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I. ABSTRACT28

Integrating multi-omics datasets is critical for microbiome research, but multiple statis-29

tical challenges can confound traditional correlation techniques. We solve this problem by30

using neural networks to estimate the conditional probability that each molecule is present31

given the presence of each specific microbe. We show with known environmental (desert bi-32

ological soil crust wetting) and clinical (cystic fibrosis lung) examples, our ability to recover33

microbe-metabolite relationships, and demonstrate how the method can discover relation-34

ships between microbially-produced metabolites and inflammatory bowel disease.35

II. INTRODUCTION36

Knowledge gained by integrating complementary “-omics” data with a multi-omics ap-37

proach will lead to improved diagnostics, automated drug discovery, and optimized culturing38

conditions for uncharacterized microbes [1]. However, because conventional correlation tech-39

niques have unacceptably high false discovery rates, finding meaningful relationships between40

genes within complex microbiomes and their products in the metabolome is challenging.41

Although there has been a widespread effort to develop multi-omics approaches, several42

conceptual challenges limit techniques that integrate disparate “omics” data in general,43

including linking the microbial sequencing and untargeted mass spectrometry. Therefore,44

new approaches are needed that can handle disparate data types [2]. Relative abundances45

of thousands of microbes and metabolites can be measured using sequencing and mass46

spectrometry, which can result in the generation of very high dimensional microbiome and47

metabolomics datasets. Quantifying microbe-metabolite interactions requires estimating a48

distribution across all possible microbe-metabolite interactions.49

Techniques such as Canonical Correspondence Analysis (CCA) and Partial Least Squares50

(PLS) approximate this joint distribution using a low dimensional representations [3–5]. Net-51

work models have been shown to improve classification accuracy using multiple datasets [6].52

Factor models have been proposed to incorporate multiple datasets for biomarker analy-53

sis [7]. Despite of the wide application of these methods, they are notoriously difficult to54

interpret [8–10] and it remains unclear whether these models can obtain individual microbe-55

metabolite interactions.56
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Pearson and Spearman correlations assume independence between interactions, simplify-57

ing the estimation procedure by reducing it to a combination of independent two dimensional58

problems. However, many studies have shown that these methods are not statistically valid59

for compositional data, a fact first recognized by Pearson in 1895 and followed up in nu-60

merous studies [11–15]. This problem is further complicated because both microbiome [15]61

and mass spectrometry [16–19] datasets are also compositional, meaning that the absolute62

abundances are not measured, which can confound statistical inference. For example, in63

untargeted mass spectrometry experiments, the set of molecules detected and their relative64

abundance vary depending on the extraction protocol and analytic methods used, which65

leads to only a partial snapshot of the metabolome. Moreover, measuring the total mass of66

molecules extracted is often not performed in large scale metabolomics efforts, due to the67

highly laborious nature of that step.68

To understand how issues associated with compositional data impact inference on69

microbe-metabolite interactions, consider the example in Figure S1. There are two mi-70

crobes and two metabolites in Figure S1a. All are increasing exponentially at different rates71

and are highly correlated with each other. If proportions are estimated from the absolute72

abundances via sampling, the information about the total microbe population size and73

the total metabolite abundance is lost, and the correlations between the microbes and the74

metabolites disappear. False positives can also appear as shown in Figure S1b, microbe and75

metabolite interactions that have no apparent correlation structure may appear to be corre-76

lated when investigating the proportions. These issues alone can give rise to overwhelming77

false positives and false negatives, making Pearson and Spearman in some scenarios com-78

parable to random coin flips. Experimental validation currently takes large laboratories79

multiple years to perform [20], often requiring time-consuming manual examinations of80

erroneous correlations.81

There are other compositional techniques such as SparCC[11] and proportionality[21] that82

are scale-invariant when analyzing a single dataset, but lose scale-invariance when analyzing83

multiomics datasets. This was shown in the context of identifying microbe-fungal inter-84

actions [22], which provided motivation to extend SPIEC-EASI [12] to handle multiomics85

datasets. We show that this approach does not work for microbe-metabolite interactions86

because of differences of measurement units between sequencing and mass spectrometry mea-87

surements (Supplementary materials). An alternative approach is to consider co-occurrence88
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probabilities instead of correlations. Here, co-occurrence probabilities refer to the condi-89

tional probability of observing a metabolite given that a microbe was observed, thereby90

allowing us to identify the most likely microbe-metabolite interactions. To do this, we91

propose “mmvec”, (microbe-metabolite vectors), to learn these co-occurrence probabilities92

between microbes and metabolites. Due to its scale-robustness properties, the microbial-93

metabolite relationships learned by mmvec are consistent between the absolute and relative94

abundances. The microbe-metabolite interactions can be ranked [23] and visualized through95

standard dimensionality reduction interfaces, enabling interpretable findings. The compu-96

tations behind mmvec can take advantage of modern GPU architectures using Tensorflow97

[24], enabling scalable inference on large multiomics datasets. Furthermore, we provide evi-98

dence in two benchmarks and four case studies that mmvec outperforms existing statistical99

methods.100

III. RESULTS AND DISCUSSION101

We performed benchmarks comparing mmvec to Pearson, Spearman, SPIEC-EASI,102

SparCC and Proportionality [21] using a cystic fibrosis biofilm simulation. We then show103

that mmvec can resolve contradictory cyanobacteria-metabolite relationships in a desert104

soil biocrust wetting study. We also demonstrate recovery of known associations of P.105

aeruginosa-produced metabolites observed in cystic fibrosis [25]. Finally, we explore the106

relationships of microbiota and metabolic changes in mice fed a high fat diet [26] and inflam-107

matory bowel disease [27], showing how this approach can be used to determine microbial108

origin of novel molecules even in extremely complex real-life biological systems with limited109

knowledge of existing associations.110

A. Simulation benchmarks111

To compare mmvec performance to Pearson, Spearman, Proportionality, SparCC and112

SPIEC-EASI correlations, we used data from existing studies in which the relationships113

between microbes and metabolites were the central focus of investigation. One such study114

simulated spatial-temporal dynamics in a microbial biofilm [25]. The original study tested115

the hypothesis that the cystic fibrosis (CF) microbiome community within human lungs can116
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be manipulated by altering its chemical environment. Changes in pH and oxygen saturation117

suppress the principal pathogen, P. aeruginosa, without using antibiotics, by promoting the118

growth of a community of fermenters that out-compete the pathogen. The simplicity of this119

system allowed the high-level ecological patterns to be modelled. In the original simulations,120

the interactions between two microbes (fermenters denoted by θf and P. aeruginosa denoted121

by θp) and multiple molecules were modeled using Monad kinetics and diffusion processes[25]122

(Figure 2a).123

We simulated the measurement process for microbial DNA sequencing and untargeted124

mass spectrometry for metabolites as discussed in the Online Methods, providing ground125

truth information on their interactions. The model simulates interactions between P. aerug-126

inosa and the fermenters, and their interactions with the environment. It also simulates127

known interactions between microbes and molecules, such as sugar consumption by fer-128

menters and ammonia production by the pathogen. For example, the fermenters are posi-129

tively associated with sugars and ammonium concentration, and negatively associated with130

inhibitor concentration; P. aeruginosa is positively associated with amino acids and pH.131

Therefore, we can test whether the top K metabolites associated with each microbe by132

each tool includes the correct microbe-metabolite interactions. Figure 2c shows specificity133

and sensitivity for each tools as a function of K. In these simulations, random chance134

outperformed all of the tools except for mmvec and SPIEC-EASI, with mmvec performing135

the best. As shown in Figure 2d and Figure S2, mmvec is the only method robust to scale136

deviations amongst the methods tested. This is critical for maintaining consistency between137

absolute and relative abundances, which can otherwise lead to inflated false positives and138

false negatives [14].139

B. Soil biocrust wetting event case study140

Many studies produce inconsistent results that can be resolved with improved data anal-141

ysis, especially in environmental and clinical settings. To test whether mmvec can resolve142

unexplained discrepancies in microbe-metabolite interactions across studies, we applied it143

to a study of biocrust wetting [28]. In this study, laboratory-based exometabolite patterns144

observed with bacterial isolates were reproduced in the environment. Specifically, in this145

work authors identified metabolites that were consumed and released by multiple biocrust146
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isolates including Microcoleus vaginatus and two Bacillus strains [29], and compared these147

patterns with closely-related environmental taxa and metabolites observed in situ [28].148

While almost 70% of the examined microbe-metabolite relationships following the wetting149

event were validated [28], some contradicted the microbe-metabolite relationships observed150

in cultures [29]. These contradictions stemmed from Spearman correlations between M.151

vaginatus abundances and the observed metabolite abundances, but were resolved by mmvec152

(Figure 3a).153

All metabolites released from the M. vaginatus isolate have higher conditional proba-154

bilities than the average metabolite following biocrust wetting, and are among the top 80155

co-occurring metabolites with M. vaginatus (of 485 molecules total). This result supports156

the original finding that M. vaginatus actually releases these molecules after the wetting157

event. In contrast, Spearman labels 7 of 13 of these molecules with a negative correlation,158

indicating that these molecules were consumed by M. vaginatus rather than released, as159

originally stated in [28]. When the annotation detection rates amongst different statistical160

methodologies, mmvec has a substantially higher true positive rate as shown in Figure 3b.161

The conflicting results between mmvec and Spearman could be explained by the growing162

microbial biomass and shift in available resources after wetting (Figure 3 c, d). Total biomass163

is expected to increase, because M. vaginatus releases metabolites that enable the growth of164

many other microbes. Because DNA sequencing can only measure proportions, the growth165

in other microbes could cause the proportions of M. vaginatus to decrease, leading to a mis-166

leading anti-correlation with 4-guanidinobutanoate (Figure 3d). However, it is not possible167

to infer whether M. vaginatus is decreasing in abundance [23] or 4-guanidinobutanoate is168

increasing in abundance.169

The change in the total biomass and the total available resources could explain the170

contradiction between the Spearman correlations and the isolate results. M. vaginatus likely171

grows at a slower rate relative to other microbes that benefit from the metabolite release.172

Because mmvec does not rely on knowledge of the total biomass or normalize to relative173

abundance, these contradictions are avoided.174
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C. Cystic Fibrosis case study175

To further validate if mmvec can detect known microbe-metabolite interactions in a bi-176

ological setting, we re-analyzed a study on lung mucus microbiome of patients with cystic177

fibrosis [25, 30]. Cystic fibrosis has been shown to be dominated by two major groups178

of microbes, anaerobes and pathogens that occupy unique niches, and their interactions179

are defined by the environment. Anaerobes dominate in low oxygen and low pH environ-180

ments, while pathogens, in particular P. aeruginosa, dominate in the opposite conditions181

[25]. Mmvec clearly separates anaerobes and pathogens (Figure 4a), with known anaerobic182

microbes (Veillonella, Fusobacterium, Prevotella and Streptococcus) on the left, and notable183

pathogens, such as P. aeruginosa, on the right.184

P. aeruginosa is known to produce small-molecule virulence factors [31]. In the origi-185

nal study, based on annotations from GNPS[32], the bacterium was found to produce six186

molecules: 4-hydroxy-2-heptylquinoline (HHQ), Pyocyanin (PYO), Phenazine-1-carboxylic187

acid (PCA), 2-nonyl-4-hydroxy-quinoline (NHQ), 2-heptyl-3,4-dihydroxyquinoline (PQS,188

Pseudomonas quinolone signal) and Pyochelin [25]. As shown in Figure 4a, mmvec identi-189

fies these molecules with a high co-occurrence probability with P. aeruginosa. Mmvec also190

identifies a cluster of rhamnolipids likely produced by P. aeruginosa. Rhamnolipids are191

well characterized and are an important virulence factors for P. aeruginosa, contributing to192

biofilm development, motility on surfaces and antagonistic interactions with host inflamma-193

tory cells [33, 34]. These rhamnolipids were not identified in the original study [25]. The194

annotations for these compounds have been estiblished using GNPS [32].195

There is a negative correlation between the first principal component learned from mmvec196

and the metabolites log-fold change across the oxygen gradient (Figure 4b) (Pearson r=-197

0.59, p-value 1.8 × 10−44), which is consistent with the findings in the original work. No198

such correlation between the oxygen gradient and the first microbial principal component199

was found by Pearson (r=0.01, p=0.89). There exist two notable microbes on opposing200

ends of the first microbial principal component: P. aeruginosa, a known pathogen, and201

Streptococcus, a known anaerobe. The top 100 metabolites that are specific to P. aerug-202

inosa and Streptococcus are shown to have drastically different profiles in samples where203

P. aeruginosa and Streptococcus were the most abundant species (Figure 4d,e) (logratio204

t-test=6.51, p=4.4 × 10−8). This provides evidence that in the context of this study, the205
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metabolomic profiles can be largely influenced by the most abundant microbes, a notion206

that has important implications for understanding CF etiology. To further support this, the207

learned metabolite conditional probabilities for P. aeruginosa can be used to predict the208

metabolite proportions in the 41 samples where P. aeruginosa is the most abundant taxa.209

The predicted P. aeruginosa metabolite profiles alone can explain 10% of the metabolite210

variation in these samples (r=0.319, p=1.18× 10−11).211

Of 14 quinolone molecules known to be produced by P. aeruginosa, Pearson correla-212

tion detected 9 with p < 0.05 without FDR correction, and only 5 with FDR correction.213

For example, Pyocyanin, does not appear related to P. aeruginosa by the raw proportions214

(r=0.158, FDR-corrected pvalue=0.089, rank=96), but is ranked 34th most associated with215

P. aeruginosa by mmvec (Figure S3c), consistent with culturing experiments that demon-216

strate that P. aeruginosa produces this molecule [35]. 18 rhamnolipids are among the top217

25 metabolites most associated with P. aeruginosa by mmvec, and have higher ranks with218

mmvec than with Pearson correlation (Figure S3b).219

D. Effects of high fat diet in murine model case study220

We then tested whether mmvec could determine the microbial origin of specific molecules221

in a complex biological system. We recently discovered a new kind of bile acid, where222

cholate is conjugated to amino acids other than glycine and taurine [36]. These molecules223

increased in abundance with high-fat diet in humans. We determined that these molecules224

are microbially-made since they were present in specific pathogen free, but not in germ free225

mice. We therefore set out to identify candidate producers. We were able to confirm that226

one of these bile acids, cholate phenylalanine amidate, was associated with high-fat diet in227

well-controlled study that investigated the development of non-alcoholic fatty liver disease228

(NAFLD), cirrhosis, and hepatocarcinoma (HCC) in a mouse model [26]. When re-analyzing229

these datasets for differential abundances via multinomial regression, the strong association230

of the novel bile acid with HFD became immediately apparent. The use of mmvec showed231

distinct associated groups of microbes and HFD (Figure 5a) and a clear stratification of the232

mass spectrometry data according to diet (Figure 5b). Several Clostridium spp. correlated233

with the cholate phenylalanine conjugate. Indeed, we showed that Clostridium spp. were234

found to produce this bile acid [36]. This result demonstrates mmvec’s ability to streamline235
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the discovery of microbes that produce specific molecules of interest in vivo.236

E. Microbe-metabolite interactions in Inflammatory Bowel Disease237

Finally, microbe-metabolite interactions were investigated for samples of IBD patients238

generated under the integrative Human Microbiome Project [27]. The role of the microbiome239

in IBD is acknowledged, but still poorly understood. The original study uncovered shifts in240

metabolomic and microbial profiles associated with the IBD. In particular, levels of carnitines241

and bile acids were shown to be affected [27]. Using mmvec we confirmed the core findings in242

the previous study, such as the co-occurrence between R. hominis and multiple carnitines,243

including previously noted C20, which have anti-inflammatory properties (Figure 6a) [27].244

We also found high correlation of Klebsiella spp. with IBD status and that it co-occurs245

with high probability with several bile acids (Figure 6b). Although Klebsiella itself does not246

produce these compounds, some pathogens (including Klebsiella) are known to be resistant247

to bile acids [37]. Excessive production of some bile acids and bile acid malabsorption248

can lead to overabundance of bile acids, which is a hallmark of IBD [38], although the249

exact mechanisms remain unknown. The ability of Klebsiella to thrive in concentrated bile250

acid environments is consistent with the high co-occurrence probabilities shown in Figure251

6b. We also noted that three Klebsiella species are the top drivers of the IBD- associated252

molecules (Figure 6c). It is important to delineate different reasons for co-occurrence. Unlike253

Klebsiella, Clostridium species are known for bile acid manipulation, including production254

of bile that can germinate Clostridium difficile spores or that have anti-microbial properties255

[39, 40].256

Therefore, it is possible that in case of Clostridia, the existing co-occurrences (Figure 6b)257

are due to actual biosynthesis of the metabolites by the microbial species indicated rather258

than ability to withstand them.259

In addition to recapitulating reported findings, mmvec also yielded previously undetected260

relationships. The major microbe that was found to be associated with healthy patients is261

Propionibacteriaceae, which was not detected in Price et al 2019 (Figure 6cd). This relation-262

ship is corroborated by other published studies. In one study, it has been shown that some263

members of the Propionibacterium genus produce 1.4-Dihydroxy-2-naphthoic acid (DHNA),264

a growth stimulator for bacteria such as Bifidobacterium that are thought to reduce the265
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symptoms of IBD [41]. Also, in a survey of in vivo vs. in vitro bacterial activity, Probion-266

ibacterium freudenreichii was shown to play an immunomodulatory role in the context of267

an ulcerative colitis mice model [42]. In another study it was shown that Propionibacterium268

freudenreichii is a viable core component in an anti-inflammatory probiotic fermented dairy269

product [43]. The members of this family have been considered beneficial for intestinal im-270

munoregulation; Propionibacteriaceae have been observed to be enriched in human breast271

milk and have been shown to restore Th17 differentiation [44]. Thus, it appears that the272

existing knowledge supports the statistically-inferred interaction uncovered by mmvec, but273

not identified in the published analysis of the dataset274

IV. CONCLUSION275

In both simulation benchmarks and annotated dataset, mmvec shows promise for infer-276

ring microbe-metabolite interactions from multiomics datasets. Our benchmarks suggest277

that mmvec outperforms all existing tools that aim to infer interactions between paired278

microbe-metabolite abundance datasets, both in simulations and in experimental data. In279

the biocrust wetting experiment, mmvec resolved conflicting findings between the in vitro280

validated M. vaginatus released metabolites and the sequencing/mass spectrometry analy-281

sis of environmental samples. In the cystic fibrosis study, mmvec can reliably identify all282

of the experimentally determined P. aeroginosa-produced molecules of interest. We show283

in the example of bile acid production that mmvec enables exploratory analysis in complex284

biological systems and streamlined discovery of the microbial origin of specific metabolites.285

Finally, mmvec was able to identify the strongest microbial contributions to the metabolite286

abundances in the IBD study, where one of those microbes was missed in the original study.287

In light of these findings, the current methodology still has limitations. It remains unclear288

how to access statistical significance of an interaction using co-occurrence probabilities.289

Similarly, confidence intervals for the strength of each microbe-metabolite interaction can not290

yet be calculated. Furthermore, more theoretical work will be required to handle continuous-291

valued inputs.292

The concepts outlined here should generalize beyond microbe-metabolite interactions to293

handle other paired multi-omic data types, provided that the input dataset is made up of294

counts (as in metagenomics, transcriptomics, etc.). With the exponential growth of multi-295
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omics datasets, there is much potential to use these methods to reveal microbial metabolism,296

including for microbes that are not cultivable in the laboratory. Approaches utilizing co-297

occurrence probabilities have the potential to enable more targeted experimental assays,298

accelerating the discovery of microbe-metabolite interactions, paving the way towards new299

ecosystems engineering approaches in clinical, environmental and industrial applications.300
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IX. METHODS535

A. Mmvec neural network architecture536

The development of our proposed neural network was inspired by applications in natural

language processing. The underlying model can also be referred to as a bi-loglinear multino-537

mial regression. Our mmvec model posits an assumed generative process for the data, which538

leads to an inference algorithm to recover the model’s parameters from multi-omics data.539

The model’s assumed generative model for metabolite ν, microbe µ and sample k given as540

follows.541

First generate microbe vector uµ for microbe µ ∈ {1, ...N} and metabolite vectors vν for542
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metabolite ν ∈ {1, ...M},

uµ ∼ N (0, σuI) vν ∼ N (0, σvI) ,543

544

545

These vectors are length p, corresponding to the number of latent vectors dimensions. Each

of these vectors are drawn from a normal prior centered around zero and a diagonal covari-546

ance matrix with variances σu and σv, namely to serve regularization purposes and avoid547

overfitting. For a given microbial sample xk, the models generative process draws a single548

microbe from a single draw from the categorical distribution

µ ∼ Categorical(xk) .549

550

That microbe µ can be used to index U in order to generate conditional probabilities qµ

p(ν|µ) =
exp(vν · uµ + νν0 + uµ0)

∑

j

exp(vj · uµ + νj0 + uµ0)
,551

qµ = [p(ν1|µ), . . . p(νM |µ)]552

553

Here, νj0 + uµ0 are row and column biases, which are required to accurately estimate

the conditional probabilities. The above transformation is the softmax transform [45] to554

compute probabilities from real-valued quantities. This transformation is also known as the555

inverse clr transform [46], which enforces scale invariance as shown in the simulations. In the556

mmvec model’s generative process, these conditional probabilities generate the metabolite557

abundances yk for a given sample k through a multinomial distribution.

yk ∼ Multinomial(n, qµ) ,558

559

where n is the total metabolite abundances across sample k. It is important to note that560

metabolite abundances themselves are not counts, but rather a continuous representation561

of molecule counts. We make the simplifying assumption that these continuous valued562

abundances can be approximated by Multinomial count models.563

This model bears resemblance to how word2vec estimates word probabilities conditioned564

on a single particular word [47]. There are a couple of majors differences to be considered.565

First, in the original application of word2vec, a skipgram was proposed. Skipgrams [47]566

have been designed to account for the sequential nature of text. There is no such sequential567
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nature with microbiome or metabolite samples, the only ordering information that is known568

is the sample membership. As a result, the skipgrams can be replaced using multinomial569

sampling, where a single microbe is randomly sampled from a microbiome sample at each570

gradient descent step.571

Second, in the original word2vec application a single input/output word pair were eval-572

uated at each gradient descent step, which is required to incorporate the contextual infor-573

mation of words within sentences. In the application of multiomics, this is unnecessasrily574

complicated, since there is no such contextual with regards to microbes and metabolites.575

Instead, all of the metabolite abundances can be simultaneously evaluated for each gradient576

descent step, ultimately speeding up computations. Specifically, these metabolite abun-577

dances are simultaneously considered in order to estimate the conditional probabilities qk578

for the given microbial count ujk. From these conditional probabilities, the metabolite abun-579

dances yk are generated from a Multinomial distribution. This process is repeated across all580

of the microbial reads. To show that p(ν|µ) truly approximates the probability of observing581

a metabolite given a microbe, we first need to make the simplifying assumption that the582

conditional distribution of a metabolite given the presence of a single microbe also follows583

a multinomial distribution as follows584

p(Y = y|Xµ = 1) = Multinomial(y|qµ)585

586

Where y is the vector of observed metabolites, Y is the random variable modeling metabolite587

abundances, X is a random variable modeling microbe abundances, x is a vector of observed588

microbes and µ is a single microbe. Given these modeling assumptions, we can parameterize589

the conditional Multinomial distributions with embedding vectors as described above. This590

estimation procedure can be reformulated as a matrix factorization, where the conditional591

probability matrix is decomposed into two weight matrices U and V , which are comprised592

of microbe-metabolite vectors as follows593

594

U = [0,u0,u1, ...,uN ]T V = [v0,0,v1, ...,vM ] .595

596

Here U ∈ R
N×p and V ∈ R

(M−1)×p represents the corresponding embeddings for N microbes597

and M metabolites. The number dimensions p for both U and V as well as the priors are598

specified by the user, but can also be evaluated during cross-validation. The biases u0 and599
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v0 are critical for estimating accurate co-occurrence probabilities, as suggested by similar600

methodologies used in recommender systems [48]. The U and V matrices are estimated601

through maximum a posteriori (MAP) estimation using ADAM [49] with the following log-602

posterior603

L = LY + LU + LV604

LU =
∑

µ

p
∑

ρ=1

N (Uµ,ρ|0, σu)605

LV =
∑

ν

p
∑

ρ=1

N (Vν,ρ|0, σv)606

LY =
∑

k

∑

r∈xk

Multinomial(yk|qµ) .607

608

Within a single iteration of stochastic gradient descent a single microbial sequence i is609

randomly drawn and compared to a complete set of metabolite abundances yi for that given610

sample. If there are a total of R microbial reads across all of the microbial samples, there611

will be R iterations for a complete epoch over the microbial dataset. This means that the612

running time of this training process is O(RM) for a single epoch. Cross validation can be613

performed by holding out samples measuring the predictive power by looking at the sum of614

squares errors. Predictions can be made as follows615

SSE =
∑

k,i

(yk −mk · softmax(V Uuik,·))
2 .616

617

Where the predictive metabolite abundances are compared to the holdout abundances yk618

across all microbial reads i in the holdout samples k. mk denotes the total metabolite619

abundances in sample k620

621

B. Microbe-metabolite vectors in simplicial coordinates622

Here, we will provide some insights behind the underlying geometry behind this neural623

network. Doing so will provide intuition behind the algebraic operations commonly applied624

in the context of word2vec, suggesting the possibility of performing similar tasks in the625

context of microbe-metabolite interactions. Furthermore, this will motivate the use of the626



23

Aitchison distance to quantify microbe-microbe and metabolite-metabolite interactions. Fi-627

nally we will make a connection to topic modeling, providing another means to potentially628

interpret the latent dimensions in the model. The connection between the softmax and the629

inverse clr transform suggests that the inputs to this transform can be represented in clr630

coordinates. The softmax function and its corresponding inverse, the clr transform, is given631

as follows632

softmax(x) =

[

ex1

∑

i

exi
, . . . ,

ex1

∑

i

exi

]

633

clr(z) =

[

log
z1

g(z)
, . . . , log

zD

g(z)

]

634

635

636

Since biases are incorporated into the mmvec model, by construction Q = UV T is both row637

centered and column centered, meaning that the sum of rows are zero and the sum of the638

columns are zero. Given this the following holds639

Theorem: If Q = UV and 1NQ = 0 and Q1M = 0 then U1p = 0 and V 1p = 0640

Suppose that there exists another solution Q = UV ∗
T

where V = V −1MλT
v and λv ∈ R

p.641

Then642

Q = U (V − 1MλT
v ).643

644

Given that the rows of Q sum to 0, then645

U (V − 1MλT
v )

T1M = 0646

UλvM = 0.647

648

This means that only the trivial solution λv = 0 exists, therefore the rows of V do sum to649

0.650

Using the same reasoning above, suppose that there exists another solution Q = U∗V T
651

where U ∗ = U − 1NλT
u and λu ∈ R

p. Then652

Q = (U − 1NλT
u)V

T .653

654

Given that the columns of Q sum to 0, then655

1T
N (U − 1NλT

u)V
T = 0656

NλT
uV = 0.657

658
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This means that only the trivial solution λu = 0 exists, therefore the rows of U do sum to659

0.660

Therefore the rows of both U and V must sum to zero if U and V are non-trivial.
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661

As noted in previous compositional data analysis work, the sum of the components within662

a vector in clr coordinates is zero. Given that the row vectors within U and V both sum663

to zero, that suggests that each of these vectors are also in clr coordinates. This means the664

following properties are satisfied665

Topic proportions666

Since the U and V row vectors are in clr coordinates, that implies that these row vectors667

can be directly converted to p-dimensional proportions, yielding a similar interpretation to668

topics used in models such as LDA [50, 51].669

Linearity670

Vectors in clr coordinates are known to satisfy linearity, namely671

clr(αx+ y) = αclr(x) + clr(y)

for α ∈ R, x ∈ Sp and y ∈ Sp. This linearity property was leveraged in word2vec models to672

perform analogy reasoning. Since both microbes and metabolites are in clr coordinates, it673

should be possible to categorize microbe-microbe and metabolite-metabolite interactions.674

Isometry675

The clr transform is distance preserving, meaning that the Aitchison distance on propor-676

tions is equivalent to the Euclidean distance on clr vectors. This provides motivation for677

using Euclidean distances to compute microbe-microbe and metabolite-metabolite similari-678

ties.679

C. Visualization through biplots680

Visualization techniques from compositional data analysis can aid with interpretation681

[52, 53]. U and V can be visualized as factors within a biplot to visualize the microbe-682

metabolite embeddings on a single plot. The first two latent dimensions of U represent683
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microbial coordinates on a 2D scatter plot and the first two latent dimensions of V represent684

metabolite coordinates on a 2D scatter plot. Typically the coordinate from the V matrix685

are plotted as arrows from the origin in order to identify features that explain the variance in686

U . However, in our case studies, there are typically many more metabolites than microbes687

- so we opt to visualize the metabolites as points and microbes as arrows for a simpler688

visualization689

As suggested by the above theorem, the distance between points approximates the Aitchi-690

son distance between metabolites, and the distance between arrow tips approximates the691

Aitchison distance between microbes. As suggested in [54], the Aitchison distance is also692

equivalent to the variance of the log ratios, suggesting that microbe-microbe and metabolite-693

metabolite distances could also be interpreted as a measure of proportionality [21]694

D. Benchmarks695

The simulated data was based on a cystic fibrosis biofilm model derived in Quinn et al [25]696

shown in Figure S12 in the paper. The biofilm model was built to explain how fermenters and697

P. aeruginosa responded to different concentrations of sugars, amino acids, pH, oxgygen and698

antibiotics across the Winogradsky column. These models solved for differential equations699

integrating Monad kinetics and diffusion processes and was run in Matlab using the code700

provided at https://github.com/zhangzhongxun/WinCF model Code701

From this simulation, we only focus 2 microbes and 5 compounds. The two microbes are702

P. aeroginosa (θp) and fermenters (θf ). The five compounds (SG), acids (F), ammonium703

(P), amino acids (SA) and inhibition molecules (I). In order to simulate a high dimensional704

dataset, each microbial taxon was split into 50 different subtaxa and each compound was705

split into 50 molecular subclasses. The partitioning procedure is given as follows706

pi ∼ N (0, σoI) qi ∼ N (0, σcI)

oij = κijilr
−1(pi) cik = ηikilr

−1(qi) ,

where pi is a vector proportions representing how the subtaxa corresponding to j will be707

distributed in sample i. κij represents the absolute abundance of taxon j in sample i. oij708

represents a vector of the absolute abundances for all of the subtaxa corresponding to taxon709
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j. These are the absolute abundances that are used for comparison in Figure 2.710

Here we use the ilr−1 transform to generate proportions from a multivariate normal711

distribution. Here the multivariate normal distribution is centered around zero, and the712

covariance matrix σoI has only a constant diagonal structure with a tunable parameter σo713

specifying the variability of the partitioning procedure. Larger values of σo will cause the714

allocations of the microbes to be increasingly uneven.715

The partitioning procedure is identical for the metabolites. qi is a vector proportions716

representing how the subcompounds corresponding to k will be distributed in sample i. ηik717

represents the absolute abundance of compound k in sample i. cik represents a vector of718

the absolute abundances for all of the subtaxa corresponding to compound k. The multi-719

variate normal distribution used to generate the proportions is centered around zero. The720

covariance matrix σcI has only a constant diagonal structure with a tunable parameter σc721

specifying the variability of the partitioning procedure. Larger values of σc will cause the722

allocations of the metabolites to be increasingly uneven.723

724

Once the subtaxa and subcompounds absolute abundances have been simulated, the

microbial relative counts and metabolite abundances are simulated. The sampling procedure

is performed as follows

ζi ∼ LN (n, τo) ωi ∼ LN (m, τc)

xi ∼ PLN (ζi C(oi), ǫo) yi ∼ LN (ωi C(ci), ǫc) .

The total sequencing depths and total intensities for sample i are draw from Lognormal725

distributions with means parameterized by n and m and overdispersion parameters τo and726

τc. We chose to use the lognormal distribution for three reasons. First, the lognormal727

distribution models overdispersion. Second, the lognormal distribution has a simpler inter-728

pretation than other overdispersed distributions such as the negative binomial, since the729

parameters can be directly interpreted as a normal distribution and consequentially has a730

compositional interpretation due to its connection to the ilr transform. Finally, the lognor-731

mal distribution commonly used for modeling in the the ecological literature in the context732

of studying species populations in Niche theory and Neutral theory, leading to a natural733

biological interpretation.734

Once the total sequencing depth and the total intensities are sampled, the microbial735
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sequencing counts and metabolite abundances are then sampled. A Poisson lognormal dis-736

tribution is used to generate the microbial counts from the microbial proportions C(oi)737

scaled by the sequencing depth ζi. The counts are sampled with error ǫo. A Lognormal738

distribution is used to generate the metabolite abundances from metabolite proportions739

C(ci) scaled by the total intensity ωi. The abundances are sampled with error ǫc. All of740

the code used to generate the benchmarks can be found at https://github.com/knightlab-741

analyses/multiomic-cooccurrences742

E. Data Analysis743

Due to the overwhelming sparsity in microbiome datasets, some filtering is required in744

order to infer microbe-metabolite interactions. We chose to filter out microbes that appear745

in less than 10 samples, since these microbes don’t have enough information to infer which746

metabolites are co-occurring with them. In other words the mmvec model has too many747

degrees of freedom to perform inference on these microbes. For the cystic fibrosis study,748

there were 172 samples and after filtering there were 138 unique microbial taxa and 462749

metabolite features. For the biocrust soils study, there were 19 samples and after filtering750

there were 466 unique microbial taxa and 85 metabolite features. For the murine high fat751

diet study, there were 434 samples and after filtering there were 902 microbes and 11978752

metabolites. For the IBD dataset, there were 13920 features in the c18 LCMS dataset, 26966753

features in the c8 LCMS dataset and 562 taxa. Cross validation was performed across all754

studies to evaluate overfitting. In the desert biocrust soils experiment, 1 sample out of 19755

samples was randomly chosen to be left out for cross-validation. In all of the other studies,756

10 samples were randomly chosen to be left out for cross-validation. All of the analyses can757

be found under https://github.com/knightlab-analyses/multiomic-cooccurences.758

F. Data availability759

The cystic fibrosis sequencing and metadata data can be found under760

http://qiita.microbio.me; study id: 10863. The corresponding GNPS analysis can be ac-761

cessed at762

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=34d825dbf4e9466e81d809faf814995b.763
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The biocrust soils data was retrieved from the supplemental section in Swenson et al [28].764

The High fat diet murine model case study 16S rRNA data can be found under765

http://qiita.microbio.me; study id: 10856. The High fat diet murine model case study are766

publicly available at767

https://massive.ucsd.edu/ at MassIVE ID MSV000080918. The GNPS analysis for this768

study can be accessed at769

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=977d85bba47b4e96bf69872b961b8edd770

The IBD data used can be found under https://ibdmdb.org/771

G. Software availability772

The software implementing the mmvec algorithm can be found under773

https://github.com/biocore/mmvec774

Differential abundance analyses in the high fat diet study was performed using L2-regularized775

multinomial regression using software available at https://github.com/biocore/songbird776

The software used to build the multiomics network can be found at777

https://github.com/mortonjt/multiomics network778

X. SUPPLEMENTAL MATERIALS779

A. Challenges of analyzing multiple compositional datasets780

One of the challenges involved with inferring microbe-metabolite interactions is resolving781

the differences between the absolute abundances in the original environment, and the mea-782

sured relative abundances from sequencing and mass spectrometry. In order to guarantee783

consistency between absolute and relative abundances, scale invariance must be maintained784

[23], otherwise overwhelming false positive or false negative rates can occur (Figure S1).785

As shown in Figure 2d, most tools are not scale invariant. The reason for the contradiction786

is further clarified in Figure S2, from the proportions, it looks like most of the microbes are787

decreasing when in fact they are merely increasing with a slower growth rate compared788

to the fastest growing microbe. The inability to determine which microbes are actually789

increasing or decreasing caused Pearson and Spearman to misannotate the vast majority of790
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the interactions, with the except of the interactions of the fastest growing microbe in this791

scenario.792

It may appear the benchmark in Figure 2d that the proportionality metric rho is scale793

invariant in the context of multiomics analysis. However, another benchmark in Figure S2794

reveals that rho is not scale invariant. The reason why scale-invariance breaks for phi, rho795

and SparCC is because the microbe and metabolite datasets have differing absolute sums.796

When analyzing a single dataset all three of these metrics rely on the following quantity to797

hold798

V
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log
xi
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)

= V
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log
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(

log
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)

,

where xi correspond to random variable quantifying absolute abundances of microbe i, N799

corresponds to a random variable quantifying the total population size of the microbes, and800

pxi
correspond to the proportions of microbe i. Due to the log-ratio, the dependence on801

the total population size N drops out, negating the need to quantify total microbial load.802

This is critical for microbiome sequencing applications, since quantifying total microbial803

load can be challenging [14, 23]. Furthermore, methods that satisfy scale invariance have804

shown shown to be superior to other tools in the context of co-occurrence analysis [55].805

However, scale invariance is much harder to enforce when analyzing co-occurrence rela-

tionships across multiple datasets. When evaluating the variance of the log ratios across

multiple datasets, the scale-invariance relationship is not immediately satisfied
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Here, yj refers to the absolute abundances of the metabolite j, M refers to the total number806

of metabolites in the original environment and pyj is the proportion of metabolite j.807

This was recognized in Tipton et al [22] and additional modifications were added to808

SPIEC-EASI. These modifications explain the superior performance of SPIEC-EASI in the809

benchmarks. However, there are two major impediments to the application of SPIEC-EASI,810

namely zeros and StARs [56] regularization. SPIEC-EASI still relies on using pseudocounts,811

adding bias into the resulting inference. Furthermore, STaRs has been shown to enhance812

the interpretation of the SPIEC-EASI results, but STaRs is not a scale-invariant procedure.813

Due to this alone, the absolute and relative estimates will not match as shown in Figure 2814
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and Figure S2. This may not be a problem when analyzing multiomics datasets with similar815

scales, such as 16S and ITS sequencing datasets. However, these problems will become816

exacerbated when analyzing datasets with drastically different scales. Sequencing counts817

are usually below 100k reads per samples, where as MS intensities are up to 10e9 intensity818

units.819

In light of the challenges discussed above, there are some scenarios where standard statis-820

tical methods will be consistent with the biological reality. As discussed in [23] the differences821

between absolute and relative abundances is essentially a constant factor attributed to the822

changes in the total biomass. If the total biomass is constant, then traditional statistical823

methods will work fine. In the case of the cystic fibrosis dataset [25], microbial communities824

were grown in fixed size Winogradsky columns. As a result, the total size of the community825

could be constrained due to the limited resources and space. This could explain the consis-826

tency between Pearson and mmvec in this particular study (Figure S3). On the other hand,827

in the biocrust soils study, the drastic differences between Spearman and mmvec could be828

explained by the rapid increase in biomass following the wetting event.829

B. Software workflows830

To facilitate utilization of the mmvec tool, we have developed two different user facing831

interfaces. First, we have developed a qiime2 plugin [57], where mmvec can be run using a832

simple command line interface. This interface is complemented using [24], where users can833

monitor convergence rates for their models in real-time and evaluate how different parameters834

will affect their model fit (Figure S4). Second, we have integrated mmvec into the Global835

Natural Product Social Molecular Networking (GNPS) platform that can be accessed by836

the public. The online interface through GNPS resolves several usability issues. First,837

GNPS facilitates import of metabolomics data into qiime2 by pre-processing, importing,838

and sample renaming, This is performed as part of the standard metabolomics analysis at839

GNPS (e.g. molecular networking and feature-based molecular networking). Second, since840

it is possible to both download and re-use outputs of workflows run at GNPS directly, it is841

straightforward to select the GNPS qza and molecule annotations needed for mmvec. The842

user will need to upload the accompanying feature and taxonomy data for qiime2 and the843

analysis will be begin. Once the workflow completes, the biplots can be viewed directly in844
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the browser and other outputs (e.g. ranks) are available for download (Figure S5).845

The mmvec implementation is written using Tensorflow and can leverage GPUs for com-846

putation. The number of gradient descent iterations is specified by the user and model fit847

diagnostics can be monitored in real time using Tensorboard. The runtime of mmvec across848

16 cores can take multiple days until a model convergence reaches convergence. With GPUs,849

the running time is reduced to a few hours. Using a Telsa GPU, the model can reach conver-850

gence within 4 hours on the IBD dataset comprised of 562 microbial taxa, 26,966 metabolite851

features and 400 samples. However, there is a trade-off of accuracy and running time. More852

accurate models require smaller learning rates and may take longer to run.853

XI. FIGURE LEGENDS854

Figure legends are below
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Figure 1: Input data types and mmvec neural network architecture. (a) The neural net-855

work architecture where the input layer represents one-hot encodings of N microbes and856

the output layer represents the proportions of M metabolites. U corresponds to microbial857

vectors and V corresponds to metabolite vectors. (b) The pipeline for training mmvec.858

The objective behind mmvec is to predict metabolite abundances (y) given a single input859

microbe sequence (x), also known as a one-hot encoding. This training procedure will esti-860

mate conditional probabilities of observing a metabolite given the input microbe sequence.861

Cross-validation can be performed on hold-out samples to access overfitting.
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Figure 2: Simulation benchmarks. (a) Absolute abundances of microbes and metabolites862

simulated from differential equations derived in [25] for a specific spatial point. (b) Propor-863

tions of the abundances shown in (a). (c) F1 score, precision and recall curves comparing864

mmvec to Pearson, Spearman, SparCC, SPIEC-EASI, and proportionality metrics phi and865

rho across the top 100 metabolites for each microbe. (d) comparisons of coefficients learned866

from absolute abundances and relative abundances all of the benchmarked methods.
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Figure 3: M. vaginatus released metabolites after the biocrust wetting event. (a) Compar-867

ison of M. vaginatus metabolite interactions estimated from Spearman and mmvec from868

(n=19 samples). All of the experimentally validated M. vaginatus released metabolites are869

labeled. All metabolites with contradicting findings between the wetting experiment and870

the in vitro experimental results are highlighted in red. Points are resized according to871

the 10 log(p-value) obtained from Spearman correlation. Dashlines mark the cutoff for a872

Spearman correlation of zero, and the conditional log probabilities of zero. Here a zero873

log conditional probability represents the conditional probability of the average metabolite874

because all probabilities here are mean centered. (b) Benchmarks comparing the detection875

rate of the experimentally validated molecules across different statistical methodologies. (c)876

M. vaginatus proportions and (d) 4-guanidinobutanoate proportions following a wetting877

event.
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Figure 4: Investigation of P.aeruginosa-associated molecules. (a) Biplot drawn from the878

mmvec conditional probabilities estimated for the cystic fibrosis dataset [25]. Arrows rep-879

resent microbes and dots represent metabolites. The x and y axes represent principal880

components from the SVD of the microbe-metabolite conditional probabilities estimated881

from mmvec (n=138 samples). Distances between points quantify co-occurrence strength be-882

tween metabolites, with small distances indicating metabolites that have a high probability883

of co-occurring with high probability. Distances between arrow tips quantify co-occurrence884

strength between microbes. The directionality of the arrows can be used to pinpoint which885

microbes can explain the metabolite co-occurrence patterns. Arrows highlighted in green886

correspond to putative cystic fibrosis pathogens and yellow arrows highlight known anaer-887

obes. Only known molecules produced by P. aeruginosa are labeled. (b) Scatter plot of888

molecules with respect to the oxygen gradient differential and the first principal component889

learned from mmvec (n=442 molecules) with linear regression model and 95% confidence890

interval for regression estimate. (c) The first principal component vs the number of samples891

where the taxa was the most abundant taxa in that sample . (d) Heatmap of P. aeruginosa892

and Streptococcus abundances in samples where they are the most abundant species. (e)893

Heatmap of the top 100 molecules that co-occur with P. aeruginosa and Streptococcus.
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Figure 5: Microbe/metabolite co-occurrences across study of HCC progression in the con-894

text of innate immunity in a mouse model [26]. (a) Visualization of microbial co-occurrence895

patterns, where distances between points approximates the Aitchison distance between896

microbes, which quantities microbial occurrences. Small distances are indicative of mi-897

crobes with high probability of co-occurring together. Microbes are colored according to898

their association with HFD, which was estimated using differential abundance analysis899

via multinomial regression. (b) Emperor [58] biplot of microbe-metabolite interactions,900

with metabolites colored according to their association with HFD. HFD association was901

estimated through differential abundance analysis via multinomial regression. Distances be-902

tween points approximate Aitchison distances between metabolites and distances between903

arrow tips approximate Aitchison distances between microbes. Several Clostridium spp.904

appear to co-occur with the new bile acid molecule cholate phenylalanine amidate, also905

referred to as Phe conjugated cholic acid.
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Figure 6: Microbe-metabolite interactions of the human microbiome in association with906

IBD samples [27]. (a) Heatmap visualization of the inferred conditional probabilities for907

various bile acids given the presence of Klebsiella, Roseburia and Clostridium bolteae. (b)908

Heatmap visualization of the inferred conditional probabilities for the carnitines given the909

presence of Klebsiella, Roseburia, and Clostridium bolteae. (c) Multiomics biplot of the910

microbe-metabolite interactions learned from metagenomics profiles and C18 negative ion911

mode LC-MS. Microbes (arrows) and metabolites (spheres) are colored according to their912

differentials estimated from multinomial regression. Klebsiella spp. appears to be strongly913

associated with IBD, while Propionibacterium spp. has strong negative association. (d)914

Network of the top 300 edges where only the edges that contain Klebsiella and Propioni-915

bacteriaceae are visualized.
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Figure S1: Description of the compositionality issue. (a) An illustration of how false neg-916

atives can occur - in the absolute abundance data, there is a strong Pearson correlation917

between the microbes and the metabolites. These correlations disappear when considering918

the corresponding proportions. (b) An illustration of how false positives can occur - in the919

absolute abundance data, there is no correlation between the dark green molecule and the920

dark blue microbe. However, the proportions of the same dataset show that there is a very921

strong correlation between the dark blue and the dark green molecule.
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Figure S2: Illustration of how excessive misannotation rates can occur. (a) Absolute abun-922

dances and relative abundances of microbes/metabolites observed in an environment over923

time, with each microbe/metabolite colored according to its rate of increase / decrease. (b)924

A scale-invariance comparison of statistical methodologies. Points are colored by the cor-925

responding microbes in the interactions; triangle markers represent increasing metabolites926

and decreasing metabolites. Mmvec is the only method that remains consistent between the927

absolute and relative abundances.
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Figure S3: Comparison of Pearson and mmvec on Cystic Fibrosis study. (a) Estimates928

of P. aeruginosa associated molecules between Pearson and the conditional probabilities929

calculated from the mmvec applied to the cystic fibrosis study dataset. The annotations930

correspond to level 2 or 3 of the metabolomics standards initiative [59] and may correspond931

to different isomeric species (n=462 molecules). (b) Ranks of Pearson coefficients and condi-932

tional probabilities from the mmvec for the Rhamnolipids (n=462 molecules). (c) Pyochelin933

proportions vs P. aeruginosa proportions.
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Figure S4 : Negative log likelihood and prediction accuracy of mmvec. Tensorboard visu-934

alization of training error and cross-validation error of mmvec on the IBG dataset. Five935

different runs with differing initialization conditions are shown.
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Figure S5: GNPS [32] job output. An example of job on the GNPS website with the job936

description and the downloadable output files from mmvec.
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