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Abstract

This paper presents a new approach to the generation
of rhythmic movement patterns with nonlinear dy-
namical systems. Starting from a canonical limit cy-
cle oscillator with well-defined stability properties, we
modify the attractor landscape of the canonical sys-
tem by means of statistical learning methods to embed
arbitrary smooth target patterns, however, without
losing the stability properties of the canonical sys-
tem. In contrast to non-autonomous movement rep-
resentations like splines, the learned pattern gener-
ators remain autonomous dynamical systems which
robustly cope with external perturbations that disrupt
the time flow of the original pattern, and which can
also be modified on-line by additional perceptual vari-
ables. A simple extension allows to cope with mul-
tiple degrees-of-freedom (DOF) patterns, where all
DOFs share the same fundamental frequency but,
otherwise, can move in arbitrary phase and ampli-
tude offsets to each other. We evaluate our meth-
ods in learning from demonstration with an actual
30 DOF humanoid robot. Figure-8 and drumming
movements are demonstrated by a human, recorded
in joint angle space with an exoskeleton, and em-
bedded in multi-dimensional rhythmic pattern gener-
ators. The learned patterns can be used by the robot
in various workspace locations and from arbitrary
initial conditions. Spatial and temporal invariance
of the pattern generators allow easy amplitude and
speed scaling without losing the qualitative signature
of a movement. This novel way of creating rhyth-
mic patterns could tremendously facilitate rhythmic
movement generation, in particular in locomotion of
robots and neural prosthetics in clinical applications.

1 Introduction

There has been a growing interest in nonlinear oscil-
lators in both robotics and the modeling of animal
motor control [3, 6, 9, 10, 13, 16], particularly for the
control of rhythmic movements such as locomotion,

juggling, or drumming. Nonlinear oscillators have
interesting properties for rhythmic motor control, in-
cluding robust limit cycle behavior, on-line adapta-
tion through coupling signals, synchronization with
other rhythmic systems, and the possibility to ef-
ficiently exploit the natural dynamics of mechanical
systems through resonance tuning. However, it is dif-
ficult to design oscillator controllers for a designated
task, e.g. when specific frequencies, phases, and sig-
nal shapes are needed. Attention has therefore been
given to derive learning algorithms for adjusting non-
linear oscillators automatically (e.g., [4, 5, 12]). So
far, most work has focused on learning the frequen-
cies and phase relations of multiple rhythmic pat-
terns, rather than on complete signal shaping.

This paper focuses on how to learn complex rhyth-
mic patterns from a desired target signal, e.g., as ob-
tained from movement recordings or learning from
demonstration. We build on previous work, where
we proposed to learn attractor landscapes of point
attractors to form control policies (CPs) for discrete
movements (e.g., a pointing motion, tennis swings
toward a ball) [7]. The essence of this approach was
to use a canonical simple dynamical system with well
defined point attractor properties, to anchor Gaus-
sian basis functions in phase space of this system,
and to learn a weight vector that multiplies the basis
functions and creates a nonlinear modulation of the
canonical dynamics to form arbitrary smooth new
attractor landscapes. The statistical learning sys-
tem employed was based on nonparametric regres-
sion techniques [14], a method that allows a theoret-
ically sound way of determining the number of basis
function needed for accurate learning.

In this paper, we extend these ideas to learning
rhythmic movements. A simple nonlinear oscillator
with stable limit cycle dynamics is used as a canon-
ical system to provide a phase signal to anchor the
nonlinear basis functions, and a learned weight vec-
tor, multiplying the basis functions, together with
the amplitude signal of the canonical system are used
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to create new, complex rhythmic patterns. Given a
sample trajectory of a desired rhythmic movement,
e.g., from a human demonstration, statistical learn-
ing methods [14] can be used to embed this desired
pattern as a limit cycle attractor in our dynamical
systems.

In the following, Section 2 first introduces our meth-
ods to learn rhythmic pattern generators for 1 DOF
systems, discusses the theoretical properties of the
systems, and demonstrates a possible extension to
multi-dimensional pattern generators. Afterwards,
in Section 3 , we will illustrate the application of
our methods in experimental evaluations of learn-
ing from demonstration with an actual 30 DOF hu-
manoid robot.

2 Nonlinear Oscillators as Control Poli-

cies

Nonlinear dynamical systems can be conceived of as
control policies (CP), as they prescribe a change-of-
state in a particular state in the same way as con-
trol policies prescribe a motor command in a par-
ticular state. The interesting property of dynamical
systems as control policies lies in their ability to be
on-line modified by external coupling variables, as
well-known from the theory of coupled oscillators.
The research question we pursue is whether differen-
tial equations can be used as a general tool to create
control policies. For the purpose of learning a control
policy from sample trajectories, we represent CPs in
kinematic coordinates (similar as in [13]), e.g. joint
angles of a robot, thus assuming that an appropriate
controller exists to convert outputs of the kinematic
policies into motor commands.

To create rhythmic control policies (RCPs), the cen-
tral element of our modeling is the canonical nonlin-
ear oscillator (see [8, 11] for very similar oscillators):

ż = −
µ

E0

(E − E0) z − k2u (1)

u̇ = z (2)

which has a stable limit cycle characterized by the

closed trajectory z2

2
+ k2u2

2
= E0 (const) on the phase

plane (see Figure 1), where µ, E0 and k are positive

parameters and E(u, z) = z2

2
+ k2u2

2
denotes the en-

ergy of the oscillator. Note that the first term in (1)
can be considered as a nonlinear damping term which
regulates the total energy of the system. The param-
eter k corresponds to the frequency of the oscillator,
and E0 corresponds to the desired total energy and
determines the amplitude of the oscillation. µ deter-
mines the convergence rate to the limit cycle.

Based on this limit cycle oscillator, we introduce a
control policy of first order dynamics with a nonlin-
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Figure 1: Phase plot of the nonlinear oscillator (u, z)

with µ=10, k=2π and E0=0.5. The continuous line cor-

responds to the limit cycle behavior. The dotted lines

show different trajectories starting with different initial

conditions.

ear function f to produce a desired position y from

ẏ = β(ym − y) + f (3)

where

f =

∑N

i=1
Ψiw

T
i z̃

∑N

i=1
Ψi

(4)

with Gaussian kernel functions

Ψi = exp
(

−0.5hi(φ − ci)
2
)

. (5)

β is a positive constant, and ym is a parameter which
determines the baseline around which y oscillates.
The phase variable φ = atan2(z, ku) anchors the
Gaussian kernel functions in the phase space of the
canonical system (1,2), and z̃ = [z,

√
E0]

T is the
driving signal for (3), generated by the limit cycle
dynamics and including a bias term for better func-
tion approximation. The parameters hi and ci de-
termine the location and width, respectively, of each
basis function in phase space. The choice of z̃ is mo-
tivated by our desire to have a differential equation
with spatial scale invariance (see Section 2.2) and the
need that ẏ should be zero for E0 = 0. The parame-
ters wi are learned to fit a given sample trajectories1,
as explained in Section 2.4. Figure 2 shows an exem-
plary time evolution of the complete system.

2.1 Stability of the RCP

First, we show that the (u, z) oscillator has a stable

limit cycle characterized by the closed trajectory z2

2
+

k2u2

2
= E0 on the phase plane. Consider the time

derivative of the energy of the oscillator

V̇ = −
µ

E0

(E − E0)z
2. (6)

1Note that to ensure smooth transitions from one period

to the other, each Ψi function is in practice the sum of three

gaussian functions centered on ci− 2π, ci, and ci + 2π, rather

than a single gaussian function centered on ci.
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Figure 2: Time evolution over two periods of the dy-

namical systems (limit cycle behavior). N=25, µ=20,

β=3, σi=0.0386 for i=1,...,N , The ci are equally spaced

between c1=−π and cN=π. The same parameters will

be used throughout the paper. In this particular example,

k=2π, E0=0.5, ym=−1.0, and the parameters wi have

been adjusted to fit ydemo(t) = sin(2πt) + cos(6πt).

This implies that the energy of the oscillator E

monotonically converges to E0 from any initial con-
dition (except for the origin) and therefore E(u, z) =
E0 is a unique stable limit cycle of the system. The
ẏ dynamics in (3) can be interpreted simply as a first
order low pass filter of a periodic input f . If the in-
put is bounded, the output of this equation will be
bounded, too.

2.2 Spatial Scale Invariance

An interesting property of the RCPs is that they
are spatially invariant. Scaling of the energy of
the oscillator E0 by a factor c does not affect the
topology of the attractor landscape of the policy.
It can be shown that the attractor landscape with
[E0, z, u, φ, ym, y] is topologically equivalent to the
landscape with [cE0,

√
cz,

√
cu, φ,

√
cym,

√
cy]. Sim-

ilarly, the frequency of the signal y is directly de-
termined by the parameter k. We will exploit these
properties to modulate the frequency and amplitude
of learned rhythmic patterns in section 3.3.

2.3 Robustness against Perturbations

When considering applications of our approach to
physical systems, e.g., robots and humanoids, inter-
actions with the environment may require an on-line
modification of the policy. As outlined in [7], the dy-
namical system formulation allows feeding back an
error term between actual and desired positions into
CPs such that the time evolution of the CP can be
paused during a perturbation. In this section, we ex-
tend this idea to rhythmic control policies by mod-
ulating the original equations by the error between
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Figure 3: Time evolution of the dynamical systems un-

der a perturbation. The dotted and continuous lines cor-

respond, respectively, to the unperturbed and perturbed

dynamics. The actual position ỹ is frozen between 1.5

and 3.0s (dashed line in top left figure). For this exam-

ple, αu = 200, and αy = 50.

the planned position y and the actual position of the
physical system denoted by ỹ:

u̇ = z
(

1 + αu(ỹ − y)2
)

−1
(7)

ẏ =

∑N

i=1
Ψiw

T
i z̃

∑N

i=1
Ψi

+ β(ym − y) + αy(ỹ − y)(8)

Figure 3 illustrates the effect of a perturbation where
the actual motion of the physical system is blocked
during a short period of time. During the perturba-
tion, the time evolution of the states of the policy is
gradually halted. The desired position y is modified
to remain close to the actual position ỹ, and, as soon
as the perturbation stops, rapidly resumes perform-
ing the (time-delayed) planned trajectory. Note that
other (task-specific) ways to cope with perturbations
can be designed, which will be addressed in our fu-
ture work. Such on-line modifications are one of the
most interesting properties of using autonomous dif-
ferential equations for control policies.

2.4 Learning of Rhythmic Control Policies

Assume we are given a target trajectory ydemo, e.g.,
from a human demonstration. For learning the at-
tractor landscape of the control policy from the given
sampled trajectory, we solve a nonlinear function ap-
proximation problem to find the parameters wi in
(3).

Given a sampled data point (ftarget, z̃) at t where

ftarget = ẏdemo − β(ym − ydemo) (9)

(cf. (3)), the learning problem is formulated to
find the parameters wi using incremental locally
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Figure 4: Schematic view of an organization of a mul-

tiple DOF RCP. A unique (u, z) oscillator is used to gen-

erate the rhythmic drive for 12 DOFs (as will be needed

in our drumming experiment below).

weighted regression technique [14] in which wi is up-
dated by

wt+1

i = wt
i + Pt+1

i z̃ei (10)

where

Pt+1

i =
1

λ

(

Pt
i −

Pt
iz̃z̃

T Pt
i

λ
Ψi

+ z̃T Pt
iz̃

)

, ei = ftarget −wT
i z̃

and λ ∈ [0, 1] is the forgetting factor. We chose this
locally weighted regression framework as it can auto-
matically find the correct number of necessary basis
function, can tune the hi parameters of each Gaus-
sian basis function (5) to achieve higher function ap-
proximation accuracy, and, most importantly, learns
the parameters wi of every local model i totally inde-
pendently of all other local models. The latter prop-
erty creates very consistent parameters for similar
patterns that can be use for classification of different
rhythmic movements [7].

2.5 Multi-dimensional Rhythmic Patterns

For multi-dimensional rhythmic patterns, it is im-
portant to also provide a mechanism for the stable
coordination between the individual DOFs partici-
pating in the pattern. A possible solution is sug-
gested in Figure 4. Here, the canonical oscillator (1,
2) is used to generate the rhythmic (u, z) dynamics
for all DOFs—the parameters wi are learned indi-
vidually for each DOF, and each DOF has its own
equation (3). By manipulating E0 and k in the oscil-
lator, the amplitude and frequency of all DOFs can
be modulated, while keeping the same phase relation
between the DOFs. This form of modulation might
be particularly useful, for instance, in a drumming
task in order to replay the same beat pattern at dif-
ferent speeds.

3 Experimental Evaluations

We tested the proposed RCPs in a learning by
demonstration task using a humanoid robot, which
is a 1.9-meter tall 30 DOF hydraulic anthropomor-
phic robot with legs, arms, a jointed torso, and a
head [2]. We recorded a set of rhythmic movements
such as tracing a figure-8, or a drumming sequence
on a bongo performed by a human subject using a
joint-angle recording system, the Sarcos Sensuit (see
Figure 5 left). Six degrees of freedom for both arms
were recorded (three at the shoulder, one at the el-
bow, and two at the wrist). The recorded joint-angle
trajectories are fitted by the RCPs, with one set of
weights per DOF using the multi-DOF RCP in Fig-
ure 4. The RCPs are then used by the humanoid
robot to imitate the movement. Sections 3.1 and 3.2
show the experimental results of learning by imita-
tion of figure-8 and drumming tasks. Section 3.3 dis-
cusses how the learned movements can be modulated
using the proposed RCPs.

3.1 Learning of Figure-8 Movements

Figure 5 (left) shows the human demonstration of a
figure-8 movement, and Figure 5 (right) shows the
robot performance of the learned movement using
the proposed RCPs. Figure 6 illustrates the recorded
trajectories of the figure-8 performed by the robot.
Movies of the human demonstration and the robot
performance can be found at [1]. The movies also
demonstrate robustness against perturbations im-
posed by a human interfering with the robot’s ex-
ecution of the pattern: the robot pauses the figure-8
motion when its arm is blocked, and resumes the
motion where it was stopped when the perturbation
vanishes.

3.2 Learning of Drumming Movements

In this experiment, we recorded movements which
look like a drumming sequence on a bongo (i.e. with-
out drumming sticks). Figure 7 shows the joint tra-
jectories over one period of an exemplary drumming
beat. Demonstrated and learned trajectories are su-
perposed. For learning, the base frequency was ex-
tracted manually such as to provide the parameter k

to the RCP. Note that the beat includes higher fre-
quency components for the right arm, with the right
hand hitting twice the bongo during the baseline pe-
riod. Movies of the human demonstration and the
robot performance can be found at [1].

3.3 Modulation of Learned Movements

Once a rhythmic movement has been learned by the
RCP, it can be modulated in several ways. Figure 8
illustrates an example of different modulations of the
recorded trajectory (A), which were generated by
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Figure 5: Humanoid robot learning a figure-8 move-

ment from a human demonstration. Left: human demon-

stration. Right: robot execution. Recording of the robot

performance is shown in Figure 6.

changing in the time window between 3-7 seconds
the RCP’s amplitude (B), frequency (C) and spa-
tial mid point (D), respectively—due to space con-
straints, only one degree of freedom is shown. In
all examples, changes are smooth and rapid, as it is
desirable for such behaviors. Movies showing the ef-
fect of frequency and amplitude modulations on the
figure-8 and drumming movements can be viewed at
[1].

4 Discussion

This paper presented a method for learning rhyth-
mic patterns based on nonlinear oscillators. The
central idea of our approach is to encode complex
oscillatory patterns based on modulating a canoni-
cal simple limit cycle system with statistical learning
methods, using nonlinear basis functions anchored in
phase space of the canonical system. Despite the re-
sulting dynamical system becomes strongly nonlin-
ear, stability properties of the canonical system are
preserved. The final dynamical system can be con-
ceived of as a kinematic control policy with a global
limit cycle attractor.

Learning control policies based on a dynamical
systems approach has various desirable properties.
Firstly, since movement plans generated by the dy-

Figure 6: Recorded tip trajectory of the hand of robot

performing the learned figure-8 movement shown in Fig-

ure 5.
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Figure 7: Recorded drumming movement performed

with both arms (6 degrees of freedom per arm). The dot-

ted lines and continuous lines correspond to the demon-

strated and learned trajectories, respectively.

namical systems are not explicitly indexed by time,
i.e, develop out of the time evolution of autonomous
differential equations, flexible on-line modification of
the control policies can be accomplished by means
of coupling terms to the differential equations. We
demonstrated one such example by incorporating the
tracking error of a robotic systems as an inhibitory
variable in the control policies, thus ensuring that
the control policy cannot create movement plans
that are not realizable by the robot. Other per-
ceptual variables could be used to create different
forms of on-line modifications, e.g., based on contact
forces in locomotion or perceptual variables in jug-
gling. Secondly, although the output of the canon-
ical limit cycle oscillator has a very simple signal
shape, the proposed framework can fit almost ar-
bitrarily complex smooth signals using the function
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Figure 8: Modification of the learned rhythmic pat-

tern (flexion/extension of the right elbow, R EB, see Fig-

ure 7). A: trajectory learned by the RCP, B: amplitude

modification with Ẽ0 = 4E0, C: frequency modification

with Ẽ0 = 4E0 and k̃ = 2k, D: spatial modification with

ỹm = ym+1 (dotted line), where Ẽ, k̃, and ỹm correspond

to modified parameters between 3 and 7s.

approximation framework of locally weighted learn-
ing [14]. These learning methods also allow us to
automatically determine the open parameters of the
learning system, i.e., the number of kernel functions,
their center location and bandwidth (a topic that we
did not expand on due to space limitations). And
lastly, due to the meaningful parameterization of the
dynamical systems, the learned trajectories can eas-
ily be modified with respect to amplitude, frequency,
and the midpoint of the rhythmic pattern. Spatial
and temporal invariance of the differential equations
ensure that such scaling does not affect the qualita-
tive shape of the rhythmic patterns.

Future work will address how to automatically ex-
tract the base frequency of a sample trajectory (e.g.,
by FFT analyses, learning approaches, or oscillator
synchronization [15]), how to integrate the rhythmic
control policies suggested in this paper with discrete
control policies from previous work for general imi-
tation learning, and how to incorporate the ability
of using reinforcement learning to further modify a
learned pattern by trial and error.
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