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Abstract

Three-dimensional geometric data offer an excel-

lent domain for studying representation learning

and generative modeling. In this paper, we look

at geometric data represented as point clouds. We

introduce a deep AutoEncoder (AE) network with

state-of-the-art reconstruction quality and gen-

eralization ability. The learned representations

outperform existing methods on 3D recognition

tasks and enable shape editing via simple alge-

braic manipulations, such as semantic part edit-

ing, shape analogies and shape interpolation, as

well as shape completion. We perform a thorough

study of different generative models including

GANs operating on the raw point clouds, signifi-

cantly improved GANs trained in the fixed latent

space of our AEs, and Gaussian Mixture Models

(GMMs). To quantitatively evaluate generative

models we introduce measures of sample fidelity

and diversity based on matchings between sets

of point clouds. Interestingly, our evaluation of

generalization, fidelity and diversity reveals that

GMMs trained in the latent space of our AEs yield

the best results overall.

1. Introduction

Three-dimensional (3D) representations of real-life objects

are a core tool for vision, robotics, medicine, augmented

reality and virtual reality applications. Recent attempts

to encode 3D geometry for use in deep learning include

view-based projections, volumetric grids and graphs. In this

work, we focus on the representation of 3D point clouds.

Point clouds are becoming increasingly popular as a homo-

geneous, expressive and compact representation of surface-

based geometry, with the ability to represent geometric de-

tails while taking up little space. Point clouds are partic-
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ularly amenable to simple geometric operations and are

a standard 3D acquisition format used by range-scanning

devices like LiDARs, the Kinect or iPhone’s face ID feature.

All the aforementioned encodings, while effective in their

target tasks (e.g. rendering or acquisition), are hard to ma-

nipulate directly in their raw form. For example, naı̈vely

interpolating between two cars in any of those representa-

tions does not yield a representation of an “intermediate” car.

Furthermore, these representations are not well suited for

the design of generative models via classical statistical meth-

ods. Using them to edit and design new objects involves the

construction and manipulation of custom, object-specific

parametric models, that link the semantics to the representa-

tion. This process requires significant expertise and effort.

Deep learning brings the promise of a data-driven approach.

In domains where data is plentiful, deep learning tools have

eliminated the need for hand-crafting features and models.

Architectures like AutoEncoders (AEs) (Rumelhart et al.,

1988; Kingma & Welling, 2013) and Generative Adversarial

Networks (GANs) (Goodfellow et al., 2014; Radford et al.;

Che et al., 2016) are successful at learning data represen-

tations and generating realistic samples from complex un-

derlying distributions. However, an issue with GAN-based

generative pipelines is that training them is notoriously hard

and unstable (Salimans et al., 2016). In addition, and per-

haps more importantly, there is no universally accepted

method for the evaluation of generative models.

In this paper, we explore the use of deep architectures for

learning representations and introduce the first deep gen-

erative models for point clouds. Only a handful of deep

architectures tailored to 3D point clouds exist in the lit-

erature, and their focus is elsewhere: they either aim at

classification and segmentation (Qi et al., 2016a; 2017), or

use point clouds only as an intermediate or output repre-

sentation (Kalogerakis et al., 2016; Fan et al., 2016). Our

specific contributions are:

• A new AE architecture for point clouds—inspired by

recent architectures used for classification (Qi et al.,

2016a)—that can learn compact representations with

(i) good reconstruction quality on unseen samples; (ii)

good classification quality via simple methods (SVM),

outperforming the state of the art (Wu et al., 2016);

(iii) the capacity for meaningful semantic operations,



Learning Representations and Generative Models for 3D Point Clouds

Figure 1. Reconstructions of unseen shapes from the test split of the input data. The leftmost image of each pair shows the ground truth

shape, the rightmost the shape produced after encoding and decoding using a class-specific AE-EMD.

interpolations and shape-completion.

• The first set of deep generative models for point clouds,

able to synthesize point clouds with (i) measurably

high fidelity to, and (ii) good coverage of both the

training and the held-out data. One workflow that

we propose is to first train an AE to learn a latent

representation and then train a generative model in

that fixed latent space. The GANs trained in the latent

space, dubbed here l-GANs, are easier to train than raw

GANs and achieve superior reconstruction and better

coverage of the data distribution. Multi-class GANs

perform almost on par with class-specific GANs when

trained in the latent space.

• A study of various old and new point cloud metrics,

in terms of their applicability (i) as reconstruction ob-

jectives for learning good representations; (ii) for the

evaluation of generated samples. We find that a com-

monly used metric, Chamfer distance, fails to identify

certain pathological cases.

• Fidelity and coverage metrics for generative models,

based on an optimal matching between two different

collections of point clouds. Our coverage metric can

identify parts of the data distribution that are com-

pletely missed by the generative model, something

that diversity metrics based on cardinality might fail to

capture (Arora & Zhang, 2017).

The rest of this paper is organized as follows: Section 2 out-

lines some background for the basic building blocks of our

work. Section 3 introduces our metrics for the evaluation of

generative point cloud pipelines. Section 4 discusses our ar-

chitectures for latent representation learning and generation.

In Section 5, we perform comprehensive experiments evalu-

ating all of our models both quantitatively and qualitatively.

Further results can be found in the supplementary material.

Last, the code for all our models is publicly available1.

2. Background

In this section we give the necessary background on point

clouds, their metrics and the fundamental building blocks

1http://github.com/optas/latent_3d_points

that we will use in the rest of the paper.

2.1. Point clouds

Definition A point cloud represents a geometric shape—

typically its surface—as a set of 3D locations in a Euclidean

coordinate frame. In 3D, these locations are defined by their

x, y, z coordinates. Thus, the point cloud representation of

an object or scene is a N ×3 matrix, where N is the number

of points, referred to as the point cloud resolution.

Point clouds as an input modality present a unique set of

challenges when building a network architecture. As an ex-

ample, the convolution operator—now ubiquitous in image-

processing pipelines—requires the input signal to be defined

on top of an underlying grid-like structure. Such a structure

is not available in raw point clouds, which renders them

significantly more difficult to encode than images or voxel

grids. Recent classification work on point clouds (PointNet

(Qi et al., 2016a)) bypasses this issue by avoiding convolu-

tions involving groups of points. Another related issue with

point clouds as a representation is that they are permutation

invariant: any reordering of the rows of the point cloud

matrix yields a point cloud that represents the same shape.

This property complicates comparisons between two point

sets which is needed to define a reconstruction loss. It also

creates the need for making the encoded feature permutation

invariant.

Metrics Two permutation-invariant metrics for compar-

ing unordered point sets have been proposed in the lit-

erature (Fan et al., 2016). On the one hand, the Earth

Mover’s distance (EMD) (Rubner et al., 2000) is the so-

lution of a transportation problem which attempts to trans-

form one set to the other. For two equally sized subsets

S1 ⊆ R3, S2 ⊆ R3, their EMD is defined by

dEMD(S1, S2) = min
φ:S1→S2

∑

x∈S1

‖x− φ(x)‖2

where φ is a bijection. As a loss, EMD is differentiable al-

most everywhere. On the other hand, the Chamfer (pseudo)-

distance (CD) measures the squared distance between each

point in one set to its nearest neighbor in the other set:

dCH(S1, S2) =
∑

x∈S1

min
y∈S2

‖x− y‖22 +
∑

y∈S2

min
x∈S1

‖x− y‖22.

http://github.com/optas/latent_3d_points


Learning Representations and Generative Models for 3D Point Clouds

CD is differentiable and compared to EMD more efficient

to compute.

2.2. Fundamental building blocks

Autoencoders One of the main deep-learning compo-

nents we use in this paper is the AutoEncoder (AE, inset),

E D x̂x z

which is an architecture

that learns to reproduce

its input. AEs can be

especially useful, when

they contain a narrow bottleneck layer between input and

output. Upon successful training, this layer provides a low-

dimensional representation, or code, for each data point.

The Encoder (E) learns to compress a data point x into its

latent representation, z. The Decoder (D) can then produce

a reconstruction x̂, of x, from its encoded version z.

Generative Adversarial Networks In this paper we

also work with Generative Adversarial Networks (GANs),

which are state-of-the-art generative models. The ba-

sic architecture (inset) is based on a adversarial game

between a generator (G) and a discriminator (D).

The generator aims to synthesize samples that look

G

DATA

D

x

z y

indistinguishable from

real data (drawn from

x ∼ pdata) by passing a

randomly drawn sample

from a simple distribu-

tion z ∼ pz through the

generator function. The

discriminator is tasked with distinguishing synthesized

from real samples.

Gaussian Mixture Model A GMM is a probabilistic

model for representing a population whose distribution is

assumed to be multimodal Gaussian, i.e. comprising of mul-

tiple subpopulations, where each subpopulation follows a

Gaussian distribution. Assuming the number of subpopula-

tions is known, the GMM parameters (means and variances

of the Gaussians) can be learned from random samples, us-

ing the Expectation-Maximization (EM) algorithm (Demp-

ster et al., 1977). Once fitted, the GMM can be used to

sample novel synthetic samples.

3. Evaluation Metrics for Generative Models

An important component of this work is the introduction

of measures that enable comparisons between two sets of

points clouds A and B. These metrics are useful for as-

sessing the degree to which point clouds, synthesized or

reconstructed, represent the same population as a held-out

test set. Our three measures are described below.

JSD The Jensen-Shannon Divergence between marginal

distributions defined in the Euclidean 3D space. Assuming

point cloud data that are axis-aligned and a canonical voxel

grid in the ambient space; one can measure the degree to

which point clouds of A tend to occupy similar locations as

those of B. To that end, we count the number of points lying

within each voxel across all point clouds of A, and corre-

spondingly for B and report the JSD between the obtained

empirical distributions (PA, PB):

JSD(PA ‖ PB) =
1

2
D(PA ‖ M) +

1

2
D(PB ‖ M)

where M = 1

2
(PA + PB) and D(· ‖ ·) the KL-divergence

between the two distributions (Kullback & Leibler, 1951).

Coverage For each point cloud in A we first find its clos-

est neighbor in B. Coverage is measured as the fraction of

the point clouds in B that were matched to point clouds in

A. Closeness can be computed using either the CD or EMD

point-set distance of Section 2, thus yielding two different

metrics, COV-CD and COV-EMD. A high coverage score

indicates that most of B is roughly represented within A.

Minimum Matching Distance (MMD) Coverage does

not indicate exactly how well the covered examples (point-

clouds) are represented in set A; matched examples need not

be close. We need a way to measure the fidelity of A with

respect to B. To this end, we match every point cloud of

B to the one in A with the minimum distance (MMD) and

report the average of distances in the matching. Either point-

set distance can be used, yielding MMD-CD and MMD-

EMD. Since MMD relies directly on the distances of the

matching, it correlates well with how faithful (with respect

to B) elements of A are.

Discussion The complementary nature of MMD and Cov-

erage directly follows from their definitions. The set of point

clouds A captures all modes of B with good fidelity when

MMD is small and Coverage is large. JSD is fundamentally

different. First, it evaluates the similarity between A and B

in coarser way, via marginal statistics. Second and contrary

to the other two metrics, it requires pre-aligned data, but is

also computationally friendlier. We have found and show

experimentally that it correlates well with the MMD, which

makes it an efficient alternative for e.g. model-selection,

where one needs to perform multiple comparisons between

sets of point clouds.

4. Models for Representation and Generation

In this section we describe the architectures of our neural

networks starting from an autoencoder. Next, we introduce

a GAN that works directly with 3D point cloud data, as

well as a decoupled approach which first trains an AE and
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Figure 2. Interpolating between different point clouds, using our latent space representation. More examples for furniture and human-form

objects (Bogo et al., 2017) are demonstrated in the supplementary material in Figures 3 and 6, respectively.

then trains a minimal GAN in the AE’s latent space. We

conclude with a similar but even simpler solution that relies

on classical Gaussian mixtures models.

4.1. Learning representations of 3D point clouds

The input to our AE network is a point cloud with 2048

points (2048 × 3 matrix), representing a 3D shape. The

encoder architecture follows the design principle of (Qi

et al., 2016a): 1-D convolutional layers with kernel size 1

and an increasing number of features; this approach encodes

every point independently. A ”symmetric”, permutation-

invariant function (e.g. a max pool) is placed after the con-

volutions to produce a joint representation. In our implemen-

tation we use 5 1-D convolutional layers, each followed by

a ReLU (Nair & Hinton, 2010) and a batch-normalization

layer (Ioffe & Szegedy, 2015). The output of the last con-

volutional layer is passed to a feature-wise maximum to

produce a k-dimensional vector which is the basis for our

latent space. Our decoder transforms the latent vector using

3 fully connected layers, the first two having ReLUs, to

produce a 2048× 3 output. For a permutation invariant ob-

jective, we explore both the EMD approximation and the CD

(Section 2) as our structural losses; this yields two distinct

AE models, referred to as AE-EMD and AE-CD. To regu-

larize the AEs we considered various bottleneck sizes, the

use of drop-out and on-the-fly augmentations by randomly-

rotating the point clouds. The effect of these choices is

showcased in the supplementary material (Section 1) along

with the detailed training/architecture parameters. In the

remainder of the paper, unless otherwise stated, we use an

AE with a 128-dimensional bottleneck layer.

4.2. Generative models for Point Clouds

Raw point cloud GAN (r-GAN) Our first GAN operates

on the raw 2048× 3 point set input. The architecture of the

discriminator is identical to the AE (modulo the filter-sizes

and number of neurons), without any batch-norm and with

leaky ReLUs (Maas et al., 2013) instead or ReLUs. The

output of the last fully connected layer is fed into a sigmoid

neuron. The generator takes as input a Gaussian noise vector

and maps it to a 2048× 3 output via 5 FC-ReLU layers.

Latent-space GAN (l-GAN) For our l-GAN, instead of

operating on the raw point cloud input, we pass the data

through a pre-trained autoencoder, which is trained sep-

arately for each object class with the EMD (or CD) loss

function. Both the generator and the discriminator of the

l-GAN then operate on the bottleneck variables of the AE.

Once the training of GAN is over, we convert a code learned

by the generator into a point cloud by using the AE’s de-

coder. Our chosen architecture for the l-GAN, which was

used throughout our experiments, is significantly simpler

than the one of the r-GAN. Specifically, an MLP generator

of a single hidden layer coupled with an MLP discriminator

of two hidden layers suffice to produce measurably good

and realistic results.

Gaussian mixture model In addition to the l-GANs, we

also fit a family of Gaussian Mixture Models (GMMs) on

the latent spaces learned by our AEs. We experimented

with various numbers of Gaussian components and diago-

nal or full covariance matrices. The GMMs can be turned

into point cloud generators by first sampling the fitted dis-

tribution and then using the AE’s decoder, similarly to the

l-GANs.

5. Experimental Evaluation

In this section we experimentally establish the validity of

our proposed evaluation metrics and highlight the merits

of the AE-representation (Section 5.1) and the generative

models (Section 5.2). In all experiments in the main paper,

we use shapes from the ShapeNet repository (Chang et al.,

2015), that are axis aligned and centered into the unit sphere.

To convert these shapes (meshes) to point clouds we uni-

formly sample their faces in proportion to their area. Unless

otherwise stated, we train models with point clouds from a

single object class and work with train/validation/test sets of

an 85%-5%-10% split. When reporting JSD measurements

we use a 283 regular voxel grid to compute the statistics.

5.1. Representational power of the AE

We begin with demonstrating the merits of the proposed

AE. First we report its generalization ability as measured

using the MMD-CD and MMD-EMD metrics. Next, we

utilize its latent codes to do semantically meaningful opera-

tions. Finally, we use the latent representation to train SVM

classifiers and report the attained classification scores.
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Figure 3. Editing parts in point clouds using simple additive algebra on the AE latent space. Left to right: tuning the appearance of cars

towards the shape of convertibles, adding armrests to chairs, removing handle from mug. Note that the height of chairs with armrests is on

average 13% shorter than of chairs without one; which is reflected also in these results.

Generalization ability. Our AEs are able to reconstruct

unseen shapes with quality almost as good as that of the

shapes that were used for training. In Fig. 1 we use our

AEs to encode unseen samples from the test split (the left

of each pair of images) and then decode them and compare

them visually to the input (the right image). To support

our visuals quantitatively, in Table 1 we report the MMD-

CD and MMD-EMD between reconstructed point clouds

and their corresponding ground-truth in the train and test

datasets of the chair object class. The generalization gap

under our metrics is small; to give a sense of scale for our

reported numbers, note that the MMD is 0.0003 and 0.033
under the CD and EMD respectively between two versions

of the test set that only differ by the randomness introduced

in the point cloud sampling. Similar conclusions regarding

the generalization ability of the AE can be made based on

the reconstruction loss attained for each dataset (train or test)

which is shown in Fig. 1 of the supplementary material.

AE
MMD-CD MMD-EMD

loss Train Test Train Test

CD 0.0004 0.0012 0.068 0.075
EMD 0.0005 0.0013 0.042 0.052

Table 1. Generalization of AEs as captured by MMD. Measure-

ments for reconstructions on the training and test splits for an AE

trained with either the CD or EMD loss and data of the chair class;

Note how the MMD favors the AE that was trained with the same

loss as the one used by the MMD to make the matching.

Latent space and linearity. Another argument against

under/over-fitting can be made by showing that the learned

representation is amenable to intuitive and semantically rich

operations. As it is shown in several recent works, well

trained neural-nets learn a latent representation where ad-

ditive linear algebra works to that purpose (Mikolov et al.,

2013; Tasse & Dodgson, 2016). First, in Fig. 2 we show

linear interpolations, in the latent space, between the left and

right-most geometries. Similarly, in Fig. 3 we alter the input

geometry (left) by adding, in latent space, the mean vector

of geometries with a certain characteristic (e.g., convert-

ible cars or cups without handles). Additional operations

(e.g. shape analogies) are also possible, but due to space

limitations we illustrate and provide the details in the sup-

plementary material (Section 2) instead. These results attest

to the smoothness of the learned space but also highlight the

intrinsic capacity of point clouds to be smoothly morphed.

Shape completions. Our proposed AE architecture can

be used to tackle the problem of shape completion with

minimal adaptation. Concretely, instead of feeding and re-

constructing the same point cloud, we can feed the network

with an incomplete version of its expected output. Given

proper training data, our network learns to complete severely

partial point clouds. Due to space limitations we give the

exact details of our approach in the supplementary material

(Section 4) and demonstrate some achieved completions in

Fig. 4 of the main paper.

Classification. Our final evaluation for the AE’s design

and efficacy is done by using the learned latent codes as

features for classification. For this experiment to be mean-

ingful, we train an AE across all different shape categories:

using 57,000 models from 55 categories of man-made ob-

jects. Exclusively for this experiment, we use a bottleneck

of 512 dimensions and apply random rotations to the input

point clouds along the gravity axis. To obtain features for

an input 3D shape, we feed its point cloud into the AE and

extract the bottleneck activation vector. This vector is then

classified by a linear SVM trained on the de-facto 3D classi-

fication benchmark of ModelNet (Wu et al., 2015). Table 2

shows comparative results. Remarkably, in the ModelNet10

dataset, which includes classes (chairs, beds etc.) that are

populous in ShapeNet, our simple AE significantly outper-

forms the state of the art (Wu et al., 2016) which instead

uses several layers of a GAN to derive a 7168-long feature.

In Fig. 8 of the supplementary material we include the confu-

sion matrix of the classifier evaluated on our latent codes on

ModelNet40 – the confusion happens between particularly

similar geometries: a dresser vs. a nightstand or a flower-

pot vs. a plant. The nuanced details that distinguish these

objects may be hard to learn without stronger supervision.

A B C D E ours
EMD

ours
CD

MN10 79.8 79.9 - 80.5 91.0 95.4 95.4
MN40 68.2 75.5 74.4 75.5 83.3 84.0 84.5

Table 2. Classification performance (in %) on ModelNet10/40.

Comparing to A: SPH (Kazhdan et al., 2003), B: LFD (Chen

et al., 2003), C: T-L-Net (Girdhar et al., 2016), D: VConv-DAE

(Sharma et al., 2016), E: 3D-GAN (Wu et al., 2016).
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Figure 4. Point cloud completions of a network trained with partial and complete (input/output) point clouds and the EMD loss. Each

triplet shows the partial input from the test split (left-most), followed by the network’s output (middle) and the complete ground-truth

(right-most).

Figure 5. Synthetic point clouds generated by samples produced with l-GAN (top) and 32-component GMM (bottom), both trained on the

latent space of an AE using the EMD loss.
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Figure 6. Learning behavior of the GANs, in terms of coverage /

fidelity to the ground truth test dataset. Left – the JSD distance

between the ground truth test set and synthetic datasets generated

by the GANs at various epochs of training. Right – EMD based

MMD/Coverage: curve markers indicate epochs 1, 10, 100, 200,

400, 1000, 1500, 2000, with larger symbols denoting later epochs.

5.2. Evaluating the generative models

Having established the quality of our AE, we now demon-

strate the merits and shortcomings of our generative

pipelines and establish one more successful application

for the AE’s learned representation. First, we conduct a

comparison between our generative models followed by a

comparison between our latent GMM generator and the

state-of-the-art 3D voxel generator. Next, we describe how

Chamfer distance can yield misleading results in certain

pathological cases that r-GANs tends to produce. Finally,

we show the benefit of working with a pre-trained latent

representation in multi-class generators.

Comparison of our different generative models For

this study, we train five generators with point clouds of

the chair category. First, we establish two AEs trained

with the CD or EMD loss respectively—referred to as AE-

CD and AE-EMD and train an l-GAN in each latent space

with the non-saturating loss of Goodfellow et al. (2014). In

the space learned by the AE-EMD we train two additional

models: an identical (architecture-wise) l-GAN that utilizes

the Wasserstein objective with gradient-penalty (Gulrajani

et al., 2017) and a family of GMMs with a different number

of means and structures of covariances. We also train an

r-GAN directly on the point cloud data.

Fig. 6 shows the JSD (left) and the MMD and Coverage

(right) between the produced synthetic datasets and the held-

out test data for the GAN-based models, as training proceeds.

Note that the r-GAN struggles to provide good coverage

and good fidelity of the test set; which alludes to the well-

established fact that end-to-end GANs are generally difficult

to train. The l-GAN (AE-CD) performs better in terms of fi-

delity with much less training, but its coverage remains low.

Switching to an EMD-based AE for the representation and

otherwise using the same latent GAN architecture (l-GAN,

AE-EMD), yields a dramatic improvement in coverage and

fidelity. Both l-GANs though suffer from the known issue

of mode collapse: half-way through training, first cover-

age starts dropping with fidelity still at good levels, which

implies that they are overfitting a small subset of the data.

Later on, this is followed by a more catastrophic collapse,

with coverage dropping as low as 0.5%. Switching to a

latent WGAN largely eliminates this collapse, as expected.

In Table 3, we report measurements for all generators based

on the epoch (or underlying GMM parameters) that has min-

imal JSD between the generated samples and the validation

set. To reduce the sampling bias of these measurements

each generator produces a set of synthetic samples that is

3× the population of the comparative set (test or validation)

and repeat the process 3 times and report the averages. The

GMM selected by this process has 32 Gaussians and a full

covariance. As shown in Fig. 10 of the supplementary ma-

terial, GMMs with full covariances perform much better

than those that have diagonal structure and ∼20 Gaussians
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suffice for good results. Last, the first row of Table 3 shows

a baseline model that memorizes a random subset of the

training data of the same size as the other generated sets.

Discussion. The results of Table 3 agree with the trends

shown in Fig. 6 and further verify the superiority of the

latent-based approaches and the relative gains of using an

AE-EMD vs. an AE-CD. Moreover they demonstrate that a

simple GMM can achieve results of comparable quality to a

latent WGAN. Lastly, it is worth noting how the GMM has

achieved similar fidelity as that of the perfect/memorized

chairs and with almost as good coverage. Table 8 of the sup-

plementary shows the same performance-based conclusions

when our metrics are evaluated on the train split.

Model Type JSD MMD-
CD

MMD-
EMD

COV-
EMD

COV-
CD

A MEM 0.017 0.0018 0.063 78.6 79.4

B RAW 0.176 0.0020 0.123 19.0 52.3
C CD 0.048 0.0020 0.079 32.2 59.4
D EMD 0.030 0.0023 0.069 57.1 59.3
E EMD 0.022 0.0019 0.066 66.9 67.6
F GMM 0.020 0.0018 0.065 67.4 68.9

Table 3. Evaluating 5 generators on the test split of the chair dataset

on epochs/models selected via minimal JSD on the validation-split.

We report: A: sampling-based memorization baseline, B: r-GAN,

C: l-GAN (AE-CD), D: l-GAN (AE-EMD) , E: l-WGAN (AE-

EMD), F: GMM (AE-EMD).

Chamfer’s blindness, r-GAN’s hedging. An interesting

observation regarding r-GAN can be made in Table 3. The

JSD and the EMD based metrics strongly favor the latent-

approaches, while the Chamfer-based ones are much less

discriminative. To decipher this discrepancy we did an ex-

tensive qualitative inspection of the r-GAN samples and

found many cases of point clouds that were over-populated

in locations, that on average, most chairs have mass. This

hedging of the r-GAN is particularly hard for Chamfer to

penalize since one of its two summands can become sig-

nificantly small and the other can be only moderately big

by the presence of a few sparsely placed points in the non-

populated locations. Figure 7 highlights this point. For a

ground-truth point cloud we retrieve its nearest neighbor, un-

der the CD, in synthetically generated sets produced by the

r-GAN and the l-GAN and in-image numbers report their

CD and EMD distances from it. Notice how the CD fails

to distinguish the inferiority of the r-GAN samples while

the EMD establishes it. This blindness of the CD metric to

only partially good matches, has the additional side-effect

that the CD-based coverage is consistently bigger than the

EMD-based one.

Comparisons to voxel generators. Generative models

for other 3D modalities, like voxels, have been recently

proposed (Wu et al., 2016). One interesting question is: if

Figure 7. The CD distance is less faithful than EMD to visual

quality of synthetic results; here, it favors r-GAN results, due to

the overly high density of points in the seat part of the synthesized

point sets.

Class
Fidelity Coverage

A Ours A Ours

car 0.059 0.041 28.6 65.3

rifle 0.051 0.045 69.0 74.8

sofa 0.077 0.055 52.5 66.6

table 0.103 0.061 18.3 71.1

Table 4. Fidelity (MMD-EMD) and coverage (COV-EMD) com-

parison between A: Wu et al. (2016) and our GMM generative

model on the test split of each class. Note that Wu et al. uses all

models of each class for training contrary to our generators.

point clouds are our target modality, does it make sense to

use voxel generators and then convert to point clouds? This

experiment answers this question in the negative. First, we

make a comparison using a latent GMM which is trained

in conjunction with an AE-EMD. Secondly, we build an

AE which operates with voxels and fit a GMM in the corre-

sponding latent space. In both cases, we use 32 Gaussians

and a full covariance matrix for these GMMs. To use our

point-based metrics, we convert the output of (Wu et al.,

2016) and our voxel-based GMM into meshes which we

sample to generate point clouds. To do this conversion we

use the marching-cubes (Lewiner et al., 2003) algorithm

with an isovalue of 0.1 for the former method (per authors’

suggestions) and 0.5 for our voxel-AE. We also constrain

each mesh to be a single connected component as the vast

majority of ground-truth data are.

Table 4 reveals how our point-based GMM trained with

a class specific AE-EMD fares against (Wu et al., 2016)

on four object classes for which the authors have made

their (also class-specific) models publicly 2 available. Our

2http://github.com/zck119/3dgan-release

http://github.com/zck119/3dgan-release
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Figure 8. Synthetic point clouds produced with l-WGANs trained in the latent space of an AE-EMD trained on a multi-class dataset.

approach is consistently better, with a coverage boost that

can be as large as 4× and an almost 2× improved fidelity

(case of table). This is despite the fact that (Wu et al., 2016)

uses all models of each class for training, contrary to our

generators that never had access to the underlying test split.

Table 5 reveals the performance achieved by pre-training a

voxel-based AE for the chair class. Observe how by working

with a voxel-based latent space, aside of making compar-

isons more direct to (Wu et al., 2016) (e.g. we both convert

output voxels to meshes), we also establish significant gains

in terms of coverage and fidelity.

MMD-CD MMD-EMD COV-CD COV-EMD

A 0.0046 0.091 19.6 22.4
Ours 0.0025 0.072 60.3 64.8

Table 5. MMD and Coverage metrics evaluated on the output of

voxel-based methods at resolution 64
3, matched against the chair

test set, using the same protocol as in Table3. Comparing: A: “raw”

64
3-voxel GAN (Wu et al., 2016) and a latent 643-voxel GMM.

Qualitative results In Fig. 5, we show some synthetic re-

sults produced by our l-GANs and the 32-component GMM.

We notice high quality results from either model. The shapes

corresponding to the 32 means of the Gaussian components

can be found in the supplementary material (Fig. 12), as

well as results using the r-GAN (Fig. 4).

Multi-class generators Finally, we compare between

class specific and class agnostic generators. In Table 6 we

report the MMD-CD for l-WGANs trained in the space of

either a dedicated (per-class) AE-EMD or with an AE-EMD

trained with all listed object classes. It turns out that the

l-WGANs produce perform similar results in either space.

Qualitative comparison (Fig. 8) also reveals that by using a

multi-class AE-EMD we do not sacrifice much in terms of

visual quality compared to the dedicated AEs.

6. Related Work

Recently, deep learning architectures for view-based projec-

tions (Su et al., 2015; Wei et al., 2016; Kalogerakis et al.,

2016), volumetric grids (Qi et al., 2016b; Wu et al., 2015;

Hegde & Zadeh, 2016) and graphs (Bruna et al., 2013;

Henaff et al., 2015; Defferrard et al., 2016; Yi et al., 2016)

have appeared in the 3D machine learning literature.

A few recent works ((Wu et al., 2016), (Wang et al., 2016),

airplane car chair sofa table average multi-
class

Tr 0.0004 0.0006 0.0015 0.0011 0.0013 0.0010 0.0011
Te 0.0006 0.0007 0.0019 0.0014 0.0017 0.0013 0.0014

Table 6. MMD-CD measurements for l-WGANs trained on the

latent spaces of dedicated (left 5 columns) and multi-class EMD-

AEs (right column). Also shown is the weighted average of the

per-class values, using the number of train (Tr) resp. test (Te)

examples of each class as weights. All l-WGANs use the model

parameter resulted by 2000 epochs of training.

(Girdhar et al., 2016), (Brock et al., 2016), (Maimaitimin

et al., 2017), (Zhu et al., 2016)) have explored generative and

discriminative representations for geometry. They operate

on different modalities, typically voxel grids or view-based

image projections. To the best of our knowledge, our work

is the first to study such representations for point clouds.

Training Gaussian mixture models (GMM) in the latent

space of an autoencoder is closely related to VAEs (Kingma

& Welling, 2013). One documented issue with VAEs is over-

regularization: the regularization term associated with the

prior, is often so strong that reconstruction quality suffers

(Bowman et al., 2015; Sønderby et al., 2016; Kingma et al.,

2016; Dilokthanakul et al., 2016). The literature contains

methods that start only with a reconstruction penalty and

slowly increase the weight of the regularizer. An alternative

approach is based on adversarial autoencoders (Makhzani

et al., 2015) which use a GAN to implicitly regularize the

latent space of an AE.

7. Conclusion

We presented a novel set of architectures for 3D point cloud

representation learning and generation. Our results show

good generalization to unseen data and our representations

encode meaningful semantics. In particular our generative

models are able to produce faithful samples and cover most

of the ground truth distribution. Interestingly, our exten-

sive experiments show that the best generative model for

point clouds is a GMM trained in the fixed latent space of

an AE. While this might not be a universal result, it sug-

gests that simple classic tools should not be dismissed. A

thorough investigation on the conditions under which sim-

ple latent GMMs are as powerful as adversarially trained

models would be of significant interest.
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