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Abstract We investigate the role of obstacle avoidance

in visually guided reaching and grasping movements. We

report on a human study in which subjects performed pre-

hensile motion with obstacle avoidance where the position

of the obstacle was systematically varied across trials. These

experiments suggest that reaching with obstacle avoidance

is organized in a sequential manner, where the obstacle acts

as an intermediary target. Furthermore, we demonstrate that

the notion of workspace travelled by the hand is embedded

explicitly in a forward planning scheme, which is actively

involved in detecting obstacles on the way when perform-

ing reaching. We find that the gaze proactively coordinates

the pattern of eye–arm motion during obstacle avoidance.

This study provides also a quantitative assessment of the cou-

pling between the eye–arm–hand motion. We show that the

coupling follows regular phase dependencies and is unal-

tered during obstacle avoidance. These observations provide

a basis for the design of a computational model. Our con-

troller extends the coupled dynamical systems framework

and provides fast and synchronous control of the eyes, the

arm and the hand within a single and compact framework,

mimicking similar control system found in humans. We val-

idate our model for visuomotor control of a humanoid robot.
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1 Introduction

Manipulation and grasping skills are complex and rely on the

conjunction of multiple modalities, including vision, tactile

and proprioceptive information (Prablanc et al. 1979; Jean-

nerod 1984; Purdy et al. 1999). Vision provides important

information in the early stages of motion planning (Prablanc

et al. 1979; Abrams et al. 1990; Spijkers and Lochner 1994;

Rossetti et al. 1994). It is also used to perform close-loop

control to drive the hand in space unobstructed visually

(Abrams et al. 1990; Paulignan et al. 1991), while tactile

information becomes crucial in the last stage of prehension

and to compensate when vision cannot be used1 (Jeannerod

1984; Purdy et al. 1999). Vision is particularly useful to

plan motion so as to avoid obstacles without touching them

(Johansson et al. 2001). It also enables to react rapidly in the

face of a sudden perturbation, such as an obstacle entering

the workspace (Aivar et al. 2008). There is a tight coupling

between visual and motor modalities when driving prehensile

motion (Prablanc et al. 1979; Land et al. 1999; Johansson et

al. 2001). While this coupling has been documented at length

in the literature in free space motion (Johansson et al. 2001;

Hayhoe et al. 2003; Bowman et al. 2009), little is known

about how this coupling is exploited to enable fast and reli-

able obstacle avoidance, and in particular when the obstacle

appears after the onset of motion. Such fast and online con-

trol of hand motion in response to visual detection of obstacle

1 Humans can perform prehensile actions without visual feedback, by

relying on tactile and acoustic senses.
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is crucial for humans, but also for robots. Indeed, in spite of

impressive advances in robotics over the last decades, robots

are still far from matching human’s versatility in the control

of their motion, even when performing the most simple reach

and grasp motion.

This paper aims at developing a computational model of

the visuomotor coupling between the eye–arm–hand sys-

tems, that explains how this coupling is modulated by the

presence of an obstacle. We conduct a motion study of reach

and grasp motion in the presence of obstacle. The human

study provides quantifiable information about the eye–arm–

hand coupling to support the design of the model’s para-

meters. To demonstrate the feasibility of using this mech-

anism for robot control, we implement our model to con-

trol visually guided prehensile motion in the iCub humanoid

robot.

We next provide a short review on existing works, focus-

ing on the role of visual information in guiding manipula-

tion, visuomotor coordination mechanisms in humans and

the state of the art in robotic visually aided manipulation,

and we conclude this section with an overview of our contri-

butions.

1.1 The role of visual information in guiding manipulation

Vision provides a plethora of by far the most valuable and

most reliable information about the state of the environment

on which the planning and motor systems depend heavily.

The object’s extrinsic properties (spatial location and ori-

entation) are used to control the reach component, whereas

the object’s intrinsic properties (shape, size, weight, centroid

and mass distribution) are used in programming the grasp

component (Jeannerod 1984). The role of vision in manip-

ulation is best shown in manipulation experiments where

visual feedback is deprived by modulating experimental

conditions.

Several studies have shown that manipulation without any

visual feedback in highly structured, static scenarios can

almost match the performances of the full-vision manipula-

tion (Castiello et al. 1983; Purdy et al. 1999). After a number

of practice trials, manipulation of subjects who did not have

any visual feedback only slightly differed from full-vision

manipulation in terms of the kinematic measures of both the

reach and grasp components. However, if manipulation with-

out visual feedback is performed in an unstructured environ-

ment, without previous kinesthetic assistance from a teacher

or extensive trial-and-error learning, the performances (e.g.,

overall success rate, accuracy of reaching and speed of move-

ment) drastically degrade compared with trials where vision

was not deprived (Purdy et al. 1999).

Vision is used to guide every stage of prehensile move-

ments, from pre-planning, initial reach, high-speed mid-

section of the movement, to the deceleration and grasping

phases. Prablanc et al. (1979) and Rossetti et al. (1994)

showed that seeing the limb before the onset of the move-

ments improves the reaching accuracy. In addition to this,

Pelisson et al. (1986) found that the initial information about

the target affects the final reaching accuracy. Similarly, the

sight at the current position of the limb and the movement

goal in the later stage of the movements improves the end

point accuracy (Prablanc et al. 1979; Pelisson et al. 1986).

In studies of manipulation where no visual feedback on the

moving limb (Gentilucci et al. 1994; Berthier et al. 1996)

and on the target (Jakobson and Goodale 1991) is available,

a dramatic increase in the overall movement time and the grip

aperture was observed. Finally, visual information assists fine

control of the arm and hand in the closing phase of grasp-

ing (Paillard 1982). The gaze is driven to the grasping points

on the target object during a prehensile task, for the purpose

of planning reliable placement of the fingers (Brouwer et al.

2009). These studies suggest that vision is used for online

control of both the reaching and grasping components of a

prehensile movement.

A number of studies have shown that both peripheral

and foveal vision contribute to reaching and grasping. Sivak

and MacKenzie (1990) found that when central vision was

blocked, it affected both the transport and grasp components

(longer movement times, lower peak accelerations and peak

velocities, larger maximum grip apertures and longer time

after the maximum grip aperture). When peripheral vision

was not available, however, they observed that it affected the

transport component only, and the grasp component remains

unaltered. In their follow-up study, González-Alvarez et al.

(2007) found that peripheral and foveal visual cues jointly

contribute to both reaching and grasping.

Further evidence that vision is used for online control of

movements comes from perturbation studies. In the study

by Paulignan et al. (1991), subjects were able to instantly

modulate, by relying on visual feedback, the arm and hand

movements with respect to online perturbations of the posi-

tion and shape of the target object, with only minimal increase

in the response time (∼100 ms) compared with motion in the

absence of perturbations. Aivar et al. (2008) studied adjust-

ments of the hand movements with respect to abrupt online

perturbations of obstacles and/or the target. They found sim-

ilar latencies to those reported by Paulignan et al. (1991) for

the responses to the perturbations of the target position and

slightly longer adaptation latencies for the obstacles.

1.2 Human visuomotor coordination

Human visual and motor systems are not independent, and

they operate in coordination and share control signals adapt-

ing to mutual demands, even when doing simple and well-

practiced routines (Land et al. 1999; Hayhoe et al. 2003).

A body of literature documented how the gaze precedes
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motion. The gaze shows an anticipatory strategy leading a

whole-body movement during navigation (Grasso et al. 1998;

Hicheur and Berthoz 2005; Rothkopf and Ballard 2009). The

gaze precedes the arm and the hand movement in manipu-

lation tasks with a tool in the hand (Johansson et al. 2001).

Similar pattern, the gaze leading the arm, is observed in a task

where subjects contacted multiple target objects arranged in

a sequence (Bowman et al. 2009). Abrams et al. (1990) found

that the gaze leads limb movements in rapid tasks as well.

Furthermore, it is also observed that gaze leads the arm and

the whole-body movements in reach-for-grasp tasks (Land et

al. 1999; Hayhoe et al. 2003; Hesse and Deubel 2011). Phys-

iological studies of prehensile motion report that the arm

transport and the hand preshape components are coordinated

by the motor system in reach-for-grasp maneuvers, even in

the presence of perturbations (Castiello et al. 1993; Haggard

and Wing 1995). Furthermore, there is a strong evidence that

control signals also flow from the hand to the eyes, not only

in the opposite direction (Fisk and Goodale 1985; Neggers

and Bekkering 2000).

In addition to the physiological studies that measure the

visible manifestations of visuomotor coupling, neuroscience

studies in primates show evidence of a strong correlation in

the neural activity displayed in the areas devoted to vision,

motor control, attention and gaze movements. More specif-

ically, joint neural activation, as well as tight structural con-

nectivity, has been observed between the posterior parietal

cortex, which is involved in transforming visual signals into

motor plans, with the frontal planning and motor areas and

the inferior parietal cortex involved in preparation of saccadic

eye movements and attention shifts (Rizzolatti et al. 1997;

Andersen and Cui 2009; Baldauf and Deubel 2010). This

coupling is very important in terms of information process-

ing. If the systems are not properly synchronized, valuable

information is lost. Additionally, an explicit synchroniza-

tion aids a fast, reactive behavior, because control signals

are directly transmitted between different control modules,

without unnecessary delays.

While we have emphasized until now the importance of

active gaze control to drive arm–hand motion, it is notewor-

thy that humans can also grasp an object without fixating it

and even perform more complicated tasks such as obstacle

avoidance by solely relying on peripheral vision (Prablanc

et al. 1979; Abrams et al. 1990; Johansson et al. 2001). In

spite of the fact that humans may reach without looking at

the target, in natural and unrestricted tasks, the gaze seems

to lead the arm–hand movement. This mechanism is likely a

safeguard mechanism to ensure accurate reaching in the face

of obstacles. Indeed, when saccades to the target and obstacle

were prohibited, significantly decreased manipulation accu-

racy was observed (Abrams et al. 1990; Johansson et al.

2001) and manipulation resulted in frequent collisions with

the obstacle (Johansson et al. 2001). These experiments pro-

vide a further evidence that coupling between active vision

and the motor system is an important and fundamental mech-

anism, synchronously orchestrated between different regions

in the central nervous system (CNS).

1.3 Robotic visually aided manipulation and obstacle

avoidance

Identifying and modeling the mechanisms at the basis of

human visuomotor control in the presence of obstacle pro-

vide a promising research direction to improve the design of

similar controllers in robots. In our work, we exploit three

paradigms (and the interplay between them) from the human

visuomotor system can endow robots with a higher degree

of dexterity and autonomy: active vision that is coupled and

synchronized with the motor system constituting a coherent,

but still modular, mechanism, which can rapidly react to per-

turbations in the environment. Some computer vision prob-

lems that are inherently ill-posed when using passive vision

become well-posed when employing an active vision strat-

egy2 (Gibson 1950; Bajcsy 1988; Bajcsy and Campos 1992).

Aloimonos et al. (1988) and Ballard (1991) have shown that

an observer engaged in the active vision strategy gains a num-

ber of advantages over a passive observer, namely in terms

of the cost of visual computation, the stability of algorithms

and the uniqueness of solutions when determining shapes,

determining structure from motion and computing depth. In

active visual systems, visual servo control is computation-

ally easier and more robust to errors in measurements as

well (Ballard 1991). Coupling mechanisms between differ-

ent control modules play an important role for ensuring a

proper coordinated execution of complex tasks, such as visu-

ally guided reaching where the torso, head (including the

eyes), arm and hand are simultaneously engaged. A proper

coordination pattern between modules is especially crucial

when performing prehensile tasks in the face of perturbations

(Shukla and Billard 2011). Finally, a real-world environment

can be rather highly dynamic and unpredictable. An agent

must be able to re-plan and react in a time range of several

milliseconds to changes that can happen unexpectedly. Not

being able to rapidly and synchronously react to perturba-

tions can cause fatal consequences for both the robot and its

environment.

Solutions to robotic visual-based reaching follow either

of two well-established approaches: techniques that learn

visuomotor transformations (Hoffmann et al. 2005; Natale

et al. 2005, 2007; Hulse et al. 2009; Jamone et al. 2012),

which operate in an open-loop manner, or visual servoing

2 Active vision systems employ gaze control mechanisms to actively

position the camera coordinate system in order to manipulate the visual

constraints.
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techniques (Espiau et al. 1992; Mansard et al. 2006; Natale

et al. 2007; Chaumette and Hutchinson 2008; Jamone et al.

2012), which are closed-loop methods. Techniques that learn

the visuomotor maps are very appealing because of their sim-

plicity and practical applications. However, these methods

suffer from several drawbacks. The models of the visuomo-

tor transformations are learned by using exploratory schemes

employed by a robot that are similar to babbling employed

during infant development (Vernon et al. 2010). The num-

ber of exploratory movements that the robot needs to visit

during the exploration is usually of the order of several thou-

sands, or even higher. Such extensive exploration, needed

to learn a model, limits the applicability of these methods

because it is highly inefficient in time and energy spent. The

accuracy of the reaching movement is limited by the accu-

racy of the eye–arm mapping estimate. Moreover, the learned

mapping profile cannot be modulated. Finally, the reaching

path is generated by relying on interpolation between the

starting arm state and the computed goal arm state. On the

other hand, visual servoing approaches control the speed of

the arm, based on measurements of the visual error between

the hand and the target. This approach ensures zero-error

reaching, but it requires having the target object and the hand

simultaneously in the field of view. Visual servoing does not

allow us to produce a family of human-like motion profiles

in reaching tasks. The previous work done on the visuomotor

coordination did not address the synchronization pattern of

the arm transport and grip component. A control policy of

a robotic hand (or a gripper) is usually a pre-programmed

routine that is invoked after the arm reaches the target object,

thus its control mechanism is not embodied in the eye–arm

control, as in humans.

Robots operating in cluttered environments have to be able

to plan their motion avoiding collisions with objects in the

workspace. There is a large number of obstacle avoidance

methods, and providing a broad review is not our intended

goal. We now provide a brief synopsis of the main trend

across these approaches. Recently, the most popular methods

are sampling-based algorithms (Kavraki et al. 1996; Kuffner

and LaValle 2000). Sampling-based algorithms are very pow-

erful, but cannot meet the demands of rapid motion planning

that humans perform almost effortlessly in a fraction of a

second. Additionally, robotic obstacle avoidance methods do

not consider how gaze control is involved in the process of

obtaining information about the state of obstacles and targets,

and they usually assume that environment is somehow known

beforehand. Seara et al. (2003) developed an algorithm to

actively control the gaze of a humanoid robot in order to sup-

port visually guided walking with obstacle avoidance. How-

ever, in robotic obstacle avoidance applications, involving

manipulation information about the environment is obtained

either by using passive stereo systems (Khansari-Zadeh and

Billard 2012), or by relying on some special sensors such

as Microsoft KinectTM and laser rangers3 (Srinivasa et al.

2012). Having a gaze control strategy in obstacle avoidance

is crucial in order to fixate obstacles. Fixations at the obsta-

cles provide accurate visual information about their state, and

these information are used to proactively guide the arm–hand

system. Failure to provide visual information about obstacles

can result in fatal collisions.

1.4 Our contribution

This paper proposes a novel computational model of the

visuomotor control when performing reaching and grasping

motion in the presence of obstacles. To guide our modeling,

we conduct a human study in which 8 volunteers perform

reach and grasp motion to a single target in the presence

of an obstacle. We analyze the kinematics of the eye, arm

and finger motion to provide quantitative measurements on

the phase relationships across these limbs. We extend the

coupled dynamical systems (CDSs) framework, originally

used for arm–hand coordination (Shukla and Billard 2011),

to model the eye–arm–hand coordinated pattern measured in

the human study.

The parameters of our model are estimated based on the

data recorded in the human study. Our approach contributes

to a better understanding of visually guided reach and grasp

motion in humans. Furthermore, it provides a novel approach

to generate close-loop visuomotor servoing in robot control.

We extend our CDS framework for visuomotor coordi-

nation to encapsulate: (a) model of the eye–arm–hand cou-

pling and (b) modulation by an obstacle. In our work, we

exploit a biologically inspired notion of forward models in

motor control (Wolpert et al. 1998, 2001) and use a model

of the dynamics of the reaching motion to predict collisions

with objects in the workspace when reaching for the target

object. We use the observation from the human study that

the obstacle may act as an intermediary target, in order to

develop our obstacle avoidance scheme. The objects, which

are tagged as obstacles after propagating the forward model,

are treated as intermediary targets for the visuomotor system.

This approach results in a simple and computationally light-

weight scheme for obstacle avoidance. As an alternative to

computationally costly sampling-based algorithms (Kavraki

et al. 1996; Kuffner and LaValle 2000), our approach uses

the ability of dynamical systems (DSs) to instantly re-plan

motion with the presence of perturbations. In our obstacle

avoidance scheme, the gaze is an important element of the

coupled visuomotor mechanism that is actively controlled

and tightly bound to manipulation requirements and plans.

We demonstrate the usefulness of this model for robot con-

trol, by implementing it in experiments on real-time obstacle

3 These sensors are not controlled in terms of the active vision para-

digm.
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avoidance in simulation and on the real humanoid robot, iCub

(Metta et al. 2010).

The work presented here was published in a preliminary

form in Lukic et al. (2012). The present paper extends our

previous work in five ways: (a) it provides a more detailed

description of the computational model and system architec-

ture, (b) it provides a more comprehensive literature review,

(c) the human experiment is done with more subjects and

with a more precise motion capture system, (d) we sub-

stantially extend the analysis of the human study, and (e)

it presents more robot experiments, verifying the presented

approach.

The rest of the paper is structured as follows. Section 2

describes the experimental procedure with human subjects

and analysis of the recorded data. Section 3 explains our

approach to eye–arm–hand coordination, planning and obsta-

cle handling. In Sect. 4, we present results of our robotic

experiments. Finally, Sect. 5 is devoted to a general discus-

sion.

2 Human motion study of reaching and grasping with

obstacle avoidance

We start from the hypothesis that the eyes precede arm

motion, so as to guide the planning of the arm transport com-

ponent. There is ample evidence of such saccadic eye motion

toward the target during reaching; see, e.g., (Land et al. 1999;

Johansson et al. 2001; Hayhoe et al. 2003; Hayhoe and Bal-

lard 2005); however, few studies have analyzed visuomo-

tor behavior in trials where the position of the obstacle was

systematically varied. We assume that the obstacle acts as

an intermediary target when performing obstacle avoidance.

This movement-segmented strategy substantially reduces the

complexity of motor control compared with the holistic con-

trol policy (Alberts et al. 2002; Johansson et al. 2009; Hesse

and Deubel 2010). Furthermore, we hypothesize that there

exists a visuomotor forward control scheme in which the

presence of the obstacle is used to modulate the path of the

arm. This modulation depends on the distance of the original

path to the target. We also assume that the obstacle avoid-

ance maneuver consists in passing the obstacle on the side of

the obstacle where the collision would have occurred. This

choice participates in a minimum effort strategy with only a

small modulation of the intended path. We report our analysis

of the visuomotor obstacle avoidance scheme in the follow-

ing sub-sections. Figure 2 shows snapshots taken from the

WearCam video illustrating the mechanism of the gaze lead-

ing arm motion and fixating the obstacle on the path when

reaching the target.

The first part of this section describes the experimental

procedure followed during our human motion study. In the

second part, we analyze the results of this study and state our

findings of visuomotor coordination that constitute a basis

for developing our computational model.

2.1 Subjects

Eight unpaid subjects from the university staff participated

in this experiment (5 males and 3 females; mean age 27.1

years and SD 3 years). Subjects were right-handed and did

not have any neurological or ophthalmological abnormali-

ties. Subjects were unaware of the purpose of the experiment.

2.2 Experimental setup

Subjects sat in a height-adjustable chair facing a rectangular

table with task-relevant objects placed on the surface of the

table (Fig. 1). Subjects sat in front of a table such that the

sagittal plane “cut” the width of the table at approximately

the midline, and the distance from the frontal part of the trunk

to the edge of the table was ∼10 cm. The initial positions of

the right hand, the target object and the obstacle object were

predetermined, and they were laid along a line parallel with

the coronal plane of the body, 18 cm displaced from the edge

of the table on the subject’s side. The distance measured in

the table plane from the initial hand position (hand centroid)

to the obstacle was 25 cm, and from the obstacle to the target,

it was 20 cm (i.e., 45 cm from the starting hand position to

the target). Starting positions were indicated by markers on

the table. The two objects used for manipulation were IKEA

glasses, color tainted to enable automatic color-based seg-

mentation on video recordings. The wine glass (max. diame-

ter 7.5 cm, height 13 cm) was the object to be grasped (target),

and the champagne glass (max. diameter 5 cm, height 21 cm)

was the object to be avoided (obstacle).

2.3 Task

Grasping during all trials was conducted with the right hand.

The left hand remained on the table, to provide support for

the trunk to reduce the movements of the trunk in the coronal

plane. At the start of grasping, the subjects were instructed to

look at the colored patch mounted on the data glove. A sound

signal indicated the start of execution of grasping, instructing

the subject that they were free to unlock gaze from the colored

patch, mounted on the data glove, and start a trial. Once the

grasping motion was completed, the subject was instructed

to go to the starting position.

Each subject performed 8 trials of reaching for grasping

the target (wine glass). In all the trials, the obstacle (cham-

pagne glass) was present. The location of the champagne

glass was changed at each trial. Starting from 6 cm from the

edge of the table on the subject’s side, we progressively dis-

placed the champagne glass at each trial in increments of

4 cm along the midline of the desk (parallel to the sagittal
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Fig. 1 Experimental setup to record eye–arm–hand coordination from

human demonstrations in grasping tasks where the obstacle (dark blue

disk) is progressively displaced in each trial. Obstacle positions (super-

posed as transparent dark blue disks) are numbered from obs1-8, num-

bered with respect to the increasing distance from the subject. obs1 is

the starting position of the obstacle, 6 cm from the edge of the table. We

progressively displaced the champagne glass for each trial in increments

of 4 cm along the midline of the desk. obs4 is the position of the obstacle

which corresponds to the location of the object in the first experiment

(18 cm from the edge), and obs8 is the farthest position of the obsta-

cle (34 cm from the edge). In this trial, the human subject is grasping

the target object (wine glass) avoiding the obstacle (champagne glass)

(color figure online)

plane of the subject’s body in resting position). An alterna-

tive to this approach is to place the obstacle in a randomly

indexed position for every trial. By incrementally displac-

ing the obstacle in each trial, we implicitly force subjects to

change their previous obstacle avoidance strategy, whereas

with random displacements, the hand path which assured suc-

cessful obstacle avoidance in the previous trial (e.g., obstacle

in position 4) could be reused for a new trial (e.g., obstacle

in position 2), without much adaptation.

For all trials, subjects were instructed to perform manipu-

lation in a natural manner, without any additional instructions

that could affect their visuomotor behavior. The subjects had

one trial of practice before recording to ensure that they had

understood the instructions. Subjects were unaware of the

purpose of the experiment. Figure 1 illustrates our setup for

this experiment.

2.4 Apparatus

A head-mounted eye tracker designed in our laboratory, the

WearCam system (Noris et al. 2010), was used for gaze

tracking and for recording the scene as viewed from the

subject’s standpoint. The system uses two CCD cameras

to record a wide field of view (96◦ × 96◦). It uses sup-

port vector regression to estimate the gaze direction from

the appearance of the eyes. The system has an accuracy

of 1.59◦. The video and gaze positions from the WearCam

were recorded in 384×576 MJPEG format at 25 Hz. The

WearCam video from our experiment can be seen in Fig. 2.

The XSensTM inertial motion capture system was used for

recording the trunk motion and arm motion. The sensors were

mounted on the trunk, the upper arm, the forearm and the

hand. The system provided information about three joints of

trunk motion (roll, pitch and jaw), three joints that model

the shoulder (flexion–extension, abduction–adduction and

circumduction), two joints in the elbow (flexion–extension

and pronation–supination) and two wrist angles (abduction–

adduction and flexion–extension). The 5DTTM data glove,

with flexure-sensors technology, was used for recording the

finger joint angles motion. The data from the XSensTM IMU

motion capture sensors and the 5DTTM data glove were

recorded at 25 Hz.

The OptiTrackTM multi-camera system was used for

tracking the 3D positions of the hand and the objects on the

scene. The speed of data recording from the multi-camera

system was 150 Hz, and the accuracy was ∼2 mm.

2.5 Calibration and data processing

The WearCam system was calibrated at the beginning and at

the end of the task for each subject by using the procedure

explained in Noris et al. (2010). The state of the WearCam

was verified after each trial by checking its relative posi-

tion with respect to the head and observing the video that

was streamed. We checked the state of the multi-camera sys-

tem by observing performances of real-time detection of the
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Fig. 2 Snapshots from the WearCam video from the start of the task

(left) until the successful grasp completion (right), in a no-obstacle and

b obstacle scenarios. The cross superposed on the video corresponds to

the estimated gaze position. The color of the cross indicates whether the

gaze is the fixation state (red) or the saccade state (green (color figure

online))

objects in the workspace, and we recalibrated it when the

accuracy was not satisfactory. The data glove and the motion

capture sensors were calibrated after each trial by requesting

the subject to adopt an upright straight posture of the torso

and to perform a sequence of opening and closing fingers. The

state of the data glove and the motion capture sensors was ver-

ified by using an in-house GUI tool that shows body posture

of the subject by using real-time readings from the sensors.

All recorded signals were filtered with a preprogrammed

peak-removal technique that consisted in removing outliers

from sensor misreadings and replacing them with linearly

interpolated values between two closest valid readings. All

signals were re-sampled at 25 Hz. The synchronization and

parsing of signals were performed by using time stamps for

recorded signals and verified by observing recorded videos

on a frame-by-frame basis. The signals were smoothed with

a moving average filter. Piecewise spline fitting was done,

which did additional smoothing as well. Finally, we visually

assessed comparative plots of both raw signals, and synchro-

nized and smoothed signals in order to make sure that filtering

and smoothing did not distort general signal profiles.

We detected gaze fixations as all instances where the gaze

remained steady for at least 80 ms with gaze motion not

exceeding 1◦ of the visual field (Inhoff and Radach 1998;

Jacob and Karn 2003; Dalton et al. 2005). We say that a per-

son is looking at either of the two objects (target or obstacle)

if a gaze fixation is contained within the object blob, or it is

within a 5-pixel radius around the object blob. This 5-pixel

radius accounts for imprecision in the blob segmentation,

and in the estimation of the gaze position. It also accounts

for the fact that the “functional fovea” forms a 3-degree cir-

cular region around the center of the gaze, which means that

the visual system can obtain the high-quality visual infor-

mation fixating very close to the edges of interesting objects

(Rothkopf and Ballard 2009). We empirically obtained this

specific value of a 5-pixel tolerance by computing the average

closest distance between the estimated gaze point detected

in the fixation state (but outside the segmented blob) and the

boundary of the blob. This was done for a number of sub-

parts of the reach-for-grasp task for which it is well-known

that motoric actions impose strong demands for foveal visual

information about the object’s state. One of the sub-parts of

the task, when gaze fixations at the target object are expected

with a high probability, is the moment just before the wine

glass is grasped, as it is reported from previous studies that the

gaze consistently fixates grasping parts before fingers touch

the object (Brouwer et al. 2009).

2.6 Analysis of recordings from human trials

2.6.1 Visuomotor strategy and visuomotor coupling

in obstacle avoidance

Figure 3a reveals the obstacle avoidance strategy that the sub-

jects employed with respect to the position of the obstacle. It

can be seen that the subjects preferred to avoid the obstacle
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Fig. 3 Results from the follow-up experiment with human subjects

where the obstacle was progressively moved along the midline of the

table: a influence of the position of the obstacle on strategy to avoid

the obstacle from anterior/ventral side, b Influence of the obstacle posi-

tion on gaze fixations at the obstacle during manipulation, and c Safety

distances from the hand to the obstacle when avoiding it from anteri-

or/ventral side

from the anterior side if the obstacle was positioned between

the subject’s body and the line that is defined from the start-

ing position of the hand to the target object (obs1–4). If the

obstacle was positioned in the anterior direction from the line

(obs5–8), then the preferred obstacle avoidance strategy was

to veer from the ventral side when reaching to grasp the target

object. It can be seen that subjects are very consistent in their

obstacle avoidance strategy, except for the obstacle position

number 4 (obs4), for which 5 subjects avoided the obstacle

from the anterior side and 3 subjects veered from the ventral

side. Post hoc analysis of the recorded videos from the exper-

iment revealed that 3 subjects who veered for obs4 from the

ventral side kept the posture of torso more upwards than other

subjects during manipulation, hence for them veering from

the ventral side was a choice that required less effort. Results

presented here provide a basis for the computational model

of our obstacle avoidance strategy regarding the choice of

the preferred obstacle avoidance side, as discussed in Sect.

3.3.

An important part of the forward planning scheme is that

an object in the workspace is tagged as an obstacle if it is

estimated that the hand will collide with it. As the object

identified as the obstacle is the intermediary target for the

visuomotor system, it is expected that it will be visually fix-

ated during reaching. Figure 3b shows the proportion of trials

for each obstacle position in which the obstacle object was

visually fixated. It can be seen that the champagne glass was

always fixated when it was positioned on location 1 through 4

(obs1–4 in the figure). For position obs5, the obstacle was fix-

ated in only 80 % of the trials. The amount of fixation rapidly

drops to 20 % for position obs6, and to zero for positions obs7

and obs8. As expected, once the obstacle is sufficiently far, it

is no longer of interest. These results are consistent with Tre-

silian (1998), who argued that objects treated as obstacles by

the motor system are very likely to be visually fixated during

manipulation. Thus, our results indicate that the most likely

explanation of visual ignorance of the champagne glass when

it is placed at obs6–8 is that the visuomotor planning scheme

did not identify it as an obstacle.4

Based on the study by Dean and Brüwer (1994) and the

results of our human experiment where the safety distance

between the hand and obstacle was kept (Lukic et al. 2012),

we hypothesized that the control system would keep the same

safety margin of ∼0.14 ± 0.01 m across all trials where the

champagne glass was considered as an obstructing object

(namely for position 1–6). In the other position, this safety

margin would not be preserved as the obstacle would then be

ignored.

In Fig. 3c, we plotted the minimum distance (the mean and

the standard deviation) between the hand and the champagne

glass for all positions of the champagne glass. It can be seen

that the distance is quite consistent for obs1 to obs6 and starts

increasing for obs7 and obs8. These results also indicate that

an obstacle object positioned such that it does not obstruct

the original prehensile motion is not identified as an obstacle

and it is not treated as the intermediary target.

A two-way ANOVA (factors: subjects and a binary vari-

able that represents whether the obstacle was fixated/not fix-

ated in a trial) on the distance hand-obstacle reveals a sig-

nificant effect of the obstacle fixations factor [F(1, 63) =

4 At the end of all trials, we asked 2 subjects to try to reach for the

target when the champagne glass (obstacle) was present, but without

modification of the path (as in the no-obstacle setup). Unsurprisingly,

the arm/hand collided with the champagne glass always when it was

positioned at obs2, obs3, obs4, in 6 out of 8 trials the hand collided

for obs1 and obs5. The hand never collided when the obstacle was in

positions obs6, obs7 and obs8.
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78.3, p < 0.001], and no effect of the subject factor

[F(7, 63) = 0.47] and no factor interaction [F(7, 63) =

0.35]. These results reflect the fact that the distance between

the hand and the obstacle is significantly different when the

subjects visually fixate the obstacle, compared to the case

without gaze fixations at the obstacle object in a trial. We

interpret these results as a confirmation of the influence of

forward planning on visuomotor coordination. When forward

planning estimates that the object obstructs intended move-

ment, the motor system treats the obstacle as an intermediary

target. The gaze fixates the obstacle, and the hand keeps a con-

sistent safety distance from the object. If the object is placed

in a position where it does not obstruct movements (obs6–

8), it is not “tagged” as the obstacle. The visuomotor system

ignores objects that are irrelevant to manipulation: They are

not visually salient for the gaze (Land 1999; Hayhoe et al.

2003; Rothkopf et al. 2007; Rothkopf and Ballard 2009), and

the hand is controlled without keeping some safety distance

with respect to them.

We show that in the trials, where the location of the obsta-

cle is varied, gaze fixations at the obstacle indicate that the

arm keeps the safety distance from the obstacle. To further

analyze the coupling between the gaze and the arm when per-

forming obstacle avoidance, we investigated the influence of

the gaze on the velocity profile of the arm. Alberts et al.

(2002) and Hesse and Deubel (2010) showed that the veloc-

ity profile reaches usually a local minimum, when the arm

passes the obstacle. In our experiment, the obstacle seems

to influence the motion solely in trials when the gaze stops

at the obstacle. We hence would expect that the motion of

the arm would be slowed down at the obstacle only in these

trials when the gaze fixates the obstacle. In the absence of

the obstacle on the path toward the target, there should be

no need to visually guide the arm to avoid it. Figure 4 com-

pares the mean arm velocities across the trials in which the

gaze fixated the obstacle versus the trials where the gaze did

not fixate the obstacle. The observation of such a minimum

velocity confirms the hypothesis that the obstacle acts as an

intermediary target during movements (Alberts et al. 2002;

Hesse and Deubel 2010). In contrast, and as hypothesized,

the velocity profile in obstacle-free trials follows a regular

bell-shaped profile.

We apply a two-way ANOVA on the velocity profiles

recorded during trials with two factors: (a) an obstacle fixa-

tions factor representing the type of trial, coded as a binary

variable, to distinguish between the conditions in which

the obstacle was fixated versus not fixated; (b) a time bin

index (the total time of each trial is divided into 10 equal

time bins) to determine when, during a trial, an influence

of the presence/absence of the obstacle could be observed.

We observe a strong effect of the obstacle fixations factor

[F(1, 6199) = 109.9, p < 0.001]. This confirms that the

arm velocity profile is indeed significantly reduced when

Fig. 4 Arm velocity profiles, time normalized and averaged over all

subjects for two conditions (gaze fixated the obstacle or not). Stars

represent the time bins for which a post hoc t test shows significant

difference between the fixation conditions (p < 0.05)

passing the obstacle. There is also a significant effect of the

time bin factor [F(9, 6199) = 1849.44, p < 0.001], indicat-

ing that during the progress of the task arm velocity changed.

As expected, the interaction between the factors is significant

[F(9, 6199) = 41.44, p < 0.001] showing that the velocity

profiles in trials where the gaze fixates the obstacle changes

differently as the task progresses from the trials where the

obstacle is not fixated. We run post hoc t tests between the

fixated and not fixated trials to determine time bins for which

the velocity arm profiles differ between the two conditions

(Fig. 4).

The finding that the gaze fixations at the obstacle modu-

late the arm velocity profiles supports the hypothesis that the

gaze–arm coupling exists when humans perform prehension

with obstacle avoidance.

2.6.2 Gaze–arm correlations

To see whether the gaze–arm mechanism follows a quasi-

constant lag, we analyze trial-by-trial correlations between

the gaze and arm positions (computed as the Euclidean dis-

tance) with respect to the obstacle (in the first segment of

the movement) and correlations between the gaze and arm

distances with respect to the target (in the second segment

of the movement) as the task progresses. We plot the his-

togram of the Pearson’s correlation coefficient between the

gaze and the arm distances computed on a trial-by-trial basis

when approaching to the obstacle (Fig. 5a, b) and the target

(Fig. 5c, d). We see the prevalence of very high visuomotor

correlations for both objects. The distribution of trial-by-trial

correlation coefficient between the gaze and arm distances to

the obstacle has a sample mean of 0.917, and the 25, 50 %

(median) and 75 % percentile correspond to 0.876, 0.956

and 0.986, respectively. Similarly, the correlation coefficient
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Fig. 5 Correlation coefficient between the gaze and arm distances with

respect to the obstacle and the target computed on a trial-by-trial basis

when avoiding the obstacle. The motion is segmented into two parts:

from the starting position to the obstacle and from the obstacle to the

target and we compute the correlations for the corresponding parts of the

movements: a histogram of the gaze–arm correlation coefficient when

reaching the obstacle and b corresponding values for different fixated

obstacle positions, c histogram of the gaze–arm correlation coefficient

when reaching the target and corresponding values for different fixated

obstacle positions (d)

between the gaze and arm distances to the target has the sam-

ple mean 0.799, and the 25, 50 % (median) and 75 % per-

centile correspond to 0.721, 0.847 and 0.921, respectively.

A two-way ANOVA for the correlations to the obstacle (fac-

tors: subjects and obstacle position) does not reveal a sta-

tistical significance of the subject factor (p = 0.186) and

no effect of the obstacle position factor (p = 0.77). A two-

way ANOVA for the correlations to the target (factors: sub-

jects and obstacle position) shows no statistical significance

subject (p = 0.164) and no effect of the obstacle position

(p = 0.934) as well.

The correlations between the gaze and arm trajectories

when reaching for the obstacle are quasi-constant across trials

and subjects, and they are almost the same as those observed

for the target. These observations suggest that the eyes and

the arm might be driven to both the obstacle and the target

by the same mechanism of spatial coordination.

2.6.3 Fixation durations at the obstacle

We now present the results of our analysis of gaze fixation

durations at the obstacle. It is well established that the gaze

fixation durations, together with the position of the gaze, pro-

vide a measure of cognitive processing when performing an

ongoing task, being positively correlated with cognitive load

required for processing visual information (Rayner 1998;

Deubel et al. 2000; Jacob and Karn 2003; Hayhoe and Ballard

2005; Tatler et al. 2011). Gaze fixations in visually guided

manipulation allow very specific task-dependent acquisition

of visual information (Triesch et al. 2003). This selectivity

in information processing is reflected in the duration of fixa-

tions (i.e., a variability in fixation duration corresponds to a

variability in visual features being selectively acquired from

the early visual structures and further processed in the higher

cortical structures). Figure 6a shows the histogram of the
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Fig. 6 Distribution of gaze fixation durations at the obstacle: a his-

togram of fixation durations pooled from all subjects across all fixated

obstacle positions, b the mean and the standard deviations of times for

different fixated obstacle positions. In this plot, we show only fixations

times and the standard deviations for positions at which the obstacle is

fixated (obs1–6), and positions obs7, obs8 are omitted from the figure

because subjects never fixated the obstacle when it was placed at these

positions

fixation durations at the obstacle where the data are pooled

from all subjects. The distribution is positively skewed with

the sample mean fixation duration at 146.4 ms, where the 25,

50 % (median) and 75 % percentile correspond to 80, 120

and 160 ms, respectively. The predominance of short fixa-

tions observed in our experiment is a common feature of

a gaze fixation pattern in natural manipulation tasks (Land

1999; Hayhoe et al. 2003; Hayhoe and Ballard 2005), where

the average durations of fixations are shorter compared with

durations observed in picture viewing and reading (Rayner

1998; Henderson and Hollingworth 1999). In spite of the

predominance of brief durations of fixations in prehension

movements, it has been shown that they do support movement

control. Several studies have shown that visual information

necessary for movement control can be computed within a

single fixation (Ballard et al. 1995; Land et al. 1999). This

indicates quite efficient visual processing of some easy-to-

compute visual features required for online arm movement

control. A two-way ANOVA (factors: subjects and an index

variable that represents a position of the obstacle) shows no

significant effect of subject factor (p = 0.321) and no effect

of the obstacle position factor (p = 0.564, see Fig. 6b) indi-

cating that fixations times are consistent both across subjects

and obstacle positions. These results are in agreement with

the prior results of Johansson et al. (2001) who observed the

predominance of brief fixations at the obstacle. An interest-

ing result comes from one of their obstacle avoidance exper-

iments. When active gaze movements were inhibited during

obstacle avoidance, they observed a great variability in the

minimum distance kept between the obstacle and the hand.

We can speculate that the existence of these brief and quite

consistent fixation times reflect the consistency in processing

simple visual features of the obstacle in order to guide the

arm and hand, because the existence of brief fixation periods

does not allow to compute some complex features such as

in reading (Rayner 1998). Considering the predominance of

brief fixation times and an increased variability of estimating

the position of the obstacle, one of these features computed

is most likely the spatial position of the obstacle. The spatial

location of the obstacle can be rapidly computed from retinal

(foveal and parafoveal visual information) and extraretinal

information (the relative position of the eyes and the head)

available at the moment of fixation by the specialized neural

circuitry of the dorsal visual stream (Goodale and Haffenden

1998; Goodale 2011), and it is a necessary feature in order

to safely guide the arm around the obstacle.

In summary, this analysis of the duration of the gaze fix-

ations provides support to the view that the CNS computes

simple features during fixations at the obstacle in order to

aid obstacle avoidance. The spatial location of the obstacle

is likely one of the main features computed during these gaze

fixations on the obstacle.

2.6.4 Gaze and arm exit times from the obstacle

We provide a quantitative assessment of the relation between

the gaze exit time and the arm exit time from the obstacle.5 If

some coordination exists between the gaze and the arm when

performing obstacle avoidance, these two measures should

be correlated. Moreover, the magnitude of the lag between

them (i.e., the difference between the exit times of the gaze

and arm from the zone of the obstacle) should be kept rel-

atively tight compared with the overall time necessary to

5 The gaze exit time from the obstacle is defined as the time from the

beginning of a trial until the onset of a saccade away from the fixated

obstacle. The arm exit time is defined as the time from the beginning

of a trial until the moment when the arm reaches the closest distance to

the obstacle and starts moving toward the target.
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complete the movement. When plotting the onset time of

the gaze versus the arm onset time from the obstacle pooled

from all subjects (except for Subject 16), we can see from

Fig. 7a that these two variables are linearly correlated (Pear-

son’s correlation coefficient r = 0.897, p < 0.001). The

slope of the fit indicates that, on average, the gaze exits the

obstacle zone slightly earlier than the hand. Figure 7b shows

the histogram of the difference between the gaze exit times

and arm exit times, where positive values indicate that the

gaze exits the obstacle first. The distribution has the sample

mean at 220.78 ms, where the 25, 50 % (median) and 75 %

percentile correspond to 120, 200 and 280 ms, respectively.

A two-way ANOVA (factors: subjects and an index variable

that represents a position of the obstacle) shows no signif-

icant effect of subject factor (p = 0.18) and no effect of

the obstacle position factor (p = 0.549), indicating that the

difference between gaze and arm exit times was consistent

both across subjects and obstacle positions (Fig. 7c). The

predominance of positive differences gives evidence that the

gaze leaves the obstacle before the hand leaves it. However,

the median time of this lag corresponds to only 8.3 % of

the median time (2.4 s) needed to complete the whole reach-

ing movement with obstacle avoidance. This means that this

period of apparent asynchrony after the gaze switched toward

the target while the arm is in the obstacle zone takes only a

small fraction of the overall movements. For the remaining

91.7 % of the task, gaze and arm movements are synchro-

nously driven to the same goal (to the obstacle during the

first segment of movement, and toward the target after the

obstacle is passed). Land et al. (1999) observed in their tea-

making experiment that the gaze and arm movements are

highly coupled during execution of each subtask, but when it

comes to a transition toward a new target, the gaze switches

approximately 0.5 s before the movement of the arm to the

previous object is completed. Johansson et al. (2001) found

that the difference between the gaze exit times and arm exit

times was quite tight when executing sequential tasks, but the

gaze starts moving toward the new target slightly before the

hand does (∼100–200 ms), as well. The results were similar

6 The coordination of the gaze and arm exit times from the obsta-

cle for Subject 1 substantially differed from the rest of the subjects.

She has shown significantly different amount of the gaze–arm lag

when exiting the zone of the obstacle (mean 448 ms, SD 210.5 ms)

compared to the rest of the subjects (mean 220.78 ms, SD 135.75 ms)

and this difference achieved statistical significance [one-way ANOVA:

F(1, 39) = 10.93, p = 0.002]. A careful analysis of the video from the

eye tracker revealed her visuomotor strategy. Interestingly, her eye and

arm movements were normal and the gaze guided the arm in all trials.

However, she mostly used the coordination strategy where the gaze first

visits the obstacle and the moment when gaze switches toward the target

she started to move the arm, i.e., start of her arm movement was sig-

nificantly postponed. In all the other measures she did not significantly

differ from the rest of the subjects.

for a number of different movement sub-targets, including

the obstacle.7

From our results and from the two aforementioned stud-

ies, it is evident that the gaze and the arm exit times when

completing one movement segment and switching to a new

target are tight compared with the average duration of move-

ments. Nevertheless, it remains to be discussed why this lag

is not exactly zero meaning that the gaze and the arm switch

to the next target at exactly the same time. We here provide

two alternative explanations.

First, this lag may be due solely to the well-known delays

in processing the visuomotor control loop. Such delays are of

the order of 100–250 ms (Wolpert et al. 1998, 2001), which

amounts to the time delays in our experiments. Although

the dorsal visual stream is capable of performing fast visuo-

motor transformations, it is possible that switching toward

the new target is easier for the gaze than for the arm, due

to both the grater physiological complexity of the arm con-

trol system and increased delays resulting from longer neural

pathways. However, one could state an alternative explana-

tion that relates to the fundamental control strategy in the

CNS. Because the arm avoids the obstacle at some safety dis-

tance, and the experimental task is designed such that obsta-

cle position is kept constant during the trials, the “buffered”

position of the obstacle from the last fixation at the obsta-

cle is a very good reference point for the arm. Land and

Furneaux (1997) have shown that information buffering of

spatial coordinates acts as an adjutory mechanism when tran-

sitions between visuomotor sequential tasks occur. The arm

is at the moment when the gaze leaves the obstacle displaced

at some distance from to the obstacle and hence neither much

adjustment is needed nor very precise visual information is

needed to avoid the obstacle. This could be an efficient strat-

egy in terms of the attentional resources considering that

there is neither much surprise in the task nor the extreme

precision is required. This suggests that the CNS employs

“loose” transition between the subtasks, saving valuable, lim-

ited attentional resources, whenever prior information about

the task suggests that not much change in the workspace is

7 It is important to note that Johansson et al. (2001) focused most of

their analysis on gaze and arm timing with respect to entering or exiting

the so-called landmark zones. They defined the landmark zone as an

area with the radius 3◦ of visual angle (2 cm) in the work plane in all

directions from the corresponding objects in the workspace, including

the obstacle. They found that the gaze and arm have almost identical exit

times from the obstacle landmark zone. Considering that an approximate

overall vertical arm displacement in their experiment was 12 cm, these

landmark zones established a coarse representation of the workspace.

However, from the plots where precise spatio-temporal measures were

presented (Fig. 6A in their paper), it can be seen that the difference

between the median gaze and arm exit times at the exact location of the

obstacle differs approximately 200 ms in favor of gaze exiting first the

obstacle. Similar measures of the gaze–arm exit lag hold for the other

intermediary targets (e.g., support surface, target switch and bar tool).
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Fig. 7 Gaze exit times versus arm exit times from the obstacle: a scatter

plot of gaze exit times versus arm exit times from the obstacle pooled

from Subjects 2–8 across all fixated obstacle positions, b histogram

of gaze–arm exit time differences from Subjects 2–8 across all fixated

obstacle positions, where positive values mean that the gaze exits the

obstacle zone before the arm, c the mean and the standard deviations of

gaze–arm exit time differences for different fixated obstacle positions.

In this plot, we show only fixations times and the standard deviations

for positions at which the obstacle is fixated (obs1–6), positions obs7–8

are omitted from the figure because subjects never fixated the obstacle

when it was placed at these positions

expected and not much accuracy is needed. In the task where

sequential movements had very high precision constraints by

means of the requirements of precisely touching a target, the

gaze exit times were almost always tightly synchronized with

the arm exit times (Bowman et al. 2009). The experiment of

Bowman et al. (2009) shows that the “tight” switching strat-

egy holds as well.

This analysis shows that the gaze exit times and arm exit

times from the obstacle are highly correlated, suggesting

strong visuomotor synchronization with respect to the obsta-

cle. The time difference between the gaze and the arm times

when switching from the obstacle is nonzero positive, but it

remains small compared with the overall task duration.

2.6.5 Summary

In summary, the mechanism of the eyes leading the arm is

observed in all trials. This study corroborates other findings

in the literature on a strong coupling between arm and eye

motion, where the eyes lead the arm in a systematic and coor-

dinated pattern. Additionally, it supports the hypothesis that

the obstacle may act as an intermediary target. We should

emphasize that this study is particularly instrumental in pro-

viding us with quantitative data onto which to ground the

parameters of the model, as we describe next.

3 Computational approach and system architecture

In the first part of this section, we introduce the principle

of robot control by using time-invariant DSs and the prob-

abilistic approach for estimating the parameters of the sys-

tem. Furthermore, we extend this formulation for modeling

and control of coupled dynamics. Finally, we show how the

basic model of eye–arm–hand coordination in the obstacle-

free grasping can be extended to handle the obstacle in the

workspace.

3.1 A single DS and GMM/GMR

The motion of our system is represented through the state

variable ξ ∈ R
d , symbolizing retinal coordinates represent-

ing the gaze state, Cartesian coordinates for the arm state and

finger joint angles for the hand state. N recorded demonstra-

tions of the task yield the data set
{

ξn
t , ξ̇n

t

}

, ∀t ∈ [0, Tn];

n ∈ [1, N ], of the robot’s states and state derivatives at par-

ticular time steps t , where Tn is the number of samples in the

nth demonstration. We posit that the recorded data samples

are instances of motion governed by a first-order autonomous

differential equation:

ξ̇ = f (ξ) + ǫ (1)
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where f : R
d → R

d is a continuous and continuously dif-

ferentiable function, with a single equilibrium point ξ̇∗ =

f (ξ∗) = 0. ǫ is a zero-mean Gaussian noise. The noise term

encapsulates both sensor inaccuracies and errors inherited

from human demonstrations. Time invariance provides inher-

ent robustness to temporal perturbations. In order to achieve

robustness to displacement in the position of the target, the

robot’s state variable ξ is represented in the target’s reference

frame.

We use the Gaussian mixture model (GMM) to encode

dynamics in a probabilistic framework. The GMM defines

a joint probability distribution function P(ξn
t , ξ̇n

t ) over the

set of data from demonstrated trajectories as a mixture of K

Gaussian distributions (with πk , µk and Σk being the prior

probability, the mean value and the covariance matrix of the

kth Gaussian, respectively):

P
(

ξn
t , ξ̇n

t

)

=

K
∑

k=1

πk
N (ξn

t , ξ̇n
t ;µk,Σk), (2)

where each Gaussian probability distribution is defined as:

N (ξn
t , ξ̇n

t ;µk,Σk)

=
1

√

(2π)2d | Σk |
e− 1

2

(

(
[

ξn
t ,ξ̇n

t

]

−µk
)T

(Σk )−1
([

ξn
t ,ξ̇n

t

]

−µk
)

,

(3)

where the mean and the covariance matrix are defined as:

µk =

(

µk
ξ

µk

ξ̇

)

and Σk =

(

Σk
ξξ Σk

ξ ξ̇

Σk

ξ̇ ξ
Σk

ξ̇ ξ̇

)

. (4)

We use the stable estimator of dynamical systems (SEDS)

(Khansari-Zadeh and Billard 2011) to compute the GMM

parameters. The SEDS ensures global stability of the noise-

free estimate of the underlying dynamics, denoted as f̂ .

Taking the posterior mean estimate of P(ξ̇n
t | ξn

t ) yields

an estimate of
˙̂
ξ = f̂ (ξ), a function that approximates the

model dynamics through a mixture of K Gaussian functions:

˙̂
ξ =

K
∑

k=1

hk (ξ)

(

Akξ + bk
)

, (5)

where hk (ξ), Ak and bk are defined as:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

hk (ξ) =
πkN (ξ ;µk ,Σk )

∑K
i=1 π i N (ξ ;µi ,Σ i )

Ak = Σk

ξ̇ ξ
(Σk

ξξ )
−1

bk = µk

ξ̇
− Akµk

ξ .

(6)

A toy example with a 2-dimensional DS, which illustrates

the principles of encoding the demonstrated motion and robot

control by using a time-invariant DS, is presented in Fig. 8.

Fig. 8 Learning and reproducing a motion with a single time-invariant

DS. Given a set of demonstrations (red points), we build an estimate of

an underlying dynamics. The asymptotic stability of the DS guarantees

that the target (black star) will be reached. The DS, for a given robot

state, computes a velocity vector that moves the robot state toward the

target; hence, it can be illustrated with streamlines (blue lines) in the

state space that steer the robot state toward the target (color figure online)

3.2 Coupled dynamical systems

Our recent work (Shukla and Billard 2011) shows the ben-

efits of explicitly learning a coupling between the arm DS

and the finger DS over modeling motions of the physical sys-

tems with a single extended DS. The problem associated with

learning one high-dimensional dynamical model that guides

the motion of two physical systems is that an explicit follow-

ing of correlations shown in demonstrations between the two

coupled dynamics is not guaranteed. This could be a problem

if the robot is perturbed far from the region of demonstrated

motion, as the behavior of the dynamical systems may not

be correctly synchronized. The loss of coordination between

the reach and grasp components might lead to failure of the

overall prehensile task even when the individual dynamical

systems converge to their attractors. An approach adopted in

Shukla and Billard (2011) is to learn separately two dynam-

ics and then learn a coupling between them. This approach

ensures that the two DS will converge to their attractors, fol-

lowing a learned pattern of coordination between them. The

approach, where the arm and hand DS are learned separately

and then coupled explicitly, ensures that the behavior of the

two systems is correctly synchronized, even when the motion

is abruptly perturbed far from the motion recorded in human

demonstrations. For more details about general properties of

CDS, see Shukla and Billard (2011).

3.2.1 Extended CDS architecture and learning

We extend the original CDS architecture with in total five

building “blocks”: three dynamical systems and two cou-

pling blocks between them. They are organized in the fol-

lowing order: eye dynamics → eye–arm coupling → arm

dynamics → arm–hand coupling → hand dynamics, where
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Fig. 9 CDS-based robotic eye–arm–hand coordination. Left (green)

part of the figure shows how the CDS model is learned. Reproduction

of motion on the robot is shown on the right side of the figure (red

part). CDS consists of five building “blocks”: three dynamical systems

(the eyes, the arm and the hand) and two coupling models: eye–arm

coupling and arm–hand coupling (color figure online)

the arrow direction indicates the direction of control signals.

The gaze DS is the master to the arm DS, and the arm DS is

the master to the hand DS. There is a coupling block between

each master and its slave. The major assumption is that the

modulation signals between them flow only in the direction

from the master to the corresponding slave, i.e., the dynamics

of the slave is modulated with control signals coming from

its master, not vice versa. The master system evolves inde-

pendently of its slave. Figure 9 illustrates the architecture of

CDS, and the principles of learning and of the reproduction

of coordinated motion.

The state of the eyes is denoted with ξe ∈ R
2, the state

of the arm is ξa ∈ R
3, and the state of the hand is ξh ∈ R

9.

The eye state ξe is represented as the distance between the

position of the gaze and the position of a visual target in

retinal coordinates (i.e., retinal error). The arm state ξa is

represented as the distance in Cartesian coordinates between

the palm center and the final palm position with respect to the

target object. The hand state ξh is expressed as the difference

between the current hand configuration and the goal hand

configuration, i.e., hand configuration adopted when the tar-

get object is in the grasp. In other words, the attractors of the

eye, arm and hand DS are placed at the target projection in

the retinal plane, its Cartesian position in the workspace and

at the corresponding hand configuration when the target is

grasped, which is formally expressed as: ξ∗
e = 0, ξ∗

a = 0 and

ξ∗
h = 0, respectively.

Our CDS model of eye–arm–hand coordination is built in

the following manner. We first learn separately joint probabil-

ity distributions that encode the eye dynamics P(ξ̇e, ξe | θe),

the arm dynamics P(ξ̇a, ξa | θa) and the hand dynamics

P(ξ̇h, ξh | θh). Then we learn the joint distribution for eye–

arm coupling P(Ψe(ξe), ξa | θea) and arm–hand coupling

P(Ψa(ξa), ξh | θah), where θe, θa , θh , θea and θah denote the

GMM parameters, and Ψe(ξe) and Ψh(ξh) denote the cou-

pling functions. GMMs that encode the dynamics of the eyes,

the arm dynamics and the hand dynamics are learned using

the SEDS algorithm, for more details see Khansari-Zadeh

and Billard (2011). GMMs that model eye–arm and arm–

hand coupling are learned with the expectation-maximization

(EM) algorithm (Bishop 2007).

Two open parameters, α and β, allow for an additional

fine-tuning of the characteristics of the slave response (a

and h subscripts denote whether they modulate arm or hand

motion, respectively). The speed is modulated with the scalar

α, and the amplitude of motion is tuned by changing the

value of the scalar β. Some robots can move faster than

humans, hence by using larger values for αa and αh , one

can exploit the robot’s fast reaction times. One can tailor the

amplitudes of reactions to perturbations, suitable for a robot

platform and a given task, by modulating the values of βa

and βh .

Figure 10 illustrates the CDS model learned from demon-

strations.

3.2.2 CDS reproduction

The DS that drives the eyes evolves independently in time

and leads the whole system. The eye state velocity ξ̇e is gen-

erated by conditioning the eye dynamics model on the current

eye state. The learned GMMs are conditioned by computing

the Gaussian mixture regression (GMR) function (Eq. 5), for

more about GMR see Sung (2004). The eye state variable

is incremented by adding the computed velocity multiplied

by the time step ∆t to its current value ξe. The desired arm

state value ξ̃a is inferred from the eye–arm coupling model

by conditioning on the eye–arm coupling function Ψe(ξe).

The arm velocity ξ̇a is computed by conditioning the arm

dynamics model on the difference between the current and

desired value ξa − ξ̃a . The arm state variable is incremented

by adding the computed velocity multiplied by ∆t to its cur-

rent value ξa . The desired hand state value ξ̃h is obtained

by conditioning the arm–hand coupling model on the arm–

hand coupling Ψa(ξa). The hand velocity ξ̇h is inferred by

conditioning the hand dynamics model on ξh − ξ̃h . Finally,

the hand state variable is incremented by adding the com-

puted velocity multiplied by ∆t to its current value ξh . The

eyes, arm and hand reach commanded states, and the loop is

repeated until the target object is grasped.

Algorithm 1 shows how the robotic eye–arm–hand coor-

dination is performed with CDS.
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Fig. 10 Learned CDS eye–arm–hand coordination model: a eye

dynamics, b eye–arm coupling, c arm dynamics, d arm–hand coupling

and e hand dynamics. For simplicity of graphical representation, we

plotted the CDS model for one gaze position, one arm position and one

hand position. The eye state is presented with horizontal gaze coordi-

nate, denoted as ξ1
e .The arm state is presented with Cartesian coordinate

that corresponds to the direction of the major hand displacement in the

task, denoted as ξ2
a . The hand state is represented with thumb proximal

joint, denoted as ξ3
h . Superposed to the datapoints, we see the regres-

sion signal (plain line) and the different Gaussian distributions (elliptic

envelopes) of the corresponding Gaussian Mixture Models

Algorithm 1 CDS eye–arm–hand coordination

do

General :

− query frames from cameras

− read the current hand position from forward kinematics

− read the hand joints from encoders

− recognize and segment the target object

− estimate the position of the target in both retinal

and Cartesian coordinates

− compute ξe, ξa and ξh

Gaze :

if gaze is not at target then

ξ̇e ← E
[

P
(

ξ̇e | ξe

)]

ξe ← ξe + ξ̇e∆t

− look at new gaze point

end if

Eye − arm coupling :

ξ̃a ← E [P (ξa | Ψe (ξe))]

Arm :

if the arm is not at target then

∆ξa ← ξa − ξ̃a

ξ̇a ← E
[

P
(

ξ̇a | βa∆ξa

)]

ξa ← ξa + αa ξ̇a∆t

− solve inverse kinematics

− move the arm and the torso to new joint conf.

end if

Arm − −hand coupling :

ξ̃h ← E [P (ξh | Ψa (ξa))]

Hand :

if the hand is not at target then

∆ξh ← ξh − ξ̃h

ξ̇h ← E
[

P
(

ξ̇h | βh∆ξh

)]

ξh ← ξh + αh ξ̇h∆t

− move the hand to new joint conf.

end if

until object grasped

3.3 Eye–arm–hand coordination for obstacle avoidance

The extension of the CDS eye–arm–hand controller for obsta-

cle avoidance is grounded on our hypothesis that the obstacle

acts as the intermediary target for the visuomotor system in

reaching and grasping tasks, see Sect. 2.

In order to define which objects in the workspace are

obstacles for the realization of the intended reach and grasp

tasks, we use a planning scheme to estimate the consequences

of future actions. More specifically, the motion of the arm

toward the target is estimated by integrating the dynamics

of the extended CDS until each DS reaches its attractor. We

integrated only the eye–arm part of the whole CDS, ignor-

ing the hand’s DS, as our collision checking scheme is rel-

atively simple. The arm end-effector is modeled as a point

that moves along the estimated trajectory. Obstacle objects

in the workspace are modeled as cylinders. The dimensions

of a modeling cylinder should enclose the actual dimensions

of the object, but should also account and compensate for the

fact that the hand was modeled as a point. This is achieved

by expanding the modeling cylinder for some predetermined

fixed distance (we used 5 cm for both radius and height) from

the dimensions where it fits exactly around the object. By

taking this approach, we are able to reliably detect colli-

sions with the fingers in our forward planning scheme, even

though the hand is modeled as a point. The argument for

using this simplistic collision checking scheme is our attempt

to minimize additional computational load in the control

loop.

An object is tagged as an obstacle when the trajectory

of the end-effector intersects with a cylinder modeling the

object (certain collision), or when the cylinder lies within the

area where it is very likely that it will collide with the forearm

(very likely collision). For the motions, we consider here and

by observing the iCub’s body, we define this area as the slice

of the workspace enclosed by the estimated trajectory of the

end-effector and the coronal plane of the body.

As suggested earlier on, we consider the eye–arm–hand

coordination as a composition of two segments: a motion

from the starting position toward the obstacle and from the

obstacle toward the target object. Individual segments of
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coordinated motion (from the starting point to the obstacle,

and from the obstacle to the target) are performed in a manner

presented in Algorithm 1. In the first part of the task, the arm

DS moves under the influence of the attractor placed at the

via-point. The hand DS is driven by the attractor placed at the

hand configuration when the palm reaches the closest point

(along the trajectory computed ahead of time) to the obsta-

cle. Coupling the hand motion, with respect to the obstacle, is

advantageous because it provides a preshape of the hand such

that collisions between the fingers and the obstacle are eluded

during obstacle avoidance manipulation, even in scenarios

where the obstacle is suddenly perturbed during the ongoing

task (see Fig. 12). Our approach for adapting the reaching

hand motion to avoid obstacles is motivated by several stud-

ies that have reported significant effects of the obstacle on all

aspects of grasp kinematics (e.g., grip duration, grip aperture,

time to peak aperture and distance to peak aperture) (Saling

et al. 1998; Tresilian 1998; Mon-Williams et al. 2001). Tre-

silian (1998) interprets these effects as subtle adjustments

of the transport and grip components which support obsta-

cle avoidance. In their obstacle avoidance experiment, Saling

et al. (1998) observed a systematic high correlation of arm

transport parameters (transport time, time to peak velocity,

time to peak acceleration, etc.) with almost all grip kinematic

parameters (grip closure time, time to peak aperture, time to

peak opening velocity, grip opening velocity, etc.). This result

is a very strong indication that the arm and the hand remain

coupled even when obstacles cause considerable alterna-

tions of prehensile motion, compared with the no-obstacle

condition.

The goal hand configuration for passing the obstacle at the

closest distance is obtained by observing the average hand

configurations of our subjects in obstacle avoidance trials.

We adapted, with slight modifications, the computed average

hand configuration to match the kinematics of the iCub’s

hand. We did a similar procedure to obtain the goal hand

configurations with respect to the target object.

The position of the via-point is determined with respect to

the obstacle, such that its displacement vector from the obsta-

cle position is oriented in either an anterior or ventral direc-

tion, for the length that corresponds to some safety distance

dsa f ety between the centroid of the palm and the obstacle.

We choose the direction of a displacement of the via-point

(anterior or ventral) to correspond to a side of the obstacle

where a collision is estimated to occur. In the second part of

the task, after the obstacle is passed, CDS is driven toward

the object to be grasped. As mentioned before, hand adapta-

tion, with respect to the obstacle, serves to support collision

avoidance; whereas hand adaptation, with respect to the tar-

get, assures coordinated and stable grasping of the target as

the arm reaches it. Predefining the safety distance at which

the hand passes the obstacle is based on the study of Dean and

Brüwer (1994) who found that participants kept a minimum

distance between the pointer and obstacles when perform-

ing planar pointing arm movements. In our human study,

a measured mean value of this safety distance is 0.142 m

with a small value of standard deviation 0.01 m, which can

be considered as a consistent observation of the mechanism

employed by the motor control system to keep the limb at

the safety distance from obstacle, as presented in Dean and

Brüwer (1994).

The arm end-effector passing through the via-point at

dsa f ety from the obstacle and hand adaptation, with respect

to the obstacle, ensures that the hand will not collide with

the obstacle. However, the end-effector obstacle avoidance

mechanism, we just described, considers solely collisions

with the end-effector and hence ignores collision with the

rest of the arm. We benefit from controlling the arm in Carte-

sian coordinates and from having an efficient inverse kine-

matics (IK) solver (Pattacini et al. 2010) that is able to han-

dle two tasks: to find suitable joint configuration (primary

task) and to keep solutions as close as possible to a desired

arm rest posture (secondary task). By having the IK solver

that can solve for reaching the Cartesian position by trying

to keep joints close to a given rest posture, we can modu-

late the robot’s motion in the operational space by provid-

ing joint rest postures suitable for obstacle avoidance. Our

approach to the problem of finding suitable joint postures is

to learn these joint postures from human demonstrations, as

human demonstrations in obstacle avoidance tasks encode

inherently favorable joint configurations.

Here we learn correlations between the joints that pro-

vide major contributions in obstacle avoidance manipulation

and arm position in the operational space. The joints chosen

to define the rest position are torso pitch and yaw, and the

shoulder joints corresponding to adduction–abduction and

flexion–extension. Hence, we proceed with learning the joint

probability distribution P(q, x), where q ∈ R
4 denotes the

joint rest posture and x ∈ R
3 denotes the Cartesian position

of the arm.

An adaptation of the arm posture for obstacle avoidance

is done in the following manner. When reaching for a visuo-

motor target (the obstacle object or the grasping object), the

CDS system infers the state velocities, as explained earlier.

By integrating the arm velocity, we obtain a new arm state.

By taking the posterior mean estimate of P(q | x), we infer

a favorable rest posture. Finally, the IK solver optimizes for

joint angles that correspond to the desired Cartesian posi-

tion, while trying to keep the four joints as close as possible

to the suggested values from the model. Figure 11 illustrates

our obstacle avoidance scheme. While this does not ensure

that the robot’s arm will never collide with the obstacle, in

practice, we found that this resulted in a successful obstacle

avoidance motion.
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Fig. 11 A scheme that illustrates forward planning and obstacle avoid-

ance. After forward integrating the CDS model, an obstacle object (dark

blue disk) is identified as an obstructing object if the estimated arm

motion (dashed orange line) intersects with a cylinder (dark blue cir-

cle) that models the obstacle (certain collision), or when the cylinder

lies within the area where it is very likely that it will collide with the

forearm (very likely collision). If the obstacle object is identified to

obstruct the intended motion, then the motion of the visuomotor sys-

tem is segmented: from the start to the obstacle and from the obstacle

to the target. When reaching to avoid the obstacle, the arm DS moves

under the influence of the attractor placed at the via-point with respect

to the obstacle (dark blue star). The direction of a displacement of the

via-point (anterior or ventral) is chosen to correspond to a side of the

obstacle where a collision is estimated to occur: anterior side (a) or

ventral side (b). If forward planning scheme does not detect collision

with the obstacle object (c), the visuomotor system is driven to the target

object, i.e., the obstacle is ignored. The light red star represents the goal

arm position with respect to the target object (light red disk). Figures

show execution of eye–arm–hand coordination from the start of the task

(left) until the successful grasp completion (right) (color figure online)

3.4 Robot vision system

The requirements for real-time adaptation to perturbations

in dynamic environments impose the demand for real-time

update of information obtained from the sensory system. In

order to compute the position of objects in every cycle of

the control loop, the total time devoted to visual computa-

tion in our system has to be reduced to the order of ∼10 ms

for both cameras in the binocular setup of the iCub robot.

This is a very hard constraint to achieve in a robotic sys-

tem, even by using modern computing hardware with multi-

core processing units. In order to achieve the aforementioned

requirement, we designed the visual system to use minimal

computational resources.

We use an image processing scheme similar to the one

proposed in Metta et al. (2004). We convert 320×240 images

streamed from the cameras to 150×150 log-polar images. By

transforming the images to the log-polar domain, we reduce

the amount of visual information to be processed, affect-

ing neither the field of view nor the image resolution at the
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Fig. 12 Experiments of visually guided reaching and grasping in the

iCub’s simulator, with the presence of the obstacle and with perturba-

tions. The obstacle is an intermediary target for the visuomotor system,

hence obstacle avoidance is divided in two sub-tasks: from the start

position to the obstacle (via-point) and from the obstacle to the grasp-

ing object. Figures show execution of eye–arm–hand coordination from

the start of the task (left) until the successful grasp completion (right).

Figures in the upper row (a) present a scenario when the target object

(red champagne glass) is perturbed during motion (perturbation occurs

in the third frame from left). Visuomotor coordination when the obstacle

is perturbed during manipulation is shown in the bottom row (perturba-

tion in the second frame). The orange line shows the trajectory of the

hand if there is no perturbation. The purple line is the actual trajectory

of the hand from the start of unperturbed motion, including the path of

the hand after perturbation, until successful grasping. In both scenar-

ios (target perturbed and obstacle perturbed), the visuomotor system

instantly adapts to the perturbation and drives the motion of the eyes

and the arm and the hand to a new position of the object (color figure

online)

fixation point. Besides the computational benefits, log-polar

mapping is biologically plausible because it approximates the

cone distribution in the retina and the mapping from the cone

cells to the primary visual cortex of primates (Javier Traver

and Bernardino 2010). The image processing is done in the

RGB color space, by using a pixel-by-pixel color segmenta-

tion algorithm. The same procedure is applied for detection of

the target and the obstacle, thus for simplicity of explanation,

we will here use the term “object.” After the images are seg-

mented, we apply binary morphological operations to remove

outliers, and we group segmented regions in blobs. The cen-

troid of the biggest blob in each image is back-projected

from the log-polar domain to the original image coordinates.

The distance between the principal point of one camera (we

chose the right camera) and the center of the object blob in

the visual field represents the eye state ξe, which is the input

to the gaze DS. The position estimation of the objects in

the workspace is done by triangulating the centroids of the

blobs for the left and right camera. The other camera is con-

trolled in a coordinated manner such that both cameras have

a fixation point at the estimated head–object distance in the

Cartesian coordinates. The distance between the hand and

the estimated position of the object represents the arm state

ξa that is the input to the arm DS. Algorithm 1 illustrates the

flow of visuomotor information processing in our model.

The decreasing visual acuity from the fovea to the periph-

ery implies that we get a more precise estimate of the object

position at the point of fixation, and the less accurate estima-

tion in the periphery of the visual field. Because we control

the gaze and embed the gaze state to the motor control mecha-

nism, we can inherently and efficiently deal with imprecision

in the position estimation associated with non-uniform visual

acuity in log-polar images. The CDS drives the gaze, arm and

hand toward the object using the pose information (in retinal

and Cartesian coordinates) obtained from the vision system.

As the gaze moves toward the object in every cycle of the

control loop, we update the system with a more precise re-

estimate of the object position. Before the hand comes close

to the object, the gaze fixates the object, and we get the pre-

cise information about the object position, which is crucial

for successful grasping and obstacle avoidance. Our time-

independent CDS automatically adapts to the re-estimate of

the object positions obtained from such non-uniform resolu-

tion processing scheme.

For the experiments with the real iCub robot, we use

the Viola–Jones detector (Viola and Jones 2001) in addi-
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tion to the basic color-based segmentation. We use the addi-

tional detector in order to eliminate false-positives detections

that are a common consequence of color-based segmenta-

tion in an unstructured workspace. In other words, we use

this detector to verify our color-based detection. The Viola–

Jones detector operates on the images streamed from the cam-

era, not in the log-polar domain. When both detectors agree,

we update information about positions of the objects in the

workspace, when the detectors do not agree we rely on the

previous agreed position. Because the Viola–Jones detector

is more computationally demanding, we run it once in every

4 cycles of the control loop.

4 Results

4.1 Model learning

We learn the CDS model by using the data gathered during

the human trials, described in Sect. 2. The parameters of the

SEDS algorithm (i.e., maximum number of iterations and

optimization criterion) and the number of Gaussian mixtures

are determined by using a grid-search with 10-fold cross-

validation on the RMSE between the recorded motion and

retrieved trajectories from the model. The list of parameter

combinations is sorted in ascending order with respect to a

value of the RMSE. For each combination of parameters, we

visually assess regression plots retrieved from the model.

This method is necessary because the small value of the

RMSE between the trajectories retrieved from the model and

the demonstrated trajectories does not necessarily imply that

the inferred paths always have natural-looking and smooth

profiles. In other words, the measure of the RMSE provided

an initial pool of good candidates, whereas we made the final

choice based on the smoothness and the “natural” profile of

retrieved paths. The plots for the model we chose are repre-

sented in Fig. 10.

We use Ψe(ξe) =‖ . ‖, Ψa(ξa) =‖ . ‖ and the values

of parameters αa, αh, βa and βh are set to 1. For the choice

of the eye–arm coupling function, we tested performances

of four different coupling functions: (1.) Ψe(ξe) = ξ2
e (ver-

tical gaze coordinate), (2.) Ψe(ξe) = ξ1
e (horizontal gaze

coordinate), (3.) Ψe(ξe) = ξe (both gaze coordinates) and

(4.) Ψe(ξe) =‖ . ‖. We used the average absolute point-

to-point differences from all demonstrated trajectories and

retrieved trajectories from the models as a measure of how

well these coupling functions perform. The best results are

obtained by the norm coupling function. Our motivation for

using ‖ . ‖ function for arm–hand coupling is based on our

previous work in hand–arm coupling, see Shukla and Bil-

lard (2011). Our choice of these particular coupling func-

tions can be considered biologically plausible. The choice of

‖ . ‖ for arm–hand coupling is supported by the physiolog-

ical studies (Haggard and Wing 1991, 1995) that reported

strong coupling of the hand preshape with respect to the

distance from the target object in reach-for-grasping tasks.

The choice of ‖ . ‖ for eye–arm coupling function is sup-

ported by the fact that retinal distance in foveated vision

directly affects the quality of visual information that is used

by the motor system for planning and performing manip-

ulation, as visual acuity decreases with distance from the

fovea (Land et al. 1999; Land 1999; Liversedge and Findlay

2000; Hayhoe and Ballard 2005). All α and β parameters are

set to 1 in order to ensure an unaltered reproduction profile

of visuomotor coordination learned from recorded human

demonstrations.

4.2 Model validation for robot control

We conduct a set of experiments with the iCub robot to

evaluate the performances of our approach for the visuo-

motor coordination. Due to hardware constraints of the real

robot, we perform perturbation experiments and experiment

with obstacle avoidance in the iCub simulator. Unperturbed

obstacle-free reaching and grasping experiments are con-

ducted with the real robot.

In our experiments, we validate the ability of the CDS

controller on the iCub robot to reproduce the same task of

visually guided obstacle-free reaching and grasping similar

to the one that humans performed in our trials, together with

the advocated robustness of the model to perturbations and

the ability to handle the obstacles in the workspace.

We present here the most demanding experiment we per-

form to validate our approach. In each run, the object to be

grasped is placed at a randomly computed position within a

15 cm cube in the workspace. Figure 12 shows an obstacle

scenario where we test coordinated manipulation with sud-

den perturbations of the target object and the obstacle, respec-

tively. To introduce perturbations on-the-fly during reaching

for the target, we implement a pre-programmed routine in the

simulator to abruptly change position of the object (target or

obstacle) when the hand approaches it at some predefined dis-

tance, which varies from trial to trial from 0.09 m to 0.15 m.

The robot’s end-effector avoids the obstacle when reaching

for grasping in two task segments: (1) start position → via-

point at dsa f ety from obstacle and (2) via-point at dsa f ety

from obstacle → grasping object. This safety distance in the

human trials is dsa f ety = 0.142 ± 0.01 m. We rescale the

safety distance from human trials by 2, because the dimen-

sions of the iCub are similar to those of a 3.5-year-old child;

hence, it has a smaller workspace than our adult subjects.

Once the obstacle is reached, the target for the visuomotor

system is changed, and the eye–arm–hand motion is directed

to the object to be grasped. The IK solver adapts the arm rest

posture to be as close as possible to the output inferred from

the model learned from human demonstrations. Figure 13

123



Biol Cybern

Fig. 13 A comparison of human visuomotor coordination and visuo-

motor behavior of the real robot. The visuomotor coordination profile

the robot produces (b) is highly similar to the pattern of coordination

that was observed in the human trials (a). The figures from left to right

show snapshots of the execution of eye–arm–hand coordination from

the start of the task (left) until the successful grasp completion (right)

shows how the human subjects ignore the obstacle when it

does not obstruct the intended motion, and the same pattern

produced by our visuomotor robotic controller.

Because the eye state is the distance between the position

of gaze and the position of a visual target in retinal coordi-

nates, and the arm state is represented with respect to the posi-

tion of the object in the Cartesian space, both variables are

instantly updated when the perturbation occurs. The DS of the

eyes adapts independently to the perturbation. The behavior

of the DS of the arm is modulated via the eye–arm coupling

function, and the hand DS is modulated via the arm–hand

coupling. Such modulation ensures that the learned profile

of eye–arm–hand coordination will be preserved and that the

hand will re-open as the object is perturbed away from it, see

Fig. 12. Besides the anthropomorphic profile of visuomotor

coordination (Fig. 14), the gaze–arm lag allows for enough

time to foveate at the object, to re-estimate object’s pose and

to compute suitable grasp configuration for the hand before

it approaches too close to the object.

In setups where the arrangement of the obstacle and tar-

get differs to a moderate extent compared the setup used

in the human demonstrations, the robot successfully grasps

the target object, in both obstacle avoidance and no-obstacle

tasks, as shown in the experiments presented in the paper

and in the accompanying online video. Scene setups that are

significantly different often imply a substantially different

approach of the hand to the target object than the one seen

in the demonstrations. In our case, this occasionally results

either in collision of the fingers with the object prior to grasp-

ing or incomplete closure of the fingers on the target object.

This is not due to our gaze–arm–hand controller, but rather

is due to the fact that we rely on a predefined set of the final

hand configurations obtained from human trials. With mod-

erate changes to how the hand approaches an object with

complex geometry, like the champagne glass in our exper-

iment, the set of stable hand configurations sometimes can

change significantly. In order to increase the rate of grasp-

ing in scenarios that substantially differ from the setup in

the demonstrations, we would need to use one of the robotic

grasp synthesis algorithms to generate the final hand config-

uration (Sahbani et al. 2012).

The experiments presented here, with several additional

experiments on the real robot and in the simulator, are avail-

able online at http://lasa.epfl.ch/videos/downloads/Lukic

BiologicalCybernetics2012.mp4.

5 Discussion

Our approach to the problem of controlling robotic eye–arm–

hand coordination takes inspiration in the pattern of visuo-

motor coordination displayed by humans. The CDS control

framework drives the gaze, the arm and the hand in a syn-

chronous manner. This approach harvests the major bene-

fits of encoding motion with time-invariant DS: robustness

to spatio-temporal perturbations and instant re-planning of

motion when perturbations occur. The CDS global stability

guarantees that the eye, the arm and the hand will reach the

target in retinal, operational and grasp space, respectively,

even when spatial and temporal perturbations are present.
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Fig. 14 The visuomotor system ignores an obstacle object when it is

not relevant for manipulation, i.e., the obstacle object that does not

affect intended motion is not visually salient for the gaze. Analysis of

the WearCam recordings from the human trials (a) reveals that sub-

jects do not fixate the obstacle object (blue champagne glass) in the

workspace when it does not obstruct intended reaching and grasping

movement. Our CDS eye–arm–hand model shows the same behavior

(b), ignoring the obstacle object (green cylinder), when the forward

planning scheme estimates that the object does not obstruct prehensile

movement. Snapshots show task from the start (left) until completion

of the successful grasp (right) (color figure online)

5.1 Discussion on controller architecture

Our approach uses human demonstrations, which provide a

model to guide the dynamics of motion as in open-loop visuo-

motor transformation techniques (Hoffmann et al. 2005;

Natale et al. 2005, 2007; Hulse et al. 2009). A stable model

of the high-dimensional visuomotor coordination can be

learned by using only several human demonstrations, mak-

ing it a very efficient, fast and intuitive way to estimate para-

meters of a robot visuomotor controller. The generalization

abilities of the CDS framework ensure coordinated behav-

ior of the visuomotor controller, even when the motion is

abruptly perturbed outside the region of the provided human

demonstrations. Similar to visual servoing (Espiau et al.

1992; Mansard et al. 2006; Natale et al. 2007; Chaumette

and Hutchinson 2008), it performs a closed-loop control, and

hence, it ensures that the target can be reached under pertur-

bations. Our approach inherently combines learned visuomo-

tor transformations and visual servoing characteristics, thus

it eliminates the need to rely on an external ad hoc mech-

anism for switching between the two modes (Natale et al.

2007). Coupling profiles for eye–arm and arm–hand systems

can be modulated, thus allowing us to adjust the behavior

of each slave system with respect to control signals flowing

from the corresponding master system. Our eye–arm–hand

controller drives the hand motion in synchronization with the

gaze and arm motion. This provides a means to build a com-

pact model of the visuomotor coordination, in a biologically

inspired manner, without pre-programming the hand control

policy. The major building blocks that constitute the archi-

tecture of our controller are the gaze DS, the arm DS and the

hand DS. These blocks are coordinated by using the gaze–

arm and the arm–hand coupling functions. Each coupling

function transfers the information about the state of a master

controller to signals that modulate the behavior of a slave

controller. The gaze controller is the master controller of the

arm, and the arm controller is the master of the hand. This

control architecture is supported with the existing evidence

of gaze leading arm motion (Abrams et al. 1990; Johansson

et al. 2001; Hayhoe et al. 2003) and the existing reports on

coupling between the transport and the grip component in

the studies of prehensile motion (Haggard and Wing 1991,

1995).

5.2 Discussion on obstacle avoidance

We hypothesized that the visuomotor system treats the obsta-

cle as an intermediary target. Evidence of a systematic pattern

that the gaze precedes and leads the motion of the arm through

the different landmarks, defining the stages of a sequential

task, supports this hypothesis (Johansson et al. 2001).
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We extended our original framework CDS (Shukla and

Billard 2011) for visuomotor coordination on obstacle avoid-

ance such that the task is executed in two segments: from the

start to the obstacle and from the obstacle to the target.

We took inspiration in the forward planning mechanisms

(Wolpert et al. 1998, 2001) in the design of our approach

for estimating the consequences of planned arm movements,

specifically to detect objects that obstruct the intended reach-

for-grasp actions and to identify them as obstacles.

In our obstacle avoidance mechanism, the gaze is as a con-

stituting element of the overall visuomotor mechanism, and

it is actively controlled and intermingled with manipulation

requirements and plans.

During obstacle avoidance, the primary modulation of the

arm is controlled in the operational space, which, together

with controlled hand preshape, ensures that the end-effector

avoids the obstacle. The rest postures suitable for obstacle

avoidance are provided to the IK solver. We learn these rest

postures from the data gathered when the subjects avoid the

obstacle in prehensile motion.

It is important to mention that our obstacle avoidance

scheme does not have the full strengths of methods such

as rapidly exploring random trees (RRTs) (Kuffner and

LaValle 2000) for reaching in very complex workspaces, but

it endows the visuomotor system with instant reactions to

perturbations, thus providing means for the rapid handling

of a relatively simple obstacle in the workspace.

5.3 Future work

In our controller, the flow of control signals is monodirec-

tional and it is oriented in the direction eyes → arm → hand.

However, some studies report that the control signals also

flow from the hand to the eyes (Fisk and Goodale 1985;

Neggers and Bekkering 2000), and from the hand to the arm

(Timmann et al. 1996). Hence, it could be worth addressing

the potential benefits of modeling and using bidirectional

visuomotor control schemes in robotics. Having the control

signals flow in the opposite direction, hand → arm → eyes,

is useful, for instance, to trigger a reactive motion of the

gaze and the arm when facing an unexpected displacement

of the hand, such as when the hand inadvertently touches an

obstacle.

We present a model of coupling between the gaze move-

ments and the arm–hand motion. Although overt movements

of the eyes leading the arm represent a dominant visuo-

motor pattern in natural tasks, several physiological studies

have shown that humans can perform pointing and grasp-

ing tasks toward extrafoveal targets with the eye move-

ments suppressed (Prablanc et al. 1979; Abrams et al. 1990).

The physiological studies and corresponding robotic models

(Schenck et al. 2011) have reported significantly decreased

success in grasping extrafoveal targets compared with grasp-

ing foveated targets. In the study of Johansson et al. (2001)

where eye movements were prevented during manipulation

with obstacles, the overall performances degraded, which

was observed in frequent collisions with the obstacle. The

reduced performances associated with grasping extrafoveal

targets are not desirable for robotic applications, where the

maximal efficiency of tasks is one of the primary goals. How-

ever, we believe that modeling of grasping of extrafoveal tar-

gets is an important issue to address in order to have more

biologically plausible computational models. The main chal-

lenge in using the programming-by-demonstration frame-

work for modeling coupling between covert attentional spot-

light shifts and the arm movements is the methods of measur-

ing allocation of covert visual attention during manipulation

tasks. Measuring covert attentional shifts can be achieved

either by analyzing modulation of microsaccades for map-

ping them to shifts of covert attention (Engbert et al. 2003)

or by relying on a variant of a secondary discrimination task,

which is a more common technique (Baldauf and Deubel

2010). These methods can indicate the position of the covert

attention spotlight in the visual field with a rather coarse res-

olution, which at this moment represents a major obstacle for

achieving this goal. Current work in our group is investigating

the possibility to embed covert attention in the mechanism

of visuomotor coordination.

In our robotic implementation, we select the centroid of

the object (obstacle and target) as the fixation point for the

gaze. However, this simplified scheme of selecting the fixa-

tion points at the object might be upgraded in order to improve

both biological plausibility and the computational benefits of

using active vision. From physiological studies, it is known

that the gaze fixations are driven to regions of the target con-

tact points in grasping, whereas in viewing tasks, the gaze is

directed to the object’s centroid (Brouwer et al. 2009). An

explanation for this result is that fixations during grasping are

focused on the object’s contact parts because the eyes provide

visual feedback for motor control of the fingers in grasping

scenarios. These contact parts are mostly close to the bound-

ary of an object. The gaze is more likely to fall on the edges of

obstacles, in both manipulation tasks (Johansson et al. 2001)

and in navigation (Rothkopf and Ballard 2009), which can

be explained by taking visual information for path planning

for obstacle avoidance. We observed the same effects in our

human trials. However, at this point, there are not yet com-

putational models that tackle problems of selecting optimal

fixation points at the target object and obstacles. We believe

that it would be tremendously useful to tackle this scientific

problem. Recent work on active segmentation might offer the

computational ground for tackling these problems (Mishra et

al. 2009a,b).

Furthermore, in this work, we assumed a constant value

for the safety margin dsa f ety between the arm’s via-point

and the obstacle. In our robot experiments, we used rescaled
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value of the safety distance measured from human trials in

experiment 1. The results of experiment 2, when the obstacle

is moved along the midline of the desk, indicated that this

safety distance was kept quasi-constant across subjects, and

for all trials where the hand would have touched the obstacle

if moving with the regular pattern of motion. However, there

is no reason to think that this safety margin is a constant, pre-

set factor. Some studies showed that this safety margin was

modulated by the speed of movement (e.g., faster prehen-

sile movements are associated with a greater safety distance)

(Tresilian 1998; Mon-Williams et al. 2001) and “a variety of

psychological factors related to the cost that a person attaches

to a collision” (Tresilian 1998). It would be of great impor-

tance, both for motor control science and robotic obstacle

avoidance applications, to model this safety distance, rather

than to consider it as a preset factor (Bendahan and Gorce

2006). One approach to model this safety margin is to esti-

mate it from the data recorded from human demonstrations

by varying task conditions across trials (e.g., shape and size

of an obstacle, relative positions of objects in the workspace,

required speed of manipulation, task and objectives) by using

machine learning techniques.

Robotic engineers have studied avoidance of multiple

obstacles for a long time (Khatib 1986; Lumelsky and Skewis

1990; Simmons 1996; Kavraki et al. 1996; Kuffner and

LaValle 2000), but it is rather surprising that only a small

number of studies in motor control, physiology and visual

science studied human manipulation in tasks where sev-

eral obstacles occupy the workspace. In their study, Mon-

Williams et al. (2001) reported on the greater effect of two

obstacles on the movement time, maximum grip aperture and

peak speed compared with the one-obstacle case. Rothkopf

and Ballard (2009), who studied human navigation in an

immersed graphic environment, reported that subjects fixate

the edges of obstacles for the purpose of planning a walking

path for obstacle avoidance. Aivar et al. (2008) provided evi-

dence that fast arm responses to the displacement of obstacles

are triggered by a reaction to retinal motion of moving obsta-

cles. Many important questions still remain unanswered. Do

humans assess multiple obstacles in a sequential manner,

assigning priorities to obstacles according to an estimated

risk of collision, or simultaneously? How are the eyes, the

arm and the hand coordinated when handling multiple obsta-

cles in reaching and grasping tasks? How does the human

visuomotor and planning systems react when one or several

obstacles are perturbed in the workspace during prehensile

tasks? Studying visuomotor coordination in natural prehen-

sile tasks with several non-target objects in the workspace

could provide more insights into these questions.

5.4 Conclusion

Our human study contributes a quantitative assessment of the

eye–arm coordination when performing obstacle avoidance,

an issue which has received little attention to date. Precisely,

it demonstrates that obstacle avoidance is included in forward

planning and modulates the coordinated pattern of eye–arm

motion in a distinctive way. The results of the study: (a) quan-

tify the phase relationship between these gaze and the arm

systems, so as to inform robotic models; and (b) provide

insights how the presence of an obstacle modulates this pat-

tern of correlations. We show that the notion of workspace

travelled by the hand is embedded explicitly in a forward

planning scheme that allows subjects to determine when and

when not to pay attention to the obstacle. Importantly, to

complement these observations, we provide a computational

model of both the eye–arm–hand coupling and the modula-

tion of the obstacle in this forward planning scheme.
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