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ABSTRACT 

 
This paper describes a face detection approach via learn-
ing local features.  The key idea is that local features, 
being manifested by a collection of pixels in a local re-
gion, are learnt from the training set instead of arbitrarily 
defined.  The learning procedure consists of two steps.  
First, a modified version of NMF (Non-negative Matrix 
Factorization) is applied to get an overcomplete set of 
local features.  Second, a learning algorithm based on 
AdaBoost is used to select a small number of local fea-
tures and yields extremely efficient classifiers.  Experi-
ments are presented which show that the face detection 
performance is comparable to the state-of-the-art face 
detection systems. 
 
1. INTRODUCTION 
 
There is psychological [10] and physiological [19, 9] evi-
dence for parts based representations in the brain.  Some 
face detection algorithms also rely on such representations.  
However, the spatial shape of their local features is often 
subjectively defined instead of being learnt from the train-
ing data set.  
 
Yang et al. [20] describe a method for frontal face detec-
tion on 20x20 regions.  They assign a weight to every pos-
sible pixel value at every possible location within the re-
gion.  The weights are determined by an iterative training 
procedure using the Winnow update rule.  Once they have 
determined the weights they can classify any region by 
looking up and summing the weights corresponding to 
each pixel value.  Thus each of their local features relies 
on only one pixel. 
 
Colmenarez and Huang [5] used first order Markov Chain 
model over 11x11 input region to model face and non-face 
class conditional probabilities.  To build the model, they 
calculate 1st order conditional probabilities for all pixels 
pairs, indicating that each of their local feature involve 
two pixels.  The training procedure finds the mapping 
from the region into a 1 dimensional array with maximum 
sum of the corresponding 1st order conditional probabili-

ties according to the training set.  Any region can then be 
classified as face or non-face by looking up and summing 
the probabilities corresponding to the intensity values of 
each selected pixel pair. 
 
Schneiderman and Kanade [16] argued that local features 
which are too small – one pixel at the extreme – will not 
be powerful enough to describe anything distinctive about 
the object.  They use multiple appearance-based detectors 
that span a range of the object’s orientation.  Each detector 
uses a statistical model to represent object’s appearances 
over a small range of views, to capture variation that can-
not be modeled explicitly.  They use rectangular sub-
regions at multi-scales as local features in the statistical 
model.  Size of those rectangles is pre-defined. 
 
Burl and Perona [3] detected 5 types of features on the 
face: the left eye, right eye, nose/lip junction, left nostril, 
and right nostril.  They assume that the feature detectors 
for each feature are fallible.  Since they assume only one 
face is present in each image, at most one feature response 
is correct for each type of detector.  Such hand-picked 
local features can also be found in Pentland’s method [13], 
etc. 
 
Rowley et al. [14] used a multilayer perceptron neural 
network system for classification.  A 20x20 input region is 
divided into blocks of either 5x5, 10x10, or 20x5.  Each 
hidden unit has one block as its receptive field.  In their 
experiments with modular systems, they separately trained 
two or three of the above networks and then applied vari-
ous methods for merging their results.  Since the hidden 
units have only local support, we can infer that this par-
ticular network topology emphasizes local features over 
global one. 
 
Viola and Jones [18] argued that the most common reason 
for using features rather than the pixels directly is that 
features can act to encode ad-hoc domain knowledge that 
is difficult to learn using a finite quantity of training data.  
Given a 24x24 region, they use an exhaustive set of three 
kinds of Harr like rectangular features.  A following 
AdaBoost procedure is applied to learn important features 
from the overcomplete feature set.  In contrast to their 



method, Papageorgiou et al. [11] use a overcomplete set of 
Quadruple density 2D Harr basis at scales 4 × 4 and 2 × 2 
pixels since they think the dimensions correspond to typi-
cal facial features for their 19 × 19 face images.  they av-
erage the normalized coefficients over the entire set of 
example to identify the important Harr basis. 
 
From the methods above we can conclude that there are 
two main steps for learning local features.  The first step 
determines various characteristics of the local feature, in-
cluding size, shape, location and calculations over the cor-
responding pixels, etc.  Generally a overcomplete feature 
set is required for further selection of the features.  The 
second step aims to find out the important features among 
the overcomplete set with the knowledge contained in the 
training data.  Most previous face detection algorithms put 
learning procedure in the second step while little or no 
attention was put in the much, if not more, important first 
step.  Instead, they define the spatial shape and other 
properties of their local features manually and intuitively. 
 
Several existing algorithms can be applied to learn parts-
based representation from examples.  Local feature analy-
sis (LFA) [12] is a method for extracting local topographic 
representation in terms of local features.  The extraction is 
from the global PCA basis, also based on second order 
statistics.  The LFA representation enables use of specific 
local features for identification instead of a global repre-
sentation. 
 
Independent component analysis [7, 6] is a linear non-
orthogonal transform which makes unknown linear mix-
tures of multi-dimensional random variables as statistically 
independent as possible.  It not only decorrelates the sec-
ond order statistics but also reduces higher-order statistical 
dependencies. It extracts independent components even if 
their magnitudes are small whereas PCA extracts compo-
nents having largest magnitudes.  It is found that inde-
pendent component of natural scenes are localized edge-
like filters [2]. 
 
The projection coefficients for the linear combinations in 
the above methods can be either positive or negative, and 
such linear combinations generally involve complex can-
cellations between positive and negative numbers.  There-
fore, these representations lack the intuitive explanation 
from the relationship between parts and the whole. 
 
Non-negative matrix factorization (NMF) [8] imposes the 
non-negativity constraints in learning basis images.  The 
pixel values of resulting basis images, as well as coeffi-
cients for reconstruction, are all non-negative.  By this way, 
only non-subtractive (or additive) combinations are al-
lowed.  This ensures that the components are combined to 
form a whole in a gradually accumulative means.  For this 

reason, NMF is considered as a procedure for learning a 
parts-based representation [8].  However, the non-negative 
parts learned by NMF are not necessarily localized, and 
moreover, Stan Z. Li et al. [4] found that the original NMF 
representation yields lower recognition accuracy while 
compared with traditional PCA method.  Inspired by this 
observation, Stan Z. Li et al. proposed a constrained non-
negative matrix factorization (C-NMF) algorithm which 
optimizes the objective to learn truly localized, parts-
based components.  Their experimental results demon-
strate that C-NMF basis leads to better recognition results 
than the PCA and the original NMF methods. 
 
In our method, C-NMF is employed to learn parts-based 
components.  We apply it on the input region (I) and (1-I) 
to get both bright local components and dark local compo-
nents, suppose the input region (I) have the pixel value in 
the range of [0, 1].  Each local feature is calculated from a 
bright component and a dark one.  We can then construct a 
face detector by selecting a small number of important 
features using AdaBoost from the overcomplete local fea-
ture set. 
 
The rest of the paper is organized as follows.  Section 2 
gives a brief introduction of NMF and Constrained NMF.  
Section 3 describes how to get the local features used in 
our method.   Constructing face classifier using AdaBoost 
is briefly introduced in Section 4.  Experiments are pre-
sented in Section 5 followed by some conclusions. 
 
2.  NMF AND CONSTRAINED NMF 
 
Given a set of NT training images represented as an n × NT   
matrix ][X ijx= , each column of which contains n non-
negative pixel values.  Denote a set of m ≤ n basis images 
by an n × m matrix W.  Each image can be represented as 
a linear combination of the basis images (eigenvectors of 
unit length), and hence the (approximate) factorization  

HWX ≈    (1) 
where H is the matrix of  m × NT  coefficients or weights. 
Dimension reduction is achieved when m < n. 
 
The PCA factorization requires that the basis images (col-
umns of W be orthonormal and the rows of H be mutually 
orthogonal.  It imposes no other constraints than the or-
thogonality, and hence allows the entries of W and H to be 
of arbitrary sign.  The NMF and C-NMF, however, allow 
only positive coefficients and thus additive combinations 
of basis components. 
 
 
2.1 NMF 
 



NMF imposes the non-negativity constraints instead of the 
orthogonality. As the result, the entries of w and h are all 
non-negative. This way, only additive combinations are 
allowed, and no subtractions can occur. This is believed to 
be compatible to the intuitive notion of combining parts to 
form a whole, and is how NMF learns a parts-based repre-
sentation [8]. It is also consistent with the physiological 
fact that the firing rate is non-negative. 
 
NMF uses the divergence of X from HWY = , defined as 
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as the measure of cost for factorizing X into WH.  An 
NMF factorization is defined as a solution to the following 
constrained optimization problem 
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where W, H ≥ 0 means that all entries of W and H are non-
negative.  

 

2.2 Constrained NMF 
 
The NMF model defined by (3) does not impose any con-
straints on the spatial locality. Therefore, minimizing the 
objective function can hardly yield a factorization which 
reveals local features in the data X.  C-NMF is aimed to 
improve the locality of the learned features by imposing 
additional constraints.  Let (WTW) = U = [uij], ( HHT ) = V 
= [vij]. The following three additional constraints are im-
posed on the NMF basis: 
 

1. The number of basis components which is required to 
represent X should be minimized.  This requires that 
a basis component should not be further decomposed 
into more components.  Let wj be a basis vector.  
Given the existing constraints Σi wij = 1 for all j, the 
value  Σi wij

2 should be as small as possible so that wj 
contains as many non-zero elements as possible.  
This constraint can be formulated as minimizing Σi 
uii. 

2. To minimize redundancy between different bases, 
different bases should be as orthogonal as possible.  
This can be imposed by minimizing Σi≠j uij. 

3. Only basis containing most important information 
need to be retained.  Given that every image in X is 
normalized into a range such as in [0, 1], the total 
“activity” on each component, i.e. the total squared 

projection coefficients summed over all training im-
ages, should be maximized.  This is imposed by       
Σi vii  = max. 

 
Incorporating the above constraints into the original NMF 
formulation, the new objective function for C-NMF is: 
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where α, β  > 0 are some constants.  A C-NMF factoriza-
tion is defined as a solution to the problem (3) with (4). 
 
A comparison shown in Figure 1 gives the different fac-
torization results (image basis) of NMF and C-NMF on 
our face database.  C-NMF basis are obviously more local-
ized than NMF basis.  One should note that because of the 
orthogonality constraint 2, the coefficient matrix H is no 
longer sparse in C-NMF as it is in NMF.   But this takes 
no effect on our approach since we only use the image 
basis. 
 

      
      (1)              (2) 
Figure 1 Factorization result of 49 basis on our face data-
base by (1) NMF (Non-Negative Matrix Factorization) 
and (2) Constrained NMF.  Obviously C-NMF has more 
localized basis. 
 
3.  GETTING LOCAL FEATURES 
 
Section 2 shows that C-NMF can provide localized, parts-
based representation of human faces.  In this section, we 
will concentrate on using the representation to get efficient 
local features.   
 
Investigating the Harr-like features used in Viola’s [18] 
and Papageorgiou’s [11] systems, we notice that differen-
tial operator is robust to varying lighting.  Inspired by this, 
we desire to get local components that contain both bright 
and dark parts of the faces, and then put differential opera-
tor on bright and dark components to get the final value. 
 
To achieve this, each sample (I) in X is mapped into X’ as 
(1-I), suppose (I) have its pixel value in range [0, 1].  Then 



we apply C-NMF on both the sample set X and X’ to get 
two sets of basis, W and W’, which could be used as 
bright and dark components, respectively. 
  
This can be explained as below.  Recall that in last section, 
the matrix V = (HHT ) indicates the energy relationship 
between the basis (include each basis itself).  From the 
experiment we find that the values of the entries of V ma-
trix are much closed to each other, implying that each ba-
sis contribute roughly the same to the whole data set.  
Thus we can not say individually which component is 
more “bright” than others.  That is why we need to per-
form C-NMF on the other sample set X’. 
 
Given the two basis sets W and W’, for each input region 
we can get two coefficient vector h and h’.  The local fea-
ture set corresponding to the basis sets could be {hi – h’j}, 
∀i,j.  In practice, several local feature sets, correspond to 
different basis sets, are combined together to form a over-
complete feature set.  In next section, AdaBoost is applied 
on the set to select important features and construct the 
classifier at the same time. 
 
4. ADABOOST FOR FEATURE SELECTION 
 
After the process described in previous section, we obtain 
an over-complete set of local features. Using the entire 
feature set is obviously infeasible in practice.  Oppositely, 
we seek for an approach to select those most discriminat-
ing features. Viola [18] use a variant of AdaBoost to select 
features from an overcomeplete Harr-like feature set and 
train the classifier.  The similar method is applied to our 
system. 
 
The Adaboost algorithm was first introduced in 1995 by 
Freund and Schapire [21]. In its original forms, the goal of 
AdaBoost is to improve the performance of any given 
classification algorithms via combining a collection of 
classification functions to form a stronger classifier. These 
classification functions, in the language of boosting, are 
usually called weak learners. The major idea of Adaboost 
is to enforce the weak learners to focus on the examples 
misclassified by previous classifiers. It does this by adjust-
ing the weight of each training sample. In the initial state, 
all weights are set equally but on each round of training, 
the weights of misclassified samples will be increased in 
the proportion of previous classification errors.  
 
This greedy boosting procedure was adapted by Viola et al. 
to feature selection. The weak learner is restricted to a set 
of classification functions while each of which depends on 
only one single feature.  For each feature, the weak learner 
determines an optimal threshold classification function, 

such that the number of misclassified examples is mini-
mized.   
 
The procedure of applying Adaboost to feature selection 
[18] can be formulated as follows. Given a set of training 
examples ),(),,(),,( 2211 mm yxyxyx … , where ix represents 

2020× image patterns and 1,0=iy for faces and nonfaces 
examples respectively, we assign a weight value iw to each 
example ),( ii yx . Before the training all iw are equal and 
the sums of all eights are normalized to unit. For each fea-
ture, we train a simple Bayesian classifier which is re-
stricted to this single feature. The classification error is 
evaluated with respect to ∑ −= iijiji yxhww )(,ε . The 
classifier, th , with the lowest error tε is chosen as one 
component of the final strong classifier and its importance 
in final classification function is determined by classifica-
tion rate. Subsequently all weights are updated in terms of 
the training error before next round of training. 
 
Besides Viola’s successful experience, the formal guaran-
tees provided by the AdaBoost learning procedure are 
quite strong.  Freund and Schapire [21] proved that the 
training error of the strong classifier approaches zero ex-
ponentially in the number of rounds.  More importantly a 
number of results were later proved about generalization 
performance [22].  The key insight is that generalization 
performance is related to the margin of the examples, and 
that AdaBoost achieves large margins rapidly. 
 
Using the same learning framework, we can now compare 
our learnt local features with Viola’s Harr like features.  
We do this comparison on our training set which contains 
5,000 face samples and 10,000 non-face samples.  C-NMF 
representations of dimensions 25, 36, 45, 47, 49, 51, 53, 
55, 64, 81, 100 are computed from the training set to form 
a feature set with 37648 local features.  From each features 
set, we select 200 features.  The error εt of first 20 features 
is shown in Figure 2.   Figure 3 shows the ROC curves of 
the two classifiers on our testing set which contains 2000 
face samples and 5000 non-face samples. 
 
5. EXPERIMENTAL RESULTS 
 
This section describes the final face detection system, in-
cluding training data preparation, training procedure, and 
the performance comparison with state-of-the-art face de-
tection system.  
 
5.1 Training Data Set 
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Figure 2.  Comparison of our local feature set with Viola’s 
Harr-like feature set using the first 20 features selected by 
AdaBoost. 
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Figure 3.  ROC curves of the two classifier using 200 fea-
tures selected from our local feature set and Harr-like fea-
ture set 
 
We collect the frontal face images from the database of 
CMU, Rockefeller, Umist, Corel and our own database.  
There are more than 7,000 faces in total.  We select 5,000 
of them as our positive training samples and 2,000 as test-
ing samples.  Each face image is resized into 20 × 20 and 
aligned by the center point of the two eyes and the hori-
zontal distance between the two eyes. 
 
For non-face training set, an initial 10,000 non-face sam-
ples were selected randomly from 15,000 large images 
which contain no face.  The 5,000 testing non-face sam-
ples mentioned in section 4 are also randomly selected 
from the large images. 
 
All samples, both in training set and in testing set, are 
processed by illumination compensation and histogram 
equalization to minimize the effect of different lighting 
conditions, as was done in Rowley’s method. 
 
5.2 Training phase 
 
We use the similar feature selection framework with Viola 
‘s method [18].  The final detector is a 29 layer cascade of 

classifier.  We used 2 features in the first layer, 5 features 
in the second layer, and 20 features in three layers. In the 
fifteenth layers 200 features are used for training the clas-
sifier. 
 
The initial 10,000 non-face samples are used to train the 
first three layers.  In subsequent layers, non-face samples 
are obtained by scanning the partial cascade across large 
non-face images and collecting false positive samples.  
Different sets of nonface sub-windows are used in training 
the different classifiers to ensure that they are somewhat 
independent and use different features.  
 
5.3 Testing phase 
 
The face detector is tested on the images collected from  
the MIT+CMU test set [23].  For an input image, we scan 
each 20 × 20 sub-window exhaustively in both spatial and 
scale space, as was done is Rowley’s system [14].  The 
starting scale is 1, the scale step is 1.25 and the spatial step 
is 1 pixel at each scale level.  Results from different scale 
levels or spatial locations are merged to get the final result.   
 

 
 
Figure 4.  An example image of Output by our face detec-
tor 
 
6. CONCLUSIONS 
 
In this paper, we introduce a face detection approach by 
learning representative local features.  The main difference 
from other face detection methods is that the local features 
are learnt from the training set instead of arbitrarily de-
fined. 
 
The learning procedure consists of two steps.  First, Con-
strained NMF (Non-negative Matrix Factorization) is ap-
plied on the training set to get both bright and dark basis 
(components), then a overcomplete set of local features 
are construct upon that.  This set of local features show 
better performance than Viola’s exhaustively Harr-like 
feature set.  Second, a learning algorithm based on 



AdaBoost is used to select a small number of feature 
groups and yields extremely efficient classifiers.  Experi-
mental results show that the face detection performance on 
our test set is comparable to Viola’s systems. 
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