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Learning Robust Control Policies for End-to-End

Autonomous Driving From Data-Driven Simulation
Alexander Amini , Igor Gilitschenski , Jacob Phillips, Julia Moseyko,

Rohan Banerjee , Sertac Karaman , and Daniela Rus

Abstract—In this work, we present a data-driven simulation
and training engine capable of learning end-to-end autonomous
vehicle control policies using only sparse rewards. By leveraging
real, human-collected trajectories through an environment, we
render novel training data that allows virtual agents to drive along
a continuum of new local trajectories consistent with the road
appearance and semantics, each with a different view of the scene.
We demonstrate the ability of policies learned within our simulator
to generalize to and navigate in previously unseen real-world roads,
without access to any human control labels during training. Our
results validate the learned policy onboard a full-scale autonomous
vehicle, including in previously un-encountered scenarios, such as
new roads and novel, complex, near-crash situations. Our methods
are scalable, leverage reinforcement learning, and apply broadly
to situations requiring effective perception and robust operation in
the physical world.

Index Terms—Deep learning in robotics and automation,
autonomous agents, real world reinforcement learning, data-driven
simulation.

I. INTRODUCTION

E
ND-TO-END (i.e., perception-to-control) trained neu-

ral networks for autonomous vehicles have shown great

promise for lane stable driving [1]–[3]. However, they lack

methods to learn robust models at scale and require vast amounts

of training data that are time consuming and expensive to collect.

Learned end-to-end driving policies and modular perception

components in a driving pipeline require capturing training

data from all necessary edge cases, such as recovery from

off-orientation positions or even near collisions. This is not

only prohibitively expensive, but also potentially dangerous [4].

Training and evaluating robotic controllers in simulation [5]–[7]
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Fig. 1. Training and deployment of policies from data-driven simulation:

From a single human collected trajectory our data-driven simulator (VISTA)
synthesizes a space of new possible trajectories for learning virtual agent control
policies (A). Preserving photorealism of the real world allows the virtual agent
to move beyond imitation learning and instead explore the space using rein-
forcement learning with only sparse rewards. Learned policies not only transfer
directly to the real world (B), but also outperform state-of-the-art end-to-end
methods trained using imitation learning.

has emerged as a potential solution to the need for more data

and increased robustness to novel situations, while also avoiding

the time, cost, and safety issues of current methods. However,

transferring policies learned in simulation into the real-world

still remains an open research challenge. In this letter, we

present an end-to-end simulation and training engine capable of

training real-world reinforcement learning (RL) agents entirely

in simulation, without any prior knowledge of human driving

or post-training fine-tuning. We demonstrate trained models

can then be deployed directly in the real world, on roads and

environments not encountered in training. Our engine, termed

VISTA: Virtual Image Synthesis and Transformation for Au-

tonomy, synthesizes a continuum of driving trajectories that

are photorealistic and semantically faithful to their respective

real world driving conditions (Fig. 1), from a small dataset of

human collected driving trajectories. VISTA allows a virtual

agent to not only observe a stream of sensory data from stable

driving (i.e., human collected driving data), but also from a

simulated band of new observations from off-orientations on

the road. Given visual observations of the environment (i.e.,

camera images), our system learns a lane-stable control policy
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over a wide variety of different road and environment types, as

opposed to current end-to-end systems [2], [3], [8], [9] which

only imitate human behavior. This is a major advancement as

there does not currently exist a scalable method for training

autonomous vehicle control policies that go beyond imitation

learning and can generalize to and navigate in previously unseen

road and complex, near-crash situations.

By synthesizing training data for a broad range of vehicle

positions and orientations from real driving data, the engine is

capable of generating a continuum of novel trajectories con-

sistent with that road and learning policies that transfer to

other roads. This variety ensures agent policies learned in our

simulator benefit from autonomous exploration of the feasible

driving space, including scenarios in which the agent can recover

from near-crash off-orientation positions. Such positions are

a common edge-case in autonomous driving and are difficult

and dangerous to collect training data for in the real-world. We

experimentally validate that, by experiencing such edge cases

within our synthesized environment during training, these agents

exhibit greater robustness in the real-world and recover approx-

imately two times more frequently compared to state-of-the-art

imitation learning algorithms.

In summary, the key contributions of this letter can be sum-

marized as:

1) VISTA, a photorealistic, scalable, data-driven simulator

for synthesizing a continuum of new perceptual inputs lo-

cally around an existing dataset of stable human collected

driving data;

2) An end-to-end learning pipeline for training autonomous

lane-stable controllers using only visual inputs and sparse

reward signals, without explicit supervision using ground

truth human control labels; and

3) Experimental validation that agents trained in VISTA can

be deployed directly in the real-world and achieve more

robust recovery compared to previous state-of-the-art im-

itation learning models.

To the best of our knowledge, this work is the first published

report of a full-scale autonomous vehicle trained entirely in

simulation using only reinforcement learning, that is capable of

being deployed onto real roads and recovering from complex,

near crash driving scenarios.

II. RELATED WORK

Training agents in simulation capable of robust generalization

when deployed in the real world is a long-standing goal in many

areas of robotics [9]–[12]. Several works have demonstrated

transferable policy learning using domain randomization [13]

or stochastic augmentation techniques [14] on smaller mobile

robots. In autonomous driving, end-to-end trained controllers

learn from raw perception data, as opposed to maps [15] or other

object representations [16]–[18]. Previous works have explored

learning with expert information for lane following [1], [2], [19],

[20], full point-to-point navigation [3], [8], [21], and shared

human-robot control [22], [23], as well as in the context of RL

by allowing the vehicle to repeatedly drive off the road [4]. How-

ever, when trained using state-of-the-art model-based simulation

engines, these techniques are unable to be directly deployed in

real-world driving conditions.

Performing style transformation, such as adding realistic tex-

tures to synthetic images with deep generative models, has been

used to deploy learned policies from model-based simulation

engines into the real world [9], [24]. While these approaches can

successfully transfer low-level details such as textures or sen-

sory noise, these approaches are unable to transfer higher-level

semantic complexities (such as vehicle or pedestrian behaviors)

present in the real-world that are also required to train robust

autonomous controllers. Data-driven engines like Gibson [25]

and FlightGoggles [26] render photorealistic environments us-

ing photogrammetry, but such closed-world models are not

scalable to the vast exploration space of all roads and driving

scenarios needed to train for real world autonomous driving.

Other simulators [27] face scalability constraints as they require

ground truth semantic segmentation and depth from expensive

LIDAR sensors during collection.

The novelty of our approach is in leveraging sparsely-sampled

trajectories from human drivers to synthesize training data suf-

ficient for learning end-to-end RL policies robust enough to

transfer to previously unseen real-world roads and to recover

from complex, near crash scenarios.

III. DATA-DRIVEN SIMULATION

Simulation engines for training robust, end-to-end au-

tonomous vehicle controllers must address the challenges of

photorealism, real-world semantic complexities, and scalable

exploration of control options, while avoiding the fragility

of imitation learning and preventing unsafe conditions during

data collection, evaluation, and deployment. Our data-driven

simulator, VISTA, synthesizes photorealistic and semantically

accurate local viewpoints as a virtual agent moves through

the environment (Fig. 2). VISTA uses a repository of sparsely

sampled trajectories collected by human drivers. For each tra-

jectory through a road environment, VISTA synthesizes views

that allow virtual agents to drive along an infinity of new local

trajectories consistent with the road appearance and semantics,

each with a different view of the scene.

Upon receiving an observation of the environment at time

t, the agent commands a desired steering curvature, κt, and

velocity, vt to execute at that instant until the next observation.

We denote the time difference between consecutive observations

as ∆t. VISTA maintains an internal state of each agent’s posi-

tion, (xt, yt), and angular orientation, θt, in a global reference

frame. The goal is to compute the new state of the agent at time,

t+∆t, after receiving the commanded steering curvature and

velocity. First, VISTA computes the changes in state since the

last timestep,

∆θ = |vt ·∆t| · κt,

∆x̂ = (1− cos (∆θ)) /κt,

∆ŷ = sin (∆θ) /κt. (1)

VISTA updates the global state, taking into account the change

in the agent’s orientation, by applying a 2D rotational matrix
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Fig. 2. Simulating novel viewpoints for learning: Schematic of an autonomous agent’s interaction with the data-driven simulator (A). At time step, t, the agent
receives an observation of the environment and commands an action to execute. Motion is simulated in VISTA and compared to the human’s estimated motion in
the real world (B). A new observation is then simulated by transforming a 3D representation of the scene into the virtual agent’s viewpoint (C).

before updating the position in the global frame,

θt+∆t = θt +∆θ,
[

xt+∆t

yt+∆t

]

=

[

xt

yt

]

+

[

cos(θt+∆t) − sin(θt+∆t)

sin(θt+∆t) cos(θt+∆t)

][

∆x̂

∆ŷ

]

.

(2)

This process is repeated for both the virtual agent who is navi-

gating the environment and the replayed version of the human

who drove through the environment in the real world. Now

in a common coordinate frame, VISTA computes the relative

displacement by subtracting the two state vectors. Thus, VISTA

maintains estimates of the lateral, longitudinal, and angular

perturbations of the virtual agent with respect to the closest

human state at all times (cf. Fig. 2B).

VISTA is scalable as it does not require storing and operating

on 3D reconstructions of entire environments or cities. Instead,

it considers only the observation collected nearest to the virtual

agent’s current state. Simulating virtual agents over real road

networks spanning thousands of kilometers requires several

hundred gigabytes of monocular camera data. Fig. 2C presents

view synthesis samples. From the single closest monocular

image, a depth map is estimated using a convolutional neural

network using self-supervision of stereo cameras [28]. Using

the estimated depth map and camera intrinsics, our algorithm

projects from the sensor frame into the 3D world frame. After

applying a coordinate transformation to account for the relative

transformation between virtual agent and human, the algorithm

projects back into the sensor frame of the vehicle and returns

the result to the agent as its next observation. To allow some

movement of the virtual agent within the VISTA environment,

we project images back into a smaller field-of-view than the

collected data (which starts at 120◦). Missing pixels are in-

painted using a bilinear sampler, although we acknowledge more

photorealistic, data-driven approaches [29] that could also be

used. VISTA is capable of simulating different local rotations

(±15◦) of the agent as well as both lateral and longitudinal

translations (±1.5 m) along the road. As the free lateral space

of a vehicle within its lane is typically less than 1 m, VISTA

can simulate beyond the bounds of lane-stable driving. Note

that while we focus on data-driven simulation for lane-stable

driving in this work, the presented approach is also applica-

ble to end-to-end navigation [3] learning by stitching together

collected trajectories to learn through arbitrary intersection

configurations.
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A. End-to-End Learning

All controllers presented in this letter are learned end-to-end,

directly from raw image pixels to actuation. We considered

controllers that act based on their current perception without

memory or recurrence built in, as suggested in [2], [16]. Features

are extracted from the image using a series of convolutional

layers into a lower dimensional feature space, and then through

a set of fully connected layers to learn the final control actuation

commands. Since all layers are fully differentiable, the model

was optimized entirely end-to-end. As in previous work [2], [3],

we learn lateral control by predicting the desired curvature of

motion. Note that curvature is equal to the inverse turning radius

[m−1] and can be converted to steering angle at inference time

using a bike model [30], assuming minimal slip.

Formally, given a dataset of n observed state-action pairs

(st, at)
n

i=1 from human driving, we aim to learn an autonomous

policy parameterized by θ which estimates ât = f(st;θ). In

supervised learning, the agent outputs a deterministic action by

minimizing the empirical error,

L(θ) =

n
∑

i=1

(f(st;θ)− at)
2. (3)

However, in the RL setting, the agent has no explicit feedback

of the human actuated command, at. Instead, it receives a

reward rt for every consecutive action that does not result in an

intervention and can evaluate the return, Rt, as the discounted,

accumulated reward

Rt =
∞
∑

k=0

γkrt+k (4)

where γ ∈ (0, 1] is a discounting factor. In other words, the

return that the agent receives at time t is a discounted distance

traveled between t and the time when the vehicle requires an

intervention. As opposed to in supervised learning, the agent op-

timizes a stochastic policy over the space of all possible actions:

π(a|st;θ). Since the steering control of autonomous vehicles is

a continuous variable, we parameterize the output probability

distribution at time t as a Gaussian, (µt, σ
2
t
). Therefore, the

policy gradient, ∇θπ(a|st;θ), of the agent can be computed

analytically:

∇θπ(a|st;θ) = π(a|st;θ)∇θ log (π(a|st;θ)) (5)

Thus, the weights θ are updating in the direction

∇θ log(π(a|st;θ)) ·Rt during training [31], [32].

We train RL agents in various simulated environments, where

they only receive rewards based on how far they can drive

without intervention. Compared to supervised learning, where

agents learn to simply imitate the behavior of the human driver,

RL in simulation allows agents to learn suitable actions which

maximize their total reward in that particular situation. Thus, the

agent has no knowledge of how the human drove in that situation.

Using only the feedback from interventions in simulation, the

agent learns to optimize its own policy and thus to drive longer

distances (Algorithm 1).

We define a learning episode in VISTA as the time the agent

starts receiving sensory observations to the moment it exits

Fig. 3. Training images from various comparison methods: Samples drawn
from the real-world, IMIT-AUG (A) and CARLA (B-C). Domain randomization
DR-AUG (C) illustrates a single location for comparison.

Algorithm 1: Policy Gradient (PG) Training in VISTA

0: Initialize θ {NN weights}

0: Initialize D ← 0 {Single episode distance}

0: while D < 10 km do

0: st ← VISTA.reset()

0: while VISTA.done = False do

0: at ∼ π(st;θ) {Sample action}

0: st+1 ← VISTA.step(at) {Update state}

0: rt ← 0.0 if VISTA.done else 1.0 {Reward}

0: D ← VISTA.episode_distance

0: Rt ←
∑

T

k=1 γ
krt+k {Discounted return}

0: θ ← θ + η
∑

T

t=1 ∇θ log π(at|st;θ)Rt {PG Update}

0: return θ = 0

its lane boundaries. Assuming the original data was collected

at approximately the center of the lane, this corresponds to

declaring the end of an episode as when the lateral translation

of the agent exceeds ±1m.

Upon traversing a road successfully, the agent is transported

to a new location in the dataset. Thus, training is not limited to

only long roads, but can also occur on multiple shorter roads.

An agent is said to sufficiently learn an environment once it

successfully drives for 10 km without interventions.

IV. BASELINES

In this subsection, we discuss the evaluated baselines. The

same input data formats (camera placement, field-of-view, and

resolution) were used for both IL and RL training. Furthermore,

model architectures for all baselines were equivalent with the

exception of only the final layer in RL.

A. Real-World: Imitation Learning

Using real-world images (Fig. 3A) and control we bench-

mark models trained with end-to-end imitation learning (IMIT-

AUG). Augmenting learning with views from synthetic side

cameras [2], [20], [33] is the standard approach to increase ro-

bustness and teach the model to recover from off-center positions
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on the roads. We employ the techniques presented in [2], [20]

to compute the recovery correction signal that should be trained

with given these augmented inputs.

B. Model-Based Simulation: Sim-to-Real

We use the CARLA simulator [34] for evaluating the perfor-

mance of end-to-end models using sim-to-real transfer learning

techniques. As opposed to our data-driven simulator, CARLA,

like many other autonomous driving simulators, is model-based.

While tremendous effort has been placed into making the

CARLA environment (Fig. 3B) as photorealistic as possible,

a simulation gap still exists. We found that end-to-end models

trained solely in CARLA were unable to transfer to the real-

world. Therefore, we evaluated the following two techniques

for bridging the sim-to-real gap in CARLA.

Domain Randomization: First, we test the effect of domain

randomization (DR) [13] on learning within CARLA. DR at-

tempts to expose the learning agent to many different random

variations of the environment, thus increasing its robustness

in the real-world. In our experiments, we randomized various

properties throughout the CARLA world (Fig. 3C), including

the sun position, weather, and hue of each of the semantic classes

(i.e. road, lanes, buildings, etc). Like IMIT-AUG we also train

CARLA DR models with viewpoint augmentation and thus,

refer to these models as DR-AUG.

Domain Adaptation: We evaluate a model that is trained with

both simulated and real images to learn shared control. Since the

latent space between the two domains is shared [9], the model

can output a control from real images during deployment even

though it was only trained with simulated control labels during

training. Again, viewpoint augmentation is used when training

our sim-to-real baseline, S2R-AUG.

C. Expert Human

A human driver (HUMAN) drives the designed route as close

to the center of the lane as possible, and is used to fairly evaluate

and compare against all other learned models.

V. RESULTS

A. Real-World Testbed

Learned controllers were deployed directly onboard a full-

scale autonomous vehicle (2015 Toyota Prius V) which we

retrofitted for full autonomous control [35]. The primary per-

ception sensor for control is a LI-AR0231-GMSL camera (120

degree field-of-view), operating at 15 Hz. Data is serialized with

h264 encoding with a resolution of 19201208. At inference time,

images are scaled down approximately 3 fold for performance.

Also onboard are inertial measurement units (IMUs), wheel

encoders, and a global positioning satellite (GPS) sensor for

evaluation as well as an NVIDIA PX2 for computing. To stan-

dardize all model trials on the test-track, a constant desired speed

of the vehicle was set at 20 kph, while the model commanded

steering.

The model’s generalization performance was evaluated on

previously unseen roads. That is, the real-world training set

contained none of the same areas as the testing track (spanning

over 3 km) where the model was evaluated.

Agents were evaluated on all roads in the test environment.

The track presents a difficult rural test environment, as it does

not have any clearly defined road boundaries or lanes. Cracks,

where vegetation frequently grows onto the road, as well as

strong shadows cast from surrounding trees, cause classical road

detection algorithms to fail.

B. Reinforcement Learning in VISTA

In this section, we present results on learning end-to-end

control of autonomous vehicles entirely within VISTA, under

different weather conditions, times of day, and road types.

Each environment collected for this experiment consisted of,

on average, one hour of driving data from that scenario.

We started by learning end-to-end policies in different times

of day (Fig. 4A) and, as expected, found that agents learned

more quickly during the day than at night, where there was

often limited visibility of lane markers and other road cues. Next,

we considered changes in the weather conditions. Environments

were considered “rainy” when there was enough water to coat

the road sufficiently for reflections to appear or when falling

rain drops were visible in the images. Comparing dry with rainy

weather learning, we found only minor differences between

their optimization rates (Fig. 4B). This was especially surprising

considering the visibility challenges for humans due to large re-

flections from puddles as well as raindrops covering the camera

lens during driving. Finally, we evaluated different road types

by comparing learning on highways and rural roads (Fig. 4C).

Since highway driving has a tighter distribution of likely steering

control commands (i.e., the car is traveling primarily in a nearly

straight trajectory), the agent quickly learns to do well in this

environment compared to the rural roads, which often have much

sharper and more frequent turns. Additionally, many of the rural

roads in our database lacked lane markers, thus making the

beginning of learning harder since this is a key visual feature

for autonomous navigation.

In our experiments, our learned agents iteratively explore and

observe their surroundings (e.g. trees, cars, pedestrians, etc.)

from novel viewpoints. On average, the learning agent converges

to autonomously drive 10 km without crashing within 1.5 million

training iterations. Thus, when randomly placed in new locations

with similar features during training the agent is able to use its

learned policy to navigate. While demonstration of learning in

simulation is critical for development of autonomous vehicle

controllers, we also evaluate the learned policies directly on-

board our full-scale autonomous vehicle to test generalization

to the real-world.

C. Evaluation in the Real World

Next, we evaluate VISTA and baseline models deployed

in the real-world. First, we note that models trained solely in

CARLA did not transfer, and that training with data viewpoint

augmentation [2] strictly improved performance of the baselines.

Thus, we compare against baselines with augmentation.
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Fig. 4. Reinforcement learning in simulation: Autonomous vehicles placed in the simulator with no prior knowledge of human driving or road semantics
demonstrate the ability to learn and optimize their own driving policy under various different environment types. Scenarios range from different times of day (A),
to weather condition (B), and road types (C).

Fig. 5. Evaluation of end-to-end autonomous driving: Comparison of simulated domain randomization [13] and adaptation [9] as well as real-world imitation
learning [2] to learning within VISTA (left-to-right). Each model is tested 3 times at fixed speeds on every road on the test track (A), with interventions marked as
red dots. The variance between runs (B) and the distribution of deviations from the mean trajectory (C) illustrate model consistency.
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TABLE I
REAL-WORLD PERFORMANCE COMPARISON: EACH ROW DEPICTS A DIFFERENT PERFORMANCE METRIC EVALUATED ON OUR TEST TRACK. BOLD CELLS IN A

SINGLE ROW REPRESENT THE BEST PERFORMERS FOR THAT METRIC, WITHIN STATISTICAL SIGNIFICANCE

Fig. 6. Robustness analysis: We test robustness to recover from near crash
positions, including strong translations (top) and rotations (bottom). Each model
and starting orientation is repeated at 15 locations on the test track. A recovery
is successful if the car recovers within 5 seconds.

Each model is trained 3 times and tested individually on every

road on the test track. At the end of a road, the vehicle is restarted

at the beginning of the next road segment. The test driver

intervenes when the vehicle exits its lane. The mean trajectory of

the three trials are shown in Fig. 5A, with intervention locations

drawn as red points. Road boundaries are plotted in black for

scale of deviations. IMIT-AUG yielded highest performance out

of the three baselines, as it was trained directly with real-world

data from the human driver. Of the two models trained with

only CARLA control labels, S2R-AUG outperformed DR-AUG

requiring an intervention every 700 m compared to 220 m. Even

though S2R-AUG only saw control labels from simulation, it

received both simulated and real perception. Thus, the model

learned to effectively transfer some of the details from simulation

into the real-world images allowing it to become more stable

than purely randomizing away certain properties of the sim-

ulated environment (ie. DR-AUG). VISTA exhibited the best

performance of all the considered models and never required

any interventions throughout the trials (totaling > 10 km of

autonomous driving).

The variance across trials is visualized in Fig. 5B–C (line color

in (B) indicates variance at that location). For each baseline, the

variance tended to spike at locations that resulted in interven-

tions, while the variance of VISTA was highest in ambiguous

situations such as approaching an intersection, or wider roads

with multiple possible correct control outputs.

We also initiated the vehicle from off-orientation positions

with significant lateral and rotational offsets to evaluate robust-

ness to recover from these near-crash scenarios. A successful

recovery is indicated if the vehicle is able to successfully ma-

neuver and drive back to the center of its lane within 5 seconds.

We observed that agents trained in VISTA were able to recover

from these off-orientation positions on real and previously un-

encountered roads, and also significantly outperformed models

trained with imitation learning on real world data (IMIT) or

in CARLA with domain transfer (DR-AUG and S2R-AUG).

On average, VISTA successfully recovered over 2× more fre-

quently than the next best, IMIT-AUG. The performance of

IMIT-AUG improved with translational offsets, but was still sig-

nificantly outperformed by VISTA models trained in simulation

by approximately 30%. All models showed greater robustness

to recovering from translations than rotations since rotations

required significantly more aggressive control to recover with

a much smaller room of error. In summary, deployment results

for all models are shown in Table I.

VI. CONCLUSION

Simulation has emerged as a potential solution for training

and evaluating autonomous systems on challenging situations

that are often difficult to collect in the real-world. However,

successfully transferring learned policies from model-based

simulation into the real-world has been a long-standing field

in robot learning. In this letter, we present VISTA, an end-

to-end data-driven simulator for training autonomous vehicles

for deployment into the real-world. VISTA supports training

agents anywhere within the feasible band of trajectories that

can be synthesized from data collected by a human driver on

a single trajectory. In the future, we will focus on not only

synthesizing perturbations to the ego-agent, but also to other

dynamic obstacles in the environment (i.e. cars, pedestrians,

etc.) [27], [36] or the environment [37].

Our experiments empirically validate the ability to train

models in VISTA using RL, and directly deploy these learned

policies on a full-scale autonomous vehicle that can then suc-

cessfully drive autonomously on real roads it has never seen

before. We demonstrate that our learned policies exhibit greater

robustness in recovery from near-crash scenarios. While we treat

lane-stable control as the problem of choice, the methods and

simulator presented here are extendable to robust learning of
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more complex policies such as point-to-point navigation [3],

object avoidance [38], and lane changes [39]. We believe our

approach represents a major step towards the direct, real world

deployment of end-to-end learning techniques for robust training

of autonomous vehicle controllers.
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