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Learning robust pulses for 
generating universal quantum 
gates
Daoyi Dong1, Chengzhi Wu2, Chunlin Chen2, Bo Qi3, Ian R. Petersen1 & Franco Nori4,5

Constructing a set of universal quantum gates is a fundamental task for quantum computation. The 

existence of noises, disturbances and fluctuations is unavoidable during the process of implementing 
quantum gates for most practical quantum systems. This paper employs a sampling-based learning 

method to find robust control pulses for generating a set of universal quantum gates. Numerical 
results show that the learned robust control fields are insensitive to disturbances, uncertainties and 
fluctuations during the process of realizing universal quantum gates.

Quantum information technology has witnessed rapid development in the last twenty years1. An important task 
to implement quantum computation is the realization of quantum gates. It is well known that a suitable set of 
single-qubit and two-qubit quantum gates can accomplish universal quantum computation. A universal gate set 

may consist of a quantum phase gate (S gate), a Hadamard gate (H gate), a π/8 gate π( )T gate
8

, and a CNOT gate2. 

Realizing such a universal gate set is a fundamental objective in quantum computation.
In practical applications, it is inevitable that there exist di�erent uncertainties, inaccuracies and disturbances 

in external �elds, or system Hamiltonians3–6. Many cases of unknown information and errors, such as imprecise 
Hamiltonian modeling and inaccurate control pulses, can also be treated as uncertainties. Hence, the require-
ment of a certain degree of robustness against possible uncertainties and noises has been recognized as one 
of the key properties for a reliable quantum information processor. Several methods have been developed to 
enhance robustness and reliability in quantum information processing7–11. Feedback control theory12, including 
measurement-based feedback and coherent feedback7, has been developed to achieve improved performance 
of robustness in quantum manipulation problems. From the perspective of experimental implementation, 
open-loop control is usually more feasible and practical. Dynamical decoupling13–15 and noise �ltering16 have 
been developed for enhancing robustness performance in manipulating quantum states or quantum gates. 
Optimal control methods such as sequential convex programming17 and gradient-based optimal algorithms (e.g., 
GRAPE18) can also be used to design robust control �elds for manipulating quantum systems.

In this paper, we apply a learning-based open-loop control method19 to guide the design of robust control 
�elds for construction of universal quantum gates. In particular, we aim to generate the set of universal quantum 

gates π{ }S, H, T CNOT
8

.�e results show that the learning control method can e�ciently �nd optimal control 

�elds and the designed control �elds are insensitive to di�erent �uctuations and uncertainties in the process of 
generating quantum gates. �e quantum gates with the designed control �elds can have improved robustness and 
reliability.

Results
Optimal control results of one-qubit quantum gates. In this section, we consider optimal control of 

the one-qubit gates π{ }S, H, T
8

. Denote the Pauli matrices as σ =  (σx, σy, σz) and let the free Hamiltonian be 

H0 =  ω0σz, with constant ω0. To construct a one-qubit quantum gate we use the control Hamiltonian of 
Hc =  ωx(t)σx, with time-varying control ωx(t). Now we use the gradient-based learning method (see the Methods 
section) to construct the quantum gates H, S, and πT

8

. �e index of in�delity F (1 minus the �delity F) is used to 
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characterize the error, and atomic units are adopted. We assume ω0 =  1, ωx(t) ∈  [− 5, 5], and the terminal time 
T =  8. We use piece-wise constant pulses to approximate the learned control �eld. We divide the time T into 200 
intervals, where a constant pulse is used within each interval. �e initial control �eld is set as ωx(t) =  sin t and the 
step-size is set as 0.5.

As shown in Fig. 1, the H, S and πT
8

 quantum gates can achieve a precision (�delity) of around 1–10−15, a�er 

70 iterations. �e algorithm quickly converges and we can easily �nd optimal control pulses to generate the H, S 
and πT

8
 gates. We further consider the relationship between the in�delity F and the terminal time T. For example, 

the relationship of the in�delity Flg  (here we use the logarithm of F, i.e., Flg  or Flog
10

) versus time T for the H 
gate is shown in Fig. 2. If we �x a bound on the control amplitude, the algorithm cannot achieve good perfor-
mance if the time T is too short, because it may not guarantee the controllability within T. For a smaller bound on 
the control amplitude, we may need a longer terminal time T to achieve the required �delity.

Figure 1. Learned optimal control for generating quantum gates H, S and πT
8

. (a,c,e) �e in�delity ( Flg ) 

versus iterations; (b,d,f) Learned control �elds.

Figure 2. In�delity ( Flg ) versus the terminal time T.
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Robust control results of one-qubit quantum gates. Considering the existence of uncertainties, we 
assume that the Hamiltonian can be described as

ω σ ω σ= + .H t f f t( ) ( ) ( ) ( ) (1)z x x0 0 0 1 1 

For simplicity, we assume  =f ( )
0 0 0 and =f ( )

1 1 1  , and both uncertain parameters 0  and 1  have uniform 
distributions with the same bound on the uncertainties E =  0.2 (i.e., 40% fluctuations, ∈ . .[0 8, 1 2]0  and 

∈ . .[0 8, 1 2]1 ). Using the SLC method19 (see the Methods section), an augmented system is constructed by 
se lec t ing  N 0  =   5  va lues  for  0 ,  and N 1  =   5  va lues  for  1.  The  samples  are  se lec ted  as 

∈ . + . − . + . − = …m n m n( , ) {(0 8 0 04(2 1), 0 8 0 04(2 1)) , 1, 2, , 5}0 1  . Figure 3 shows the results for three 
classes of quantum gates: S, H and πT

8
, respectively. A�er 100,000 iterations, the precision reaches 0.9979 for the 

H gate, 0.9976 for the S gate, and 0.9991 for the πT
8

 gate, respectively. �e corresponding control �elds are shown 

in Fig. 3(b,d,f). �en the learned �elds are applied to 2000 additional samples that are generated randomly by 
selecting values of the uncertainty parameters according to a uniform distribution. �e average �delity reaches 
0.9976 for the H gate, 0.9973 for the S gate, and 0.9989 for the πT

8
 gate, respectively.

In the laboratory, it may be easier for some quantum systems to generate discrete control pulses with constant 
amplitudes. Here, we consider the performance using di�erent numbers of control pulses to approximate the 
�elds. For the S gate, the relationship of the number of pulses versus the average �delity is shown in Fig. 4. From 
Fig. 4, it is clear that excellent performance can be achieved even if we only use 20~40 control pulses to realize 
the approximation of the continuous control �elds. Hence, we use 40 pulses to implement the control �eld in the 
following numerical calculations.

We further consider the e�ect of the uncertainty bounds on the robustness performance. Figure 5 shows the 
performance of the system when the parameter �uctuations have di�erent bounds for the S gate. Here, we assume 
E0 =  E1 =  E and N0 =  N1 =  5. Although the performance decreases when the bounds on the �uctuations increase, 
the control �elds still can drive the system to the target gate with a high average �delity of above 0.9950, even 
with 60% �uctuations (E =  0.3). It is clear that the bounds on the �uctuations cannot be too large if we expect to 
achieve a very high �delity (e.g., 0.999). For a given �uctuation bound, it is possible to further enhance the per-
formance by using more pulses and employing more samples in the training step.

Open dissipative systems for one-qubit quantum gates. Many quantum systems can be used to real-
ize quantum gates. In particular, superconducting quantum systems20–28 are one of the most promising systems 
for the implementation of quantum computation due to their advantages, such as design �exibility, tunability and 
scalability. For superconducting quantum circuits, it is convenient to control the systems by adjusting external 
parameters such as voltages, currents, and microwave photons, and it is also possible to turn on and o� the 

Figure 3. Robust control performance for the S, H, πT
8

 gates with parameter �uctuations on ω0 and ωx. 

(a,c,e) �e in�delity ( Flg ) versus iterations; (b,d,f) Learned robust control �elds.
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coupling between two qubits at will29,30. In practical applications, the existence of �uctuations (e.g., �uctuations 
in magnetic and electric �elds), inaccuracies (e.g., inaccurate operation in the coupling between qubits), and 
decoherence, may degrade the performance of reliability and robustness in quantum computation31. In ref. 32, the 
robustness problem for steering quantum states in superconducting quantum circuits has been investigated using 
the SLC method. Here, we apply the SLC method19,32 to design control �elds that are robust against di�erent inac-
curacies and �uctuations for implementing quantum gates. Now, we consider a �ux qubit subject to decoherence 
to generate the S, H, and πT

8
 quantum gates. We assume that the dynamics of the �ux qubit can be described as

ρ ρ σ ρ σ ρ ρ= − 




+ Γ 





+ Γ 




≡
ϕ− t i H t t t t t( ) ( ), ( ) ( ) ( ) ( ) (2)z1D D L

where

 ρ ρ ρ ρ= − − .
† † †c c c c c c c[ ]

1

2

1

2

Here, Γ 1 and Γ ϕ are the relaxation rate and dephasing rate of the system, respectively. Considering the experiment 
described in ref. 31, we choose Γ 1 =  105 s−1 and Γ ϕ =  106 s−1. Let T =  5 ns and assume that the control Hamiltonian 
is described as

σ σ= + .H t u t u t( ) ( ) ( )x x z z

We assume that there exist �uctuations (with the �uctuation bound 0.2) in the relaxation rate and dephasing 
rate. Using the OPEN GRAPE algorithm33 (see the Methods section), we can learn robust control �elds for gener-
ating the three classes of quantum gates. �e results are shown in Fig. 6. A�er 80 iterations, the �delity of all three 
gates reaches 0.9948 using 40 control pulses for each class of quantum gates.

Quantum CNOT gate. In this section, we consider the problem of �nding robust control pulses for gener-
ating quantum CNOT gates. In particular, we consider the example based on the two coupled superconducting 
phase qubits in ref. 34, which has also been discussed for the robust control of quantum states in ref. 32. Each 
phase qubit is a nonlinear resonator built from an Al/AlOx/Al Josephson junction, and two qubits are coupled via 
a modular four-terminal device (for details, see Fig. 1 in ref. 34). We assume that the Hamiltonian has the follow-
ing form (due to possible �uctuations and uncertainties):
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Figure 4. Fidelity vs the number of sub-pulses for the S gate. 
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Figure 5. �e bounds on the �uctuations versus the average �delity for the S gate, with parameter 
�uctuations on both ω0 and ωx. 
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with  ∈ . .[0 8, 1 2]j  (j =  1, 2, 3). Here, we assume that the frequencies ω1(t), ω2(t) ∈  [− 5, 5] GHz can be adjusted 
by changing the bias currents of the two phase qubits, and Ωc(t) ∈  [− 500, 500] MHz can be adjusted by changing 
the bias current in the coupler. Let ω3 =  ω4 =  2 GHz, the operation time T =  20 ns is divided into 40 smaller time 
intervals, and the step-size is 0.1. �e initial control �elds are ω1(t) =  ω2(t) =  sin t GHz, Ωc(t) =  0.05 sin t GHz. 
Without �uctuations (i.e., ≡ 1j ), the �delity of the CNOT gate can reach 1–10−15 a�er 550 iterations, as shown 
in Fig. 7. When the uncertainty bounds are 0.2, the results are shown in Fig. 8. In the training step, the precision 
of the CNOT gate can reach 0.9965. �en the average �delity of 0.9961 can be reached for 2000 additional samples 
in the testing step.

Discussion
In conclusion, we applied a learning-based open-loop method to �nd robust control �elds for constructing a set 
of universal quantum gates. All of the quantum gates we considered show good robustness and the method used 
is easy to implement. Although a uniform distribution is used for the uncertainty parameters, the method is also 
applicable to other distributions (e.g., a Gaussian distribution). Several speci�c examples have been considered 
in this paper, while the method can be applied to other systems for constructing any quantum gates35. Also, it 
is straightforward to extend the method to achieving robust control tasks for general quantum operations. In 
practical applications, one may need to determine the �uctuation bounds from prior information or by employ-
ing a parameter-identi�cation method. �e learned control �elds would work well as long as the noise is within 
the �uctuation bounds. If the noise becomes large enough to be out of the bounds, it is necessary to re-train the 
control �elds. During practical implementation for speci�c systems, some constraints (e.g., laser energy, positive 
control magnitude) may need to be considered. For such situations, we may combine the SLC method with opti-
mal control algorithms under multiple constraints36 to achieve good performance.

Methods
Gradient-based learning for quantum optimal control. We �rst consider the unitary dynamics. �e 
evolution of a quantum gate U(t) satis�es

= − = .
U t iH t U t U I( ) ( ) ( ), (0) (4)

Now the objective is to design the Hamiltonian H(t) to robustly steer the unitary U(t) from U(0) =  I to the 

desired target ∈ { }U H, S, T , CNOTF
p

8

, with high �delity. �e �delity is de�ned as:

Figure 6. Robust control performance for the S, H, πT
8

 gates, with parameter �uctuations in the relaxation 

rate and dephasing rate for open quantum systems. (a,d,g) Convergence for the H gate, the S gate, and the πT
8

 

gate, respectively. �e other sub-�gures show the robust control pulses.
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=F U U T U U T( , ( ))
1

2
( ) ,

(5)F q F

where q (q =   1 or 2 in this paper) is the number of qubits involved in the quantum gate and 

≡
†U U T U U T( ) tr( ( ))F F .

Gradient-based optimization algorithms have proven to be one of the most e�cient methods to solve opti-
mization problems in quantum control. By applying a gradient-based optimization algorithm, we now consider 
the problem of generating a high-�delity quantum gate in a given time T. Assume that the Hamiltonian has the 
following form

∑= +

=

H t H u t H( ) ( ) ,
(6)m

M

m m0
1

where H0 is the free Hamiltonian, Hm(m =  1, 2, …  M) are related to the control Hamiltonian with the correspond-
ing control pulses u t( )m .

�e performance function of the transfer process can be de�ned as

− = − + .U U T U U U T U T( ) 2Re ( ) ( ) (7)F F F
2 2 2

In practical applications, considering the possible existence of an arbitrary global phase factor eiϕ, we minimize

Figure 7. �e performance for constructing CNOT gates using optimal control �elds. (a) In�delity ( Flg ) 
versus iterations. (b,c,d) Learned optimal control �elds.
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− = − +
ϕ ϕ ϕU e U T U U e U T e U T( ) 2 Re ( ) ( ) , (8)F

i
F F

i i2 2 2

which is equivalent to maximize ϕU e U TRe ( )F
i . In order to eliminate the in�uence of the global phase factor, 

we maximize the performance function

Φ = .
ϕU e U T( ) (9)F

i 2

Let Uj denote the unitary transformation when the jth pulse uj is applied. We can decompose U(T) as 
U(T) =  UN …  U1. With operators Aj and Bj being de�ned as = …A U Uj j 1 and = … =

+

† † †B U U U A U T U( )j j N F j F1 , 
we have the following relationship

Φ = .B A A B (10)j j j j

�e gradient ∂Φ /∂um(j) to the �rst order in ∆ t is given by

Figure 8. Robust control performance for CNOT gates, with parameter �uctuations on ω1, ω2 and Ωc, 
E = 0.2. (a) In�delity ( Flg ) versus iterations. (b–d) Learned robust control �elds.
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∆
∂Φ

∂
= − ∆ −

= − ∆ .{ }
u j

B A i tH A B B i tH A A B

B i tH A A B

( )

2 Re
(11)

m
j j m j j j m j j j

j m j j j

�e optimal control �eld can be searched by following the gradient.

Open GRAPE. For an open dissipative system, its dynamics can be described by a master equation. We will 
use an OPEN GRAPE algorithm to calculate the gradient (see refs 33, 37–39). We assume that the state of the 
system is described by a master equation

ρ ρ= − + Λ t i u t u t t( ) ( ( ( )) ( ( ))) ( ) (12)

with the Hamiltonian superoperator ⋅ = 


⋅ 


u t H u( ( ))( ) ( ),
1

H
ℏ

, and the decoherence superoperator Λ (u(t)). �e 

solution to the master equation is a linear map, according to ρ ρ=t t( ) ( ) (0) . Hence, t( )  follows the operator 
equation

G H G= − + Λ t i t( ) ( ) ( ) (13)

with  = I(0) . �e objective is to �nd a control �eld u(t) to maximize the �delity with a given �nal time T

=
†F U T U T( , ( ))

1

2
tr{ ( )}

(14)F q F 

�e gradient of F U T( , ( ))F  can be calculated using the method in ref. 37 and the control �eld can be updated 
using the gradient.

Sampling-based learning control for robust design. �e sampling-based learning control (SLC) 
method19 involves two steps of training and testing. In the training step, we select N samples to train the control 
�elds. �ese samples are selected according to the distribution of uncertain parameters (e.g., uniform distribution).  
For example, when

∑ε ε= +

=

H t H u t H( ) ( ) ,
(15)m

M

m m m0 0
1

an augmented system can be constructed as follows













= −













ɺ

ɺ

⋮

ɺ

⋮

U t

U t

U t

i

H t U t

H t U t

H t U t

( )

( )

( )

( ) ( )

( ) ( )

( ) ( ) (16)N

s

s

N
s

N

1

2

1 1

2 2

where the Hamiltonian of the nth sample ε= + ∑ =H t H u t H( ) ( )n
s

n m
M

mn m m0 0 1 , with n =  1, 2, … , N. �e perfor-
mance function of the augmented system is de�ned as FN(u)

∑= .

=

F u
N

U U T( )
1 1

2
( )

(17)
N

n

N

q F n
1

�e task of the training step is to �nd an optimal control u* which maximizes the performance function above. 
�e representative samples for these uncertain parameters can be selected according to the method in ref. 32. In 
the testing step, we apply the control �eld u* we obtained in the training step to a large number of other additional 
samples, which are randomly selected according to the uncertainty parameters. If the average �delity of all the 
tested samples is satisfactory, we accept the designed control, which means the quantum gate we constructed is 
robust. In this paper, we use 2000 additional samples to test our designed control in this step. When the quantum 
system under consideration is an open system, uncertainties can exist in the decoherence parameters. For these 
uncertainty parameters, we can use a similar method for sampling these parameters to �nd robust control pulses.
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