect to the

distance metric. In parallel, Klokov and Lempitsky [20]

propose the Kd-Networks for 3D object recognition by per-

forming multiplicative transformations and using Kd-tree to

build the computational graphs.

2.4. View­based Approaches

An alternative direction is to represent the 3D object

as a collection of 2D view images. Su et al. [39] pro-

pose a multi-view convolutional neural network (MVCNN)

that first extracts convolutional feature from each view in-

dividually, then MVCNN uses a view-pooling strategy to

aggregate them into the global 3D representation. Qi et

al. [31] introduce a new multi-resolution component into

the MVCNN, and improve the performance accordingly.

Johns et al. [17] decompose the image sequence into a col-

lection of image pairs, and then classify each pair indepen-

dently, finally they learn the 3D object classifier by weight-

ing the contribution of individual pairs. Wang et al. [43]

propose a view clustering and pooling layer and insert it into

the existing model to achieve better performance. Feng et

al. [10] propose a group-view convolutional neural network

(GVCNN) to model the hierarchical correlation in multiple

views. Yu et al. [47] tackle the problem of 3D object recog-

nition from the perspective of patch similarity and propose a

multi-view harmonized bilinear network (MHBN) to obtain

the 3D object representation.

2.5. Attention Modules

There has been a long line of research that incorpo-

rates attention/relation modules into neural networks for

the task of natural language processing [1, 11, 41], com-

puter vision [12, 44, 26, 15] and physical system model-

ing [3, 34, 45]. An early example is the work by Bahdanau

et al. [1] that integrates the soft attention mechanism into

the RNN unit to enable the model to automatically focus on

relevant parts of the source sentence when predicting a tar-

get word. Vaswani et al. [41] propose a new architecture,

the Transformer, to replacing the RNN by attention models

entirely. Our method is highly related to these works. We

extend the self-attention modules to model the region-to-

region relationships and view-to-view relationships in the

view sequence. We nontrivially bridge self-attention mod-

ules to 3D objects recognition.

3. Methods

3.1. Overview

Our approach rests on the assumption that connecting

corresponding regions from different views and reasoning

about the relationships between them can help the views to

better characterize the 3D object. Therefore, for each re-

gion in a given view, the initial goal is to localize its corre-

sponding regions from other views. Formally, we define

X = {X1,X2, · · · ,XN} as the view sequence that de-

scribe the 3D object X , where N is the number of views.

In order to obtain region-level features, we extract features

from convolutional layer instead of from fully-connected

layer. Specifically, for each view Xi, its convolutional fea-
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ture map Ri ∈ R
L×L×Dr can be regarded as L×L feature

vectors, each of which is a Dr-dimensional representation

corresponding to a region in the view Xi:

Ri = {ri1, ri2, · · · , riL2}, rij ∈ R
Dr . (1)

For the region feature rij comes from view Xi, the Rein-

forcing block enumerates all possible regions in the view

sequence and employs a pairwise matching function M
to computes a scalar Mij,mn between rij and the feature

of each enumerated region rmn, representing how related

these two regions are:

Mij,mn = M(rij , rmn). (2)

Then the region feature rij is reinforced by all enumerated

regions depending on their matching score with rij . We

denote the reinforced region feature as r
∗

ij , it takes advan-

tage of the information from corresponding regions in other

views. See more details in Section. 3.2. And we denote the

reinforced feature map R
∗

i ∈ R
L×L×Dr for view Xi as:

R
∗

i = {r∗i1, r
∗

i2, · · · , r
∗

iL2}, r∗ij ∈ R
Dr . (3)

After that, we send the reinforced feature map R
∗

i through

the next part of the network and obtain the reinforced fea-

ture vector f∗i ∈ R
Df for view Xi. Note that the feature

vector f∗i of a single view cannot encapsulate all informa-

tion about the 3D object, since there may be some parts

of the 3D object that are totally hidden from its viewpoint,

we cannot acquire the missing information of those parts

through region matching. Consequently, to obtain a com-

plete representation for the 3D object, we will need to com-

bine the information from multiple reinforced feature vec-

tors. To achieve such progress, we propose an Integrating

block which exploits the inter-relationships over reinforced

feature vectors and generate an importance score for each

feature vector. Finally, all reinforced feature vectors and

their importance scores are jointly considered to generate a

single, compact 3D object descriptor.

3.2. Reinforcing Block

For each view image Xi, the Reinforcing block aims to

exploit region-to-region relationships between Xi and other

views, which further help to enhance and refine the informa-

tion of Xi. Recall from Section 3.1 that the feature extractor

produces a set of feature vectors Ri = {ri1, ri2, · · · , riL2}
for view Xi, where each feature vector rij is a Dr-

dimensional representation corresponding to a part region

in view Xi. And the matching function M can compute the

matching score Mij,mn between any two region features

rij and rmn. Here we choose the embedded dot-product

function as the matching function. In this case, we first lin-

early embed the inputs r1, r2 ∈ R
Dr into a hidden space

with learnable embedding matrices Wr ∈ R
De×Dr , and we

omit the bias term for simplicity. Then we compute their

dot-product similarity as the matching score:

M(r1, r2) = 〈Wrr1,Wrr2〉. (4)

After obtaining the matching score between different re-

gions, we denote the matching matrix for rij as:

Mij =











Mij,11 Mij,12 · · · Mij,1L2

Mij,21 Mij,22 · · · Mij,2L2

...
...

. . .
...

Mij,N1 Mij,N2 · · · Mij,NL2











. (5)

Due to the low-dimensionality De of the embedded hid-

den space, the matching matrix can be computed efficiently

using highly optimized matrix multiplication code. Intu-

itively, the regions with higher matching scores with rij

should be more likely to represent the same part of the 3D

object, therefore are more likely to augment the information

of rij . We first normalize the matching matrix Mij and then

compute the reinforced region feature r
∗

ij as follows:

M̂ij = Normalize(Mij), (6)

r
∗

ij = rij + f





N
∑

m=1

L2

∑

n=1

M̂ij,mn · g(rmn)



 , (7)

where we interpret g as a projection that maps the region

feature into a space with some nice properties (e.g., the in-

formation of region features can be easily fused). The infor-

mation of rij is reinforced by computing the weighted sum

(in projected space) of all enumerated region features, and

the weight for each region feature is its normalized match-

ing score with rij . Function f is a mapping that injects the

weighted sum into original region feature space. For sim-

plicity, we consider the situation that f and g in the form

of linear mappings, i.e., g(x) = Wgx and f(x) = Wfx,

where Wg ∈ R
Dg×Dr and Wf ∈ R

Dr×Dg are learned pa-

rameters, we omit bias term for simplicity. The Reinforc-

ing block is smooth and differentiable, making the network

end-to-end trainable. Note that we use a residual connection

in the Reinforcing block. The residual connection makes

the network easier to optimize, the Reinforcing block can

start as the identity mapping and gradually transform to be

more task-oriented. Next we describe how to normalize the

matching matrix.

Normalizing across views. In this setting, the matching

matrix is normalized over all the entries using scaled soft-

max function:

M̂ij,mn =
e

Mij,mn
√

De

N
∑

m=1

L2
∑

n=1

e
Mij,mn

√

De

, (8)
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where De is the row size of Wr. However, this strategy

may lead to the problem of dominating phenomenon, i.e.,

the matching matrix is dominated by very few entries. In

our task, for a given region in a reference view, we hope

to find sufficient regions in other views that can match the

given region.

Normalizing inside Views. In this setting, each row of

the matching matrix is normalized independently:

M̂ij,mn =
e

Mij,mn
√

De

N ·
L2
∑

n=1

e
Mij,mn

√

De

. (9)

Under such situation, the matching score is normalized over

regions inside each view. More concretely, for one given

region in a reference view, this approach selects the best

matching regions from each view independently, and then

combines all the matching regions to reinforce the infor-

mation of the given region. We employ this normalization

strategy in the Reinforcing block.

3.3. Integrating Block

Given the reinforced feature vectors for all views, the

objective is to integrate them and to generate the final rep-

resentation for the 3D object. In the simplest setting, the

3D object feature can be represented via view pooling op-

eration over all the reinforced feature vectors. However, the

relationships between different views and the discriminative

power of each view are ignored in this setting.

To overcome these issues, we propose a generic Integrat-

ing block to model the inter-relationships between different

views, and assigns each view with an importance score. The

final 3D object descriptor is derived based on all reinforced

feature vectors and their importance score. Intuitively, to

determine whether a certain view is discriminative, we also

need to look at the remaining views. Consequently, it is sub-

optimal to use a unary function to compute the importance

score for each view. In other words, for each reinforced fea-

ture vector f∗i ∈ R
Df , its importance score should be com-

puted based on the relationship between f
∗

i and all other

reinforced feature vectors. Formally, we define the impor-

tance function I to computes the importance score Ii for

each reinforced feature vector f∗i in the form of:










I1
I2
...

IN











= I(f∗
1
, f∗

2
, · · · , f∗N ). (10)

Note that the importance function I should support order-

less inputs and variable number of inputs, and it needs to

have fewer parameters. We design the importance function

I as the combination of pair-wise function as in the follow-

ing:

I(f∗
1
, f∗

2
, · · · , f∗N ) =

N
∑

j=1











R(f∗
1
, f∗j )

R(f∗
2
, f∗j )

...

R(f∗N , f∗j )











, (11)

where R is a scalar pairwise function. Without loss

of generality we use the embedded dot-product function

R(f∗

1
, f∗

2
) = 〈Waf

∗

1
,Waf

∗

2
〉, where Wa ∈ R

Da×Df is

learnable, we omit bias term for simplicity. In this setting,

the importance score Ii for reinforced feature vector f∗i is

computed as:

Ii =

N
∑

j=1

R(f∗i , f
∗

j ). (12)

We normalize the importance scores using ReLU normal-

ization as in Equation 13. Note that using softmax function

here may lead to the problem of gradient saturation, and

therefore making the training unstable. Then the output f

is calculated as the convex combination of the reinforced

feature vectors:

Îi =
ReLU(Ii)

∑N

j=1
ReLU(Ij)

, (13)

f =

N
∑

i=1

Îi · f
∗

i . (14)

We then send f through the remaining fully-connected lay-

ers to obtain the final 3D object representation.

3.4. Relation Network

It is straightforward to apply the Reinforcing block and

Integrating block to existing architecture. To make a fair

comparison with previous approaches, we use the VGG-M

network as the base model. By inserting the Reinforcing

block and Integrating block into the architecture, we con-

struct a Relation Network. In default, the Reinforcing block

is inserted after the conv5 layer, and the Integrating block is

inserted after the fc6 layer. Noting that the building blocks

can be placed in different positions in the network. Follow-

ing the similar schemes, more variants that integrate with

other base architecture can be constructed.

3.5. Discussion

It is interesting to observe that our formulation com-

bined with Eqn. 8 is very similar to the recently proposed

Non-local Network [44] and Transformer [41]. However,

compared with these existing works, our Reinforcing block

and Integrating block enjoy several unique advantages for

3D object recognition: 1) the Non-local block treats the
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spatial and temporal relations with no differentiation. Un-

like video, the object exists in every view. In our solution

(Eqn. 9), for one given region in a reference view, the Re-

inforcing block selects the best matching regions from each

view independently, this strategy encourages the given re-

gion to gain information from all other views. 2) In our

Integrating block, we normalize the importance scores us-

ing ReLU function (Eqn. 13), it can be seen as a first-order

approximation of the Softmax function, which yields better

performance and more stable training. To the best of our

knowledge, we are the first to bridge self-attention models

to multi-view 3D objects recognition, and to solve the prob-

lem of region misalignment between different views in 3D

object recognition.

4. Experiments

We evaluate our proposed Relation Network and dis-

cuss the results with current state-of-the-art methods on the

benchmark ModelNet [46] in Section 4.3. Then, we study

the influence of the number of views on the performance in

Section 4.4. Next, we investigate the influence of the build-

ing block in Section 4.5. Finally, we visualize the behavior

of Reinforcing block and Integrating block in Section 4.6.

4.1. Dataset

We use ModelNet dataset [46] to evaluate the perfor-

mance of the Relation Network. ModelNet currently con-

tains 127,915 3D CAD models from 662 categories. The

models are collected by using the online search engine and

annotated by the workers on Amazon Mechanical Turk.

ModelNet40 is a subset including 12,311 models from 40

categories, and the models are split into 9,843 training ex-

amples and 2,468 testing examples. In addition, Model-

Net10 is another subset consists of 4,899 models from 10

categories, the models are split into 3,991 training exam-

ples and 908 testing examples. Both ModelNet40 and Mod-

elNet10 are well annotated and can be downloaded online.

Note that the numbers of examples are not equal across dif-

ferent classes, hence we report both average instance accu-

racy and average class accuracy following previous works.

Average instance accuracy counts the percentage of cor-

rectly predicted examples among all the examples, while

average class accuracy is the average of each accuracy per

class (sum of accuracy for each class / total number of

class).

4.2. Implementation Details

In all our experiments, We use VGG-M [7] pre-trained

on ImageNet as the base model. This allows us to make

a fair comparison with existing methods which are mostly

based on VGG-M. We use SGD optimizer with learning rate

0.001, momentum 0.9, and we use random horizontal view

flipping and weight decay 0.0001 to reduce overfitting. For

Figure 3. The precision-recall curves for 3D object retrieval on the

ModelNet40 dataset. Our Relation Network with metric learning

achieves the best performance of 86.7 mAP.

multi-view input generation, we assume the shapes are up-

right oriented along a specific axis (e.g., the z-axis), and we

set the virtual cameras to point towards the centroid of the

mesh, elevated by 30 degrees from the ground plane. The

viewpoints are circled placed at intervals of a given angle θ
around the axis. We set θ = 30 in default, which generates

12 views for each 3D object. And we study the influence of

θ (number of views) in Section 4.4.

4.3. 3D Object Classification and Retrieval

We first compare our method with those using hand-

craft descriptors, including SPH [19] and LFD [9]. Then

we compare with the voxel-based approaches, including 3D

ShapeNets [46], VoxNet [27], Subvolume Supervision Net-

work [31], and Voxception-ResNet [4]. Next, we compare

with the voxel-based approaches, including PointNet [30],

PointNet++ [32], and Kd-Networks [20]. Finally, our

method is compared with view-based approaches, includ-

ing MVCNN [39], MVCNN-MultiRes [31], Pairwise De-

composition Network [17], RCPCNN [43], GVCNN [10],

and MHBN [47].

Table 1 shows the experimental results and compar-

isons for 3D object recognition and retrieval. Our proposed

method achieves the best performance of 94.3%/92.3% av-

erage instance/class accuracy on ModelNet40 dataset and

95.3%/95.1% average instance/class accuracy on Mod-

elNet10 dataset, demonstrating the effectiveness of our

method. Note that the Relation Network uses single-

modality input, while some other approaches use multi-

modality input and more advanced deep networks. The

MHBN [47] is a strong competitor, which achieves 94.1%
average instance accuracy on ModelNet40 dataset. How-

ever, the MHBN is sensitive to the number of views, we

observe a performance drop when the number of views in-

creases from 6 to 12. Also, the MHBN requires computing
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Methods Input Modality
ModelNet40 ModelNet10 Retrieval on

Inst Acc Class Acc Inst Acc Class Acc ModelNet40

SPH [19] Handcraft - 68.2 - - 33.3

LFD [9] Handcraft - 75.5 - - 40.9

3D ShapeNets [46] Volume - 77.3 - 83.5 49.2

VoxNet [27] Volume - 83.0 - 92.0 -

Subvolume Net [31] Volume 89.2 86.0 - - -

Voxception-ResNet [4] Volume 91.3 - 93.6 - -

PointNet [30] Points 89.2 86.2 - - -

PointNet++ [32] Points w/ Normal 91.9 - - - -

Kd-Networks [20] Points 91.8 88.5 94.0 93.5 -

MVCNN [39] 12 Views 92.1 89.9 - - 80.2

MVCNN-MultiRes [31] Multi-resolution Views 93.8 91.4 - - -

Pairwise Network [17] 12 Views w/ Depth - 91.1 - 93.2 -

RCPCNN [43] 12 Views w/ Depth, Normal 93.8 - - - -

GVCNN [10]
8 Views 93.1 - - - 84.5

12 Views 92.6 - - - 85.7

MHBN [47]
6 Views 94.1 92.2 94.9 94.9

-
12 Views 93.4 - - -

Ours 12 Views 94.3 92.3 95.3 95.1 86.7

Table 1. Comparisons of performance with state-of-the-art methods. Numbers are reported in percentage. Our Relation Network achieves

the best performance consistently.

bilinear features and singular value decomposition (SVD),

which is tedious and computational costly in practice. In the

3D object retrieval task, our Relation Network achieves the

best retrieval performance with 82.7 mAP. However, the Re-

lation Network feature is trained directly for classification,

and thus not optimized for retrieval. As suggested in [39],

we further adopt a low-rank Mahalanobis metric W that

directly projects 3D object feature into a 128-dimensional

space, such that the intra-class distance in the projected

space is smaller and inter-class distance is larger. Similar to

previous works, we adopt the large-margin metric learning

algorithm and implementation from [36]. By learning the

low-rank Mahalanobis metric, our Relation Network fur-

ther achieves the best performance of 86.7 retrieval mAP.

The precision-recall curves are shown in Figure 3.

4.4. Influence of the Number of Views

To investigate the influence of the number of views on

the classification performance, we vary the view number for

training and testing. We compare it with the MVCNN [39],

RCPCNN [44], GVCNN [10] and MHBN [47]. The accura-

cies of the compared methods are taken from Yu et al. [47]

and Wang et al. [43]. The average instance accuracy on the

ModelNet40 dataset are provided in Table 2. It can be ob-

served that our Relation Network outperforms or achieves

comparable result with previous methods. Table 2 shows

that previous methods suffer from a performance drop when

the number of views increases from 6 to 12. However, our

Relation Network benefits from the increase of view num-

ber coherently, demonstrating that the Relation Network is

able to model the relationships between views robustly.

Methods
Number of Views

3 views 6 views 12 views

MVCNN [39] 91.3 92.0 91.5

RCPCNN [43] 92.1 92.2 92.2

MHBN [47] 93.8 94.1 93.4

Ours 93.5 94.1 94.3

Table 2. Experiments on ModelNet40 when the number of views

for training and testing is varying. Average instance accuracies

are reported in percentage. The accuracies of MVCNN, RCPCNN

and MHBN are taken from [43] and [47].

4.5. Influence of the building block

In order to analyze the influence of different components

in our Relation Network, we design different running set-

tings on ModelNet40 to study the positions and numbers

of building blocks. Note that the VGG-M network is a

relatively shallow network, consisting of only 5 convolu-

tional layers and 2 fully-connected layers. So the Integrat-

ing block is placed between 2 fully-connected layers. We

study the positions and numbers of our building blocks. Ta-

ble 3 compares a single Reinforcing block added to different

positions of the VGG-M, and we found that placing the Re-

inforcing block after conv5 achieves slightly better perfor-
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0.09 0.00 0.03 0.02 0.01 0.01 0.01 0.00 0.08 0.30 0.20 0.26

0.04 0.12 0.16 0.12 0.03 0.02 0.03 0.12 0.17 0.12 0.04 0.00

0.09 0.06 0.00 0.05 0.10 0.14 0.14 0.06 0.00 0.05 0.14 0.16

Most informative views Uninformative views

Figure 4. Visualization of the importance scores computed by the Integrating block. The weight of each view is shown at the bottom of the

image. The most informative regions are framed with green rectangles, and the least informative regions are framed with red rectangles.

Reference regions Corresponding regions

Figure 5. Visualization of the corresponding regions computed by

the Reinforcing block placed after conv5. Each row provides an

example of region. For each reference region, its most relevant

regions in other views are framed with orange rectangles.

mance, we hypothesis it is because the conv5 has a larger

receptive field, which eases region matching between dif-

ferent views. As shown in Table 3, when we replace the

Integrating block to view pooling strategy, the performance

decreases from 94.3 to 93.8. Table 4 shows the results

of placing multiple Reinforcing blocks into the network.

We found that if no Reinforcing block is inserted, the per-

formance will slightly drop, and placing more Reinforcing

blocks than one does not improve the performance.

w/ Integrating Places of a single Average Instance

block Reinforcing block Accuracy

X conv2 93.9

X conv3 93.7

X conv4 94.0

X conv5 94.3

× conv5 93.8

Table 3. Study of the influence of adding a single Reinforcing

block to different positions.

Places of multiple
Average Instance Accuracy

Reinforcing blocks

w/o Reinforcing block 93.7

conv5 94.3

conv4,5 93.9

conv3,4,5 94.2

conv2,3,4,5 93.8

Table 4. Study of the influence of adding multiple Reinforcing

blocks.

4.6. Visualization of Attention

We further select some 3D models from testing set and

visualize the behavior of Reinforcing block and Integrating

block in Figure 5 and Figure 4. For a given reference re-

gion, we find its most corresponding bins computed by the

Reinforcing block after conv5 from the feature map of other

views, and draw orange rectangles in Figure 5. We found

that the Reinforcing block focuses well on the correspond-

ing regions from other views. Figure 4 shows the impor-

tance scores of different views computed by the Integrating

block. We found that views contain more discriminative

parts of the 3D object will be assigned higher importance

scores. Then learned attention is meaningful and consistent

with human intuition.

5. Conclusions

In this paper, we propose a novel Relation Network

for 3D object recognition and retrieval. The region-to-

region relationships and view-to-view relationships are both

taken into considerations. The Relation Network is end-to-

end trainable and achieves the state-of-the-art performance

on ModelNet dataset. To gain more understanding about

our framework, we have conducted systematic experiments

to investigate the effects of different components in our

method. And we show the learned attention corresponds

to human intuition well.
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