
358 

LEARNING REPRESENTATIONS BY RECIRCULATION 

Geoffrey E. Hinton 
Computer Science and Psychology Departments, University of Toronto, 

Toronto M5S lA4, Canada 

James L. McClelland 
Psychology and Computer Science Departments, Carnegie-Mellon University, 

Pittsburgh, PA 15213 

ABSTRACT 

We describe a new learning procedure for networks that contain groups of non
linear units arranged in a closed loop. The aim of the learning is to discover codes 
that allow the activity vectors in a "visible" group to be represented by activity 
vectors in a "hidden" group. One way to test whether a code is an accurate 
representation is to try to reconstruct the visible vector from the hidden vector. The 
difference between the original and the reconstructed visible vectors is called the 
reconstruction error, and the learning procedure aims to minimize this error. The 
learning procedure has two passes. On the fust pass, the original visible vector is 
passed around the loop, and on the second pass an average of the original vector and 
the reconstructed vector is passed around the loop. The learning procedure changes 
each weight by an amount proportional to the product of the "presynaptic" activity 
and the difference in the post-synaptic activity on the two passes. This procedure is 
much simpler to implement than methods like back-propagation. Simulations in 
simple networks show that it usually converges rapidly on a good set of codes, and 
analysis shows that in certain restricted cases it performs gradient descent in the 
squared reconstruction error. 

INTRODUCTION 

Supervised gradient-descent learning procedures such as back-propagation 1 

have been shown to construct interesting internal representations in "hidden" units 
that are not part of the input or output of a connectionist network. One criticism of 
back-propagation is that it requires a teacher to specify the desired output vectors. It 
is possible to dispense with the teacher in the case of "encoder" networks2 in which 
the desired output vector is identical with the input vector (see Fig. 1). The purpose 
of an encoder network is to learn good "codes" in the intermediate, hidden units. If 
for, example, there are less hidden units than input units, an encoder network will 
perform data-compression3. It is also possible to introduce other kinds of constraints 
on the hidden units, so we can view an encoder network as a way of ensuring that the 
input can be reconstructed from the activity in the hidden units whilst also making 

nus research was supported by contract NOOOl4-86-K-00167 from the Office of Naval Research 
and a grant from the Canadian National Science and Engineering Research Council. Geoffrey Hinton 

is a fellow of the Canadian Institute for Advanced Research. We thank: Mike Franzini, Conrad 

Galland and Geoffrey Goodhill for helpful discussions and help with the simulations. 

© American Institute of Physics 1988 



359 

the hidden units satisfy some other constraint. 

A second criticism of back-propagation is that it is neurally implausible (and 
hard to implement in hardware) because it requires all the connections to be used 
backwards and it requires the units to use different input-output functions for the 
forward and backward passes. Recirculation is designed to overcome this second 
criticism in the special case of encoder networks. 

output units 

I \ 

hidden units 

/ r-. 

input units 

Fig. 1. A diagram of a three layer encoder network that learns good codes using 
back-propagation. On the forward pass, activity flows from the input units in the 
bottom layer to the output units in the top layer. On the backward pass, error
derivatives flow from the top layer to the bottom layer. 

Instead of using a separate group of units for the input and output we use the 

very same group of "visible" units, so the input vector is the initial state of this group 
and the output vector is the state after information has passed around the loop. The 
difference between the activity of a visible unit before and after sending activity 
around the loop is the derivative of the squared reconstruction error. So, if the 
visible units are linear, we can perfonn gradient descent in the squared error by 
changing each of a visible unit's incoming weights by an amount proportional to the 
product of this difference and the activity of the hidden unit from which the 

connection emanates. So learning the weights from the hidden units to the output 
units is simple. The harder problem is to learn the weights on connections coming 
into hidden units because there is no direct specification of the desired states of these 

units. Back-propagation solves this problem by back-propagating error-derivatives 
from the output units to generate error-derivatives for the hidden units. 
Recirculation solves the problem in a quite different way that is easier to implement 
but much harder to analyse. 



360 

THE RECIRCULATION PROCEDURE 

We introduce the recirculation procedure by considering a very simple 
architecture in which there is just one group of hidden units. Each visible unit has a 
directed connection to every hidden unit, and each hidden unit has a directed 
connection to every visible unit. The total input received by a unit is 

Xj = LYiWji - 9j (1) 
i 

where Yi is the state of the ith unit, K'ji is the weight on the connection from the i th to 

the Jib unit and 9j is the threshold of the Jh unit. The threshold tenn can be 

eliminated by giving every unit an extra input connection whose activity level is 
fIXed at 1. The weight on this special connection is the negative of the threshold, and 
it can be learned in just the same way as the other weights. This method of 
implementing thresholds will be assumed throughout the paper. 

The functions relating inputs to outputs of visible and hidden units are smooth 
monotonic functions with bounded derivatives. For hidden units we use the logistic 
function: 

y. = <1(x.) = I 
J J I +e-Xj 

(2) 

Other smooth monotonic functions would serve as well. For visible units, our 
mathematical analysis focuses on the linear case in which the output equals the total 
input, though in simulations we use the logistic function. 

We have already given a verbal description of the learning rule for the hidden

to-visible connections. The weight, Wij , from the Ih hidden unit to the itlr visible 

unit is changed as follows: 

f:t.wij = £y/I) [Yi(O)-Yi(2)] (3) 

where Yi(O) is the state of the ith visible unit at time 0 and Yi(2) is its state at time 2 

after activity has passed around the loop once. The rule for the visible-to-hidden 
connections is identical: 

(4) 

where y/I) is the state of the lh hidden unit at time I (on the frrst pass around the 

loop) and y/3) is its state at time 3 (on the second pass around the loop). Fig. 2 

shows the network exploded in time. 

In general, this rule for changing the visible-to-hidden connections does not 
perfonn steepest descent in the squared reconstruction error, so it behaves differently 
from back-propagation. This raises two issues: Under what conditions does it work, 
and under what conditions does it approximate steepest descent? 



time = 1 time = 3 

time =0 time =2 

Fig. 2. A diagram showing the states of the visible and hidden units exploded in 
time. The visible units are at the bottom and the hidden units are at the top. Time 
goes from left to right. 

CONDITIONS UNDER WHICH RECIRCULATION 
APPROXIMATES GRADIENT DESCENT 

361 

For the simple architecture shown in Fig. 2, the recirculation learning procedure 
changes the visible-to-hidden weights in the direction of steepest descent in the 
squared reconstruction error provided the following conditions hold: 

1. The visible units are linear. 

2. The weights are symmetrical (i.e. wji=wij for all i,j). 

3. The visible units have high regression. 

"Regression" means that, after one pass around the loop, instead of setting the 
activity of a visible unit, i, to be equal to its current total input, xi(2), as determined 

by Eq 1, we set its activity to be 

y;(2) = AY;(O) + (I-A)x;(2) (5) 

where the regression, A, is close to 1. Using high regression ensures that the visible 
units only change state slightly so that when the new visible vector is sent around the 
loop again on the second pass, it has very similar effects to the first pass. In order to 
make the learning rule for the hidden units as similar as possible to the rule for the 
visible units, we also use regression in computing the activity of the hidden units on 
the second pass 

(6) 

For a given input vector, the squared reconstruction error, E, is 

For a hidden unit, j, 



362 

where 

For a visible-to ... hidden weight wj ; 

dE, dE 
- = Yj(1)Yi(O)--
dwj ; dYj(l) 

So, using Eq 7 and the assumption that Wkj=wjk for all k,j 

dE = y/(l) y;(O) [LYk(2) Yk'(2) Wjk - LYk(O) Yk'(2) Wjk] 
dw·· k k }l 

The assumption that the visible units are linear (with a gradient of 1) means that 

for all k, Yk'(2) = 1. So using Eq 1 we have 

dE = y.'(l) y.(O)[x.(3)-x~1)] 
dw .. } I ) } 

}l 

Now, with sufficiently high regression, we can assume that the states of units 
only change slightly with time so that 

and Yt(O) ::::: y;(2) 

So by substituting in Eq 8 we get 

dE 1 
-aw-

ji 
::::: (1 _ A) y;(2) [y/3) - y/l)] 

(8) 

(9) 

An interesting property of Eq 9 is that it does not contain a tenn for the gradient 
of the input-output function of unit } so recirculation learning can be applied even 

when unit} uses an unknown non-linearity. To do back-propagation it is necessary to 
know the gradient of the non-linearity, but recirculation measures the gradient by 
measuring the effect of a small difference in input, so the tenn y/3)-y/l) implicitly 

contains the gradient. 



363 

A SIMULATION OF RECIRCULATION 

From a biological standpoint, the synunetry requirement that wij=Wji is 

unrealistic unless it can be shown that this synunetry of the weights can be learned. 
To investigate what would happen if synunetry was not enforced (and if the visible 

units used the same non-linearity as the hidden units), we applied the recirculation 
learning procedure to a network with 4 visible units and 2 hidden units. The visible 

vectors were 1000, 0100, 0010 and 0001, so the 2 hidden units had to learn 4 
different codes to represent these four visible vectors. All the weights and biases in 
the network were started at small random values uniformly distributed in the range 
-0.5 to +0.5. We used regression in the hidden units, even though this is not strictly 
necessary, but we ignored the teon 1/ (1 - A) in Eq 9. 

Using an E of 20 and a A. of 0.75 for both the visible and the hidden units, the 
network learned to produce a reconstruction error of less than 0.1 on every unit in an 
average of 48 weight updates (with a maximum of 202 in 100 simulations). Each 
weight update was perfonned after trying all four training cases and the change was 
the sum of the four changes prescribed by Eq 3 or 4 as appropriate. The final 
reconstruction error was measured using a regression of 0, even though high 
regression was used during the learning. The learning speed is comparable with 
back-propagation, though a precise comparison is hard because the optimal values of 
E are different in the two cases. Also, the fact that we ignored the tenn 1/ (1-A.) 
when modifying the visible-to-hidden weights means that recirculation tends to 
change the visible-to-hidden weights more slowly than the hidden-to-visible weights, 
and this would also help back -propagation. 

It is not inunediately obvious why the recirculation learning procedure works 
when the weights are not constrained to be synunetrical, so we compared the weight 
changes prescribed by the recirculation procedure with the weight changes that 
would cause steepest descent in the sum squared reconstruction error (i.e. the weight 
changes prescribed by back-propagation). As expected, recirculation and back
propagation agree on the weight changes for the hidden-to-visible connections, even 
though the gradient of the logistic function is not taken into account in weight 
adjustments under recirculation. (Conrad Galland has observed that this agreement 
is only slightly affected by using visible units that have the non-linear input-output 
function shown in Eq 2 because at any stage of the learning, all the visible units tend 
to have similar slopes for their input-output functions, so the non-linearity scales all 
the weight changes by approximately the same amount.) 

For the visible-to-hidden connections, recirculation initially prescribes weight 

changes that are only randomly related to the direction of steepest descent, so these 
changes do not help to improve the perfonnance of the system. As the learning 
proceeds, however, these changes come to agree with the direction of steepest 
descent. The crucial observation is that this agreement occurs after the hidden-to
visible weights have changed in such a way that they are approximately aligned 
(symmetrical up to a constant factor) with the visible-to-hidden weights. So it 
appears that changing the hidden-to-visible weights in the direction of steepest 
descent creates the conditions that are necessary for the recirculation procedure to 
cause changes in the visible-to-hidden weights that follow the direction of steepest 
descent. 

It is not hard to see why this happens if we start with random, zero-mean 



364 

visible-to-hidden weights. If the visible-to-hidden weight wji is positive, hidden unit 

j will tend to have a higher than average activity level when the ith visible unit has a 
higher than average activity. So Yj will tend to be higher than average when the 

reconstructed value of Yi should be higher than average -- i.e. when the tenn 

[Yi(O)-Yi(2)] in Eq 3 is positive. It will also be lower than average when this tenn is 

negative. These relationships will be reversed if wji is negative, so w ij will grow 

faster when wJi is positive than it will when wji is negative. Smolensky4 presents a 

mathematical analysis that shows why a similar learning procedure creates 
symmetrical weights in a purely linear system. Williams5 also analyses a related 
learning rule for linear systems which he calls the "symmetric error correction" 
procedure and he shows that it perfonns principle components analysis. In our 
simulations of recirculation, the visible-to-hidden weights become aligned with the 
corresponding hidden-to-visible weights, though the hidden-to-visible weights are 
generally of larger magnitude. 

A PICTURE OF RECIRCULATION 

To gain more insight into the conditions under which recirculation learning 
produces the appropriate changes in the visible-to-hidden weights, we introduce the 
pictorial representation shown in Fig. 3. The initial visible vector, A, is mapped into 
the reconstructed vector, C, so the error vector is AC. Using high regression, the 
visible vector that is sent around the loop on the second pass is P, where the 
difference vector AP is a small fraction of the error vector AC. If the regression is 
sufficiently high and all the non-linearities in the system have bounded derivatives 
and the weights have bounded magnitudes, the difference vectors AP, BQ, and CR 
will be very small and we can assume that, to first order, the system behaves linearly 
in these difference vectors. If, for example, we moved P so as to double the length 
of AP we would also double the length of BQ and CR. 

Fig. 3. A diagram showing some vectors (A, P) over the visible units, their 
"hidden" images (B, Q) over the hidden units, and their "visible" images (C, R) 
over the visible lUlits. The vectors B' and C' are the hidden and visible images of 
A after the visible-to-hidden weights have been changed by the learning procedure. 



365 

Suppose we change the visible-to-hidden weights in the manner prescribed by 
Eq 4, using a very smaIl value of £. Let Q' be the hidden image of P (i.e. the image 
of P in the hidden units) after the weight changes. To first order, Q' will lie between 
B and Q on the line BQ. This follows from the observation that Eq 4 has the effect 
of moving each y/3) towards y/l) by an amount proportional to their difference. 

Since B is close to Q, a weight change that moves the hidden image of P from Q to 
Q' will move the hidden image of A from B to B', where B' lies on the extension of 
the line BQ as shown in Fig. 3. If the hidden-to-visible weights are not changed, the 
visible image of A will move from C to C', where C' lies on the extension of the line 
CR as shown in Fig. 3. So the visible-to-hidden weight changes will reduce the 
squared reconstruction error provided the vector CR is approximately parallel to the 
vector AP. 

But why should we expect the vector CR to be aligned with the vector AP? In 
general we should not, except when the visible-to-hidden and hidden-to-visible 
weights are approximately aligned. The learning in the hidden-to-visible 
connections has a tendency to cause this alignment. In addition, it is easy to modify 
the recirculation learning procedure so as to increase the tendency for the learning in 
the hidden-to-visible connections to cause alignment. Eq 3 has the effect of moving 
the visible image of A closer to A by an amount proportional to the magnitude of the 
error vector AC. If we apply the same rule on the next pass around the loop, we 
move the visible image of P closer to P by an amount proportional to the magnitude 
of PRo If the vector CR is anti-aligned with the vector AP, the magnitude of AC will 
exceed the magnitude of PR, so the result of these two movements will be to 
improve the alignment between AP and CR. We have not yet tested this modified 
procedure through simulations, however. 

This is only an infonnal argument and much work remains to be done in 
establishing the precise conditions under which the recirculation learning procedure 
approximates steepest descent. The infonnal argument applies equally well to 
systems that contain longer loops which have several groups of hidden units 
arranged in series. At each stage in the loop, the same learning procedure can be 
applied, and the weight changes will approximate gradient descent provided the 
difference of the two visible vectors that are sent around the loop aligns with the 
difference of their images. We have not yet done enough simulations to develop a 
clear picture of the conditions under which the changes in the hidden-to-visible 
weights produce the required alignment. 

USING A HIERARCHY OF CLOSED LOOPS 

Instead of using a single loop that contains many hidden layers in series, it is 
possible to use a more modular system. Each module consists of one "visible" group 
and one "hidden" group connected in a closed loop, but the visible group for one 
module is actually composed of the hidden groups of several lower level modules, as 
shown in Fig. 4. Since the same learning rule is used for both visible and hidden 
units, there is no problem in applying it to systems in which some units are the 
visible units of one module and the hidden units of another. Ballard6 has 
experimented with back-propagation in this kind of system, and we have run some 
simulations of recirculation using the architecture shown in Fig. 4. The network 



366 

learned to encode a set of vectors specified over the bottom layer. After learning, 
each of the vectors became an attractor and the network was capable of completing a 
partial vector, even though this involved passing information through several layers. 

00 

00 00 

0000 0000 

Fig 4. A network in which the hidden units of the bottom two modules are the 
visible units of the top module. 

CONCLUSION 

We have described a simple learning procedure that is capable of fonning 
representations in non-linear hidden units whose input-output functions have 
bounded derivatives. The procedure is easy to implement in hardware, even if the 
non-linearity is unknown. Given some strong assumptions, the procedure petforms 
gradient descent in the reconstruction error. If the synunetry assumption is violated, 
the learning procedure still works because the changes in the hidden-to-visible 
weights produce symmetry. H the assumption about the linearity of the visible units 
is violated, the procedure still works in the cases we have simulated. For the general 
case of a loop with many non-linear stages, we have an informal picture of a 
condition that must hold for the procedure to approximate gradient descent, but we 
do not have a fonnal analysis, and we do not have sufficient experience with 
simulations to give an empirical description of the general conditions under which 
the learning procedure works. 

REFERENCES 

1. D. E. Rumelhart, G. E. Hinton and R.I. Williams, Nature 323, 533-536 (1986). 

2. D. H. Ackley, G. E. Hinton and T. 1. Sejnowski, Cognitive Science 9,147-169 
(1985). 

3. G. Cottrell, 1. L. Elman and D. Zipser, Proc. Cognitive Science Society, Seattle, 
WA (1987). 

4. P. Smolensky, Technical Report CU-CS-355-87, University of Colorado at 
Boulder (1986). 

5. R.I. Williams, Technical Report 8501, Institute of Cognitive Science, University 
ofCalifomia, San Diego (1985). 

6. D. H. Ballard, Proc. American Association for Artificial Intelligence, Seattle, W A 
(1987). 


