
Learning Responsive Robot Behavior by Imitation

Heni Ben Amor1, David Vogt2, Marco Ewerton1, Erik Berger2, Bernhard Jung2, Jan Peters1

Abstract— In this paper we present a new approach for
learning responsive robot behavior by imitation of human in-
teraction partners. Extending previous work on robot imitation
learning, that has so far mostly concentrated on learning from
demonstrations by a single actor, we simultaneously record
the movements of two humans engaged in on-going interaction
tasks and learn compact models of the interaction. Extracted
interaction models can thereafter be used by a robot to engage
in a similar interaction with a human partner. We present two
algorithms for deriving interaction models from motion capture
data as well as experimental results on a humanoid robot.

I. INTRODUCTION

While robots are becoming increasingly better at perform-

ing a wide range of motor skills, they are still limited in

their human interaction capabilities. To date, most robots are

not prepared to appropriately respond to the movements or

the behavior of a human partner. However, with application

domains of robots coming closer to our everyday life, there

is a need for adaptive algorithms that ensure responsive robot

behavior for human-robot interaction.

We present a new approach to robot learning that allows

anthropomorphic robots to learn a library of interaction skills

from demonstration. Traditional approaches to modelling

interactions assume a pre-specified symbolic representation

of the available actions. For example, they model interactions

in terms of commands such as wait, pick-up, and place.

Instead of such a top-down approach, we want to focus on

learning responsive behavior in a bottom-up fashion using a

trajectory based approach. The key idea behind our approach

is that the observation of human-human collaborations can

provide rich information specifying how and when to interact

in a particular situation. For example, by observing how

two human workmen collaborate on lifting a heavy box, a

robot could use machine learning algorithms to extract an

interaction model that specifies the states, movements, and

situational responses of the involved parties. In turn, such a

model can be used by the robot to assist in a similar lifting

task. Our approach is as an extension of imitation learning

[3] to multi-agent scenarios, in which the behavior and the

mutual interplay between two agents is imitated.

In this paper, we describe the general multi-agent imitation

learning setup for learning interaction models from motion

capture data. We also provide two first algorithms that enable

a robot to learn such interaction models between interacting

1Heni Ben Amor, Marco Ewerton and Jan Peters are with the Technis-
che Universitaet Darmstadt, Intelligent Autonomous Systems, Darmstadt,
Germany. {amor,ewerton,peters}@ias.tu-darmstadt.de

2David Vogt, Erik Berger and Bernhard Jung are with the Technische
Universitaet Bergakademie Freiberg, Virtual Reality and Multimedia Group,
Freiberg, Germany. {david.vogt,bergere,jungb}@tu-freiberg.de

Fig. 1. A humanoid robot receives a book that is handed over by a
human interaction partner. The robot learned what to do in this situation
by observing a similar situation between two humans.

agents. The first algorithm PPCA-IM (Probabilistic Principal

Component Analysis-Interaction Model) frames the task as

a missing value estimation problem. The second algorithm

called PM-IM (Path Map-Interaction Model) uses a Hidden

Markov Model (HMM) [20] to represent the mutual depen-

dencies of the interacting agents. A set of shared latent states

is used to map the behavior of one agent to the behavior of

the interaction partner. The principal difference between the

two algorithms presented in this paper is the representation

of the temporal dynamics of interaction. The PPCA-IM uses

an implicit representation of time via a temporal embedding

of the training data. In contrast, the PM-IM uses an explicit

representation of time via a discrete set of hidden nodes.

Through a series of experiments, we will show how the

two algorithms can be used to create a responsive robot that

learns to react to the movements and gestures of humans.

We will also provide a comparison of PPCA-IM and PM-IM

and discuss the advantages and drawbacks of each approach.

II. RELATED WORK

Finding simple and natural ways of specifying robot con-

trol programs is a focal point in robotics. Imitation learning,

also known as Programming by Demonstration, has been

proposed as a possible solution to this problem [22]. Based

on human-provided demonstrations of a specific skill, a robot

autonomously generates a control program that allows it to

generalize the skill to different situations. Most approaches

to imitation learning obtain a control policy which encodes

the behavior demonstrated by the user. The policy can

subsequently be used to generate a similar behavior that is

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 3257

Fig. 2. Overview of the interaction learning approach presented in this paper. The interaction behavior of two humans is observed, analyzed and imitated
in order in human-robot interaction scenarios. Left: The movements of two persons are recorded using motion capture technology. Middle: A compact
interaction model specifying the mutual influences and responses is learned. Right: The interaction model enables a robot to compute the best response to
the current behavior of a human interaction partner.

adapted to the current situation.

For example, the Dynamical Motor Primitive (DMP) [13]

approach uses dynamical systems to represent control poli-

cies. The DMP approach has been widely accepted in the

imitation learning community and has been used to learn

various motor skills such as locomotion [16], or drumming

[13]. Another way of encoding policies is to use statistical

modelling methods. For example, in the Mimesis Model [17]

a continuous hidden Markov model is used for encoding

the teacher’s demonstrations. A similar approach to motion

generation is presented by Calinon et al. [7] who used Gaus-

sian Mixture Regression to learn gestures. The advantage

of statistical and probabilistic approaches, is the ability to

naturally model the spatial and temporal variability of human

motion.

The methods discussed so far are limited to single agent

imitation learning scenarios. Once the behavior is learned,

it is executed without taking into account the reaction of

an interaction partner. In recent years, various attempts have

been undertaken for using machine learning in human-robot

interaction scenarios. In [15], a recurrent neural network was

used to learn a simple interaction game between a human

and a robot. More recently, Wang et al. [24] presented an

extension of the Gaussian Process Dynamics Model that was

used to infer the intention of a human player during a table-

tennis game. Through the analysis of the human player’s

movement, a robot player was able to determine the position

to which the ball will be returned. This predictive ability

allowed the robot to initiate its movements even before

the human hit the ball. In [14], Gaussian mixture models

were used to adapt the timing of a humanoid robot to that

of a human partner in close-contact interaction scenarios.

The parameters of the interaction model were updated using

binary evaluation information obtained from the human.

While the approach allowed for human-in-the-loop learning

and adaptation, it did not include any imitation of observed

interactions.

In a similar vein, the work in [17] showed how a robot

can be actively involved in learning how to interact with a

human partner. The robot performed a previously learned

motion pattern and observed the partner’s reaction to it.

Learning was realized by recognizing the observed reaction

and by encoding the action-reaction patterns in a HMM. The

HMM was then used to synthesize similar interactions. In

contrast, in our approach, learning of motion and interaction

is not split into two parts. Instead, we learn one integrated

interaction model which can directly synthesize an appro-

priate movement in response to an observed movement of

the human partner. Further, instead of modelling symbolic

action-reaction pairs, our approach is based on modelling

the joint dynamics during the execution of a movement.

In general, while the learning approaches discussed above

are placed within human-robot interaction settings, they only

learn from demonstrations by a single actor at a time. In

contrast, the work presented here focuses on imitation learn-

ing from simultaneously recorded movements by two human

interaction partners in order to learn integrated models of the

joint interaction.

III. LEARNING INTERACTION MODELS

The goal of learning an interaction model is to derive a

compact representation of how two agents behave and, in

particular, how they react to each other when they perform

a cooperative or competitive task together. The approach

followed in this paper derives such a representation from ob-

servations of human-human interactions. In Figure 2 we see

an overview of this approach. First, the movements of a pair

of persons performing a competitive (or cooperative) task

are recorded using motion capture technology. Subsequently,

an interaction model is learned from the recorded data. The

interaction model captures the reciprocal influences during

the execution of the task. In turn, the interaction model

enables us to predict the state (skeletal configuration) of one

human based on the observed states of the second human.

Finally, the learned model is used by a robot to engage in

a similar interaction with a human partner. In the example

depicted in Figure 2, the humanoid robot learns to perfom

defensive movements in response to a human performing

punching movements.

3258

An interaction model can be regarded as a mapping from

the current state of one agent to the state of a second agent.

In our particular application, we want to learn a mapping

from the state of the opponent agent (i.e. the human) to

the state of the controlled agent (i.e. the robot)1. Input to

the learning algorithms are the two data sets A (controlled

agent) and B (opponent agent) consisting of joint angle

configurations of the two agents. Each point in A contains

information about the skeletal configuration of the controlled

agent at a particular time step, while B contains a joint

angle configurations for the opponent agent. Once a mapping

from B to A is learned, it can be used to compute the

most appropriate response of the controlled agent, given

the observed movements of the opponent agent. In this

section, we will present two algorithms that can learn such

a mapping.

A. Algorithm 1: PPCA-IM

The first algorithm that we present is the Probabilistic Prin-

cipal Component Analysis - Interaction Model. The method

exploits the low-dimensional nature of human movement in

order to create a compact model of the interaction. It is well

known from human motor control, that motor tasks, e.g.,

grasping [21], walking [9], and also interactions between

humans [4] lie on low-dimensional manifolds. Such a man-

ifold typically has a much smaller dimensionality than the

total number of joints involved in the motor task. Therefore,

instead of finding a mapping in the high-dimensional space

involving all joints, we can find a low-dimensional space in

which the relationship between the postures and movements

can be learned in a more efficient way. After learning is

finished, the joint values of the controlled agent are treated

as missing values that are estimated by maximizing the

likelihood in the low-dimensional latent space.

The first step to PPCA-IM is the temporal embedding

of the opponent agent’s data. Temporal embedding allows

us to disambiguate between similar movements by includ-

ing information from prior time steps. In the second step,

namely dimensionality reduction, we then compute a low-

dimensional projection of the data set and use this space to

estimate the most likely response for the controlled agent.

1) Temporal Embedding: One possible approach to learn-

ing an interaction model is to learn a mapping between

individual pairs of samples in A and B directly. However,

such an approach does not take the temporal offset between

action and reaction into account, and is therefore prone

to fail for many behaviors. For example, a stretched out

arm can either mean that the opponent wants to shake

hands or perform a Karate movement. To disambiguate the

behavior in such scenarios it is important to take the temporal

development of the movement into account. When using

PPCA-IM we perform a temporal embedding of the data in

1For the sake of clarity we will henceforth use the terms controlled agent
and opponent agent to refer to the agents involved in an interaction. Note
that this naming convention does not restrict the application to competitive
tasks only.

B yielding a new data set B∗. To each point in B we add

joint angles of the τ last time steps:

b∗

t =

bt,
...

bt−τ

∀ bt ∈ B, t > τ. (1)

This embedding is comparable to modelling the interaction

as a Markov chain of order τ , rather than a traditional first-

order Markov chain. A similar preprocessing of the data was

proposed in [2].

2) Dimensionality Reduction: The next step in PPCA-IM

is to create a shared latent space that models the interaction

dynamics of the two agents. As the name of the algorithm

suggests, we use Probabilistic Principal Component Analysis

(PPCA) to learn a shared low-dimensional representation of

the movements. To this end, we create a combined data set

Z which is a concatenation of A and B∗:

z = [at,b
∗

t] ∀ at,b
∗

t ∈ A,B∗ (2)

On the new data set Z we can then perform PPCA. PPCA

is an iterative version of the original PCA algorithm which

uses Expectation-Maximization (EM) [11] to determine the

optimal projection matrix C that maps the data set Z onto

a lower-dimensional principal component space. The PPCA

algorithm used here is based on [19]. An advantage of PPCA

over PCA is that it provides a probabilistic framework for

performing PCA on data sets that have missing values. In

our case, we treat the current joint angles of the controlled

agent as missing values that need to be estimated. The EM-

algorithm can be used to estimate the missing values of our

data. This estimation is done by adding an additional entry

z to Z, which consists of an observed part zo and a hidden

part zh. The observed part contains (temporally embedded)

joint values zo of the opponent agent. The hidden part zh
will be estimated during the EM-algorithm and is initially

filled with zeros.

Before starting the EM algorithm, we initialize the pro-

jection matrix C and the variance σ2 with random values

between zero and one. In the E-step, we first calculate new

estimates for the covariance matrix Σ and matrix Y of

projected points:

E-Step:

Σ →
[

I+ σ−2CCT
]−1

,

Y → σ−2ΣCZ,

Based on these estimates, we can update in the M-step the

projection matrix C and the variance σ2:

M-Step:

C →ZYT (SΣ+YYT)−1,

σ2 →
1

SD

[

S Tr{CTΣC}+

S
∑

i=1

||zi −CTyi||
2 +Dhσ

2

]

,

where S is the number of samples, D is the dimensionality

of the samples, and Dh is the total number of missing

3259

Fig. 3. The projection of high-five motions into a low-dimensional space
using Probabilistic Principal Component Analysis. Each point in this space
corresponds to specific interaction situation and defines the postures of both
agents. Even if we observe the postures of one agent only, we can still infer
the most likely posture of the interaction partner using PPCA and missing
value estimation.

values in Z. The missing values zh of the matrix Z are

re-estimated before performing the next E-Step by first

calculating Zestim:

Zestim = CTY, (3)

and then replacing the missing values zh with the newly

estimated values from Zestim. The above EM-steps can be

iterated until the change in the error of the following objec-

tive function is below a given threshold (in our experiments

the threshold is 10−5):

Ψ(C, σ) = SD log σ2 + σ−2Dhσ
2

old+

σ−2

[

S
∑

i=1

||zi −CTyi||
2 + Tr

{

CTΣC
}

]

,

where σ2

old is the previous value for the variance. Once the

EM-algorithm is finished, we can use the missing values zh
as the new desired joint angles for the controlled agent.

Figure 3 shows the low-dimensional projection of a high-

five interaction calculated with PPCA. Each point in the

low-dimensional space encodes the reaction of the controlled

agent with respect to the previous movements of the oppo-

nent agent. We can see that the interaction forms a smooth

trajectory in the low-dimensional space.

To better understand the role of temporal embedding in our

learning algorithm, we computed several PPCA projections

with different values for the parameter τ (from Equation

(1)). For this purpose, we recorded a defensive movement

in which a human starts in a rest pose, then moves both

arms in a defensive stance, and finally goes back to the rest

-200 0 200-200 0 200

-200

0

200

-200 0 200

P
C

 1

PC 2

 τ = 0 τ = 10 τ = 20

Fig. 4. PPCA projections of a defense interaction for different values of τ .
During the interaction the opponent agent attacks and retracts back to the
rest pose while the controlled agent goes to defense stance and then retracts
to the rest pose. When τ = 0 the temporal context of a posture is not taken
into account.

pose. Figure 4 shows the projected movement for different

values of parameter τ .

When τ = 0 (Figure 4 left), the postures for going towards

the defensive stance (green) and the postures for retracting

back from the defensive stance (red) are mapped onto the

same points in the low-dimensional space. As a result a

robot cannot distinguish between the two different modes

of this particular movement and would produce the same

reaction in both situations. We can also see in Figure 4,

that with increased value for τ the points are more and

more disentangled. We can see that τ = 20 produces a

clear separation between the two modes, i.e. going to and

pulling back from the defense stance, of the movement. The

trajectory starts at the rest posture in (−250, 0)T , moves to

the defense stance at (250, 0)T , and then moves back to a po-

sition close to the rest posture. Note, that in this example we

used a two-dimensional projection for visualization purposes

only. To find a suitable value for the dimensionality of the

low-dimensional space, we can use intrinsic dimensionality

estimation methods [5]. A simpler approach, which was used

in this paper, is to use the number of principal components

that insures that 95% of the information in our training data

is retained after PPCA.

B. Algorithm 2: PM-IM

The second algorithm for learning interaction models is

called Path Map-Interaction Model (PM-IM). The algorithm

uses a HMM to represent the mutual dependency of the

interaction partners at different time steps.

A HMM is an efficient tool for modelling probability

distributions over time-series’. It assumes that a set of

observations was generated by a process with hidden

internal states. Given the Markov assumption, any state st
only depends on the predecessor state st−1. Following the

notation in [20] and [6], a HMM can be defined as the tuple

θ = (S, π, Pj→i, pi(o|si)) where

• S = {s1, ..., sN} is the set of states si of the HMM

• π = {π1, ..., πN} is a probability distribution specifying

the probability πi of starting in state i

• Pj→i is the state transition matrix defining the proba-

bility p(sj |si)of transitioning from state si to sj

3260

S1 S2 S3

a 1 a 2 a 3

...

1 2 3b b b

Fig. 5. The graphical model of a path map Hidden Markov Model.
Each hidden node (white) is connected to two observed nodes (colored)
corresponding to each of the interacting agents. Each observed node contains
the joint angle configuration of the respective agent which is depicted by
a small skeleton. The diagram shows a path map for an punch/defense
interaction.

• p(o|si) is the emission probability distribution which

defines the probability of observing output o while

in state si. The emission probability distribution is

modelled using a Gaussian distribution.

As already mentioned, the nodes of an HMM can be divided

into observable nodes and hidden nodes. Typically, an HMM

is defined in such a way that each hidden node is connected

to one observable node only. In the following, however, we

will use an extension of HMM, sometimes also referred to

as a path map[6], which has a different graph structure.

A path map relates the time-series behavior of a cue

system to the behavior a target system. This is achieved

by connecting each hidden node to two observables nodes:

one observable for the cue system and one observable for

the target system. A path map for the task of interaction

modelling can be seen in Figure 5. The colored nodes

correspond to the observables of the controlled agent (blue)

and the opponent agent (red) respectively. Each observable

state holds the full joint angle configuration of the respective

agent in the current situation. The white nodes depict the

hidden states of the interaction task. Each hidden state

models a specific context or situation during the interaction.

In contrast to the standard HMM, a path map contains two

emission probability distributions pA(at|st) and pB(bt|st);
one for each of the two agents. The training of the path

map, however, can be performed using the same approach

as for a standard HMM. First, a K-Means[18] clustering

algorithm is used to initialize the hidden states of the HMM.

Using the EM [11] algorithm, we can then estimate all

missing parameters of the HMM. A detailed description of

HMM training can be found in [20]. Once it is learned, the

path map in Figure 5 allows us to estimate the behavior

of one agent by observing the movements of the other. We

first calculate the most likely sequence of states given the

observed behavior of the opponent agent. Using the emission

probability distribution pB(bt|st) of each state, we can then

generate an appropriate response for the controlled agent in

every situation.

An interesting feature of HMMs is the ability to use

several HMM models in parallel. For example, assume that

we learn two HMMs for different interaction tasks, e.g.,

punching and handing-over. Given a new observed movement

of the attacking agent, we can calculate the likelihood of this

movement with respect to each learned HMM and select the

model with highest likelihood according to:

θ∗ = argmax
θ

p(bt|θ). (4)

Once the HMM with highest likelihood is selected, we can

calculate the emissions for the current situation and use the

resulting joint angle values for controlling the robot. The

above feature allows us to use the knowledge of several

HMMs in order to recognize an interaction scenario and also

to respond to the behavior of the human partner. The set of

interaction skills can, therefore, be gradually expanded.

IV. EXPERIMENTS

To evaluate the algorithms proposed in this paper, we

conducted a set of interaction experiments and analyzed the

results. In the following sections, we will report the results

achieved by applying the algorithms in simulation as well as

on a real robot performing human-robot interaction with a

human partner.

A. Interaction Data

Before training any specific model, we first collected

a set of training data representing different competitive

and cooperative interaction tasks. Specifically, we collected

motion capture data of two interacting humans. The data

set consisted of various interaction tasks acquired from the

CMU Motion Capture Library2, as well as additional data

gathered using two Kinect cameras and two human subjects.

In order to be independent of a specific tracking device, we

transformed all motion capture data into the BioVision file

format and used the resulting joint angle information as input

to the learning algorithms. In total, we used 18 joints, with

each joint being parametrized by three joint angles. The final

data set consisted of four different interaction tasks:

• Boxing: One agent attacks with punches at different

heights and from different directions while the other

agent defends.

• Martial Arts: One agent attacks with punches and kicks

while the other defends.

• High Five: Both agents perform a high-five movement.

• Handing over: One agent hands a book over to the other

agent.

B. Runtimes

In interactive scenarios, a robot needs to quickly respond

to the behavior of the human partner. In the following we

will, therefore, analyze the computational demands of the

proposed algorithms and the runtimes for predicting the

appropriate response in the current situation. Figure 6 depicts

2http://mocap.cs.cmu.edu/

3261

0.0

0.1

0.2

0.3

0.4
Ti
m
e[
se
c]

1 2 3 4 5
Num. of Behaviors

PM-IM 20 cl.
PM-IM 40 cl.
PM-IM 60 cl.

0.0

0.01

0.02

0.03

1 2 3 4 5
Num. of Behaviors

PPCA-IM 20
PPCA-IM 10
PPCA-IM 5

Fig. 6. The runtime of the PPCA-IM and the PM-IM algorithms. The values
indicate the measured time needed for predicting the optimal response of
the robot given the human’s action at a particular time step. With increasing
number of learned behaviors, the time needed to predict the optimal response
increases, too. Additionally, the plots also show how the size of the temporal
embedding window (20,10,5) affects the runtime of the PPCA. The right
plot shows how the number of states/clusters affects the runtime of the
PM-IM.

the runtimes of the PPCA-IM and the PM-IM algorithms.

For training we used an increasingly complex data set with

one to five different behaviors. Each behavior consisted of

approx. 120 data samples. The plots show how the number

of interactive behaviors affects the response time of the robot

when applying an interaction model after learning.

As can be seen in Figure 6, PPCA-IM has a significantly

faster response time. Especially, with increasing number of

clusters/states in the PM-IM, the response times quickly

deteriorate. With 60 hidden states, the PM-IM requires about

0.4 seconds to compute a prediction. A smaller number of

states can be used to speed up the algorithm. However, this

comes at the price of a significantly lower quality of the

learned model. In the above example, the PM-IM was only

able to produce accurate responses when 55 or more states

were used. The PPCA-IM was used with a 7 dimensional

latent space.

C. Generalization

Another important feature of interaction models is the

ability to generalize learned behaviors to new situations. To

analyze the generalization ability, we conducted a set of

experiments in which we trained interaction models for a

boxing/defending behavior. The models were trained with

high- and low-punches, and were later tested with several

other punches that aimed at a position inbetween the trained

punches. Figure 7 shows the z-position of the wrist of the

controlled agent while trying to defend several punches.

The gound truth data gathered from the human clearly

shows that the hand needs to be lifted to different levels, in

order to defend from the upcoming punch. The trajectories

generated with the PPCA-IM model have similar characteris-

tics to the human trajectories. The blue trajectory in Figure 7

corresponds to a movement that was not seen in the training

data. Despite that it was not trained, the PPCA-IM was still

able to generalize the learned movement to this new situation.

Both the shape and height of the trajectory are close to the

ground truth of the human demonstrator. In contrast to that,

the PM-IM does not exhibit a similar generalization ability.

In the depicted case, the PM-IM repeatedly switches between

1.0

1.2

1.4

1.6

1.8

2.0

z-p
os
iti
on

[m
]

0 20 40 60 80 100 120
Timestep

Human
Top
Center
Bottom

1.0

1.2

1.4

1.6

1.8

2.0

0 20 40 60 80 100 120
Timestep

PPCA-IM

1.0

1.2

1.4

1.6

1.8

2.0

0 20 40 60 80 100 120
Timestep

PM-IM

z-p
os
iti
on

[m
]

Fig. 7. The wrist position of the controlled agent for different defenses. The
human raises his hand to different heights depending on the type of punch
he receives. The defense movement for a center punch was not learned. The
PPCA-IM algorithm is still able to generalize to this situation. The PM-IM
algorithm does not generalize well in this situation.

states for high-punches and low-punches leading, over time,

to oscillations with an increasing amplitude.

An interesting property of PPCA-IM is the fact that it

automatically produces continuous outputs in every time

step. The controlled agent reacts even to small changes in

the behavior of the opponent agent. By nature the PM-IM is

a discrete model and does not produce different outputs in

every time step. Still, a continuous output can be generated

by using interpolation (as done in the above examples) or by

incorporating velocity information into the model.

D. Robot Experiments

In order to validate our results on a real robot, we

conducted an experiment in which a NAO robot learned a

set of interaction skills that can be performed cooperatively

or competitively with a human partner.

However, in order to replay any of the synthesized move-

ments with the used NAO robot, we first have to find a

mapping between the body parts of the human demonstrator

and the body parts of the robot. This problem is commonly

referred to as the correspondence problem [8] and is a

fundamental problem of imitation learning. In this paper,

we performed the mapping by using inverse kinematics (IK)

on the extremities of the robot. The human skeleton was

scaled to the size of the robot and IK was used to ensure

that the positions of the feet, hands, pelvis and head of

the robot matched the positions of the human extremities.

More specifically, we used the iTaSC [10] IK algorithm for

fitting the human skeleton to the robot. We have released the

software package for IK-based correspondence matching of

the NAO robot as an open-source tool for the general public3.

To test our algorithms, we trained interaction models for

the martial arts data set. The robot learns to recognize and

3The software can be downloaded as a Blender-extension from
https://bitbucket.org/JuvenileFlippancy/naoblender

3262

Time

H
um

an
R

ob
ot

Lo
g-

lik
el

ih
oo

d 200

-500

Punch right high
Punch right low
Kick right low
Punch left high
Punch left low

Fig. 8. A martial arts scenario trained and executed with the PM-IM algorithm. Top: The captured movement of the human. Second row: The joint angle
configurations generated by the PM-IM after observing the human movement. Third row: The log-likelihoods for the different behaviors. Below: Pictures
of the interaction between the human and the robot. The human movement was recorded with a Kinect camera.

defend different types of attacks, e.g., punchrighthigh, punch-

leftlow, kickrightlow. A set of 12 behaviors was used for

training. Depending on the type of attack a different defense

behavior is executed. For learning the PM-IM we used 60

to 70 hidden states. The number of hidden states for each

behavior was estimated using cross-validation on the training

data. For PPCA-IM we used a sampling rate of 10Hz and

τ = 20.

Figure 8 shows the movements of the human and the

responses of the NAO robot. Note that the defense posture

for an attack with the right hand and attacks with the left

hand are different: robot lifts only one arm or both arms for

defense. Similarly, the defense stance for a low-kick requires

the robot to kneel down and block with one arm. The Figure

also shows the log-likelihoods for the different behaviors

that are generated by the HMMs. Interestingly the difference

in the log-likelihood is very high when the opponent agent

executes a kick-right-low movement. The robot can easily

disambiguate this case as it is only when of two trained

behaviors which use the leg. Both the PM-IM as well as

the PPCA-IM model can solve the above task and produce

appropriate responses for the NAO robot. The PPCA-IM

model was again trained with 7 latent dimensions. Apart

from martial arts examples we have also trained interaction

models for the other data sets. Figure 1 shows the behavior

of the robot after training a handing-over interaction task.

E. Discussion

The results suggest that both PPCA-IM and PM-IM can

be used encode and reproduce the joint dynamics of the

interaction partners in a shared task. However, the results

also show various advantages and shortcomings of these

algorithms. The PPCA-IM approach is particularly well

suited for modelling continuous reponses and correlations

in the movements of the interaction partners. It has limited

computational demands and generalizes to some extent to

new situations. This shows that dimensionality reduction can

be an effective measure for extracting the hidden structure

in interaction data. Without dimensionality reduction, the use

of the temporal embedding for motion capture data would be

computationally prohibitive and the learning would require

a significantly larger amount of data.

At the same time, PPCA-IM does not provide information

about the state or the development of the interaction. In

this regard, the HMM-based PM-IM algorithm provides a

richer set of tools for recognizing and estimating of the

current state of the interaction. Yet, this comes at the price

of significantly higher computational demands, as well as

limited generalization abilities. Consequently, it would be

interesting to combine the approaches presented in this paper

by using a HMM with PPCA-IM models as emissions. In

such a case, the HMM can be used to realize a space-

time linearization of the training data, while the PPCA-

IM can take on the role of modelling the correlations in

the movements of the interaction partners in a particular

temporal context. Recent advances in HMM training [23]

3263

also suggest a closer relationship between dimensionality

reduction and temporal models such as HMMs.

V. CONCLUSIONS

In this paper we presented a new approach for teaching

robots how to respond to the movements of a human partner.

Using motion capture technology, the movements of a pair of

persons are first recorded, and then processed using machine

learning algorithms. The result is a model of how each person

adapted its behavior to the movements of the respective other.

Once an interaction model is learned, it can be used by a

robot to engage in a similar task with a human counter part.

We have also provided two algorithms called PPCA-IM and

PM-IM, that are extensions to known methods, which can

be used for learning interaction models from motion capture

data. The algorithms allow a robot to learn when and how to

respond to the behavior of a human partner. All methods

were implemented on a NAO humanoid robot and were

evaluated in cooperative and competitive tasks. After learning

an interaction model, the NAO robot was able to generate

appropriate defense responses in a challenging martial arts

scenario. The discussion of the advantages and shortcomings

of each of the two algorithms suggests that a combination

of temporal models and dimensionality reduction can be an

interesting path for developing more sophisticated models of

interactions.

While the results in this paper are encouraging, there are

various aspects of imitation learning in multi-agent scenarios

that need further investigation. In particular, it is interesting

to investigate how learned models can be used to predict the

future behavior of an interaction partner given the actions

of the controlled agents. This can be helpful in avoiding

decisions that potentially lead to dangerous situations or

injuries. In this paper, we did not investigate the aspect of

force transfer between a human and a robot. Even small

forces that are exchanged between interaction partners can

have a significant impact on the execution and success of

a joint task. First research results on incorporating force

transfer in interaction models can be found in [1]. Another

aspect that needs further investigation is task space control.

For some interaction tasks it is important that constraints are

fulfilled within the task space. We are currently investigating

the use of Interaction Meshes [12] for this purpose. Finally,

it is also important to include tertiary objects, e.g., a jointly

lifted box, into the interaction model.

VI. ACKNOWLEDGMENT

The work presented in this paper is funded through the

CoDyCo project of the European Community’s Seventh

Framework Programme under the grant agreement n ICT-

600716 (CoDyCo).

REFERENCES

[1] E. Berger, H. Ben Amor, N. Haji-Ghassemi, D. Vogt, and B. Jung.
Inferring guidance information in cooperative human-robot tasks.
In IEEE-RAS International Conference on Humanoid Robots (HU-

MANOIDS). IEEE, 2013 (submitted).

[2] F. Biessmann, F. C. Meinecke, A. Gretton, A. Rauch, G. Rainer,
N. Logothetis, and K.-R. Müller. Temporal kernel canonical correla-
tion analysis and its application in multimodal neuronal data analysis.
Machine Learning, 79(1-2), 2009.

[3] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Survey: Robot
Programming by Demonstration. In Handbook of Robotics, volume
chapter 59. MIT Press, 2008.

[4] D.P. Black, M.A. Riley, and C.K. McCord. Synergies in intra-
and interpersonal interlimb rhythmic coordination. Motor Control,
11(4):348–73, 2007.

[5] C. Bouveyron, G. Celeux, and G. Stphane. Intrinsic dimension
estimation by maximum likelihood in isotropic probabilistic {PCA}.
Pattern Recognition Letters, 32(14):1706 – 1713, 2011.

[6] M. Brand and A. Hertzmann. Style machines. In Proceedings of

the 27th annual conference on Computer graphics and interactive

techniques, SIGGRAPH ’00, pages 183–192, New York, NY, USA,
2000. ACM Press/Addison-Wesley Publishing Co.

[7] S. Calinon, E.L. Sauser, A.G. Billard, and D.G. Caldwell. Evaluation
of a probabilistic approach to learn and reproduce gestures by imita-
tion. In Proc. IEEE Intl Conf. on Robotics and Automation (ICRA),
pages 2381–2388, Anchorage, Alaska, USA, May 2010.

[8] K. Dautenhahn and C. L. Nehaniv. Imitation in Animals and Artifacts.
MIT Press, Campridge, 2002.

[9] A. d’Avella, P. Saltiel, and E. Bizzi. Combinations of muscle synergies
in the construction of a natural motor behavior. Nat Neurosci,
6(3):300–8, 2003.

[10] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits,
E. Aertbeliën, K. Claes, and H. Bruyninckx. Constraint-based task
specification and estimation for sensor-based robot systems in the
presence of geometric uncertainty. Int. J. Rob. Res., 26(5):433–455,
May 2007.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood
from Incomplete Data via the EM Algorithm. Journal of the Royal

Statistical Society. Series B (Methodological), 39(1):1–38, 1977.
[12] E. Ho, T. Komura, and C. Tai. Spatial relationship preserving character

motion adaptation. ACM Transactions on Graphics, 29(4):1–8, 2010.
[13] A. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes

for learning motor primitives. In Suzanna Becker, Sebastian Thrun,
and Klaus Obermayer, editors, Advances in Neural Information Pro-

cessing Systems 15, pages 1523–1530. MIT Press, 2002.
[14] S. Ikemoto, H Ben Amor, T. Minato, B. Jung, and H. Ishiguro.

Physical human-robot interaction: Mutual learning and adaptation.
IEEE Robotics and Automation Magazine, 19(4):24–35, Dec.

[15] M. Ito and J. Tani. On-line imitative interaction with a humanoid robot
using a dynamic neural network model of a mirror system. Adaptive

Behavior, 12(2):93–115, 2004.
[16] Z. Kolter, P. Abbeel, and A. Ng. Hierarchical Apprenticeship Learning

with Application to Quadruped Locomotion. In John C. Platt, Daphne
Koller, Yoram Singer, and Sam T. Roweis, editors, Advances in Neural

Information Processing Systems (NIPS). MIT Press, 2007.
[17] D. Lee, C. Ott, and Y. Nakamura. Mimetic communication model

with compliant physical contact in human-humanoid interaction. Int.

Journal of Robotics Research., 29(13):1684–1704, November 2010.
[18] J. B. MacQueen. Some methods for classification and analysis of

multivariate observations. In L. M. Le Cam and J. Neyman, editors,
Proc. of the fifth Berkeley Symposium on Mathematical Statistics and

Probability, volume 1, pages 281–297. University of California Press,
1967.

[19] J. Porta, J. Verbeek, and B. Krose. Active appearance-based robot
localization using stereo vision. Autonomous Robots, 18(1):59–80,
2005.

[20] L. Rabiner. A tutorial on HMM and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, February 1989.

[21] M. Santello, M. Flanders, and J. F. Soechting. Postural Hand Synergies
for Tool Use. The Journal of Neuroscience, 18(23):10105–10115,
December 1998.

[22] S. Schaal. Is imitation learning the route to humanoid robots? Trends

in Cognitive Sciences, 3:233–242, 1999.
[23] L. Song, B. Boots, S. M. Siddiqi, G. J. Gordon, and A. J. Smola.

Hilbert space embeddings of hidden Markov models. In Proc. 27th

Intl. Conf. on Machine Learning (ICML), 2010.
[24] Z. Wang, M. Deisenroth, H. Ben Amor, D. Vogt, B. Schoelkopf, and

J Peters. Probabilistic modeling of human dynamics for intention
inference. In Proceedings of Robotics: Science and Systems (R:SS),
2012.

3264

