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Abstract We explore the use of graph networks to deal with

irregular-geometry detectors in the context of particle recon-

struction. Thanks to their representation-learning capabili-

ties, graph networks can exploit the full detector granularity,

while natively managing the event sparsity and arbitrarily

complex detector geometries. We introduce two distance-

weighted graph network architectures, dubbed GarNet and

GravNet layers, and apply them to a typical particle recon-

struction task. The performance of the new architectures is

evaluated on a data set of simulated particle interactions on a

toy model of a highly granular calorimeter, loosely inspired

by the endcap calorimeter to be installed in the CMS detector

for the High-Luminosity LHC phase. We study the clustering

of energy depositions, which is the basis for calorimetric par-

ticle reconstruction, and provide a quantitative comparison to

alternative approaches. The proposed algorithms provide an

interesting alternative to existing methods, offering equally

performing or less resource-demanding solutions with less

underlying assumptions on the detector geometry and, con-

sequently, the possibility to generalize to other detectors.

1 Introduction

Traditionally, Machine Learning (ML) techniques are a key

ingredient to event processing at particle colliders, employed

in tasks such as particle reconstruction (clustering), identifi-

cation (classification), and energy or direction measurement

(regression) in calorimeters and tracking devices. The first

applications of Neural Networks to High Energy Physics

(HEP) date back to the ’80s [1–4]. Starting with the Mini-

BooNE experiment [5], Boosted Decision Trees became the
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state of the art, and played a crucial role in the discovery of

the Higgs boson by the ATLAS and CMS experiments [6].

Recently, a series of studies on different aspects of LHC data

taking and data processing workflows have demonstrated the

potential of Deep Learning (DL) in collider applications, both

as a way to speed up current algorithms and to improve their

performance. Nevertheless, the list of DL models actually

deployed in the centralized workflows of the LHC experi-

ments remains quite short.1 Many of these studies, which

are typically proof-of-concept demonstrations, are based on

convolutional neural networks (CNN) [10], which perform

computing vision tasks by applying translation-invariant ker-

nels to raw digital images. CNN architectures applied on HEP

data thus imposes a requirement for the particle detectors to

be represented as regular arrays of sensors. This requirement,

common to many of the approaches described in Sect. 2, cre-

ates problems for realistic applications of CNNs in collider

experiments.2

In this work, we propose novel Deep Learning archi-

tectures based on graph networks to improve the perfor-

mance and reduce the execution time of typical particle-

reconstruction tasks, such as cluster reconstruction and par-

ticle identification. In contrast to CNNs, graph networks can

learn optimal detector-hits representations without making

specific assumptions on the detector geometry. In partic-

ular, no data preprocessing is required, even for detectors

with irregular geometries. We consider the specific case of

1 As an example, at the moment such a list for the CMS experiment con-

sists of a set of b-tagging algorithms [7,8] and a data quality monitoring

algorithm for the muon drift tube chambers [9]. Other applications exist

at the analysis level, downstream from the centralized event process-

ing. In data analyses, one typically considers abstract four-momenta

and not the low-level quantities such as detector hits, making the use of

DL techniques easier.

2 The picture is completely different in other HEP domains. For

instance, CNNs have been successfully deployed in neutrino experi-

ments, where the regular-array assumption meets the geometry of a

typical detector.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7113-9&domain=pdf
mailto:14beesqasim@seecs.edu.pk
mailto:jan.kieseler@cern.ch
mailto:yutaro.iiyama@cern.ch
mailto:maurizio.pierini@cern.ch


608 Page 2 of 11 Eur. Phys. J. C (2019) 79 :608

particle reconstruction in calorimeters, for which this char-

acteristic of graph networks may become especially rele-

vant in the near future. In view of the High-Luminosity

LHC phase, the endcap calorimeter of the CMS detec-

tor will be replaced by a novel-design digital calorimeter,

the High Granularity Calorimeter (HGCAL), consisting of

arrays of hexagonal silicon sensor cells interleaved with

absorber layers [11]. Being positioned close to the beam

pipe and exposed to ∼ 200 proton-proton collisions on

average per bunch crossing, this detector will be charac-

terized by high occupancy over its large number of read-

out channels. Downstream in the data processing pipeline,

the unprecedented number of sensors and their geome-

try will cause an increase in event size and consequently

the computational needs, necessitating novel data process-

ing approaches given the expected computing limitations

[12]. The detector we consider in this study, described

in detail in Sect. 4, is loosely inspired by the HGCAL

geometry. In particular, it features a similarly irregular sen-

sor structure, with sensor sizes varying with the detector

depth as well as within a single layer. On the other hand,

the HGCAL hexagonal sensors were traded for square-

shaped sensors, in order to keep the computing resources

needed to generate the training data set within a manageable

limit.

As a benchmark application, we consider the basis for all

further particle reconstruction tasks in a calorimeter: cluster-

ing of the recorded energy deposits into disentangled show-

ers from individual particles. To this purpose, we introduce

two novel distance-weighted graph network architectures,

the GarNet and the GravNet layers, which are designed to

provide a good balance between performance and computing

resources needs for inference. While our discussion is lim-

ited to a calorimetry-related problem, the design of these new

layer architectures is such that it automatically generalizes

to any kind of sparse data, such as hits collected by a typical

tracking device or reconstructed particle candidates inside a

hadronic jet. We believe that architectures of this kind are

more practical to deploy in a realistic experimental environ-

ment and could become relevant for the LHC experiments,

both for offline and real-time event processing and selection

as well as shower simulation.

This paper is structured as follows: Sect. 2 reviews related

previous works. In Sect. 3, we describe the GravNet and

GarNet architectures. Section 4 describes the data set used

for this study. Section 5 introduces the metric used to opti-

mize the networks. Section 6 describes the models. The

results are presented in Sects. 7 and 8 in terms of accuracy

and computational efficiency, respectively. Conclusions are

presented in Sect. 9.

2 Related work

In recent years, DL models, and in particular CNNs, have

become very popular in different areas of HEP. CNNs were

successfully applied to calorimeter-oriented tasks, includ-

ing particle identification [11,13–16], energy regression

[11,13,15,16], hadronic jet identification [17–20], fast sim-

ulation [13,21–24] and pileup subtraction in jets [25]. Many

of these works assume a simplified detector description: the

detector is represented as a regular array of sensors expressed

as 2D or 3D images, and the problem of overlapping regions

at the transition between detector components (e.g. barrel and

endcap) is ignored. Sometimes the fixed-grid pixel shape is

intended to reflect the typical angular resolution of the detec-

tor, which is implicitly assumed to be a constant, while in

reality it depends on the energy of the incoming particle.

In order to overcome this practical difficulty with CNN

architectures, different HEP-related studies investigating

alternative architectures have been performed. In the context

of jet identification, several authors studied models based on

recurrent [7,8,26] and recursive [27] networks, graph net-

works [28], and DeepSets [29]. Recurrent architectures have

also been studied for event classification [30]. In general,

these approaches take as input a particle-based representation

of an event and thus are easier to apply in applications running

after a global event reconstruction based on a particle-flow

algorithm [31,32].

Outside the HEP domain, overcoming the necessity for a

regular structure motivated original research to use graph-

based networks [33], which in general are suited for process-

ing point-wise data with no regular structure by represent-

ing them as vertices in a graph. A comprehensive overview

of various graph-based networks can be found in Ref. [34].

In a typical implementation of a graph-based network, the

vertices are connected according to some predefined crite-

ria at the preprocessing stage. The connections between the

vertices (edges) then define paths of information exchange

[35,36]. In some cases, the edge and vertex properties are

used to infer attention (weight) assigned to each neighbour

during this information exchange, while leaving the neigh-

bour relations (adjacency matrix) unchanged [37]. Some of

these architectures have already been considered for collider

physics, in the context of jet tagging [38], event topology

classification [39], and for pileup subtraction [40].

Particularly interesting for irregular detectors are, how-

ever, networks that are capable of learning the geometry, as

studied in combination with message passing [41]. Within

this approach, the adjacency matrix is trainable. In other

words, the neighbour relations, which encode the detector

geometry, are not imposed at the preprocessing stage but

are inferred from the input data. Although this approach is

promising, its downside is the need to connect all vertices

with each other, which makes it computationally challeng-
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ing for graphs with a large number of vertices as the mem-

ory requirement becomes forbiddingly high. This problem is

overcome by defining only a subset of connections between

neighbours in a learnable space representation, where the

edge properties of each vertex to a limited number of its

neighbours are used to calculate a new feature representation

per vertex, which is then passed to the next layer of similar

structure [42]. This approach is implemented in the Edge-

Conv layer and the corresponding DGCNN model [42]. The

neighbours are selected based on the new vertex features,

which makes it particularly challenging to create a gradient

for training with respect to the neighbour selection. The DG-

CNN model works around this issue by using the edge fea-

tures themselves. However, due to the dynamic calculation

of neighbour relations in high-dimensional space, this net-

work still requires substantial computing resources, which

would make its use for triggering purposes in collider detec-

tors unfeasible.

3 The GRAVNET and GARNET layers

The neural network layers proposed in this study are designed

to provide competitive performance on particle reconstruc-

tion tasks while dealing with data sparsity in an efficient way.

These architectures aim to keep a trainable space represen-

tation at minimal computational costs. The layers receive as

input a B×V ×FIN data set, consisting of a batch of B exam-

ples, each represented by a set of V detector hits, embedded

in the network set through FIN features. For instance, the FIN

features could include the Cartesian coordinates of a given

sensor, its address (layer number, module number, etc.), the

sensor time stamp, the recorded energy, etc.

A pictorial representation of the operations performed by

the two layers is shown in Fig. 1. For both architectures,

the first step is to apply a dense3 neural network to each

of the V detector hits, deriving from the FIN features two

output arrays: the first array (S) is interpreted as a set of

coordinates in some learned representation space (for the

GravNet layer) or as the distance between the considered

vertex and a set of S aggregators (for the GarNet layer); the

second array (FLR) is interpreted as a learned representation

of the vertex features. At this point, a given input example

of initial dimension V × FIN is converted into a graph with

V vertices in the abstract space identified by S. Each vertex

is represented by the FLR features, derived from the initial

3 Here and in the following, dense layer refers to a learnable weight-

matrix multiplication and bias vector addition with respect to the last

feature dimension, with shared weights over all other dimensions. In

this case, the weights and bias are applied to the vertex features FIN

and shared over the vertices V . This can also be thought of as a 2D

convolution with a 1 × 1 kernel.

inputs. The projection from the V ×FIN to this graph is linear,

with trainable weights and bias vectors.

The main difference between the GravNet and the Gar-

Net architectures is in the way the V vertices are connected

when building the graph. In the case of the GravNet layer,

the Euclidean distances d jk between ( j, k) pairs of vertices

in the S space are used to associate to each vertex its closest

N neighbors. In the case of the GarNet layer, the graph

is built connecting each of the V vertices to a set of dim(S)

aggregators. What is learned by S, in this case, is the distance

between a vertex and each of the aggregators.

Once the edges of the graph are built, each vertex (aggre-

gator) of the GravNet (GarNet) layer collects the informa-

tion associated with the FLR features across its edges. This

is done in three steps:

1. The quantities

f̃ i
jk = f i

j × V (d jk) (1)

are computed for the feature f i of each of the vertices v j

connected to a given vertex or aggregator vk , scaling the

original value by a potential, function of the euclidean

distance d jk , giving the gravitational network Grav-

Net its name. The potential function is introduced to

enhance the contribution of close-by vertices. For this

reason, V has to be a decreasing function of d jk . In this

study, we use a Gaussian potential V (d jk) = exp (−d2
jk)

for the GravNet layer4 and an exponential potential

V (d jk) = exp (−|d jk |) for the GarNet layer.

2. The f̃ i
jk functions computed from all the edges associ-

ated to a vertex of aggregator vk are combined, gener-

ating a new feature f̃ i
k of vk . For instance, we consider

the average of the f̃ i
jk across the j edges and their max-

imum. In our case, it was particularly crucial to extend

the choice of aggregator functions beyond the maxi-

mum, which was already explored for similar architec-

tures [42]. In fact, the mean function (as any other sim-

ilar function) helped improve the convergence of the

model, by taking into account the contribution of all the

vertices.

3. Each adopted combination rule in the previous step gen-

erates a new set of features F̃LR. All of them are concate-

nated to the original FIN vector. This extended vector

is transformed into a set of FOUT new vertex features,

using a fully connected dense layer with tanh activa-

tion. The concatenation is done for each initial vertex.

In the case of the GarNet layer, this requires an addi-

tional step of passing the f̃ i
k features of the vk aggrega-

4 A gravitational potential (−1/d) has singularities at d = 0 and there-

fore cannot be used, however the potential we are using has a similar

qualitative effect of pulling together vertices.
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Fig. 1 Pictorial representation of the data flow across the GarNet and

the GravNet layers. a The input features FIN of each vi ∈ V are pro-

cessed by a dense neural network with two output arrays: a set of learned

features FLR and spatial information S in some learned representation

space. b In the case of the GravNet layer, the S quantities are inter-

preted as the coordinates of the vertices in some abstract space. The

graph is built in this space, connecting each vi to its N closest neigh-

bors (N = 4 in the figure), using the euclidean distance di j between the

vertices to rank the neighbors. c In the case of the GarNet layer, the

S quantities are interpreted as the distances between the vertices and a

set of S aggregators in some abstract space. The graph is then built con-

necting each vi vertex to each a j aggregator, and the S quantities are the

di j euclidean distances. d Once the graph structure is established, the

f i
j features of the v j vertices connected to a given vertex or aggregator

vk are converted into the f̃ i
jk quantities, through a potential (function of

d jk ). The corresponding information is then gathered across the graph

and turned into a new feature f̃ i
k of vk (e.g. summing over the edges, or

taking the maximum). e For each choice of gathering function, a new

set of features f̃ i
k ∈ F̃LR is generated. The F̃LR vector is concatenated

to the initial FIN vector. The resulting feature vector is given as input to

a dense neural network with tanh activation, which returns the output

representation FOUT

tors back to the initial vertices, weighted by the V (d jk)

potential. This information exchange of the garnered

information through the aggregators defines the Gar-

Net name.

The full process transforms the initial B × V × FIN data

set into a B × V × FOUT data set. As common with graph

networks, the main advantage comes from the fact that the

FOUT output (unlike the FIN input) carries collective infor-

mation from each vertex and its surrounding, providing a

more informative input to downstream processing. Thanks

to the distinction between learned space information S and

learned features FLR, the dimensionality of connections in

the graph is kept under control, resulting in a smaller mem-

ory consumption than, for instance, the EdgeConv layer.

The two layer architectures and the models based on them,

described in the following sections, are implemented in Ten-

sorFlow [43].5

5 The code for the models and layers can be found in https://github.

com/jkiesele/caloGraphNN.

4 Data set

The data set used in this paper is based on a simplified

calorimeter with irregular geometry, built in GEANT4 [44].

The calorimeter is made entirely of Tungsten, with a width

of 30 cm × 30 cm in the x and y directions and a length of

2 m in the longitudinal direction (z), which corresponds to

20 nuclear interaction lengths. The longitudinal dimension

is further split into 20 layers of equal thickness. Each layer

contains square sensor cells, with a fine segmentation in the

quadrant with x > 0 and y > 0 and a lower granularity else-

where. The total number of cells and their individual sizes

vary by layer, replicating the basic features of a slightly irreg-

ular calorimeter. For more details, see Fig. 2 and Table 1.

Charged pions are generated at z = − 2 m; the x and y

coordinates of the generation vertex are randomly sampled

within |x | < 5 cm and |y| < 5 cm. The x and y components

of the particle momentum are set to 0, while the z component

is sampled uniformly between 10 and 100 GeV. The particles

therefore impinge the calorimeter front face perpendicularly

and shower along the longitudinal direction.

The resulting total energy deposit in each cell, as well

as the cell position, width, and layer number, are recorded
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Fig. 2 Calorimeter geometry. The markers indicate the centre of the

sensors, their size the sensor size. Layers are colour-coded for better

visualisation

Table 1 Number of cells in the finely segmented quadrant and the rest

of the layer, for the benchmark calorimeter geometry described in the

text

Layer Cells (x > 0, y > 0) Cells elsewhere

0 64 48

1 64 108

2–3 100 192

4–7 64 108

8–11 64 48

12–13 16 12

14–19 4 3

for each event. These quantities correspond to the FIN fea-

ture vector given as input to the graph models (see Sect. 3).

Each example consists of the result of two overlapping show-

ers. Cell by cell, the energy of two showers is summed and

the fraction belonging to each of the showers in each cell is

defined as the ground truth. In addition, the position of the

largest energy deposit per shower is recorded. If this position

is the same for the two overlapping showers, they are con-

sidered not separable and the event is discarded. This applies

to about 5% of the events.

In total 16,000,000 events are generated. Out of these,

100,000 are used for validation and 250,000 for testing. The

rest is used for training.

5 Clustering metrics

To identify individual showers and use their properties,

e.g. for a subsequent particle identification task, the energy

deposits should be clustered so that overlapping parts are

identified without removing important parts of the original

shower. Therefore, the clustering algorithms should predict

the energy fraction of each sensor belonging to each shower.

Lower energy deposits are slightly less important. These con-

siderations define the loss function:

L =
∑

k

∑
i

√
Ei tik(pik − tik)

2

∑
i

√
Ei tik

, (2)

where pik and tik are the predicted and true energy fractions

in sensor i and shower k. These are weighted by the square

root of Ei ti , which is the total energy deposit in sensor i

belonging to shower k, to introduce a mild energy scaling

within each shower.

In addition, in each event we randomly label one of the

showers as the test shower and the other as the noise shower,

and define the clustering energy response Rk of shower k

(k = test, noise) as:

Rk =
∑

i Ei pik∑
i Ei tik

. (3)

6 Models

The models need to incorporate neural network layers to

identify localized structures as well as to perform infor-

mation exchange globally between the sensors. This can

be achieved either by multiple message passing iterations

between neighbouring sensors or a direct global informa-

tion exchange. Here, we employ a combination of both. The

input to all models is an array of sensors, each holding its

recorded energy deposits, global position coordinates, sensor

size, and layer number. We compare three different graph-

network approaches to a CNN based approach (Binning),

presented as a baseline. Each model is designed to contain

approximately 100,000 free parameters. The model structure

is as follows:

– Binning: a regular grid of 20×20×20 pixels is imposed

on the irregular geometry. Each pixel contains the infor-

mation of at most one sensor.6 The information is con-

catenated to the mean of these features in all pixels, pre-

processed by one 1 × 1 × 1 CNN layer with 20 nodes,

and then fed through eight blocks of CNN layers. Each

block consists of a CNN layer with a kernel of 7 × 7 × 1

followed by a layer with a kernel of 1 × 1 × 3, each con-

taining 14 filters. The output of each block is passed to

the next block and simultaneously added to a list of all

block outputs. All CNN layers employ tanh activation

functions. Finally, the full list of block outputs per pixel

6 Alternative configurations with more than one sensor per pixel were

also investigated and showed similar performance.
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is reshaped to represent the vertices of the graph and fed

through a dense layer with 128 nodes and ReLU activa-

tion. Different CNN models have also been tested and

showed similar or worse performance.

– DGCNN model: Adapting the model proposed in Ref. [42]

to our problem, the sensor features are interpreted as

positions of points in a 16-dimensional space and fed

through one global space transformation followed by four

blocks comprising one EdgeConv layer. Our Edge-

Conv layer has a similar configuration as in Ref. [42],

with 40 neighbouring vertices and three internal dense

layers with ReLu activation acting on the edges with 64

nodes each. The output of the EdgeConv layer is con-

catenated with its mean over all vertices and fed to one

dense layer with 64 nodes and ReLu activation which

concludes the block. The output of each block is passed

to the next block and simultaneously added to a list of

all block outputs per vertex together with the mean over

vertices. This list is finally fed to a dense layer with 32

nodes and ReLU activation.

– GravNet model: The model consists of four blocks. Each

block starts with concatenating the mean of the vertex

features to the vertex features, three dense layers with

64 nodes and tanh activation, and one GravNet layer

with S = 4 coordinate dimensions, FLR = 22 features to

propagate, and FOUT = 48 output nodes per vertex. For

each vertex, 40 neighbours are considered. The output

of each block is passed as input to the next block and

added to a list containing the output of all blocks. This

determines the full vector of vertex features passed to a

final dense layer with 128 nodes and ReLU activation.

– GarNet model: The original vertex features are concate-

nated with the mean of the vertex features and then passed

on to one dense layer with 32 nodes and tanh activation

before entering 11 subsequent GarNet layers. These

layers contain S = 4 aggregators, to which FLR = 20

features are passed, and FOUT = 32 output nodes. The

output of each layer is passed to the next and added to a

vector containing the concatenated outputs of each Gar-

Net layer. The latter is finally passed to a dense layer with

48 nodes and ReLU activation.

In all cases, each output vertex of these model building

blocks is fed through one dense layer with ReLU activation

and three nodes, followed by a dense layer with two output

nodes and softmax activation. This last processing step deter-

mines the energy fraction belonging to each shower. Batch

normalisation [45] is applied in all models to the input and

after each block.

All models are trained on the full training data set using the

Adam optimizer [46] and an initial learning rate of about 3×
10−4, the exact value depending on the model. The learning

rate is reduced exponentially in steps to the minimum of

3 × 10−6 after 2 million iterations. Once the learning rate

has reached the minimum level, it is modulated by 10% at a

fixed frequency, following the method proposed in Ref. [47].

7 Clustering performance

All approaches described in Sect. 6 perform well for clus-

tering purposes. An example is shown in Fig. 3, where

two charged pions with an energy of approximately 50 GeV

enter the calorimeter. One pion loses a significant fraction of

energy in an electromagnetic shower in the first calorimeter

layers. The remaining energy is carried by a single particle

passing the central part of the calorimeter before showering.

The second pion passes the first layers as a minimally ioniz-

ing particle and showers in the central part of the calorimeter.

Even though the two showers largely overlap, the Grav-

Net network (shown here as an example) is able to identify

and separate the two showers very well. The track within

the calorimeter is well identified and reconstructed and the

energy fractions properly assigned, even in the parts where

the two showers heavily overlap. Similar performance can

be observed with the other investigated methods.

Quantitatively, the models are compared with respect to

multiple performance metrics. The first two are the mean and

the variance of the loss function value (µL and σL ) computed

according to Eq. (2) over the test events. The mean and the

variance of the test shower response (µR and σR), where

the response is defined in Eq. (3), are also compared. While

the test shower response follows an approximately normal

distribution over majority of the test events, a small outlier

population, where the shower clustering fails, are seen to

lead µR and σR to misparametrize the core of the distribu-

tion. Therefore, response kernel mean µ∗
R and variance σ ∗

R ,

restricted to test showers with response between 0.2 and 2.8,

are added to the set of evaluation metrics. In addition, we also

compare the clustering accuracy (A), defined as the fraction

of showers with response between 0.7 and 1.3. Finally, the

above set of metrics is duplicated, with the second set using

only the sensors with energy fractions between 0.2 and 0.8

in the computation of the loss function and the response.

The second set of metrics characterizes the performance of

the models in particularly challenging case of reconstructing

significantly overlapping clusters. The two sets of metrics are

called inclusive and overlap-specific in the remainder of the

discussion.

The metric values are listed in Table 2. Comparing the

inclusive metrics, it can be seen that the GravNet layer

outperforms the other approaches, including even the more

resource-intensive DGCNN model. The GarNet model per-

formance is in between the DGCNN model and the binning

approach in terms of reconstruction of individual shower hit

fractions, parametrized by µL and σL . However, in charac-
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(a) Truth

(b) Reconstructed

Fig. 3 Comparison of true energy fractions and energy fractions recon-

structed by the GravNet model for two charged pions with an energy

of approximately 50 GeV showering in different parts of the calorime-

ter. Colours indicate the fraction belonging to each of the showers. The

size of the markers scales with the square root of the energy deposit in

each sensor

teristics related to clustering response, the binning model

outperforms the GarNet and DGCNN model slightly. On

the other hand, with respect to overlap-specific metrics, the

graph based approaches outperform the binning approach.

The DGCNN and GravNet model perform equally well,

and the GarNet model lies in between the binning approach

and GravNet.

One should notice that part of the incorrectly predicted

events are actually correctly clustered events in which the

test shower is labelled as noise shower (shower swapping).

Since the labelling is irrelevant in a clustering problem, this

behavior is not a real inefficiency of the algorithm. We denote

by s the fraction of events where this behaviour is observed.

In Table 3, we calculate the loss for both choices and evalu-

ate the performance parameters for the assignment that mini-

mizes the loss. The binning model shows the largest fraction

of swapped showers. The difference in response between the

best-performing GravNet model and the GarNet model is

enhanced, while the difference between the GravNet and

DGCNN model scales similarly, likely because of their sim-

ilar general structure.

In Fig. 4, the performance of the models are compared

in bins of the test shower energy with respect to inclusive

and overlap-specific µR and σR . For the inclusive metrics,

the GravNet model outperforms the other models in the full

range, and the GarNet model shows the worst performance,

albeit in a comparable range. The resource-intensive DG-

CNN model lies in between GravNet and GarNet.

The overall upward bias in the response for lower shower

energies warrants an explanation. This bias is a result of edge

effects, induced by our choice of using an adapted mean-

square error loss to predict a quantity bounded in [0, 1]

(the energy fraction). This choice of loss function creates an

expectation value larger than 0 at a peak value of 0 (and vice-

versa at a fraction of 1), and therefore pushes the prediction

away from being exactly 0 or 1, leading to an underestimation

at high energies and an overestimation at low energies. The

design of a customized loss function that eliminates this bias

is left to future studies. For the moment, we are interested in

a performance comparison between models, all affected by

this bias.

For overlap-specific metrics, the edge effects are highly

suppressed. The figures confirm that the graph-based models

outperform the binning method at all test shower energies. It

is also seen that the GravNet and the DGCNN model show

similar performance.

8 Resource requirements

In addition to the clustering performance, it is important to

take into account the computational resources demanded by

each model during inference. The required inference time and

memory consumption can have a significant impact on the

applicability of the network for reconstruction tasks in con-

strained environments, such as the online and offline central-

processing workflows of a typical collider-physics experi-

ment. We evaluate the inference time t and memory con-

sumption m for the models studied here on one NVIDIA GTX

1080 Ti GPU for batch sizes of 1 and 100, denoted as (t1, m1)

and (t100, m100), respectively. The inference time is also eval-

uated on one Intel Xeon E5-2650 CPU core (tCPU
10 ) for a fixed

batch size of 10. As shown in Fig. 5, memory consumption

and execution times differ significantly between the models.
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Table 2 Mean and variance of loss, response, and response within the Gaussian kernel as well as clustering accuracy

µL σL µR σR µ∗
R σ ∗

R A

Inclusive

Binning 0.191 0.017 1.083 0.183 1.046 0.057 0.867

DGCNN 0.174 0.012 1.082 0.179 1.045 0.052 0.881

GarNet 0.182 0.011 1.086 0.190 1.048 0.055 0.872

GravNet 0.172 0.012 1.077 0.173 1.042 0.049 0.886

Overlap-specific

Binning 0.163 0.0045 1.005 0.099 1.004 0.096 0.697

DGCNN 0.154 0.0046 1.004 0.090 1.002 0.087 0.728

GarNet 0.157 0.0048 1.005 0.095 1.004 0.092 0.714

GravNet 0.156 0.0047 1.004 0.091 1.003 0.088 0.721

Table 3 Mean and variance of loss, response, and response within the Gaussian kernel as well as clustering accuracy corrected for shower swapping.

The last column shows the fraction of swapped showers

µL σL µR σR µ∗
R σ ∗

R A s [%]

Inclusive

Binning 0.179 0.007 1.076 0.139 1.047 0.054 0.875 3.2

DGCNN 0.167 0.006 1.076 0.138 1.047 0.050 0.887 2.6

GarNet 0.176 0.006 1.081 0.149 1.049 0.054 0.877 2.5

GravNet 0.164 0.006 1.071 0.126 1.044 0.047 0.892 2.7

Overlap-specific

Binning 0.160 0.0037 1.005 0.098 1.004 0.095 0.699 3.2

DGCNN 0.152 0.0038 1.003 0.089 1.002 0.086 0.729 2.6

GarNet 0.154 0.0040 1.005 0.094 1.003 0.091 0.715 2.5

GravNet 0.152 0.0039 1.004 0.090 1.003 0.087 0.722 2.7

The binning approach outperforms all other models, because

of the highly optimized CNN implementations. The DG-

CNN model requires the largest amount of memory, while

the model using the GravNet layers requires about 50%

less. The GarNet model provides a good compromise of

memory consumption with respect to performance. In terms

of inference time, the binning model is the fastest and the

graph-based models show a similar behaviour for small batch

sizes on a GPU. The GarNet and the GravNet model ben-

efit from parallelizing over a larger batch. In particular, the

GarNet model is mostly sequential, which also explains the

outstanding performance on a single CPU core, with almost a

factor of 10 shorter inference time compared to the DGCNN

model.

9 Conclusions

In this work, we introduced the GarNet and GravNet lay-

ers, which are distance-weighted graph networks capable of

learning irregular patterns of sparse data, such as the detec-

tor hits in a particle physics detector with realistic geometry.

Using as a benchmark problem the hit clustering in a highly

granular calorimeter, we show how these network architec-

tures offer a good compromise between clustering perfor-

mance and computational resource needs, when compared

to CNN-based and other graph-based networks. In the spe-

cific case considered here, the performance of the GarNet

and GravNet models are comparable to the CNN and graph

baselines. On the other hand, the simulated calorimeter in the

benchmark study is only slightly irregular and can still be rep-

resented by an almost regular array. In more realistic applica-

tions, e.g. with the hexagonal sensors and the non-projective

geometry of the future HGCAL detector of CMS, the dif-

ference in performance between the graph-based approaches

and the CNN-based approaches is expected to increase fur-

ther, making the GarNet approach a very efficient candidate

for fast and accurate inference and the GravNet approach

a good candidate for high-performance reconstruction with

significantly less resource requirements but similar perfor-

mance compared to the DGCNN model for a similar number

of free parameters.

It should also be noted that the GarNet and GravNet

architectures make no specific assumption on the structure
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(a) Mean (b) Variance

(c) Mean (d) Variance

Fig. 4 Mean (left) and variance (right) of the test shower response as a function of the test shower energy for full shower (top) and for overlapping

shower (bottom), computed summing the true deposited energy. Swapping of the showers is allowed here
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Fig. 5 Comparison of inference time for the network architectures

described in the text, evaluated on CPUs and GPUs with different

choices of batch size. The shaded area represents the + 1σ statistical

uncertainty band

of the underlying data, and thus can be employed for many

other applications related to particle and event reconstruc-

tion, such as tracking and jet identification. Exploring the

extent of usability of these architectures will be the focus of

follow-up work.

Note added

After the completion of this work, Ref. [28] appeared, dis-

cussing the application of a similar approach to the problem

of jet tagging.
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